
Journal of Computational Physics 228 (2009) 3858–3868
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A Cartesian treecode for screened coulomb interactions

Peijun Li a,*,1, Hans Johnston b,2, Robert Krasny c,2,3

a Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907, United States
b Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, United States
c Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States
a r t i c l e i n f o

Article history:
Received 10 August 2008
Received in revised form 5 February 2009
Accepted 16 February 2009
Available online 28 February 2009

MSC:
65Z05
82-08

PACS:
02.70.Ns
02.30.Mv

Keywords:
Screened coulomb potential
Yukawa potential
Cartesian treecode
Particle–cluster interaction
Recurrence relations
0021-9991/$ - see front matter Published by Elsevi
doi:10.1016/j.jcp.2009.02.022

* Corresponding author.
E-mail addresses: lipeijun@math.purdue.edu (P.

1 The research was supported in part by a Univers
2 The research was supported in part by Michigan
3 The research was supported in part by NSF Gran
a b s t r a c t

A treecode algorithm is presented for evaluating electrostatic potentials in a charged
particle system undergoing screened Coulomb interactions in 3D. The method uses a far-
field Taylor expansion in Cartesian coordinates to compute particle–cluster interactions.
The Taylor coefficients are evaluated using new recurrence relations which permit efficient
computation of high order approximations. Two types of clusters are considered, uniform
cubes and adapted rectangular boxes. The treecode error, CPU time and memory usage are
reported and compared with direct summation for randomly distributed particles inside a
cube, on the surface of a sphere and on an 8-sphere configuration. For a given order of
Taylor approximation, the treecode CPU time scales as OðN log NÞ and the memory usage
scales as OðNÞ, where N is the number of particles. Results show that the treecode is well
suited for non-homogeneous particle distributions as in the sphere and 8-sphere test cases.

Published by Elsevier Inc.
1. Introduction

Electrostatic effects induced by charged particle systems are important in many areas of biology, chemistry and physics
[16]. In the case of a dielectric medium, a common form of pairwise interaction is the screened Coulomb potential,
/ðx; yÞ ¼ e�jjx�yj

jx� yj ; ð1Þ
where x; y 2 R3 and j P 0 is the Debye–Hückel parameter. We interpret x as a target point and y as a source point. The
Debye–Hückel parameter is defined by
er Inc.

Li), johnston@math.umass.edu (H. Johnston), krasny@umich.edu (R. Krasny).
ity of Michigan Research Fellowship and NSF Grant EAR-0724656.
Life Sciences Corridor Grant #1515.

ts DMS-0510162, ATM-0723440.

mailto:lipeijun@math.purdue.edu
mailto:johnston@math.umass.edu
mailto:krasny@umich.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


P. Li et al. / Journal of Computational Physics 228 (2009) 3858–3868 3859
j2 ¼ 8pq2I
�kBT

; ð2Þ
where q and I are the ionic charge and concentration in the medium, � is the dielectric constant, kB is the Boltzmann constant
and T is the temperature. For example in the case of a solvent, j > 0 accounts for the presence of dissolved electrolytes which
tend to weaken the electric field.

The screened Coulomb potential (1) arises in many applications. It is the free-space Green’s function of the linear Poisson–
Boltzmann equation,
D/� j2/ ¼ 0; ð3Þ
which is used in implicit solvent models for biomolecular simulations [1,21]. The same potential function appears in studies
of DNA structure [24] and dusty plasmas [3,17,27] and it is known as the Yukawa potential in nuclear physics where it de-
scribes the binding of nucleons by meson exchange [6].

Here we consider systems of particles with locations xi and charges qi, for i ¼ 1 : N, interacting through Eq. (1). In this
case, the electrostatic potential at a given particle xi due to all the other particles is
Vi ¼
XN

j¼1;j–i

qj/ðxi;xjÞ: ð4Þ
These potentials are used to investigate basic properties of the system such as conformational stability and binding affinity
and their efficient computation is a major concern. The cost of evaluating Vi for i ¼ 1 : N by direct summation is OðN2Þ, which
is prohibitively expensive when N is large. Despite the exponential decay in Eq. (1), simply truncating the potential outside
some radius is not a viable option in applications where the values of j and jx� yj are not sufficiently large. As a result,
various more sophisticated methods have been developed to reduce the cost of evaluating sums like Eq. (4). For example
in the case j ¼ 0, particle-mesh methods transfer charge from the particles to a regular mesh where the sums can be rapidly
computed using the fast Fourier transform (FFT) [15].

The present work is concerned with an alternative class of tree-based fast summation methods that avoid using a mesh.
These include the Barnes–Hut treecode [2] and the Greengard–Rokhlin Fast Multipole Method (FMM) [12–14]. Tree-based
methods divide the particles into a hierarchy of clusters having a tree structure. In a treecode, the particle–particle interac-
tions are replaced by particle–cluster interactions which are evaluated using either a far-field multipole expansion or direct
summation. The FMM is a more elaborate procedure that uses near-field and far-field expansions. In principle, for a given
order of expansion, treecodes require OðN log NÞ execution time and the FMM requires OðNÞ execution time. In practice,
several factors affect the performance including the number of levels in the tree, the density of the particle distribution,
and the cache size of the computer. Aside from accuracy and execution time, different implementations can be compared
in terms of memory requirements, coding complexity and parallelizability. Optimizing these methods is still an active area
of research.

Most tree-based fast summation methods for electrostatics have dealt with the case j ¼ 0, where classical expansions of
the Coulomb potential are available. For example, the original FMM used spherical harmonics expansions [12] and the new
version of the FMM incorporates plane-wave expansions as well [7]. In order to extend these methods to the case j > 0, it is
necessary to identify suitable expansions of the screened Coulomb potential. This was recently accomplished for the FMM
using modified spherical Bessel functions [4] and an appropriate plane-wave expansion [13]. These developments led to
FMM-accelerated boundary element simulations of the Poisson–Boltzmann equation [5,19,20]. A key goal of research in this
area is to develop an efficient Poisson–Boltzmann solver which can be used in each timestep of a molecular dynamics sim-
ulation [25]. Another suitable approach for the case j > 0 is the kernel-independent FMM which uses equivalent particle
densities in place of analytic series expansions [29].

The FMM is a relatively complicated algorithm and it is worthwhile to investigate simpler alternatives. Here we present
a particle–cluster treecode for screened Coulomb interactions using a far-field Taylor expansion in Cartesian coordinates.
Several Cartesian FMMs have been developed for the case j ¼ 0, for example [30,8,28,26], but we are not aware of any
extensions to the case j > 0. One challenge in using Cartesian Taylor series for either a treecode or FMM is the computa-
tional complexity of explicit formulas for higher derivatives of the potential function /ðx; yÞ, but we avoid this problem by
deriving new recurrence relations for the Taylor coefficients of the screened Coulomb potential. The recurrence relations
are valid for j P 0 and they enable us to evaluate the Taylor approximations in a simple and efficient manner. This ap-
proach was previously employed in particle simulations involving several other potential functions including regularized
Biot-Savart kernels [9,22,18], the real-space potential in Ewald summation [10] and power law potentials [11]. After
describing the treecode algorithm, we present results for j ¼ 0 and j ¼ 1 for three test cases, randomly distributed parti-
cles inside a cube, on the surface of a sphere and on an 8-sphere configuration. We also compare two types of particle clus-
ters, uniform cubes on each level as in the original treecode [2] and adapted rectangular boxes [18]. For a given order of
Taylor approximation, the treecode CPU time scales as OðN log NÞ and the memory usage scales as OðNÞ. The version using
adapted rectangular boxes is well suited for non-homogeneous particle distributions as in the sphere and 8-sphere test
cases.

In Section 2 we review how the treecode uses particle–cluster interactions to evaluate electrostatic potentials in particle
system. In Section 3 we derive recurrence relations for the Taylor coefficients of the screened Coulomb potential with respect



3860 P. Li et al. / Journal of Computational Physics 228 (2009) 3858–3868
to Cartesian coordinates. In Section 4 we give details of the code implementation. Numerical results are presented in Section
5 and a summary is given in Section 6.

2. Particle–cluster interactions

In this section we review how the treecode uses particle–cluster interactions to evaluate electrostatic potentials in a
particle system [2,11]. Assume the particles have been divided into a hierarchy of clusters (the procedure will be described
later). The treecode evaluates the potential in Eq. (4) as a sum of particle–cluster interactions,
Fig. 1.
radius.
Vi ¼
X

c

V i;c; ð5Þ
where
Vi;c ¼
X
yj2c

qj/ðxi; yjÞ ð6Þ
is the interaction between a target particle xi and a cluster of sources c ¼ fyjg. A particle–cluster interaction is shown sche-
matically in Fig. 1, where yc is the cluster center, R is the particle–cluster distance and rc is the cluster radius.

If particle xi and cluster c are well-separated, the terms in Eq. (6) can be expanded in a Taylor series with respect to y
about yc ,
/ðxi; yjÞ ¼
X1
jjkjj¼0

1
k!

Dk
y/ðxi; ycÞðyj � ycÞ

k
; ð7Þ
where Cartesian multi-index notation has been used with k ¼ ðk1; k2; k3Þ; ki 2 N; jjkjj ¼ k1 þ k2 þ k3; k! ¼ k1!k2!k3!;

y ¼ ðy1; y2; y3Þ; yi 2 R; yk ¼ yk1
1 yk2

2 yk3
3 ; Dk

y ¼ Dk1
y1

Dk2
y2

Dk3
y3

. The Taylor series (7) converges for R > rc and hence it plays the role
of a far-field expansion in the treecode, analogous to the far-field spherical harmonics multipole expansion in the FMM.
Substituting (7) into (6) yields
Vi;c ¼
X
yj2c

qj

X1
jjkjj¼0

1
k!

Dk
y/ðxi; ycÞðyj � ycÞ

k ð8Þ

¼
X1
jjkjj¼0

1
k!

Dk
y/ðxi; ycÞ

X
yj2c

qjðyj � ycÞ
k ð9Þ

�
Xp

jjkjj¼0

akðxi; ycÞmk
c ; ð10Þ
where
akðxi; ycÞ ¼
1
k!

Dk
y/ðxi; ycÞ; ð11Þ
is the kth Taylor coefficient of the screened Coulomb potential (1),
mk
c ¼

X
yj2c

qjðyj � ycÞ
k
; ð12Þ
is the kth moment of cluster c and the Taylor series has been truncated at order p. Note that the Taylor coefficients akðxi; ycÞ
are independent of the sources yj in cluster c and the cluster moments mk

c are independent of the target xi. These features
lead to a savings in execution time.
Schematic of particle–cluster interaction between particle xi and cluster c ¼ fyjg; yc: cluster center, R: particle–cluster distance and rc: cluster



P. Li et al. / Journal of Computational Physics 228 (2009) 3858–3868 3861
The treecode has two options for computing a particle–cluster interaction Vi;c. It can use direct summation as in the def-
inition (6), or Taylor approximation as in (10). In practice, the Taylor approximation is used if the following multipole accep-
tance criterion (MAC) is satisfied,
rc

R
6 h; ð13Þ
where h is a user-specified parameter for controlling the error [2,23]. If the MAC is not satisfied, the code examines the chil-
dren of cluster c, or it performs direct summation if c is a leaf of the tree.

Here we focus on the problem of evaluating the electrostatic potential Vi, but similar considerations apply to the electric
field Ei ¼ �rVi and hence the treecode can be applied to compute electrostatic forces as well. In the next section we derive
recurrence relations for evaluating the Taylor coefficients.

3. Recurrence relations for Taylor coefficients

Explicit formulas for the Taylor coefficients of the screened Coulomb potential (11) are cumbersome to work with. Instead
we derive recurrence relations that permit simple and efficient computation of these coefficients to high order. It is conve-
nient to define an auxiliary function and its Taylor coefficients,
wðx; yÞ ¼ e�jjx�yj; bkðx; yÞ ¼ 1
k!

Dk
ywðx; yÞ: ð14Þ
In the remainder of this section we omit the arguments ðx; yÞ for clarity. We will show that the Taylor coefficients ak; bk sat-
isfy the recurrence relations,
jjkjjjx� yj2ak � ð2jjkjj � 1Þ
X3

i¼1

ðxi � yiÞak�ei þ ðjjkjj � 1Þ
X3

i¼1

ak�2ei ¼ j
X3

i¼1

ðxi � yiÞb
k�ei �

X3

i¼1

bk�2ei

 !
; ð15Þ

jjkjjbk ¼ j
X3

i¼1

ðxi � yiÞak�ei �
X3

i¼1

ak�2ei

 !
; ð16Þ
for jjkjjP 2, where ei are the Cartesian basis vectors. Before proceeding to the derivation, note that even though the recur-
rence relations are coupled, the structure is such that they can be solved by explicit marching; the values of ak; bk for
jjkjj ¼ 0;1 are computed from the definitions and then the recurrence relations can be applied to compute the coefficients
for jjkjjP 2.

First we derive the recurrence relation for ak. From Eqs. (1) and (14) we obtain
jx� yj/ ¼ w: ð17Þ
Then applying Dy1
yields
jx� yj2Dy1
/� ðx1 � y1Þ/ ¼ jðx1 � y1Þw: ð18Þ
Next applying Dk1�1
y1

and using Leibnitz’s rule for repeated differentiation of a product yields
jx� yj2Dk1
y1

/� ð2k1 � 1Þðx1 � y1ÞDk1�1
y1

/þ ðk1 � 1Þ2Dk1�2
y1

/ ¼ jððx1 � y1ÞDk1�1
y1

w� ðk1 � 1ÞDk1�2
y1

wÞ: ð19Þ
Next applying Dk2
y2

Dk3
y3

yields
jx� yj2Dk
y/� 2

X3

i¼1

kiðxi � yiÞDk�ei
y /þ

X3

i¼1

kiðki � 1ÞDk�2ei
y /þ ðx1 � y1ÞDk�e1

y /� ðk1 � 1ÞDk�2e1
y /

¼ jððx1 � y1ÞDk�e1
y � ðk1 � 1ÞDk�2e1

y Þ: ð20Þ
Dividing by k! and substituting the definitions of ak; bk yields
jx� yj2ak � 2
X3

i¼1

ðxi � yiÞak�ei þ
X3

i¼1

ak�2ei þ 1
k1
ððx1 � y1Þak�e1 � ak�2e1 Þ ¼ j

k1
ððx1 � y1Þb

k�e1 � bk�2e1 ÞÞ: ð21Þ
Index 1 plays a special role in Eq. (21) and two similar equations are obtained by permuting indices. Multiplying these equa-
tions by k1; k2; k3, respectively and summing the results yields (15). In practice, Eq. (21) is used instead of the symmetric form
(15) to gain a slight reduction in CPU time.

Regarding the coefficients bk, explicit calculation shows that
Dy1
w ¼ jðx1 � y1Þ/; ð22Þ
and then following the same steps as above yields Eq. (16). This completes the derivation of the recurrence relations for the
Taylor coefficients of the screened Coulomb potential.

Note that in the limit j! 0, the recurrence relations (15) and (16) reduce to



Fig. 2.
approx
charges
j ¼ 1; p

3862 P. Li et al. / Journal of Computational Physics 228 (2009) 3858–3868
jjkjjjx� yj2ak � ð2jjkjj � 1Þ
X3

i¼1

ðxi � yiÞak�ei þ ðjjkjj � 1Þ
X3

i¼1

ak�2ei ¼ 0; ð23Þ

jjkjjbk ¼ 0: ð24Þ
Eq. (23) is the recurrence relation for the Taylor coefficients of the Coulomb potential (this can be seen by setting j ¼ 0 in the
previous derivation) and Eq. (24) is a simple consequence of the fact that wðx; yÞ ! 1 as j! 0. Hence the recurrence rela-
tions (15) and (16) remain valid in the limit j! 0.

We conclude this section by reporting the accuracy of the Taylor approximation for a sample particle–cluster interaction.
Consider a target particle x ¼ ð�0:5;�0:5;�0:5Þ and a cluster of N ¼ 103 source particles randomly distributed in the cube
½0;0:5�3 with random charges jqij 6 0:5. The relative error in potential is defined by
E1 ¼
jV � bV j
jV j ; ð25Þ
where V is the exact value given by direct summation (6) and bV is the Taylor approximation (10). The Taylor coefficients are
computed using the recurrence relations derived above. Fig. 2 presents E1 as a function of the screening parameter,
0 6 j 6 5, and the approximation order, 0 6 p 6 20. In this case we have rc=R ¼ 1=3, so the Taylor series converges, but
the error is non-montonic with respect to order p (this was previously observed for the Coulomb potential [30]). Note that
the error E1 apparently vanishes for some special values of j and p (there are four occurrences in Fig. 2), but aside from these
values some general trends can be seen. For a given order p, the error generally increases as j increases. For example with
p ¼ 6, the error is 4.73e�6 for j ¼ 0 and 4.31e�3 for j ¼ 5; see circles ð�Þ in Fig. 2. Conversely, for a given value of j, the
error generally decreases as the order p increases. For example with j ¼ 1, the error is 2.89e�1 for p ¼ 0 and 1.71e�13
for p ¼ 20. In summary, the results show that the Taylor approximation (10) can be used to evaluate well-separated parti-
cle–cluster interactions of the screened Coulomb potential to a required level of accuracy.
Relative error in particle–cluster potential E1, Eq. (25), computed by Taylor approximation (10), as a function of screening parameter j and
imation order p; target particle x ¼ ð�0:5;�0:5;�0:5Þ, cluster of N ¼ 103 source particles randomly distributed in the cube ½0:0;0:5�3 with random
jqij 6 0:5; 0 6 p 6 20, order increases from top to bottom, even (solid line), odd (dashed line); circles ð�Þ indicate E1 value for j ¼ 0;5; p ¼ 6 and
¼ 0;20.



Table 1
Outline of treecode algorithm. h: MAC parameter, p: order of Taylor approximation and N0: maximum number of particles in a leaf.

1 program main
2 input particle positions and weights: xi; qi; i ¼ 1 : N
3 input user-specified parameters: h; p;N0

4 construct tree
5 do i ¼ 1;N
6 compute-potential(xi; root)
7 end do
8 end main
9 subroutine compute-potential(x; c)
10 if MAC is satisfied
11 compute and store moments of c (unless they are already available)
12 compute particle–cluster interaction by Taylor approximation
13 else
14 if c is a leaf
15 compute particle–cluster interaction by direct summation
16 else
17 do j ¼ 1; number of children of c
18 compute-potential(x; c%childðjÞ)
19 end do
20 end if
21 end if
22 return
23 end compute-potential

P. Li et al. / Journal of Computational Physics 228 (2009) 3858–3868 3863
4. Code implementation

First we comment on the data structures used in the treecode. The particle coordinates and charges are stored in a linear
array. Each cluster is defined by a data structure containing pointers to the particles contained in the cluster, the intervals in
space defining the cluster, the cluster moments and pointers to the children of the cluster.

Next in Table 1 we present an outline of the algorithm. After inputting the particle data and user-specified parameters,
the code constructs the tree by dividing the particles into a hierarchy of clusters [2]. Each cluster is a cube with sides parallel
to the Cartesian axes and the cubes on a given level are uniform in size. The root cluster is the smallest cube containing all
the particles. The root is bisected in each coordinate direction yielding eight child clusters. Subdivision is then applied to the
children and this continues until the number of particles in a cluster is less than a user-specified value N0. The remaining
undivided clusters form the leaves of the tree.

Next the code loops over the particles xi to compute the potentials Vi in Eq. (5). The clusters c appearing in (5) are deter-
mined by traversing the tree for each particle xi. This is done by calling a recursive subroutine compute-potentialðxi; cÞ
which computes the particle–cluster interaction Vi;c in Eq. (6). In the initial call, c is set to the root cluster. If the MAC
(13) is satisfied, then Vi;c is computed by Taylor approximation (the moments of cluster c are first computed and stored,
unless they are available from a previous particle–cluster approximation). If the MAC is not satisfied, then there are two
options. If c is a leaf, then Vi;c is computed by direct summation. If c is not a leaf, then the code calls compute-
potentialðxi; c%childðjÞÞ, where index j runs over the children of cluster c.

In a particle–cluster treecode such as this, the number of operations is OðN log NÞ, where the factor N comes from the loop
over particles and the factor log N is the depth of the tree [2]. In the present Cartesian implementation the prefactor is Oðp3Þ,
representing the number of multi-indices satisfying 0 6 jjkjj 6 p (this is the number of moments required for each cluster,
the number of Taylor coefficients required for a particle–cluster approximation and the number of operations required to
compute the approximation).

The computations were run on an Intel Pentium 4 processor (3.2 GHz, 2 MB level 2 cache, 1536 MB DDR2 memory). The
code was written in Fortran90 using double precision arithmetic and was compiled using the ifort compiler. In the CPU re-
sults given below, the treecode timings include the entire computation (constructing the tree, computing the moments, eval-
uating the potential). The direct sum was coded as two nested loops running over all particles. The code is available by
contacting one of the authors.

5. Numerical results

In this section we examine the error, CPU time and memory usage of the treecode in comparison with direct summation
for the problem of computing the potentials Vi, for i ¼ 1 : N in Eq. (4). Fig. 3 shows the three test cases considered, randomly
distributed particles (a) inside a cube, (b) on the surface of a sphere and (c) on an 8-sphere configuration (motivated by [29]).
We used a set of representative parameter values for the treecode, h ¼ 0:5 for the MAC parameter, p = 0:2:10 for the order of
Taylor approximation and N0 ¼ 500 for the maximum number of particles in a leaf. The system size was N ¼ 2m � 103 for
m = 0:10, starting at N = 1k and ending at N = 1024k.



Fig. 3. Test cases, particles distributed randomly (a) inside a cube, (b) on the surface of a sphere, (c) on a configuration of 8 spheres at the corners of a cube
(motivated by [29]).

3864 P. Li et al. / Journal of Computational Physics 228 (2009) 3858–3868
5.1. Particles inside a cube

First we report the treecode performance for randomly distributed particles in the cube ½�0:5;0:5�3 with random charges
jqij 6 0:5. Results are presented for the Coulomb potential, j ¼ 0 and the screened Coulomb potential with j ¼ 1.

The relative error in potential is defined by
a

Fig. 4.
j ¼ 0 a
E2 ¼

PN
i¼1
jVi � bV ij2

PN
i¼1
jVij2

0BBB@
1CCCA

1=2

; ð26Þ
where Vi is the exact value given by direct summation (6) and bV i is the value computed by the treecode. Fig. 4 shows the
relative error in potential E2 as a function of the number of particles N and the approximation order p. The error varies little
with N and it decreases steadily as p increases. The error is slightly higher for j ¼ 1 than for j ¼ 0, consistent with the trend
in Fig. 2.

Fig. 5 shows the CPU time as a function of the number of particles N and the approximation order p. The CPU time is OðN2Þ
for direct summation and is consistent with OðN log NÞ for the treecode. The breakeven point depends on the order p and we
discuss this below, but for sufficiently large N, the treecode is faster than direct summation. The CPU times for direct sum-
mation and the treecode are slightly higher for j ¼ 1 than for j ¼ 0, due to the expense of computing the exponential in the
screened potential (1). The treecode CPU time displays a periodic variation with N which is more pronounced for low order p.
This is presumably due to details of the code implementation and computer cache size, rather than an intrinsic property of
the method.
b

Random particles inside a cube; relative error in potential E2, Eq. (26) computed by the treecode with approximation order p; (a) Coulomb potential,
nd (b) screened Coulomb potential, j ¼ 1.



a b

Fig. 5. Random particles inside a cube; CPU time required by direct summation and the treecode with order p; (a) Coulomb potential, j ¼ 0 and (b)
screened Coulomb potential, j ¼ 1.

P. Li et al. / Journal of Computational Physics 228 (2009) 3858–3868 3865
Although the treecode is intended for problems requiring large values of N, we want to comment on the results in Fig. 5
for small N. These results indicate that direct summation and the treecode have comparable CPU times for N = 1k, 2k and
p 6 10. This can be understood by the following considerations. For N = 1k, 2k and N0 ¼ 500, there are only two levels in
the tree. In this case, with our choice of MAC parameter h ¼ 0:5, most of the particle–cluster interactions are computed
by direct summation, but a few of them are computed by Taylor approximation and these compensate for the overhead
in the treecode. Since relatively few particle–cluster interactions are computed by Taylor approximation, the treecode
CPU time depends only weakly on the order p for N = 1k, 2k, as seen in Fig. 5. For N = 4k there is a change in behaviour.
In this case the tree has three levels and more of the particle–cluster interactions are computed by Taylor approximation,
causing the treecode CPU time to vary more strongly with order p. As N increases still further, the tree acquires more levels
and even more of the particle–cluster interactions are computed by Taylor approximation, enabling the treecode to achieve
its asymptotic OðN log NÞ behaviour.

Fig. 6(a) shows the memory usage as a function of the number of particles N and the approximation order p. Results are
presented only for j ¼ 1, since the memory usage is independent of j. The treecode requires more memory than direct sum-
mation, primarily to store the cluster moments. The memory usage is OðNÞ for both the treecode and direct summation, but it
varies periodically with N for the treecode, again presumably due to details of the code implementation and computer cache
size. Fig. 6(b) shows the memory usage ratio (treecode/direct summation). The treecode requires about twice as much mem-
ory as direct summation for p ¼ 0 and less than five times as much for p ¼ 10.

5.2. Comparison of three test cases

Next we examine the treecode performance for three test cases shown in Fig. 3, randomly distributed particles (a) inside a
cube, (b) on the surface of a sphere and (c) on an 8-sphere configuration. In proceeding from (a) to (b) to (c) the particle den-
a b

Fig. 6. Random particles inside a cube; memory usage for direct summation and the treecode with order p, for screened Coulomb potential, j ¼ 1; (a)
memory usage and (b) memory usage ratio (treecode/direct sum).



3866 P. Li et al. / Journal of Computational Physics 228 (2009) 3858–3868
sity becomes increasingly non-homogeneous. In the cube test case, the particles were randomly distributed as in the previ-
ous subsection. In the sphere test cases, particles inside a cube were projected radially onto the surface of a sphere and these
were replicated for the 8-sphere configuration. The reason for considering the sphere test cases is that many biological appli-
cations involve surface charge distributions. For example in a dielectric medium, a surface charge develops at a discontinuity
of the dielectric function and specific instances include solute–solvent interfaces, ion channels and cell membranes. The re-
sults presented below are meant to indicate the treecode’s potential capability for these applications.

We also compare two types of particle clusters. The first type are uniform cubes on each level, as in the previous subsec-
tion and the original treecode [2]. The second type are adapted rectangular boxes obtained by shrinking the clusters so they
fit the particles they contain [18]. A schematic in 2D is shown in Fig. 7. In both cases empty clusters are omitted and the tree
has the same logical structure, but the adapted rectangular boxes have smaller radii and this affects the results for the sphere
and 8-sphere test cases as we will see.

Table 2 reports the treecode performance for representative parameter values j ¼ 1; p ¼ 6; h ¼ 0:5;N0 ¼ 500. Results
using uniform cubes are labeled ‘‘treecode-1” and those using adapted rectangular boxes are labeled ‘‘treecode-2”. The direct
sum CPU time and memory usage are also given; the values depend on N, but otherwise are independent of the particle den-
sity and hence are the same for all three test cases.

First consider the error. The error has the same order of magnitude for all three test cases, between 10�4 and 10�5. The
error is slightly smaller in the sphere and 8-sphere test cases than in the cube test case. This is attributed to the fact that the
tree has more empty clusters in the sphere and 8-sphere test cases and these clusters contribute nothing to the error. Next
note that within each test case, the error is slightly larger for treecode-2 than for treecode-1. This is attributed to the fact that
the adapted rectangular boxes have smaller radii than the uniform cubes, implying that the MAC is satisfied more often and
as a result, some particle–cluster interactions that were computed by direct sum in treecode-1 are instead computed by Tay-
lor approximation in treecode-2.

Next consider the CPU time. The treecode CPU time decreases on proceeding from the cube to the sphere to the 8-sphere
configuration. To help understand this, note for example that the sphere test case has more empty clusters than the cube test
case and consequently each non-empty cluster in the sphere test case contains more particles on average for a given value of
N. This leads to greater efficiency since the cost of computing a particle–cluster interaction by Taylor approximation is inde-
pendent of the number of particles in the cluster (the cluster moments will be available most of the time from a previous
interaction). Next note that within each test case, treecode-2 is faster than treecode-1. This is attributed again to the fact
that the adapted rectangular boxes have smaller radii than the uniform cubes, so the MAC is satisfied at a higher level in
the tree where the clusters contain more particles. The gain in efficiency due to using adapted rectangular boxes increases
with N. In the 8-sphere test case with N ¼ 1024k, treecode-1 is about 130 times faster than direct summation and treecode-2
is about 170 times faster.

Finally consider the memory usage. The memory usage is roughly the same for all three test cases and for the two versions
of the treecode. There is a slight increase in memory usage for the sphere and 8-sphere test cases relative to the cube test
case for N ¼ 1024k, but even so, the treecode (with p ¼ 6 in Table 2) uses roughly only 2.5 times the memory required by
direct summation.
a

b

Fig. 7. Schematic of tree structure for random particles on a circle in 2D. The clusters are (a) uniform squares on each level, or (b) adapted rectangular boxes
obtained by shrinking the squares.



Table 2
Treecode performance for the cube, sphere and 8-sphere test cases, j ¼ 1; p ¼ 6; h ¼ 0:5;N0 ¼ 500, error given by Eq. (26), CPU time in seconds (sec), memory
usage in megabytes (MB); the clusters were either uniform cubes (treecode-1) or adapted rectangular boxes (treecode-2).

Test case Method N = 16k N = 64k N = 256k N = 1024k

Error Cube treecode-1 7.05e�5 8.03e�5 8.56e�5 6.69e�5
treecode-2 7.41e�5 8.37e�5 8.81e�5 6.77e�5

Sphere treecode-1 1.54e�5 2.29e�5 3.12e�5 2.97e�5
treecode-2 2.41e�5 3.85e�5 5.01e�5 5.21e�5

8-Sphere treecode-1 1.57e�5 2.11e�5 2.20e�5 2.32e�5
treecode-2 1.61e�5 3.02e�5 4.13e�5 4.15e�5

CPU (s) Cube treecode-1 4.44 27.39 183.29 883.12
treecode-2 4.43 27.11 181.30 875.99

Sphere treecode-1 4.05 22.51 118.58 590.15
treecode-2 3.46 17.99 91.48 444.70

8-Sphere treecode-1 1.85 12.41 83.49 452.86
treecode-2 1.80 11.21 67.05 345.94

Cube, sphere, 8-sphere direct sum 14.35 230.95 3705.07 59439.65
Memory (MB) Cube treecode-1 1.44 6.60 26.98 91.65

treecode-2 1.44 6.60 26.98 91.65
Sphere treecode-1 1.41 6.34 25.59 100.13

treecode-2 1.41 5.78 23.98 96.22
8-Sphere treecode-1 1.43 6.43 25.96 98.46

treecode-2 1.43 6.41 25.73 100.87
Cube, sphere, 8-sphere direct sum 0.64 2.56 10.24 40.96

P. Li et al. / Journal of Computational Physics 228 (2009) 3858–3868 3867
6. Summary

We presented a treecode algorithm for evaluating electrostatic potentials in a charged particle system undergoing
screened Coulomb interactions in 3D. The method follows the Barnes–Hut approach in which the particle–particle interac-
tions are replaced by particle–cluster interactions [2]. We employed a far-field Cartesian Taylor expansion of the screened
Coulomb potential to compute particle–cluster approximations. The Taylor coefficients were evaluated using new recurrence
relations which permit efficient computation of high order approximations. Two types of clusters were considered, uniform
cubes and adapted rectangular boxes. The treecode error, CPU time and memory usage were reported and compared with
direct summation for randomly distributed particles inside a cube, on the surface of a sphere and on an 8-sphere configu-
ration. For a given order of Taylor approximation, the treecode CPU time scales as OðN log NÞ and the memory usage scales
as OðNÞ. The results show that the treecode is well suited for non-homogeneous particle distributions as in the sphere and 8-
sphere test cases. We plan to employ the treecode in boundary element simulations of the Poisson–Boltzmann equation,
which involve screened charge distributions on a molecular surface [1,5,19,20].

Researchers needing to use a fast summation method for screened Coulomb interactions have several options to consider
including the analytic FMM [4,13] and the kernel-independent FMM [29]. The present work proposes the Cartesian treecode
as a viable alternative. The key advantage of the treecode is its relative simplicity in comparison to the FMM. Treecodes in
general use only a far-field expansion, while the FMM uses a more elaborate procedure which converts the far-field expan-
sion to a near-field expansion [14,12]. The Cartesian treecode proposed here uses elementary Taylor series, while the analytic
FMM uses special function expansions. In principle, for a given order of expansion, the treecode requires OðN log NÞ execution
time, while the FMM requires OðNÞ execution time, but these estimates are based on the number of floating point operations
and do not account for memory access costs. These estimates also assume that the particle distribution is homogeneous,
which is not the case in many applications. In conclusion then, our point of view is that the Cartesian treecode enriches
the range of choices available for computing electrostatic potentials and forces.

Acknowledgments

The research was supported in part by NSF Grants DMS-0510162, ATM-0723440, EAR-0724656, Michigan Life Sciences
Corridor Grant #1515, and a University of Michigan Research Fellowship. The authors thank the reviewers for suggestions
which improved the manuscript.

References

[1] N.A. Baker, Improving implicit solvent simulations: a Poisson-centric view, Curr. Opin. Struct. Biol. 15 (2005) 137–143.
[2] J. Barnes, P. Hut, A hierarchical O(N logN) force-calculation algorithm, Nature 324 (1986) 446–449.
[3] M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, A. Filinov, Structural properties of screened Coulomb balls, Phys. Rev.

Lett. 96 (2006) 075001.
[4] A.H. Boschitsch, M.O. Fenley, W.K. Olson, A fast adaptive multipole algorithm for calculating screened Coulomb (Yukawa) interactions, J. Comput. Phys.

151 (1999) 212–241.
[5] A.H. Boschitsch, M.O. Fenley, H.-X. Zhou, Fast boundary element method for the linear Poisson–Boltzmann equation, J. Phys. Chem. B 106 (2002) 2741–

2754.
[6] G.E. Brown, A.D. Jackson, The Nucleon–Nucleon Interaction, North-Holland, Amsterdam, 1976.



3868 P. Li et al. / Journal of Computational Physics 228 (2009) 3858–3868
[7] H. Cheng, L. Greengard, V. Rokhlin, A fast adaptive multipole algorithm in three dimensions, J. Comput. Phys. 155 (1999) 468–498.
[8] H.-Q. Ding, N. Karasawa, W.A. Goddard III, Atomic level simulations on a million particles: the cell multipole method for Coulomb and London nonbond

interactions, J. Chem. Phys. 97 (1992) 4309–4315.
[9] C.I. Draghicescu, M. Draghicescu, A fast algorithm for vortex blob interactions, J. Comput. Phys. 11 (1995) 69–78.

[10] Z.-H. Duan, R. Krasny, An Ewald summation based multipole method, J. Chem. Phys. 113 (2000) 3492–3495.
[11] Z.-H. Duan, R. Krasny, An adaptive treecode for computing nonbonded potential energy in classical molecular systems, J. Comput. Chem. 22 (2001)

184–195.
[12] L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT Press, Cambridge, MA, 1988.
[13] L. Greengard, J. Huang, A new version of the fast multipole method for screened Coulomb interactions in three dimensions, J. Comput. Phys. 180 (2002)

642–658.
[14] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987) 325–348.
[15] R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, Taylor and Francis, New York, 1988.
[16] B. Honig, A. Nicholls, Classical electrostatics in biology and chemistry, Science 268 (1995) 1144–1149.
[17] U. Konopka, G.E. Morfill, L. Ratke, Measurement of the interaction potential of microspheres in the sheath of a RF discharge, Phys. Rev. Lett. 84 (2000)

891–894.
[18] K. Lindsay, R. Krasny, A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow, J. Comput. Phys. 172 (2001) 879–

907.
[19] B. Lu, X. Cheng, J. Huang, J.A. McCammon, Order N algorithm for computation of electrostatic interactions in biomolecular systems, Proc. Nat. Acad. Sci.

103 (2006) 19314–19319.
[20] B. Lu, X. Cheng, J.A. McCammon, New-version-fast-multipole-method accelerated electrostatic calculations in biomolecular systems, J. Comput. Phys.

226 (2007) 1348–1366.
[21] B.Z. Lu, Y.C. Zhou, M.J. Holst, J.A. McCammon, Recent progress in numerical methods for the Poisson–Boltzmann equation in biophysical applications,

Commun. Comput. Phys. 3 (2008) 973–1009.
[22] T. Sakajo, H. Okamoto, An application of Draghicescu’s fast summation method to vortex sheet motion, J. Phys. Soc. Jpn 67 (1998) 462–470.
[23] J.K. Salmon, M.S. Warren, Skeletons from the treecode closet, J. Comput. Phys. 111 (1994) 136–155.
[24] T. Schlick, B. Li, W.K. Olson, The influence of salt on the structure and energetics of supercoiled DNA, Biophys. J. 67 (1994) 2146–2166.
[25] T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide, Springer, New York, 2002.
[26] B. Shanker, H. Huang, Accelerated Cartesian expansions – A fast method for computing of potentials of the form R�m for all real m, J. Comput. Phys. 226

(2007) 732–753.
[27] T.E. Sheridan, W.L. Theisen, Study of two-dimensional Debye clusters using Brownian motion, Phys. Plasmas 13 (2006) 062110.
[28] J. Shimada, H. Kaneko, T. Takada, Performance of fast multipole methods for calculating electrostatic interactions in biomacromolecular simulations, J.

Comput. Chem. 15 (1994) 28–43.
[29] L. Ying, G. Biros, D. Zorin, A kernel-independent adaptive fast multipole algorithm in two and three dimensions, J. Comput. Phys. 196 (2004) 591–626.
[30] F. Zhao, An O(N) Algorithm for three-dimensional N-body simulations, Technical Report AI-TR-995, M.I.T. AI Lab, 1987.


	A Cartesian treecode for screened coulomb interactions
	Introduction
	Particle–cluster interactions
	Recurrence relations for Taylor coefficients
	Code implementation
	Numerical results
	Particles inside a cube
	Comparison of three test cases

	Summary
	Acknowledgments
	References


