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Abstract. Knowledge of helium diffusion kinetics is critical for materials in which he-
lium measurements are made, particulary for thermochronology. In most cases the
helium ages were younger than expected, an observation attributes to diffusive loss
of helium and the ejection of high energy alpha particles. Therefore it is important to
accurately calculate the distribution of the source term within a sample. In this paper,
the prediction of the helium concentrations as function of a spatially variable source
term are considered. Both the forward and inverse solutions are presented. Under the
assumption of radially symmetric geometry, an analytical solution is deduced based
on the eigenfunction expansion. Two regularization methods, the Tikhonov regular-
ization and the spectral cutoff regularization, are considered to obtain the regularized
solution. Error estimates with optimal convergence order are shown between the exact
solution and the regularized solution. Numerical examples are presented to illustrate
the validity and effectiveness of the proposed methods.
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1 Introduction

Helium isotopes are used extensively as thermochronometer in terrestrial and extrater-
restrial materials [20]. He produced from radioactive decay of uranium and thorium
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series nuclides forms the basis of (U-Th)/He chronometry. The main attraction of helium
for these applications is that its production rates are high compared to other isotope sys-
tems, coupled with the fact that high-precision, high-sensitivity helium analysis are com-
paratively easy. A critical consideration for these uses is that helium diffusion in most
minerals occurs at moderate temperatures; failure to consider diffusive loss can lead to
erroneously young helium-based age constraints. Knowledge of helium diffusion kinet-
ics is therefore critical for materials in which helium measurements are made, particulary
for thermochronology.

Despite of the appeal of (U-Th)/He system for thermochronological studies, one draw-
back of the technique is that spatial variations in radiogenic uranium and thorium in a
sample can cause a non-uniform production of helium, and violate commonly made as-
sumptions of a uniform source [9]. Spatial variations in uranium and thorium (often re-
ferred to a zoning of the parent isotopes) can produce substantial spatial fractionation
of the parent/daughter ratio in accessory minerals likely to be used for helium ther-
mochronometry. In the experience of apatite, zircon, titanite are commonly zoned and
can limit the ultimate precision of helium ages [23]. Therefore it is important to accurately
know the distribution of parent uranium and thorium isotopes (the source function) in a
sample to be of use in helium dating. In this paper, the prediction of the a variable source
term is formulated as an inverse radiogenic source problem.

Our model of helium production and diffusion considers the local helium concentra-
tion gradients resulting from ejection of high energy alpha particles from grain surfaces.
It is assumed that the grain is of a spherical diffusion geometry, which is actually con-
sistent with laboratory measurements of helium diffusion from apatite [22]. As a con-
sequence of radiogenic production and diffusive loss, the concentration of helium as a
function of the dimensional radial variable ρ within the spherical diffusion domain of
radius R is [20]:

∂u(t,ρ)

∂t
= a(t)

[

∂2u(t,ρ)

∂ρ2
+

2

ρ

∂u(t,ρ)

∂ρ

]

+ f (ρ), 0< t<T, 0<ρ<R, (1.1)

where a(t) is the time dependent diffusion coefficient, which is assumed to have a lower
bound a0 and an upper bound a1, i.e.,

0< a0 ≤ a(t)≤ a1,

and f (ρ)≥0 corresponds to the spatial variable dependent radiogenic source production.
The homogeneous initial condition is prescribed

u(0,ρ)=0, 0<ρ<R. (1.2)

The boundary conditions are given by

lim
ρ→0

u(t,ρ) bounded, u(t,R)=0, 0< t<T. (1.3)
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The data is given as the final observation of the helium concentration:

u(T,ρ)= g(ρ), 0<ρ<R. (1.4)

Given the data function g(ρ), the inverse radiogenic source problem is to reconstruct
the source term f (ρ), which accounts for the ejection of high energy alpha particles.

Besides the motivation of the radiogenic source identification for the helium diffu-
sion, the inverse source identification problem for the parabolic equation has many other
important applications, such as migration of groundwater, identification and control of
pollution source and environmental protection. As a parameter identification type of
problem, the inverse source problem has received much attention of both mathematical
and numerical studies. We refer to Bushuyev [2], Cannon and Pérez-Esteva [4], Choulli
and Yamamoto [6], Hettlich and Rundell, [10], Sakamoto and Yamamoto [19], and refer-
ences cited therein for the discussions on the existence, uniqueness, and stability of the
solution. Numerical methods may be found in Cheng et al. [5], Farcas and Lesnic [8],
Johansson and Lesnic [14], Xie and Zou [24], Yamamoto and Zou [25], Yan et al. [26], and
Yi and Murio [27, 28]. One may consult Isakov [11, 12] for a comprehensive discussion
on the theoretical aspects of the inverse source problem, and Isakov [13] for accounts of
general inverse problems for partial differential equations.

The goal of this work is to investigate mathematically and numerically the ill-
posedness nature of the inverse radiogenic source problem. Under the assumption of
a spherical diffusion geometry, the solution is explicitly constructed as an infinite series
in terms of the eigenfunctions. Due to the rapidly decaying eigenvalues, small perturba-
tion of the data can lead to large error of the reconstructed source function, which clearly
shows the ill-posed nature of the problem. We consider two regularization methods, i.e.,
the Tikhonov regularization and the spectral cut-off regularization, in order to obtain a
stable solution. Error estimates with optimal convergence are shown between the exact
solution and the regularized solution. Numerical examples are presented to illustrate the
validity and effectiveness of the proposed methods. This is part of a long-term research
effort to quantifying tectonic and geomorphic interpretations of thermochronometer data
with inverse problem theory. In the spirit of the collaborations in mathematics and geo-
sciences, this interdisciplinary project targets questions and hypotheses that are funda-
mental to quantifying the evolution of mountain topography including the identification
of the radiogenic source for the Helium production-diffusion equation. We refer to Bao
et al. [1] for a related project on the reconstruction of mountain surfaces by quantifying
tectonic and geomorphic interpretations of thermochronometer data.

The outline of this paper is as follows. Section 2 is devoted to the problem formulation
and derivation of the solution in terms of the eigenfunction expansion. In Section 3, the
regularization techniques are introduced to obtain stable solutions, and stability results
are provided to the regularized solutions with explicit error estimates. Results of three
numerical examples are presented in Section 4. The paper is concluded with some general
remarks and directions for future research in Section 5.
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2 Problem formulation

In this section, we derive an analytical solution for the inverse source problem based
on the eigenfunction expansion. Throughout this paper, we denote by L2([0,R],ρ) the
Hilbert space of Lebesgue measurable functions u(ρ) with weight ρ on [0,R]. Denote by
〈·,·〉ρ and ‖ ·‖ρ the inner product and norm on L2([0,R],ρ), respectively, given by

〈u,v〉ρ=
∫ R

0
ρu(ρ)v(ρ)dρ and ‖u‖ρ=

[

∫ R

0
ρ|u(ρ)|2dρ

]1/2

.

To apply the method of eigenfunction expansion for the function, we introduce a new
function v under the substitution

u(t,ρ)=ρ−1/2v(t,ρ).

It follows from the helium production-diffusion equation (1.1) that v satisfies

∂v(t,ρ)

∂t
= a(t)

[

∂2v(t,ρ)

∂ρ2
+

1

ρ

∂v(t,ρ)

∂ρ
− 1

4ρ2
v(t,ρ)

]

+ρ1/2 f (ρ). (2.1)

The corresponding initial condition is

v(0,ρ)=0, 0<ρ<R, (2.2)

the boundary conditions reduce to

lim
ρ→0

ρ−1/2v(t,ρ) bounded, v(t,R)=0, 0< t<T, (2.3)

and the final observation of the helium concentration becomes

v(T,ρ)=ρ1/2g(ρ), 0<ρ<R. (2.4)

Applying the method of separation of variables, we seek a solution of (2.1) with the
form

v(t,ρ)= x(t)y(ρ). (2.5)

Substituting (2.5) into (2.1), we require that y(ρ) satisfies the equation:

y′′(ρ)+
1

ρ
y(ρ)+

(

λ− 1

4ρ2

)

y(ρ)=0, 0<ρ<R, (2.6)

and the boundary conditions:

y(R)=0, lim
ρ→0

ρ−1/2y(ρ) bounded,

where λ is an unknown constant.
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Before proceeding to derive the eigenfunction expansion of the solution, we recall the
following two Bessel functions of fraction orders [21]:

J1/2(z)=

(

2

πz

)1/2

sinz

and

J3/2(z)=

(

2

πz

)1/2( sinz

z
−cosz

)

.

Clearly, the roots of the Bessel function J1/2(z) are:

µn =nπ, n=1,2,··· .

According to [21], the eigenvalues of (2.6) are

λn =
(µn

R

)2
, n=1,2,··· ,

and the corresponding eigenfunctions are

yn(ρ)= J1/2

(µnρ

R

)

, n=1,2,··· .

It follows from the properties of the Bessel function J1/2(z) that the eigenfunction
system yn(ρ) are complete and orthogonal with weight ρ in L2([0,R],ρ). Thus the solution
v(t,ρ) and the source term ρ1/2 f (ρ) can be represented as

v(t,ρ)=
∞

∑
n=1

xn(t)yn(ρ), (2.7)

ρ1/2 f (ρ)=
∞

∑
n=1

fnyn(ρ), (2.8)

where

fn =
2

R2 J2
3/2(µn)

∫ R

0
ρ3/2 f (ρ)yn(ρ)dρ, n=1,2,··· .

Substituting (2.7) and (2.8) into (2.1), we have

x′n(t)+λna(t)xn(t)= fn,

xn(0)=0.

Solving the above initial-value problem yields the solution

xn(t)= fn

∫ t

0
exp

[

−λn

∫ t

τ
a(s)ds

]

dτ.
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Therefore the solution of (2.1) can be written as the infinite series

v(t,ρ)=
∞

∑
n=1

fnyn(ρ)
∫ t

0
exp

[

−λn

∫ t

τ
a(s)ds

]

dτ. (2.9)

Evaluating (2.9) at t=T on both sides and using the final helium concentration (2.4) give

ρ1/2g(ρ)=
∞

∑
n=1

κn fnyn(ρ),

where

κn =
∫ T

0
exp

[

−λn

∫ T

τ
a(s)ds

]

dτ.

Define

wn(ρ)=

√
2

RJ3/2(µn)
yn(ρ).

It is easy to check that the eigenfunctions w1(ρ),w2(ρ),··· ,wn(ρ),··· form an orthonormal
basis in L2([0,R],ρ). Using the eigenfunctions as a basis, we have the representation of
the data:

ρ1/2g(ρ)=
∞

∑
n=1

κn〈ρ1/2 f (ρ),wn(ρ)〉ρwn(ρ). (2.10)

It follows from the eigenfunction expansion (2.10) that

〈ρ1/2g(ρ),wn(ρ)〉ρ =κn〈ρ1/2 f (ρ),wn(ρ)〉ρ,

which leads to an analytical solution for the inverse source problem:

ρ1/2 f (ρ)=
∞

∑
n=1

κ−1
n 〈ρ1/2g(ρ),wn(ρ)〉ρwn(ρ). (2.11)

Upon computing ρ1/2 f (ρ), the radiogenic source term f (ρ) can be obtained by multiply-
ing ρ−1/2.

Remark 2.1. Due to the singularity of the function ρ−1/2, the radiogenic source func-
tion f (ρ) is unable to be reconstructed at ρ=0 from the reconstructed function ρ1/2 f (ρ).
Fortunately, more attention is paid to the radiogenic source function at the edge for the
stopping distance, i.e., when ρ is close to R. In practice, the direct evaluation of ρ−1/2 at
ρ=0 will be unnecessary and thus can be avoided.

The analytical solution (2.11) involves the data function g(ρ) and the source function
f (ρ) with a factor ρ1/2. From the above discussion, we can reformulate the inverse source
problem: To reconstruct the source function fρ(ρ) from the given data function gρ(ρ),
where

fρ(ρ)=ρ1/2 f (ρ) and gρ(ρ)=ρ1/2g(ρ).
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Since there may be some measurement errors in the data function gρ, the solution has
to be reconstructed from noisy data gδ

ρ, which is assumed to satisfy

‖gρ−gδ
ρ ‖ρ≤δ. (2.12)

Here δ> 0 represents the noise level, and both gρ and gδ
ρ are assumed to be functions in

L2([0,R],ρ). To derive the error estimates, it is necessary to assume certain regularity of
the exact source function. Here we assume that there exists an a priori estimate for the
source function fρ, i.e.,

‖ fρ ‖ρ, p<∞, for p>0,

where the norm is defined in terms of the eigenfunctions

‖ fρ ‖ρ, p=
∥

∥

∥

∞

∑
n=1

(1+n2)p/2〈 fρ,wn〉ρwn

∥

∥

∥

ρ
. (2.13)

It is easy to check ‖ fρ ‖ρ,0= ‖ fρ‖ρ. This norm is equivalent to what we defined at the
beginning of this section, but it will be more convenient to study the derivatives.

To study the ill-posed nature of the inverse problem, it is sufficient to investigate the
decay property of the eigenvalues. Recall the lower and upper bounds for the diffusivity
a0 and a1, respectively. Simple calculation yields the upper bound

κn ≤
∫ T

0
exp[−a0λn(T−τ)]dτ≤R2/(a0π2n2)→0 as n→∞,

and the lower bound

κn ≥
∫ T

0
exp[−a1λn(T−τ)]dτ≥R2/(2a1π2n2)→0 as n→∞.

Since fρ is in L2([0,R],ρ), the norm of fρ in (2.13) implies the coefficient 〈 fρ,wn〉ρ =
κ−1

n 〈gρ,wn〉ρ with respect to the eigenfunction wn decay fast enough relative to the eigen-
value κn. But such a decay is not likely to occur for the noisy data gδ

ρ: error components
which correspond to large eigenvalue are under control; error components which corre-
spond to small eigenvalues κn are amplified by the factors κ−1

n , so that data errors of a
fixed size can be amplified arbitrarily much, namely by the factors κ−1

n , which increase
without bound. On the other hand, due to the quadratic decay of the eigenvalues, the
inverse problem is mildly ill-posed and good numerically results can still be expected
after applying some regularization techniques.

3 Problem regularization

To obtain stable solution, we consider two classical regularization methods and derive
the error estimates with convergence results.
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3.1 Tikhonov regularization

Define an operator K : fρ → gρ, then the inverse source problem can be rewritten as the
following operator equation:

K fρ(ρ)= gρ(ρ), 0<ρ<R. (3.1)

Using (2.10), it holds

K fρ(ρ)=
∞

∑
n=1

κn〈 fρ(ρ),wn(ρ)〉ρwn(ρ). (3.2)

Consequently, K is a linear self-adjoint compact operator with eigenvalues κn and eigen-

functions wn(ρ). For noisy data gδ
ρ, the Tikhonov regularization is to seek a function f δ,α

ρ ,
which minimizes the cost functional

Mα(u)=‖Ku−gδ
ρ ‖2

ρ+α‖u‖2
ρ, (3.3)

where α>0 is known as the regularization parameter.

Lemma 3.1. There exists a unique solution to the minimization problem (3.3) and the
solution is given by

f δ,α
ρ =

∞

∑
n=1

κn

κ2
n+α

〈gδ
ρ,wn〉ρwn. (3.4)

Proof. Denote by K∗ the adjoint operator of K. It follows from [7] that the Tikhonov

functional has a unique minimum f δ,α
ρ ∈L2([0,R],ρ), and f δ,α

ρ is the unique solution of the
normal equation

K∗K f δ,α
ρ +α f δ,α

ρ =K∗gδ
ρ. (3.5)

Since K is a self-adjoint operator, i.e., K∗=K, combining (3.2) and (3.5) yields

∞

∑
n=1

(κ2
n+α)〈 f δ,α

ρ ,wn〉ρwn=
∞

∑
n=1

κn〈gδ
ρ,wn〉ρwn.

Thus we have
(κ2

n+α)〈 f δ,α
ρ ,wn〉ρ=κn〈gδ

ρ,wn〉ρ,

which gives

〈 f δ,α
ρ ,wn〉ρ=

κn

κ2
n+α

〈gδ
ρ,wn〉ρ.

Therefore it holds

f δ,α
ρ =

∞

∑
n=1

〈 f δ,α
ρ ,wn〉ρwn =

∞

∑
n=1

κn

κ2
n+α

〈gδ
ρ,wn〉ρwn.

The proof is complete.
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The solution (3.4) is called the Tikhonov approximation of the exact solution (2.11). A
comparison with (2.11) clearly shows the stabilization: errors in 〈gδ

ρ,wn〉ρ are not propa-

gate with the factors κ−1
n , but only with the factors κn/(κ2

n+α) into the result; these factors
stay bounded as n→∞.

In order to prove the stability estimates for the regularized solution, we need the
following elementary results.

Lemma 3.2. It holds

(

1− x

4

)

(

x

4−x

)x/4

≤ 1

2
, for 0< x<4.

Proof. Define a function

h2(x)=
(

1− x

4

)

(

x

4−x

)x/4

, 0< x<4.

Under the change of variable y= x/4, it becomes

h2(y)=(1−y)

(

y

1−y

)y

, 0<y<1.

It is easy to see that h2(y) is a positive function for 0<y<1. Taking the logarithm on both
sides yields

lnh2(y)= ln(1−y)+ylny−yln(1−y).

Taking the derivative with respect to y, we have

h′2(y)
h2(y)

= lny−ln(1−y),

which yields
h′2(1/2)=0.

Since the logarithmic function is a monotonely increasing function, the function lnh2 and
thus the function h2 reaches its maximum at y = 1/2. Therefore, after changing back
to the variable x, the function h2 reaches its maximum at x = 2 and the maximum is
h2(2)=1/2.

Lemma 3.3. Given α>0 and p>0, it holds for all n

α

κ2
n+α

(1+n2)−p/2≤ cpαp/4,

where the coefficient cp is

cp=

{

c−p/2, for p<4,
c−2, for p≥4.
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Here the constant c is

c=
[1−exp(−a1λ1T)]R2

π2a1
.

Proof. Recall a1 is the upper bound of the diffusivity. Simple calculation yields the lower
bounds for the eigenvalues

κn ≥
∫ T

0
exp[−a1λn(T−τ)]dτ=

1−exp(−a1λ1T)

a1λn
=

[1−exp(−a1λ1T)]R2

π2a1n2
=

c

n2
.

Using the lower bounds for the eigenvalues, we get

α

κ2
n+α

(1+n2)−p/2≤ αn4−p

c2+αn4
.

First consider the case 0< p<4. Let

h3(x)=
αx4−p

c2+αx4
, for x>0.

By investigating the first and second derives of the function h3, we can check that it

reaches the maximum at the unique point x=
[

(4−p)c2/αp
]1/4

, and the maximum is

(

1− p

4

)

[

p

c2(4−p)

]p/4

αp/4.

It follows from Lemma 3.2 that

h3(x)≤
(

1− p

4

)

[

p

c2(4−p)

]p/4

αp/4≤ c−p/2αp/4, for x>0.

Next consider the case p≥4. Let

h4(x)=
α

(c2+αx4)xp−4
, for x≥1.

Clearly we have

h4(x)≤ α

c2+αx4
≤ c−2α, for x≥1.

The proof is complete by combining the above estimates.

Theorem 3.1. Let fρ be the exact radiogenic source and f δ,α
ρ be the regularized approxi-

mation. It holds the stability estimate

‖ fρ− f δ,α
ρ ‖ρ≤ (cp‖ fρ‖ρ, p)α

p/4+
δ

2
√

α
. (3.6)
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Proof. It follows from the eigenfunction expansions of the exact solution (2.11) and the
regularized solution (3.4) that we have

‖ fρ− f δ,α
ρ ‖ρ =

∥

∥

∥

∞

∑
n=1

κ−1
n 〈gρ,wn〉ρwn−

∞

∑
n=1

κn

κ2
n+α

〈gδ
ρ,wn〉ρwn

∥

∥

∥

ρ

≤
∥

∥

∥

∞

∑
n=1

α

κ2
n+α

κ−1
n 〈gρ,wn〉ρwn

∥

∥

∥

ρ
+
∥

∥

∥

∞

∑
n=1

κn

κ2
n+α

〈gρ−gδ
ρ,wn〉ρwn

∥

∥

∥

ρ
.

Simple calculation yields

‖ fρ− f δ,α
ρ ‖ρ≤

∥

∥

∥

∞

∑
n=1

α(1+n2)−p/2

κ2
n+α

(1+n2)p/2κ−1
n 〈gρ,wn〉ρwn

∥

∥

∥

ρ
+

1

2
√

α
‖gρ−gδ

ρ‖ρ.

An application of Lemma 3.3 gives

‖ fρ− f δ,α
ρ ‖ρ≤ (cp‖ fρ‖ρ, p)α

p/4+
δ

2
√

α
,

which completes the proof.

Following the stability estimate (3.6), we observe if the regularization parameter α be-
comes too small, the total error increases due to the error term δ/(2

√
α), the propagated

data error. Certainly, if α is too large, then the approximation error becomes too large.
There is an optimal regularization parameter α, which can not be explicitly computed,
since it depends on unavailable information about the exact source function. However,
one can estimate the asymptotic behaviour of the total error if α is chosen as a power of
δ.

Remark 3.1. If the regularization parameter is chosen as α= δ
4

p+2 , then the stability esti-
mate (3.6) reduces to

‖ fρ− f δ,α
ρ ‖ρ≤

(

cp ‖ fρ ‖ρ, p+
1

2

)

δ
p

p+2 . (3.7)

3.2 Spectral cut-off regularization

Besides the Tikhonov regularization method, another commonly used regularization
method is called the spectral cut-off or the truncated singular value decomposition.
Choose a positive number β > 0, the spectral cut-off method gives a regularized solu-
tion

f
δ,β
ρ = ∑

κn≥β

κ−1
n 〈gδ

ρ,wn〉ρwn, (3.8)

where β is also known as the regularization parameter.
Similar to the stability estimate of the Tikhonov regularization method, the stability

estimate of the spectral cut-off is also composed of two error terms, one for the approxi-
mation error, the other one for the propagation of the data error.
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Theorem 3.2. Let fρ be the exact radiogenic source and f δ
ρ be the regularized approxima-

tion. It holds the stability estimate

‖ fρ− f
δ,β
ρ ‖ρ≤ (c−q‖ fρ‖ρ, p)βq+

δ

β
, (3.9)

where q>0,p>0 satisfying p≥2q.

Proof. Following the eigenfunction expansion for the exact solution (2.11) and the regu-
larized solution (3.8), we obtain

‖ fρ− f
δ,β
ρ ‖ρ =

∥

∥

∥

∞

∑
n=1

κ−1
n 〈gρ,wn〉ρwn− ∑

κn≥β

κ−1
n 〈gδ

ρ,wn〉ρwn

∥

∥

∥

ρ

≤
∥

∥

∥

∞

∑
n=1

κ−1
n 〈gρ,wn〉ρwn− ∑

κn≥β

κ−1
n 〈gρ,wn〉ρwn

∥

∥

∥

ρ
+
∥

∥

∥ ∑
κn≥β

κ−1
n 〈gρ−gδ

ρ,wn〉ρwn

∥

∥

∥

ρ
,

which deduces to

‖ fρ− f
δ,β
ρ ‖ρ≤

∥

∥

∥ ∑
κn<β

κ−1
n 〈gρ,wn〉ρwn

∥

∥

∥

ρ
+

1

β

∥

∥

∥
gρ−gδ

ρ

∥

∥

∥

ρ
.

For any given q>0, we may obtain an estimate for the first term of the right hand side

∥

∥

∥ ∑
κn<β

κ−1
n 〈gρ,wn〉ρwn

∥

∥

∥

ρ
≤
∥

∥

∥

∞

∑
n=1

(

β

κn

)q

κ−1
n 〈gρ,wn〉ρwn

∥

∥

∥

ρ

≤βq
∥

∥

∥

∞

∑
n=1

(1+n2)−p/2

κ
q
n

(1+n2)p/2κ−1
n 〈gρ,wn〉ρwn

∥

∥

∥

ρ
.

Recalling κn ≥ c/n2 and using the inequality p≥2q, we get

∥

∥

∥ ∑
κn<β

κ−1
n 〈gρ,wn〉ρwn

∥

∥

∥

ρ
≤ (c−q‖ fρ‖ρ, p)βq.

The proof is complete by combining the above estimates.

We may also estimate the asymptotic behaviour of the total error if β is chosen as a
power of δ.

Remark 3.2. If the regularization parameter is chosen as β= δ
1

1+q , then the stability esti-
mate (3.9) reduces to

‖ fρ− f
δ,β
ρ ‖ρ≤

(

c−q ‖ fρ ‖ρ, p+1
)

δ
q

1+q , (3.10)

where p≥2q>0. Since q/(1+q) is an increasing function of q, for a given p, the maximum

order of convergence is δ
p

2+p when q= p/2.
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4 Numerical experiments

In this section, we discuss the algorithmic implementation for the direct and inverse ra-
diogenic source problems, and present three numerical examples to illustrate the validity
and effectiveness of the proposed method.

4.1 Direct problem

Ignoring the radial symmetry of the production-diffusion model equation (1.1), we con-
sider the helium model equation in the three-dimensional space with Cartesian coordi-
nate:

∂u(t,x)

∂t
= a(t)∆u(t,x)+ f (x) in (0,T)×B,

together with homogeneous boundary condition

u(t,x)=0 on (0,T)×S,

and the homogeneous initial condition

u(0,x)=0 in B,

where B is the unit ball and S is the unit sphere. Assume that a∈L∞([0,T]) and f ∈L2(B).
It follows from Ladyženskaja et al. [16] that there is a unique weak solution u∈C([0,T])×
H0(B) for the above model equations.

To generate the data u(t,x) at the final time T, we adopt the finite element method
which is to solve the variational problem: To find u(t,x) such that

d

dt

∫

B
u(t,x)ϕ(x)dx+a(t)

∫

B
∇u(t,x)·∇ϕ(x)dx=

∫

B
f (x)ϕ(x)dx

for all ϕ(x)∈H1(B).
To create the mesh for the finite element method, we employ a simple and effective

mesh generator in Matlab by Persson and Strang [17]. In the spatial domain, we choose
the continuous piecewise linear polynomial for the tetrahedra, and the backward Euler
method is used in the temporal domain for the variational problem. In the presented
numerical examples, using meshsize 0.05, the unit ball is divided into 190,976 tetrahe-
dra elements with 34,049 nodes, and the time interval [0,1] is equally divided into 400
subintervals.

Upon computing the data u(T,x), we shall project it onto the one-dimensional func-
tion u(T,ρ)=g(ρ) where ρ= |x|. Due to the unstructured mesh, the projected data u(T,ρ)
from u(T,x) will not be equally spaced with respect to the spatial variable ρ. We construct
a smooth curve g(ρ) by using the natural cubic spline interpolation formula based on the
computed discrete data u(T,|x|).
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For simplicity, we assume that the diffusivity a(t) is a constant. The eigensystem can
be explicitly computed for the constant diffusivity. More specifically, simple calculations
yield the eigenvalues

κn =
∫ T

0
exp

[

−λn

∫ T

τ
a

]

dτ=[1−exp(−aλnT)]/(aλn),

and the eigenfunctions

wn(ρ)=

√
2

J3/2(µn)
yn(ρ)=(−1)n−1

√

2

ρ
sin(nπρ) .

Substituting the eigenfunctions gives a formula to compute the coefficients

〈ρ1/2g(ρ),wn(ρ)〉ρ =(−1)n−1
√

2
∫ 1

0
ρg(ρ)sin(nπρ)dρ.

Note that the right hand side is essentially the sine transform of the function ρg(ρ), which
can be efficiently implemented by using a version of the fast Fourier transform for real
functions [18].

Based on the explicit expressions for the eigensystems, we may deduce the final solu-
tion representation for the Tikhonov regularization

f δ,α =
2

ρ

∞

∑
n=1

κn

κ2
n+α

[

∫ 1

0
ρgδ(ρ)sin(nπρ)dρ

]

sin(nπρ),

and for the spectral cut-off

f δ,β =
2

ρ ∑
κn≥β

κ−1
n

[

∫ 1

0
ρgδ(ρ)sin(nπρ)dρ

]

sin(nπρ), (4.1)

where

gδ(ρ)= g(ρ)·[1+δ rand(ρ)]. (4.2)

Here rand gives uniformly distributed random number in the interval [−1,1].

4.2 Inverse problem

Numerical experiments have been done for wide classes of functions. We present three
examples to illustrate the performance of the proposed methods. The solutions display
similar patterns for the Tikhonov regularization method and the spectral cut-off method.
Thus we will only show the results computed from either the Tikhonov regularization or
the spectral cut-off.
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Figure 1: The unperturbed data function g(ρ) for Example 4.1.

Example 4.1. Reconstruct the radiogenic source

f1(ρ)=
1

3
(1−ρ2)exp[−cos(4πρ)]

over the interval [0,1]. This is a simple example as it is infinitely smooth function. Fig. 1
shows the unperturbed data function g(ρ) computed from the finite element method
and interpolated by using the natural cubic spline formula. Fig. 2 plots the reconstructed
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Figure 2: Reconstructed source func-
tion against exact one for Example 4.1.
(a) δ= 1%, N= 9; (b) δ= 3%, N= 8;
(c) δ=5%, N=7.
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source functions from the spectral cut-off method against the exact one. The choice of the
regularization parameter β is equivalent to the choice of number of the terms N in the
eigenfunction expansion in (4.2). It can be seen from Fig. 2 that the number of terms N
should decrease, equivalently increase the regularization parameter β, as the noise level
δ increase. As expected, the results are more accurate at the right end side that at the left
end side.

Example 4.2. Reconstruct the radiogenic source

f2(ρ)=0.5[1+cos(7πρ)]

over the interval [0,1]. This is a highly oscillatory function and more terms of expansion
is desired in order to capture the high Fourier modes of the function. Fig. 3 shows the un-
perturbed data function g(ρ) computed from the finite element method and interpolated
by using the natural cubic spline formula. Fig. 4 plots the reconstructed source functions
from the Tikhonov regularization method against the exact one. The regularization pa-
rameter is chosen as α = 10−6. Though the factors κn/(κ2

n+α) stay bounded as n → ∞,
only finitely many terms are computed in practice. So Fig. 4 presents the results with
a combination of the Tikhonov regularization method and the spectral cut-off method.
Again, it can be seen from Fig. 4 that the number of terms N should decrease as the noise
level δ increase for a fixed regularization parameter α. It yields the similar results if we
increase the regularization parameter α while keeping N as a constant.
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Figure 3: The unperturbed data function g(ρ) for Example 4.2.

Example 4.3. Reconstruct the radiogenic source

f3(ρ)=

{

1, for 0<ρ<0.5,
16(1−ρ)4, for 0.5<ρ<1.

over the interval [0,1]. This is a more difficult example as the function is not smooth on
the point ρ = 0.5. Fig. 5 shows the unperturbed data function g(ρ) computed from the
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Figure 4: Reconstructed source func-
tion against exact one for Example 4.2.
(a) δ=1%, α=10−6, N=14; (b) δ=3%,

α=10−6, N=12; (c) δ=5%, α=10−6,
N=8.

finite element method and interpolated by using the natural cubic spline formula. Fig. 6
plots the reconstructed source functions from the combination of the Tikhonov and spec-
tral cut-off method against the exact one. Due to the low regularity of the exact source
function, it follows form the stability estimates that larger regularization parameters are
expected to obtain a stable solution. As the noise level δ increases from 1% to 5%, the
regularization parameters vary from α = 10−5,N = 6 to α = 10−5,N = 5. More accurate
results are still obtained toward the right end side of the interval.
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Figure 5: The unperturbed data function g(ρ) for Example 4.3.
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Figure 6: Reconstructed source func-
tion against exact one for Example 4.3.
(a) δ=1%, α=10−6, N=6; (b) δ=3%,

α=10−5, N=5; (c) δ=5%, α=10−5,
N=5.

5 Concluding remarks

In thermochronology, it is important to understand spatial variations in radiogenic
sources in a sample as they can cause substantial spatial fractionation of the par-
ent/daughter ratio in systems (such as rocks). In this paper, the prediction of a variable
source term has been formulated as an inverse radiogenic source problem. Based on the
radial geometry, an analytical solution has been deduced in terms of the eigenfunction ex-
pansion. Both the Tikhonov regularization method and the spectral cutoff regularization
method have been considered to obtain the stable solution. Numerical results indicate
that the proposed methods are efficient, accurate, and stable to compute the approxima-
tion of the unknown radiogenic source.

We conclude the paper by some general remarks about future directions along this
line of research. The choice of a suitable value of the regularization parameter is crucial
for the accuracy and the stability of the numerical solution, and is still under intensive
investigation [7]. We are also investigating the inverse radiogenic source problem for
general geometry where the eigenfunction expansion will not be available any more.
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