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A TWO-SCALE MULTIPLE SCATTERING PROBLEM∗

KAI HUANG† AND PEIJUN LI‡

Abstract. Consider the scattering problem of a time-harmonic plane wave incident on a hetero-
geneous medium consisting of isotropic point (small scale) scatterers and an extended (wavelength
comparable) obstacle scatterer in three-dimensional space. To compute the scattered field from the
interaction between the incident wave and the point scatterers only, the Foldy–Lax method provides
an effective approach, while boundary integral equation methods play an important role for solving
the scattering problem solely involving an extended obstacle scatterer. It is a challenging two-scale
multiple scattering problem when both the point scatterers and the extended obstacle are present.
In this paper, a generalized Foldy–Lax method is developed to fully take account of the multiple
scattering in the heterogenous medium. The method is viewed from two different formulations: the
series solution and the integral equation. The series solution formulation is shown as an efficient
iterative scheme to the integral equation formulation. The convergence of the scattered fields and
the far-field patterns from the series solution formulation are characterized in terms of scattering
coefficients. Numerical experiments are presented to show the agreement and the effectiveness of the
proposed two approaches.
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1. Introduction. Scattering problems are concerned with the effect an inhomo-
geneous medium has on an incident wave [4]. In particular, if the total field is viewed
as the sum of the incident field and the scattered field, the direct scattering problem
is to determine the scattered field from the knowledge of the incident field, the scat-
terers, and the differential equation governing the wave motion. Scattering problems
are basic in many scientific areas such as radar and sonar (e.g., submarine detection),
geophysical exploration (e.g., oil and gas exploration), and medical imaging (e.g.,
breast cancer detection). Multiple scattering, which is interesting and challenging,
refers to the interaction of the wave fields with two or more obstacles with possible
different scales [11]. This work is devoted to a two-scale multiple acoustic wave scat-
tering problem of a time-harmonic plane wave incident on a heterogeneous medium
consisting of isotropic point scatterers and an extended obstacle scatterer. “Isotropic
point” refers that the scale of the scatterer is much smaller than the wavelength of
the incident field so that the scatterer can be represented by a source point within
it; “extended” means that the scale of the obstacle scatterer is comparable with the
wavelength of the incident field.

The Foldy–Lax method is concerned with the multiple scattering of scalar waves
by a distribution of small isotropic scatterers [7, 10]. This self-consistent method
assumes that a wave is emitted by each scatterer of an amount and directionality
determined by the radiation incident on that scatterer (the effective field). The latter
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1512 KAI HUANG AND PEIJUN LI

is to be determined by adding to the incident beam the waves emitted by all other
scatterers, and the waves emitted by those scatterers are in turn influenced by the
radiation emitted by the scatterer in question. The specific procedure is not an
expansion in different order of scattering. The field acting on a given scatterer or
emitted by it includes the effects of all orders of scattering. This method effectively
gives the wave fields by solving a linear system for the idealized situation, where the
medium is viewed as a collection of isotropic point scatterers. Though there is a very
complicated scattering picture with multiple scattering of all orders, the scattered
field can be computed very efficiently.

Another basic problem in classical scattering theory is the scattering of time-
harmonic acoustic or electromagnetic waves by a bounded impenetrable obstacle with
scale comparable to the wavelength or larger. In view of differential equations, this
problem can be reduced to an exterior boundary value problem. To apply numerical
methods, the open domain needs to be truncated into a bounded domain. There-
fore, a suitable boundary condition then has to be imposed on the boundary of the
bounded domain so that no artificial wave reflection occurs. There are a variety of
ways to provide such a “nonreflecting” boundary condition, e.g., nonlocal Dirichlet-to-
Neumann maps, local absorbing boundary conditions as approximations to nonlocal
Dirichlet-to-Neumann maps, perfectly matched layer techniques, and boundary inte-
gral equations. Integral equation methods play a central role in the study of boundary
value problems associated with the scattering of acoustic or electromagnetic waves by
bounded obstacles. This is primarily due to the fact that the mathematical formu-
lation of such problems leads to equations defined over unbounded domains, and
hence their reformulation in terms of boundary integral equations not only reduces
the dimensionality of the problem but also allows one to replace a problem over an
unbounded domain by one over a bounded domain. One may consult the book by
Colton and Kress [5] for comprehensive accounts of the obstacle scattering problem.

More interestingly, in many situations one wishes to simulate wave propagation
in a heterogenous medium with different scales, e.g., extended obstacles embedded
in randomly distributed small scale scatterers. This is the case when one wants
to use the numerical schemes for assessment of methods for imaging in a cluttered
environment. Therefore, we need to solve the direct scattering problem corresponding
to wave propagation in the heterogeneous medium. This is a challenging problem
which, in general, involves phenomena on many scales, in particular the scales of the
medium variations, the wavelength, and the propagation distance. In this work, the
clutter medium is modeled by a set of isotropic point scatterers and an extended
obstacle with one or possibly more components, as seen in Figure 1. When the point
scatterers and the extended obstacle are simultaneously illuminated by an incident
wave, the scattered waves will be generated from the point scatterers and the extended
obstacle, respectively. The scattered wave from the point scatterers will interact
with the extended obstacle to induce further scattered fields; on the other hand, the
scattered wave from the extended obstacle will also interact with the point scatterers
to induce further scattered fields. Therefore, the field scattered from one side will
induce further scattered fields from the other side, which will induce further scattered
fields from the other side, and so on. This recursive way of thinking about how
to calculate the total field leads to a notion of multiple scattering; it can be used
to actually compute the total scattered field, and each step is called an order of
scattering. Throughout the paper we consider a scalar wave field in the frequency
domain so that the governing equation is the Helmholtz equation.
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Fig. 1. Schematic of problem geometry. A plane wave is incident on the heterogeneous medium
consisting of point scatterers centered at rj and an extended obstacle D with boundary Γ.

To compute the scattered field from the interaction between the incident wave
and point scatterers only, the Foldy–Lax method provides an effective approach, while
boundary integral equation methods play an important role for solving the scattering
problem solely involving an extended obstacle. It is a challenging two-scale mul-
tiple scattering problem when both the point scatterers and the extended obstacle
are present. The idea of the work is to combine these two methods such that the
multiple scattering between the extended obstacle and the point scatterers can be
fully taken into account, ideally without increasing significantly the computational
complexity relative to the original algorithms. We develop a generalized Foldy–Lax
method, which is viewed from two different formulations: the series solution and the
integral equation. The series solution formulation is shown as an efficient iterative
scheme to the integral equation formulation. The convergence of the scattered fields
and the far-field patterns from the series solution formulation are characterized in
terms of scattering coefficients. Numerical experiments are presented for two types
of heterogeneous medium in three dimensions, uniformly distributed point scatterers
surrounding the unit sphere, and randomly distributed point scatterers surrounding
an obstacle with a rough surface. Recently, based on the null field or extended bound-
ary condition approach and scattering operators, a generalized Foldy–Lax formulation
was developed to solve the two-dimensional multiple scattering problem in [8], where
the formulation is represented as a series in terms of spherical harmonics. The gener-
alized Foldy–Lax formulation in the current paper is different from that in [8] since our
approach is based on the boundary integral equation for a three-dimensional problem
and therefore can be used to deal with obstacles with more general geometries.

The outline of the paper is as follows. In section 2, the Foldy–Lax method is
briefly reviewed for computing the scattered wave fields arising from the interaction
of the incident wave with the point scatterers; a model problem for the obstacle scat-
tering problem is introduced, and a boundary integral equation is presented; and a
generalized Foldy–Lax method with two formulations is developed to solve the two-
scale multiple scattering problem when both the point scatterers and the extended
obstacle are present. The convergence results of the scattered field and the far-field
patterns for the series solution formulation are established in section 3. Numerical ex-
periments are shown in section 4. The paper is concluded in section 5 with comments
and directions for future work.

2. Multiple scattering system. In this section, we present a generalized Foldy–
Lax formulation for the multiple scattering problem, which involves both the point
scatterers and an extended obstacle. In this method, the multiple scattering between
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1514 KAI HUANG AND PEIJUN LI

the point scatterers and the extended obstacle is fully taken into account by combining
the boundary integral equation method with the Foldy–Lax method.

2.1. Scattering from point scatterers. We briefly review the Foldy–Lax
method for the scattering problem involving only the isotropic point scatterers. The
waves scattered by any one scatterer will be represented by a point source located at
some point within the scatterer.

Consider a collection of m separated point scatterers at r1, . . . , rm. Let φinc be
the plane incident wave, given explicitly as

φinc(r) = eiκr·d inR3,

where i is the imaginary unit, κ is the wavenumber, and d is the propagation direction
defined on the unit sphere. Since the point scatterers are treated as isotropic, the
scattered field in the neighborhood of the jth scatterer will behave like

AjG(r, rj),

where Aj is an unknown amplitude and G is the free-space Green’s function satisfying

ΔG(r, r′) + κ2G(r, r′) = −δ(r− r′) inR3,

which is given explicitly in three dimensions as

G(r, r′) =
1

4π

eiκ|r−r′|

|r− r′| .

The total field is represented as the sum of the incident field and the scattered
field,

(2.1) φ(r) = φinc(r) +

m∑
j=1

AjG(r, rj).

The external field acting on the ith scatterer is defined as

(2.2) φext,i(r) = φ(r) −AiG(r, ri) = φinc(r) +

m∑
j=1
j �=i

AjG(r, rj).

It can be regarded as the field incident on the ith scatterer in the presence of all the
other scatterers.

The scattering properties of the scatterers can be characterized by

(2.3) Ai = σiφext,i(ri),

which makes the strength of the scattered wave from a scatterer proportional to the
external field acting on it. Here σi is referred to as the scattering coefficient for the
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ith scatterer. The scattering coefficients characterize how the point scatterer excites
waves and can be determined from enforcing energy conservation. Thus, the scattered
field is determined by the value of the external field at the center of the scatterer ri
together with the quantity σi.

Using (2.3) and evaluating (2.2) at ri yields

(2.4) φext,i(ri) = φinc(ri) +

m∑
j=1
j �=i

σjφext,j(rj)G(ri, rj),

which is a linear system of algebraic equations for φext,j(rj) and represents the fun-
damental equations of multiple scattering for a set of point scatterers.

Equivalently we have from (2.4) that

σ−1
i Ai = φinc(ri) +

m∑
j=1
j �=i

AjG(ri, rj),

which can be written in the form

(2.5) MA = φsou.

Here A = [A1, A2, . . . , Am]� is the amplitude vector, φsou = [φinc(r1), φinc(r2), . . . ,
φinc(rm)]� is the source field vector, and the m×m coefficient matrix M is

M =

⎡
⎢⎢⎢⎣

σ−1
1 −G(r1, r2) · · · −G(r1, rm)

−G(r2, r1) σ−1
2 · · · −G(r2, rm)

...
...

. . .
...

−G(rm, r1) −G(rm, r2) · · · σ−1
m

⎤
⎥⎥⎥⎦ .

After solving the above linear system for A, the total field can be obtained from (2.1),
and the scattered field can be expressed as

(2.6) φsc(r) =

m∑
j=1

AjG(r, rj).

Remark 2.1. For a single point scatterer at r0, the linear system (2.5) is reduced
to the identity

A0 = σ0φinc(r0).

The scattered field is simply given by

φsc(r) = σ0φinc(r0)G(r, r0),

where σ0 is the scattering coefficient for the single point scatterer.
Next we examine the invertibility of the coefficient matrix M and estimate the

bound of its inverse. We begin with a useful lemma.
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Lemma 2.1. If B and B −D are nonsingular matrices, then

(B −D)−1 = B−1 +B−1(I −DB−1)−1DB−1.

Proof. The proof is done by verifying

[B −D]
[
B−1 +B−1(I −DB−1)−1DB−1

]
= I.

Given a vector x = (x1, x2, . . . , xm)� ∈ Cm and a matrix B = [bij ]m×m ∈ Cm×m,
introduce the maximum norms

‖ x ‖∞ := max
1≤j≤m

|xi| and ‖ B ‖∞: = max
1≤i≤m

m∑
j=1

|bij |.

Define an important parameter

σmax := max
1≤j≤m

|σj |.

This parameter describes the strength of the scattered waves from the point scatterers
and will be used to characterize the convergence of the generalized Foldy–Lax method.

Theorem 2.1. If σmax is small enough, the coefficient matrix M is invertible
and has the estimate

(2.7) ‖M−1 ‖∞ ≤ Cσmax,

where C is independent of σj for j = 1, 2, . . . ,m.
Proof. Split the matrix M =M1 −M2, where

M1 =

⎡
⎢⎢⎢⎣
σ−1
1

σ−1
2

. . .

σ−1
m

⎤
⎥⎥⎥⎦ and

M2 =

⎡
⎢⎢⎢⎣

0 G(r1, r2) · · · G(r1, rm)
G(r2, r1) 0 · · · G(r2, rm)

...
...

. . .
...

G(rm, r1) G(rm, r2) · · · 0

⎤
⎥⎥⎥⎦ .

Evidently, the matrix M1 is invertible. We have from the properties of the matrix
norm that

‖M2M
−1
1 ‖∞ ≤‖M2 ‖∞‖M−1

1 ‖∞ = σmax ‖M2 ‖∞< 1

as σmax is small enough. The above estimate indicates that the matrix I −M2M
−1
1

or equivalently the matrix M = M1 −M2 is invertible, and furthermore we have the
estimate

‖ I −M2M
−1
1 ‖∞ ≤ 1

1− ‖M2M
−1
1 ‖∞

≤ 1

1− σmax ‖M2 ‖∞ .
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It follows from Lemma 2.1 that

M−1 = (M1 −M2)
−1 =M−1

1 +M−1
1 (I −M2M

−1
1 )−1M2M

−1
1 .

Following the same argument for small enough σmax gives

‖M−1 ‖∞ = ‖M−1
1 +M−1

1 (I −M2M
−1
1 )−1M2M

−1
1 ‖∞

≤‖M−1
1 ‖∞ + ‖M−1

1 ‖∞ ‖M2M
−1
1 ‖∞

1− ‖M2M
−1
1 ‖∞

≤‖M−1
1 ‖∞

(
1 +

‖M2M
−1
1 ‖∞

1− ‖M2M
−1
1 ‖∞

)

≤ σmax

(
1 +

σmax ‖M2 ‖∞
1− σmax ‖M2 ‖∞

)
≤ Cσmax.

Given m separated point scatterers at rj , if σmax is small, we may have from (2.4)
that

φext,i(ri) ≈ φinc(ri),

which gives an approximation to the scattered field

φsc(r) ≈
m∑
j=1

σjφinc(ri)G(r, rj).

In this case, the interaction among the m point scatterers is weak. Therefore the
parameter σmax characterizes the situation when the weak scattering occurs.

2.2. Scattering from an extended obstacle. This section is devoted to the
solution of the obstacle scattering problem. More specifically, we consider the scatter-
ing of time-harmonic acoustic waves by a bounded sound-soft impenetrable obstacle.
In this section, if not stated otherwise, we always will assume that the obstacle is
represented by the domain D with boundary Γ, which is the open complement of
an unbounded domain of class C2, i.e., scattering from more than one component is
included in our analysis.

Consider the Helmholtz equation,

(2.8) Δψ + κ2ψ = 0 inR3 \D,

along with the sound-soft boundary condition

(2.9) ψ = 0 onΓ,

where ψ is the total field and κ is a positive real number and is called the wavenumber
as before. Boundary conditions other than sound-soft, e.g., sound-hard or impedance
boundary condition, can be considered similarly.

The obstacle is illuminated by the same plane incident wave as that incident
on the point scatterers. The total field ψ consists of the incident field φinc and the
scattered ψsc:

(2.10) ψ = φinc + ψsc.
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It follows from (2.8)–(2.10) that the scattered field satisfies

Δψsc + κ2ψsc = 0 inR3 \D,

together with the boundary condition

ψsc = −φinc onΓ.

In addition, the scattered field is required to satisfy the Sommerfeld radiation condi-
tion

lim
ρ→∞

√
ρ

(
∂ψsc

∂ρ
− iκψsc

)
= 0, ρ = |r|,

uniformly for all directions r̂ = r/|r|.
Next we present a boundary integral equation method to solve the above exterior

boundary value problem. The main advantage of the use of boundary integral equation
methods to study exterior boundary value problems lies in the fact that this approach
reduces a problem defined over an unbounded domain to one defined on a bounded
domain of lower dimension, i.e., the boundary of the scattering obstacle.

It follows immediately from Green’s representation theorem that

ψsc(r) =

∫
Γ

∂n′G(r, r′)ψsc(r
′)ds(r′)−

∫
Γ

G(r, r′)∂n′ψsc(r
′)ds(r′), r ∈ R

3 \D,

where n′ is the unit outward normal with respect to the variable r′ and is assumed
to be directed into the exterior of D.

Similarly we have for the incident field that

0 =

∫
Γ

∂n′G(r, r′)φinc(r′)ds(r′)−
∫
Γ

G(r, r′)∂n′φinc(r
′)ds(r′), r ∈ R

3 \D.

Adding these two equations and using the boundary condition (2.9) gives

(2.11) ψsc(r) = −
∫
Γ

G(r, r′)∂n′ψ(r′)ds(r′), r ∈ R
3 \D.

To compute the scattered field, the normal derivative of the total field, ∂nψ, needs to
be determined on the boundary Γ. Adding the incident field on both sides of (2.11),
using the potential theory, and taking the normal derivative on the boundary Γ, we
obtain the boundary integral equation

(2.12)
1

2
∂nψ(r) +

∫
Γ

∂nG(r, r
′)∂n′ψ(r′)ds(r′) = ∂nφinc(r).

It is known that (2.12) is not uniquely solvable at the eigenvalues of the cor-
responding interior boundary value problem. Several attempts have been made to



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A TWO-SCALE MULTIPLE SCATTERING PROBLEM 1519

alleviate the problem of spurious resonances, including the combined field equations.
For example, the following uniquely solvable boundary integral equation by Brakhage
and Werner [2] may be considered,

1

2
∂nψ(r) +

∫
Γ

[∂nG(r, r
′) + iηG(r, r′)] ∂n′ψ(r′)ds(r′) = (∂n + iη)φinc(r),

where n is the unit outward normal with respect to the variable r. Here η is a
nonzero real number and is called the coupling parameter. For an investigation on
the proper choice of the coupling parameter η with respect to the condition number of
the coefficient matrix for the integral equation, we refer to Kress [9]. However, we feel
that the alternative approach makes the arguments a little more complicated since
our main intention is to derive a generalized Foldy–Lax formulation which accounts
for the presence of the extended obstacle. Therefore, we will use boundary integral
equation (2.12) and assume that it is uniquely solvable throughout the paper.

Given a domain Ω, define

‖ u ‖0,∞,Ω := sup
r∈Ω

|u(r)|.

Introduce a standard Sobolev space

W 1,∞(Ω) := {u ∈ L1
loc(Ω) : ‖ u ‖1,∞,Ω ≤ ∞},

where the Sobolev norm is

‖ u ‖1,∞,Ω := max
|α|≤1

‖ Dαu ‖0,∞,Ω .

In order to prove the stability of the solution for the boundary integral equation (2.12),
we need the following classical result, which may be found in Colton and Kress [5].

Lemma 2.2. Let X be a normed space, T : X → X be a compact operator,
and I + T be injective. Then the inverse operator (I + T )−1 : X → X exists and is
bounded.

Theorem 2.2. The solution to the boundary integral equation (2.12) depends
continuously on the incident field, i.e.,

(2.13) ‖ ∂nψ ‖0,∞,Γ≤ C ‖ φinc ‖1,∞,Γ,

where C depends on η and Γ.
Proof. Introduce the double-layer potential operator K : W 0,∞(Γ) → W 0,∞(Γ)

by

(Ku)(r) :=

∫
Γ

∂nG(r, r
′)u(r′)ds(r′).

The integral equation (2.12) can be written as

(2.14)

(
1

2
I +K

)
∂nψ = ∂nψinc.

It follows from the compactness of the operator K, along with Lemma 2.2, that

‖ ∂nψ ‖0,∞,Γ ≤ C ‖ ∂nφinc ‖0,∞,Γ≤ C ‖ φinc ‖1,∞,Γ .
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2.3. Series solution formulation. This section is concerned with a series so-
lution formulation for the multiple scattering between the extended obstacle and the
point scatterers. The field scattered from one obstacle will induce further scattered
fields from all the other obstacles, which will induce further scattered fields from all
the other obstacles, and so on. The multiple scattering can be regarded as the sum-
mation of all the orders of scattering. The series solution formulation provides us a
physical instinct on how the multiple scattering occurs. In the following, we consider
the scattering orders one by one.

The first order scattering is

u(1)sc (r) = φ(1)sc (r) + ψ(1)
sc (r),

where φ
(1)
sc and ψ

(1)
sc are the scattered fields from the interaction of the incident field

with the point scatterers and the extended obstacle, respectively. They satisfy from
(2.6) and (2.11)

φ(1)sc (r) =

m∑
j=1

A
(1)
j G(r, rj),(2.15)

ψ(1)
sc (r) = −

∫
Γ

G(r, r′)∂n′ψ(1)(r′)ds(r′),(2.16)

where A
(1)
j and ∂nψ

(1) are the solutions of the following equations:

MA(1) = φ(0)sou,(
1

2
I +K

)
∂nψ

(1) = ψ(0)
sou.

Here the source fields of order 0 take the forms

φ(0)sou = [φinc(r1), . . . , φinc(rm)]�,

ψ(0)
sou = ∂nφinc.

The second order scattering is induced by the first order scattering and can be
written as

u(2)sc (r) = φ(2)sc (r) + ψ(2)
sc (r),

where φ
(2)
sc is the scattered field due to the interaction of the point scatterers with

the first order scattered field from the extended obstacle, while ψ
(2)
sc is the scattered

field due to the interaction of the extended obstacle with the first order scattered field
from the point scatterers. Specifically, it follows again from (2.6) and (2.11) that

φ(2)sc (r) =
m∑
j=1

A
(2)
j G(r, rj),

ψ(2)
sc (r) = −

∫
Γ

G(r, r′)∂n′ψ(2)(r′)ds(r′).

Here A(2) and ∂nψ
(2) are the solutions of the following equations:

MA(2) = φ(1)sou,(
1

2
I +K

)
∂nψ

(2) = ψ(1)
sou,
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φinc = φ(0)
sou

φinc = ψ(0)
sou

φ(1)
sc

ψ(1)
sc

φ(1)
sou

ψ(1)
sou

φ(2)
sc

ψ(2)
sc

φ(2)
sou φ(3)

sc

ψ(2)
sou ψ(3)

sc

Fig. 2. Schematic of the process for the series solution formulation.

where the source fields of order 1 are given as

φ(1)sou = [ψ(1)
sc (r1), . . . , ψ

(1)
sc (rm)]�,

ψ(1)
sou = ∂nφ

(1)
sc .

Repeating the above process leads to the general expression of the kth order
scattering

u(k)sc (r) = φ(k)sc (r) + ψ(k)
sc (r),

where

φ(k)sc (r) =

m∑
j=1

A
(k)
j G(r, rj),(2.17)

ψ(k)
sc (r) = −

∫
Γ

G(r, r′)∂n′ψ(k)(r′)ds(r′).(2.18)

Here A(k) and ∂nψ
(k) are the solutions of the following equations:

MA(k) = φ(k−1)
sou ,(2.19) (

1

2
I +K

)
∂nψ

(k) = ψ(k−1)
sou ,(2.20)

where the source fields of order k − 1 are expressed as

φ(k−1)
sou = [ψ(k−1)

sc (r1), . . . , ψ
(k−1)
sc (rm)]�,(2.21)

ψ(k−1)
sou = ∂nφ

(k−1)
sc .(2.22)

The above process can be described as in Figure 2: the incident field φinc, as an

initial source φ
(0)
sou, interacts with the point scatterers and generates the first order

scattered field φ
(1)
sc . The first order scattered field due to the point scatterers φ

(1)
sc ,

as a source ψ
(1)
sou, interacts with the extended obstacle and generates the scattered

field ψ
(2)
sc , which is treated as a source φ

(2)
sou and interacts with the point scatterers to

generate the scattered field φ
(3)
sc , and so on; on the other hand, the incident field φinc,

as an initial source ψ
(0)
sou, interacts with the extended obstacle and generates the first

order scattered field ψ
(1)
sc . The first order scattered field due to the extended obstacle

ψ
(1)
sc , as a source φ

(1)
sou, interacts with the point scatterers and generates the scattered

field φ
(2)
sc , which is treated as a source ψ

(2)
sou and interacts with the extended obstacle

to generate the scattered field ψ
(3)
sc , and so on.

Denote upsc and uosc as the portions of the scattered fields contributed from the
point scatterers and the extended obstacle, respectively. They may be defined as the
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limit of the following partial sums:

upsc = lim
k→∞

[
φ(1)sc + φ(2)sc + · · ·+ φ(k)sc

]
,

uosc = lim
k→∞

[
ψ(1)
sc + ψ(2)

sc + · · ·+ ψ(k)
sc

]
.

The total scattered field can thus be represented as the summation of the two portions

usc = lim
k→∞

[
u(1)sc + u(2)sc + · · ·+ u(k)sc

]

= lim
k→∞

[
φ(1)sc + φ(2)sc + · · ·+ φ(k)sc ] + lim

k→∞
[ψ(1)

sc + ψ(2)
sc + · · ·+ ψ(k)

sc

]

= upsc + uosc.

2.4. Integral equation formulation. This section is concerned with the gener-
alized Foldy–Lax method from another point of view and presents a compact integral
equation formulation. Furthermore, it is shown that the series solution formulation
actually describes an iterative scheme for solving the derived integral equation. Here
we consider the same obstacle as that in previous sections, i.e., an impenetrable object
with vanishing Dirichlet boundary condition.

Viewing the excited field due to the point scatterers as an external source field
for the obstacle, we consider the Helmholtz equation for the total field

Δu+ κ2u = −
m∑
j=1

σjujδ(r− rj) in R
3 \D,

along with the sound-soft boundary condition

u = 0 on Γ.

Subtracting the incident field from the total field, we may obtain the equation for the
scattered field

Δusc + κ2usc = −
m∑
j=1

σjujδ(r− rj) in R
3 \D.

The scattered field is also required to satisfy the Sommerfeld radiation condition.
We derive an integral equation for solving the above exterior boundary value

problem involving both the point scatterers and the extended obstacle.
It follows from Green’s theorem that the scattered field has the following repre-

sentation:

(2.23) usc(r) =

m∑
j=1

σjujG(r, rj)−
∫
Γ

G(r, r′)∂n′u(r′)ds(r′), r ∈ R
3 \D.

Adding the incident field on both sides yields

(2.24) u(r) = φinc(r) +

m∑
j=1

σjujG(r, rj)−
∫
Γ

G(r, r′)∂n′u(r′)ds(r′), r ∈ R
3 \D.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A TWO-SCALE MULTIPLE SCATTERING PROBLEM 1523

To compute the total field u at any point r ∈ R3 \D, it is required to determine the
excited field vector [u1, . . . , um]� and the normal derivative of the total field ∂nu on
the boundary of the obstacle Γ.

Evaluating (2.24) on both sides at ri gives

(2.25) ui = φinc(ri) +

m∑
j=1
j �=i

σjujG(ri, rj)−
∫
Γ

G(ri, r
′)∂n′u(r′)ds(r′).

Using the jump relation for the single-layer potential and taking the normal derivative,
we obtain a boundary integral equation on Γ:

(2.26)
1

2
∂nu(r) = ∂nuinc(r) +

m∑
j=1

σjuj∂nG(r, rj)−
∫
Γ

∂nG(r, r
′)∂n′u(r′)ds(r′).

Equations (2.25) and (2.26) are the new self-consistent Foldy–Lax formulation in the
case where both the point scatterers and the extended obstacle are present.

Remark 2.2. If the extended obstacle is not present, the boundary integral over
Γ vanishes in (2.25), which reduces to the Foldy–Lax formulation (2.4); on the other
hand, if the point scatterers are not present, the summation over the number of point
scatterers vanishes in (2.26), which reduces to the regular boundary integral equation
(2.12) for solving the obstacle scattering problem.

Next we show that the series solution formulation derived in the previous section
actually describes an iterative method to solve the new self-consistent Foldy–Lax
formulation (2.25) and (2.26). The nature of the method is similar to the Jacobi
iterative method for solving a linear system.

First we describe the initial step. Consider (2.25) without the integral term and
(2.26) without the summation term, respectively:

u
(1)
i −

m∑
j=1
j �=i

σju
(1)
j G(ri, rj) = φinc(ri),

1

2
∂nu

(1)(r) +

∫
Γ

∂nG(r, r
′)∂n′u(1)(r′)ds(r′) = ∂nφinc(r).

After solving the above two equations, we obtain [u
(1)
1 , . . . , u

(1)
m ]� and ∂nu

(1) on Γ.
They generate the first order scattered fields due to the point scatterers and the
extended obstacle, which are exactly the same first order scattered fields as those
from the series solution formulation in (2.15) and (2.16):

φ(1)sc =

m∑
j=1

σju
(1)
j G(r, rj) and ψ(1)

sc = −
∫
Γ

G(r, r′)∂n′u(1)(r′)ds(r′).

To get correction terms, i.e., higher order scattering terms, we may use the iterative
scheme

u
(k)
i −

m∑
j=1
j �=i

σju
(k)
j G(ri, rj) = −

∫
Γ

G(r, r′)∂n′u(k−1)(r′)ds(r′),

1

2
∂nu

(k)(r) +

∫
Γ

∂nG(r, r
′)∂n′u(k)(r′)ds(r′) =

m∑
j=1

σju
(k−1)
j ∂nG(r, rj)
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for k = 2, 3, . . . . At kth step, we obtain the kth order scattered fields due to the point
scatterers and the extended obstacle:

φ(k)sc =
m∑
j=1

σju
(k)
j G(r, rj) and ψ(k)

sc = −
∫
Γ

G(r, r′)∂n′u(k)(r′)ds(r′).

Compared with (2.17) and (2.18), they are the kth terms in the series solution for-
mulation. Therefore we have shown term by term that the series solution formulation
indeed describes an iterative scheme to solve the self-consistent system (2.25) and
(2.26), which is called the generalized Foldy–Lax formulation for dealing with the
scattering problem involving both the point scatterers and an extended obstacle.

3. Convergence analysis. In this section, we analyze the convergence of the
scattered fields and the far-field patterns from the series solution formulation for the
multiple scattering problem.

3.1. Scattered fields. In the multiple scattering problem, the total scattered
field is composed of the scattered field upsc contributed from the point scatterers and
the scattered field upsc contributed from the extended obstacle. We will consider the
convergence of the infinite series derived in the previous section for the scattered fields
upsc and upsc separately. The idea is to deduce that the infinite series is dominated by
a geometrical series.

Based on the general expression of the kth order scattering from (2.17)–(2.22), we

conclude that it suffices to estimate the kth order scattered fields φ
(k)
sc on the boundary

of the obstacle Γ and ψ
(k)
sc at the position of the point scatterers rj , j = 1, . . . ,m.

First consider φ
(k)
sc . It follows from (2.17) that

(3.1) ‖ φ(k)sc ‖1,∞,Γ =

∥∥∥∥∥∥
m∑
j=1

A
(k)
j G(r, rj)

∥∥∥∥∥∥
1,∞,Γ

≤ C1 ‖ A(k) ‖∞,

where ‖ · ‖∞ is the vector maximum norm and

C1 =

m∑
j=1

‖ G(·, rj) ‖1,∞,Γ,

which is a fixed constant once the positions of the point scatterers are fixed.
Applying Theorem 2.1 to (2.19) yields

(3.2) ‖ A(k) ‖∞ ≤ C2σmax ‖ φ(k−1)
sou ‖∞,

where the constant C2 plays the role of the constant C in (2.7).
The vector maximum norm gives

(3.3) ‖ φ(k−1)
sou ‖∞ = max

1≤j≤m
|ψ(k−1)

sc (rj)| = ‖ ψ(k−1)
sc ‖∞ .

Replacing the index k by k − 1 in (2.18) and evaluating at rj on both sides lead to

(3.4) ‖ ψ(k−1)
sc ‖∞≤ C3 ‖ ∂nψ(k−1) ‖0,∞,Γ,

where

C3 = max
1≤j≤m

∫
Γ

|G(r, rj)|ds(r),
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which is also a fixed constant once the point scatterers and the extended obstacle are
given.

We have from Theorem 2.2 that

(3.5) ‖ ∂nψ(k−1) ‖0,∞,Γ≤ C4 ‖ φ(k−2)
sc ‖1,∞,Γ,

where the constant C4 plays the role of the constant C in (2.15).
Combining (3.1)–(3.5) yields

(3.6) ‖ φ(k)sc ‖1,∞,Γ≤ Cσmax ‖ φ(k−2)
sc ‖1,∞,Γ,

where the constant

C = Π4
i=1Ci

is independent of σmax. When σmax is small enough so that Cσmax is less than unity,

it is expected that the infinite series φ
(k)
sc is dominated by a geometrical series, and

thus the convergence is followed.

Next consider ψ
(k)
sc . We have from (2.18) that

(3.7) ‖ ψ(k)
sc ‖∞ = max

1≤j≤m
|ψ(k)

sc (rj)| ≤ C3 ‖ ∂nψ(k) ‖0,∞,Γ .

Theorem 2.2 implies again

(3.8) ‖ ∂nψ(k) ‖0,∞,Γ≤ C4 ‖ φ(k−1)
sc ‖1,∞,Γ .

Replacing the index k by k − 1 in (2.17) yields

(3.9) ‖ φ(k−1)
sc ‖1,∞,Γ =

∥∥∥∥∥∥
m∑
j=1

A
(k−1)
j G(r, rj)

∥∥∥∥∥∥
1,∞,Γ

≤ C1 ‖ A(k−1) ‖∞ .

An application of Theorem 2.1 gives

(3.10) ‖ A(k−1) ‖∞ ≤ C2σmax ‖ φ(k−2)
sou ‖∞ .

It follows from (2.21) that

(3.11) ‖ φ(k−2)
sou ‖∞ = max

1≤j≤m
|ψ(k−2)

sc (rj)| = ‖ ψ(k−2)
sc ‖∞ .

Combining (3.7)–(3.11) yields

(3.12) ‖ ψ(k)
sc ‖∞≤ Cσmax ‖ ψ(k−2)

sc ‖∞,
where C = Π4

i=1Ci. We have from the same argument that the infinite series for

ψ
(k)
sc is convergent when the maximum magnitude of the scattering coefficients σmax

is small enough.

3.2. Far-field patterns. Of particular interest in scattering theory are the far-
field patterns, or scattering amplitudes, of the scattered waves. The far-field patterns
of scattering waves for time-harmonic incident waves play a fundamental role in the
inverse scattering theory due to the fact that they induce the important geometrical
and physical information, e.g., the location, shape, and impedance of the boundary,
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on the scattering object. This section investigates the convergence of the far-field
patterns.

More specifically, given an incident field with incident direction d, if usc is the
scattered field, then usc has the asymptotic behavior

(3.13) usc =
eiκ|r|

|r|
[
u∞(r̂) +O(|r|)−1

]
as |r| → ∞

uniformly in all directions r̂ = r/|r|, where the function u∞, defined on the unit
sphere, is called as the far-field pattern of usc and r̂ is known as the observation
direction.

We next derive the far-field patterns for the m point scatterers and the extended
obstacle scatterer separately, followed by the far-field pattern for the multiple scat-
tering problem involving both the point scatterers and the extended obstacle.

Recall for large arguments we have the following asymptotic behavior for Green’s
function:

eiκ|r−r′|

|r− r′| =
eiκ|r|

|r|
[
e−iκr̂·r′ +O(|r|−1)

]
as |r| → ∞.

Comparing with (3.13), we obtain from (2.6) and the following identity

|r− r′| =
√
|r|2 − 2r · r′ + |r′|2 = |r| − r̂ · r+O(|r|−1) as |r| → ∞

that the far-field pattern of the scattered field for the m point scatterers is

(3.14) u∞,p(r̂) =
1

4π

m∑
j=1

Aje
−iκr̂·rj .

It follows from the integral representation of the scattered field (2.12) and the asymp-
totic expansion of Green’s function that the far-field pattern for the obstacle is given
by

(3.15) u∞,o(r̂) = − 1

4π

∫
Γ

∂n′u(r′)e−iκr̂·r′ds(r′).

Define the far-field pattern for the multiple scattering problem as

(3.16) u∞(r̂) = u∞,p(r̂) + u∞,p(r̂),

where the far-field pattern, u∞,p, due to the point scatterers, is

(3.17) u∞,p(r̂) =
∞∑
k=1

u(k)∞,p(r̂) =
1

4π

m∑
j=1

e−iκr̂·rj
∞∑
k=1

A
(k)
j ,

and the far-field pattern, u∞,o, due to the extended obstacle, is

(3.18) u∞,o(r̂) =

∞∑
k=1

u(k)∞,o(r̂) = − 1

4π

∫
Γ

e−iκr̂·r′
∞∑
k=1

∂nψ
(k)(r′)ds(r′).

Next we consider the convergence for the far-field patterns u∞,p and u∞,o sep-
arately. Taking magnitudes on both sides of (3.16) and using the definition for the
maximum norm of a vector yields

(3.19) |u∞,p(r̂)| ≤ 1

4π

∞∑
m=1

‖ A(m) ‖∞ .
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To prove the convergence of the infinite series for u∞,p in (3.16), it suffices to prove
the convergence of the infinite series in the right-hand side of (3.18). We will briefly
outline the following estimates since they are basically the same as those in the proof
for the scattered fields given in the previous subsection.

It follows from Theorem 2.1 that

(3.20) ‖ A(k) ‖∞ ≤ C2σmax ‖ φ(k−1)
sou ‖∞ .

We have from the definition of the source field (2.21) and the integral representation
(2.18) that

(3.21) ‖ φ(k−1)
sou ‖∞ ≤ C3 ‖ ∂nψ(k−1) ‖0,∞,∂D .

Applying Theorem 2.2 leads to

(3.22) ‖ ∂nψ(k−1) ‖0,∞,Γ≤ C4 ‖ φ(k−2)
sc ‖1,∞,Γ .

We get from (2.17) that

(3.23) ‖ φ(k−2)
sc ‖1,∞,Γ≤ C1 ‖ A(k−2) ‖∞ .

Combining (3.20)–(3.23) yields

(3.24) ‖ A(k) ‖∞ ≤ Cσmax ‖ A(k−2) ‖∞ .

The proof is done when σmax is assumed to be small enough.
Next we consider the convergence for the far-field patterns u∞,o. Evidently, we

have

(3.25) |u∞,o(r̂)| ≤ |Γ|
4π

∞∑
k=1

‖ ∂nψ(k) ‖0,∞,Γ .

The convergence of the dominated infinite series can be verified as σmax is small
enough by the following estimates:

(3.26) ‖ ∂nψ(k) ‖0,∞,Γ≤ Cσmax ‖ ∂nψ(k−2) ‖0,∞,Γ .

In the proof of the convergence for the scattered fields and the far-field pattern,
the maximum magnitude of the scattering coefficient σmax is assumed to be small
enough to guarantee the dominated infinite series are geometrical series. When σmax

is small, the scattered field from the point scatterers can be regarded as a small
perturbation to the scattered field from the extended obstacle. Therefore, the obstacle
consisting of small scale scatterers can be treated as a small perturbation to the
extended obstacle. In a practical situation, it will make sense since interested obstacles
are usually embedded in a small scale cluttered medium instead of idealized free space.

Remark 3.1. Based on the integral equation formulation (2.23) for the multiple
scattering problem and the asymptotic behavior for Green’s function, we may also
obtain the far-field pattern of the scattered field

(3.27) u∞(r̂) =
1

4π

m∑
j=1

σjuje
−iκr̂·rj − 1

4π

∫
Γ

∂n′u(r′)e−iκr̂·r′ds(r′).

The far-field pattern (3.27) will be computed as a comparison with the far-field
pattern (3.16)–(3.18) based on the series solution formulation.
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Fig. 3. Test cases, obstacle surfaces: (left) smooth surface of a unit sphere; (right) rough
surface of a distorted unit sphere.

4. Numerical experiments. In this section, we discuss computational aspects
of the boundary element method, present some examples to illustrate the perfor-
mance of the proposed method, and show the features of the far-field patterns for the
scattered fields in the multiple scattering problem.

The Galerkin boundary element method is chosen to solve the boundary integral
equations. For other numerical methods, the reader is referred to Bates and Wall [1]
for the null field approach, to Waterman [15,16] for the extended boundary condition
method, and to Peterson and Ström [12] for the T-matrix method. See also Chew [3]
for recent accounts of the numerical methods to the obstacle scattering problem. In
the implementation of the boundary integral equations, singular integrals have to be
evaluated. We decompose the singular integrals into two parts: the first part is the
entry of the double layer potential matrix corresponding to the Laplace operator, while
the remaining part has no singularity for r → r′. The first part can be analytically
evaluated, and the remaining part can be computed numerically, such as an adaptive
Gaussian quadrature rule for each triangle. We refer to [13] for detailed descriptions
on the evaluation of singular integrals arising from the Galerkin boundary element
method for solving boundary integral equations. As for the linear solver, we use the
direct method of LU decomposition with partial pivoting, which is efficient for the
series solution formulation since the matrices are decomposed once and can be used
in all iterations.

Figure 3 shows typical meshes for the test cases of the obstacle surfaces considered:
the smooth surface of a unit sphere and the rough surface of a distorted sphere.
The surfaces are triangulated using the maximal speed molecular surface (MSMS)
package of Sanner and Olson [14]. Two types of distribution of the point scatterers
are considered: uniformly distributed point scatterers and randomly distributed point
scatterers. In the following two examples, the wavenumber κ is taken as π, i.e., the
wavelength of the incident field is λ = 2. The far-field patterns will be plotted on the
unit sphere as a function of the variables for the latitudinal angle and the longitudinal
varying from 0 to π and from 0 to 2π, respectively. All the figures are shown from
the view corresponding to the observation direction (0, 0, 1)�.

Example 1. Consider a heterogeneous medium consisting of ten uniformly dis-
tributed point scatterers and a smooth surface of the unit sphere. The ten uniformly
distributed point scatterers are at rj = 2(cos(jπ/2), sin(jπ/2), 0)�, j = 0, . . . , 9. In
this example, the scattering coefficients for the ten point scatterers are equally taken
as the unit. Figures 4 and 5 show the real and imaginary parts of the far-field pat-
terns for the scattered fields with incident direction d = (1, 0, 0)� and d = (0, 0, 1)�,
respectively. It is meant to be representative to present the results using these two
incident directions since the results are similar with other directions. In each figure,
the top row shows the real part (left) and the imaginary part (right) of the far-field



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A TWO-SCALE MULTIPLE SCATTERING PROBLEM 1529

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 −0.1 −0.05 0 0.05 0.1 0.15

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 −0.1 −0.05 0 0.05 0.1 0.15

−2 −1.5 −1 −0.5 0 0.5 1 1.5

x 10
−15

−1 −0.5 0 0.5 1

x 10
−15

Fig. 4. The far-field pattern of the scattered field for Example 1 with the incident direction
d = (1, 0, 0)�. (Top row) The real and imaginary parts of the far-field pattern computed from the
integral equation formulation; (middle row) the real and imaginary parts of the far-field pattern
computed from the series solution formulation; (bottom row) the error for the real and imaginary
parts of the far-field pattern between two formulations.

pattern computed from the integral equation formulation; the middle row plots the
real and imaginary parts of the far-field pattern computed from the series solution
formulation; the bottom row displays the error of the real and imaginary parts of the
far-field patterns from the two different formulations. As can be seen from the figures,
the error is at the level of the machine accuracy. The two formulations perfectly match
and the solution from the series formulation converges well to the solution from the
integral equation formulation. In order to show whether proposed methods numer-
ically capture the multiple scattering between the extended obstacle and the point
scatterers, Figures 6 and 7 plot the difference of the far-field patterns corresponding
to the extended obstacle in the presence of point scatterers against the same obsta-
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−0.4 −0.2 0 0.2 0.4 0.6 −0.04 −0.02 0 0.02 0.04 0.06

−0.4 −0.2 0 0.2 0.4 0.6 −0.04 −0.02 0 0.02 0.04 0.06

−2 −1.5 −1 −0.5 0 0.5 1 1.5

x 10
−15

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10
−15

Fig. 5. The far-field pattern of the scattered field for Example 1 with the incident direction
d = (0, 0, 1)�. (Top row) The real and imaginary parts of the far-field pattern computed from the
integral equation formulation; (middle row) the real and imaginary parts of the far-field pattern
computed from the series solution formulation; (bottom row) the error for the real and imaginary
parts of the far-field pattern between two formulations.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

Fig. 6. Example 1. The difference of the far-field patterns in the presence of point scatterers
against the absence of point scatterers corresponding to the incident direction d = (1, 0, 0)�. (Left)
The real part; (right) the imaginary part.
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−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02

Fig. 7. Example 1. The difference of the far-field patterns in the presence of point scatterers
against the absence of point scatterers corresponding to the incident direction d = (0, 0, 1)�. (Left)
The real part; (right) the imaginary part.

cle in the absence of point scatterers for the incident directions d = (1, 0, 0)� and
d = (0, 0, 1)�, respectively.

Example 2. Consider a heterogeneous medium consisting of 100 randomly dis-
tributed point scatterers and the rough surface of a distorted sphere. This example
mimics the practical situation when a complicated obstacle is immersed in a cluttered
medium with randomly distributed small scale scatterers. The 100 point scatterers
are randomly distributed in the annulus region between two spheres with radii 2 and
3. The scattering coefficients are uniformly distributed random numbers ranging from
0 to 1. As is similar to the previous example, Figures 8 and 9 show the real and imag-
inary parts of the far-field patterns for the scattered fields with incident direction
d = (1, 0, 0)� and d = (0, 0, 1)�, respectively. In each figure, the top row shows the
real part (left) and the imaginary part (right) of the far-field pattern computed from
the integral equation formulation; the middle row plots the real and imaginary parts
of the far-field pattern computed from the series solution formulation; the bottom row
displays the error of the real and imaginary parts of the far-field patterns from the
two different formulations. Seen from the error level, the agreement of the solutions
from two approaches is obtained. Again, Figures 10 and 11 plot the difference of
the far-field patterns corresponding to the extended obstacle in the presence of point
scatterers against the same obstacle in the absence of point scatterers for the incident
directions d = (1, 0, 0)� and d = (0, 0, 1)�, respectively.

5. Conclusion. We developed a generalized Foldy–Lax method for the two-scale
multiple acoustic wave scattering problem in a heterogeneous medium consisting of
point scatterers and an extended obstacle in three-dimensional space. Two formula-
tions are presented: one is based on the series solution formulation, and another is
based on an integral equation formulation. The method combined the Foldy–Lax self-
consistent method with the boundary integral method for computing the scattered
fields from the point scatterers and the extended obstacle. It takes full account of the
multiple scattering among the point scatterers and between the point scatterers and
the extended obstacle. Computationally, the series solution formulation describes an
iterative procedure, and orders of scattering can be evaluated efficiently at each step.
Since the coefficient matrices for the point scatterers and the extended obstacle do
not change in iterations, LU decomposition with partial pivoting needs to occur only
once at the beginning, and the decomposed matrices can be used in all iterations.
We verified the geometrical property of the infinity series and proved the convergence
of the scattered fields and the far-field patterns when the scattering coefficients are
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Fig. 8. The far-field pattern of the scattered field for Example 2 with the incident direction
d = (1, 0, 0)�. (Top row) The real and imaginary parts of the far-field pattern computed from the
integral equation formulation; (middle row) the real and imaginary parts of the far-field pattern
computed from the series solution formulation; (bottom row) the error for the real and imaginary
parts of the far-field pattern between two formulations.

small. Numerical examples were presented, with uniformly and randomly distributed
point scatterers and with obstacles with smooth and rough surfaces. The far-field
patterns and the convergence of the series solution formulation were reported, and
the results show the good agreement of the proposed two formulations.

We intend to apply the proposed method to solve the inverse obstacle scatter-
ing problems, where the obstacles are embedded in a cluttered environment with
many small scale point scatterers. The direct applications will be in time-reversal
imaging and near-field optical microscopy [6], which provide feasible approaches to
super-resolution. We also plan to modify the Foldy–Lax method and to extend the
method for multiscale multiple electromagnetic wave scattering problems, which in-
volves three-dimensional Maxwell’s equations and vector fields.
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−0.5 0 0.5 1 1.5 2 2.5 3 3.5 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−10 −8 −6 −4 −2 0 2 4 6 8

x 10
−15
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Fig. 9. The far-field pattern of the scattered field for Example 2 with the incident direction
d = (0, 0, 1)�. (Top row) The real and imaginary parts of the far-field pattern computed from the
integral equation formulation; (middle row) the real and imaginary parts of the far-field pattern
computed from the series solution formulation; (bottom row) the error for the real and imaginary
parts of the far-field pattern between two formulations.

−2 −1 0 1 2 3 4 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Fig. 10. Example 2. The difference of the far-field patterns in the presence of point scatterers
against the absence of point scatterers corresponding to the incident direction d = (1, 0, 0)�. (Left)
The real part; (right) the imaginary part.
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−0.5 0 0.5 1 1.5 2 2.5 3 3.5 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Fig. 11. Example 2. The difference of the far-field patterns in the presence of point scatterers
against the absence of point scatterers corresponding to the incident direction d = (0, 0, 1)�. (Left)
The real part; (right) the imaginary part.

Acknowledgments. We wish to thank the reviewers for their helpful comments
to improve the manuscript.

REFERENCES

[1] R. Bates and D. Wall, Null field approach to scalar diffraction, I. General methods, II.
Approximation method, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 287
(1977), pp. 45–95.
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