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Abstract

Consider the scattering of a time-harmonic plane wave incident on a two-scale hetero-
geneous medium, which consists of scatterers that are much smaller than the wavelength and
extended scatterers that are comparable to the wavelength. In this work we treat those small
scatterers as isotropic point scatterers and use a generalized Foldy–Lax formulation to model
wave propagation and capture multiple scattering among point scatterers and extended scat-
terers. Our formulation is given as a coupled system, which combines the original Foldy–Lax
formulation for the point scatterers and the regular boundary integral equation for the ex-
tended obstacle scatterers. The existence and uniqueness of the solution for the formulation is
established in terms of physical parameters such as the scattering coefficient and the separation
distances. Computationally, an efficient physically motivated Gauss–Seidel iterative method
is proposed to solve the coupled system, where only a linear system of algebraic equations
for point scatterers or a boundary integral equation for a single extended obstacle scatterer
is required to solve at each step of iteration. The convergence of the iterative method is also
characterized in terms of physical parameters. Numerical tests for the far-field patterns of
scattered fields arising from uniformly or randomly distributed point scatterers and single or
multiple extended obstacle scatterers are presented.

Key words. Foldy–Lax formulation, point scatterers, obstacle scattering, boundary integral
equation, Helmholtz equation.
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1 Introduction

Scattering problems are concerned with how an inhomogeneous medium scatters an incident field.
The direct scattering problem is to determine the scattered field from the incident field and the
differential equation governing the wave propagation; the inverse scattering problem is to deter-
mine the nature of the inhomogeneity, such as location, geometry, and material property, from a
knowledge of the scattered field. These problems have played a fundamental role in diverse scien-
tific areas such as radar and sonar, geophysical exploration, medical imaging, near-field and nano-
optics. This work is devoted to the modeling and computation of a direct scattering problem,
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Figure 1: Schematic of problem geometry. The scattered wave ψ is generated from the incidence
of a plane wave ϕinc on the heterogeneous medium consisting a group of point scatterers centered
at rj and an extended obstacle scatterer with possible multiple disjoint components represented by
the domain Dk with boundary Γk.

where the inhomogeneous medium is assumed to be of two-scale nature: it is composed of a group
of isotropic point scatterers and an extended obstacle scatterer with possible multiple disjoint com-
ponents. “Isotropic point scatterer” is a simple but effective model for a scatterer whose size is
much smaller than the wavelength of the incident wave so that the scatterer can be represented by
a source point within it; “extended” means that the scale of the obstacle scatterer is comparable
with the wavelength of the incident field. Precisely, we consider the scattering of a time-harmonic
plane wave incident on a heterogeneous medium with both point and extended scatterers, and
intend to study the wave propagation and the far-field pattern of the scattered field arising from
the interactions between the incident field and all the scatterers, as seen in Figure 1.

The original Foldy–Lax formulation was proposed by Foldy [4] and Lax [8] to describe the
multiple scattering of acoustic waves by a group of small isotropic scatterers. This formulation
effectively gives the wave fields by solving a self-consistent linear system of algebraic equations for
the idealized situation, where the medium is viewed as a collection of isotropic point scatterers. As
the size of the scatterers increases to be comparable with the wavelength of the incident field, the
original Foldy–Lax formulation will no longer be appropriate to accurately describe the multiple
scattering among these scatterers. It is required to consider the effect of the shape of these scatterers
on the scattered field. As pointed out in the book by Colton and Kress [3], one of the two basic
problems in classical scattering theory is the scattering of time-harmonic acoustic or electromagnetic
waves by bounded impenetrable obstacles, which is known as the obstacle scattering problem.
Integral equation methods have played an important role in the study of exterior boundary value
problems associated with the obstacle scattering. The major advantage of the use of boundary
integral equation methods lies in the fact that this approach reduces a problem defined over an
unbounded domain to one defined on a bounded domain of lower dimension, i.e., the boundary of
the scattering obstacle. We refer to the monograph by Colton and Kress [2] for a comprehensive
account of the boundary integral equation methods for solving the obstacle scattering problem.

In many situations it is desirable to develop a model for the simulation of wave propagation in
a cluttered medium with embedded extended scatterers, such as in the application of imaging a
target in a cluttered environment [10]. Thus it is important to resolve not only the geometry of the
extended scatterers but also the effect of the surrounding cluttered medium on the scattered field.
Multiple scattering in a multiscale medium presents both mathematical and numerical challenges.
In this work, the medium clutter is modeled as a group of isotropic point scatterers and the target
is modeled by an extended obstacle scatterer with possible multiple disjoint components. When a
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time-harmonic plane wave is incident on the heterogeneous medium, the scattered waves will be
generated from the point scatterers, the extended obstacles and multiple scattering among them.
The original Foldy–Lax formulation provides an effective approach to solve the scattering problem
from a collection of point scatterers; the method of boundary integral equation has been considered
as a desirable choice to solve the obstacle scattering problem. The objective of this work is combine
these two methods such that the multiple scattering among all the scatterers can be fully taken
into account, without increasing the computational complexity relative to the separated scattering
problems especially for multiple extended obstacle scatterers.

Recently, based on the extended-boundary condition method [1], a generalized Foldy–Lax for-
mulation was developed by Huang, Solna, and Zhao [6] for solving the two-dimensional Helmholtz
equation in the heterogeneous medium, where the formulation is represented as a series in terms
of spherical harmonics and scattering operators. Due to the restriction of the extended-boundary
condition method, the formulation in [6] is limited to a single obstacle scatterer. It also assumes
that the point scatterers and the obstacle scatterer can be separated by a circle: all the point
scatterers are located in the exterior of the circle; the obstacle scatterer is located in the interior of
the circle. To overcome the limitations, Huang and Li [5] studied the two-scale multiple scattering
problem and proposed a boundary integral equation based generalized Foldy–Lax formulation for
the three-dimensional Helmholtz equation for arbitrarily distributed point scatterers. In principle,
the formulation in [5] can be used to deal with not only an obstacle scatterer with general geometry
but also multiple disjoint obstacle scatterers. However, no discussion is given on how to efficiently
solve the generalized Foldy–Lax formulation when the extended obstacle scatterer has more than
one component.

To be able to handle more general obstacle scatterers including multiple disjoint components,
we re-examine the generalized Foldy–Lax formulation given in [5] and develop an improved formu-
lation, which is more stable with respect to the wavenumber since a uniquely solvable boundary
integral equation is incorporated into the coupled system. Sufficient conditions for the existence
and uniqueness for the solution of the improved formulation are established in terms of the physi-
cal parameters such as the scattering coefficient of the point scatterers and the separation distance
between the point scatterers and the extended obstacle scatterers. Computationally, an efficient
physically based Gauss–Seidel iterative method is proposed to solve the coupled system, where
only a linear system of algebraic equations or a boundary integral equation for a single obstacle is
required to solve at each step of iteration. The convergence of the iterative method is also char-
acterized in terms of the physical parameters such as the scattering coefficients and the separation
distances.

Although all discussion in this work uses the two-dimensional Helmholtz equation, all the results
can be straightforwardly extended to the three-dimensional Helmholtz equation which has a even
simpler Green’s function with a faster decay in distance.

The outline of the paper is as follows. In Section 2, the original Foldy–Lax formulation is briefly
reviewed for the scattered field from the interaction among a group of point scatterers. Based on
combined single- and double-layer potential representations, a uniquely solvable boundary integral
equation is introduced for the sound-soft obstacle scattering problem in Section 3. Section 4 is
devoted to the improved generalized Foldy–Lax formulation: a coupled scattering system is derived
from the boundary integral equation approach; the existence and uniqueness for the solution of the
improved formulation is established; a physically motivated block Gauss–Seidel iterative method is
proposed, and the convergence of the iteration is discussed. In Section 5, the far-field patterns of
the scattered fields from original and generalized Foldy–Lax formulations are described. Numerical
techniques, particularly the implementation of the uniquely solvable boundary integral equation,
are presented in Section 6. Numerical results are shown in Section 7 for various examples of the
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point scatterers and the extended obstacle scatterers. The paper is concluded with comments and
directions for future work in Section 8.

2 Foldy–Lax formulation for point scatterers

In this section, we briefly introduce the original Foldy–Lax formulation to model the scattering
of isotropic point scatterers. We refer to the book by Martin [9] for detailed discussions on the
Foldy–Lax formulation.

Consider a collection of m separated isotropic point scatterers, which can be represented by
point sources located at r1, . . . , rm. Let ϕinc be the plane incident wave, given explicitly

ϕinc(r) = eiκr·d inR2, (2.1)

where i is the imaginary unit, κ is the wavenumber, and d = (cosα, sinα) ∈ S1 is the propagation
direction defined on the unit circle and α ∈ [0, 2π] is the incident angle. The incident field satisfies
the Helmholtz equation

∆ϕinc + κ2ϕinc = 0 in R2. (2.2)

The total field is represented as the sum of the incident field and the scattered field

ϕ(r) = ϕinc(r) +
m∑
j=1

σjϕjG(r, rj), (2.3)

where σj > 0 is referred to as the scattering coefficient for the j-th point scatterer, and G the free
space Green’s function given as

G(r, r′) =
i

4
H

(1)
0 (κ|r− r′|).

Here H
(1)
0 is the Hankel function of first kind with order zero.

Evaluating (2.3) at ri and excluding the self-interaction yield a linear system of algebraic equa-
tion for ϕj, j = 1, . . . ,m:

ϕi = ϕinc(ri) +
m∑
j=1
j ̸=i

σjϕjG(ri, rj), (2.4)

which is known as the Foldy–Lax formulation. Once (2.4) is solved, the scattered field can be
computed as

ψ(r) =
m∑
j=1

σjϕjG(r, rj). (2.5)

The Foldy–Lax formulation (2.4) can be written in the matrix form

Aϕ = ϕinc, (2.6)

where ϕ = (ϕ1, . . . , ϕm)
⊤, ϕinc = (ϕinc(r1), . . . , ϕinc(rm))

⊤, and the m×m coefficient matrix A is

A =


1 −σ2G(r1, r2) · · · −σmG(r1, rm)

−σ1G(r2, r1) 1 · · · −σmG(r2, rm)
...

...
. . .

...

−σ1G(rm, r1) −σ2G(rm, r2) · · · 1

 .
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Given a vector x = (x1, x2, . . . , xm)
⊤ ∈ Cm and a matrix B = [bij]m×m ∈ Cm×m, introduce the

maximum norms

∥ x ∥∞= max
1≤j≤m

|xi| and ∥ B ∥∞= max
1≤i≤m

m∑
j=1

|bij|.

Define the following two physical parameters, maximum scattering strength and the least separation
distance, for the group of point scatterers,

σmax = max
1≤j≤m

σj and ρP = min
1≤i<j≤m

|ri − rj|.

They will be used to characterize the criterion for the well-posedness of the Foldy–Lax formulation
(2.6).

Theorem 2.1. If σmax ρ
−1/2
P is sufficiently small, then the coefficient matrix A is invertible and its

inverse matrix has the estimate
∥ A−1 ∥∞≤ γ1, (2.7)

where the constant γ1 is independent of σj and rj for j = 1, . . . ,m.

Proof. Split the matrix A = I −M , where

M =


0 σ2G(r1, r2) · · · σmG(r1, rm)

σ1G(r2, r1) 0 · · · σmG(r2, rm)

...
...

. . .
...

σ1G(rm, r1) σ2G(rm, r2) · · · 0

 .

Recalling for large argument, we have the following asymptotic behavior for the Hankel function of
first kind with order µ:

H(1)
µ (z) =

√
2

πz
ei(z−

π
4
−µπ

2 )
[
1 +O(z−1)

]
. (2.8)

Using (2.8), we have for well-separated point scatterers that

|G(ri, rj)| =
1

4
|H(1)

0 (κ|ri − rj|)| ≤ γ0|ri − rj|−1/2 ≤ γ0ρ
−1/2
P , (2.9)

where γ0 is a positive constant. Following the matrix norm and (2.9) yield

∥M ∥∞≤ σmax

m∑
j=1
j ̸=i

|G(ri, rj)| ≤ mγ0σmax ρ
−1/2
P < 1

for sufficiently small σmax ρ
−1/2
P . The above estimate shows that the matrix A = I−M is invertible,

and furthermore leads to the estimate

∥ A−1 ∥∞ =∥ (I −M)−1 ∥∞≤ (1− ∥M ∥∞)−1

≤
(
1−mγ0σmax ρ

−1/2
P

)−1

= γ1.
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Remark 2.1. As seen from Theorem 2.1, given the number of the point scatterers m, if the max-
imum scattering coefficient σmax is sufficiently small or the separation distance among the point
scatterers ρP is sufficiently large, then the Foldy–Lax formulation (2.6) has a unique solution. Fur-
thermore, we have from (2.4) that the multiple scattering among the point scatterers is weak and
the scattered field can be approximated by the simple summation

ψ(r) ≈
m∑
j=1

σjϕinc(rj)G(r, rj), (2.10)

which is known as the Born approximation.

3 Boundary integral equations for extended obstacle scat-

terers

This section is concerned with a brief introduction of the boundary integral equation method for
solving the obstacle scattering problem. We assume that the obstacle is represented by the domain
D with boundary Γ, which is the open complement of an unbounded domain of class C2, i.e.,
scattering from more than one component is included in our analysis.

Consider the two-dimensional Helmholtz equation

∆ϕ+ κ2ϕ = 0 in R2 \D, (3.1)

along with the sound-soft boundary condition

ϕ = 0 on Γ, (3.2)

where ϕ is the total field and κ is the wavenumber.
The obstacle is illuminated by the plane incident wave (2.1). The total field ϕ consists of the

incident field ϕinc and the scattered field ψ:

ϕ = ϕinc + ψ. (3.3)

It follows from (2.2) and (3.1)–(3.3) that the scattered field satisfies

∆ψ + κ2ψ = 0 in R2 \D, (3.4)

together with the boundary condition

ψ = −ϕinc on Γ. (3.5)

In addition, the scattered field is required to satisfy the Sommerfeld radiation condition

lim
ρ→∞

√
ρ

(
∂ψ

∂ρ
− iκψ

)
= 0, ρ = |r|, (3.6)

uniformly for all directions r̂ = r/|r|.
Based on the Green’s representation theorem, it can be shown that the scattered field has the

integral representation in terms of the normal derivative of the total field:

ψ(r) = −
∫
Γ

G(r, r′)∂n′ϕ(r′)ds(r′), r ∈ D. (3.7)
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To compute the scattered field, it is required to determine ∂ϕ on Γ. We adopt the following uniquely
solvable integral equation

1

2
∂nϕ(r) +

∫
Γ

[∂nG(r, r
′)− iηG(r, r′)] ∂n′ϕ(r′)ds(r′) = (∂n − iη)ϕinc(r), (3.8)

where n is the unit outward normal with respect to the variable r and η is a nonzero real number
and is called the coupling parameter. We refer to Kress [7] for an investigation on the proper choice
of the coupling parameter η with respect to the condition number of the coefficient matrix for the
integral equation.

Given a domain Ω, define
∥ u ∥0,∞,Ω= sup

r∈Ω
|u(r)|.

For a positive integer µ, introduce a standard Sobolev space

W µ,∞(Ω) = {u ∈ L1
loc(Ω) : ∥ u ∥µ,∞,Ω≤ ∞},

where the Sobolev norm is
∥ u ∥µ,∞,Ω= max

|λ|≤µ
∥ Dλu ∥0,∞,Ω .

Due to the unique solvability of the boundary integral equation (3.8), we have the following
stability result. The proof may be found in [5].

Theorem 3.1. The unique solution to the boundary integral equation (3.8) depends continuously
on the incident field, i.e.,

∥ ∂nϕ ∥0,∞,Γ≤ γ2 ∥ ϕinc ∥0,∞,Γ, (3.9)

where the constant γ2 depends on κ, η, and Γ.

Remark 3.1. If the extended obstacle scatterer is consisted of n disjoint components, i.e., Γ =
Γ1 ∪ · · · ∪ Γn, Γk ∩ Γk′ = ∅, k ̸= k′, then the boundary integral equation (3.8) can be written as

1

2
φ(r) +

n∑
k=1

∫
Γk

[∂nG(r, r
′)− iηG(r, r′)]φk(r

′)ds(r′) = (∂n − iη)ϕinc(r), (3.10)

where φ(r) = ∂nϕ(r) and φk(r) = φ(r)|r∈Γk
.

4 Generalized Foldy–Lax formulation

This section is devoted to an improved generalized Foldy–Lax formulation for the multiple scattering
involving extended obstacle scatterers and a group of point scatterers. This new coupled system is
different from that in [5] since a uniquely solvable boundary integral equation is incorporated, which
make it more stable with respect to the wavenumber. The well-posedness of the new formulation
is discussed, an efficient block Gauss–Seidel iterative method is proposed for solving the coupled
system, and the convergence criteria of the iteration are given in terms of physical parameters.
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4.1 Coupled scattering system

Viewing the external field acting on the point scatterers as point sources for the obstacle, we
consider the Helmholtz equation

∆ϕ+ κ2ϕ = −
m∑
j=1

σjϕjδ(r− rj) in R2 \D, (4.1)

along with the sound-soft boundary condition

ϕ = 0 on Γ, (4.2)

where ϕj is the external field acting on the j-th point scatterer. Subtracting the incident field from
the total field, we may obtain the equation for the scattered field

∆ψ + κ2ψ = −
m∑
j=1

σjϕjδ(r− rj) in R2 \D. (4.3)

The scattered field is also required to satisfy the sound-soft boundary condition (3.5) and the
Sommerfeld radiation condition (3.6).

It follows from Green’s theorem and the Helmholtz equation (4.3) that the scattered field satisfies

ψ(r) =
m∑
j=1

σjϕjG(r, rj) +

∫
Γ

∂n′G(r, r′)ψ(r′)ds(r′)−
∫
Γ

G(r, r′)∂n′ψ(r′)ds(r′), r ∈ R2 \D (4.4)

and

0 =

∫
Γ

∂n′G(r, r′)ψ(r′)ds(r′)−
∫
Γ

G(r, r′)∂n′ψ(r′)ds(r′), r ∈ D. (4.5)

Similarly, the incident field satisfies

ϕinc(r) =

∫
Γ

G(r, r′)∂n′ϕinc(r
′)ds(r′)−

∫
Γ

∂n′G(r, r′)ϕinc(r
′)ds(r′), r ∈ D (4.6)

and

0 =

∫
Γ

∂n′G(r, r′)ϕinc(r
′)ds(r′)−

∫
Γ

G(r, r′)∂n′ϕinc(r
′)ds(r′), r ∈ R2 \D. (4.7)

Adding (4.4) and (4.7) and using the sound-soft boundary condition (3.5) gives the represen-
tation for the scattered field in terms of the total field and the external fields acting on the point
scatterers:

ψ(r) =
m∑
j=1

σjϕjG(r, rj)−
∫
Γ

G(r, r′)∂n′ϕ(r′)ds(r′), r ∈ R2 \D. (4.8)

Adding the incident field on both sides of (4.8) yields

ϕ(r) = ϕinc(r) +
m∑
j=1

σjϕjG(r, rj)−
∫
Γ

G(r, r′)∂n′ϕ(r′)ds(r′), r ∈ R2 \D. (4.9)

To compute the scattered field, it is required to compute the normal derivative of the total field,
∂nϕ, and the external field due to point scatterers, ϕj, j = 1, . . . ,m.
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Evaluating (4.9) on both sides at ri and excluding the self-interaction for the point scatterers
give

ϕi = ϕinc(ri) +
m∑
j=1
j ̸=i

σjϕjG(ri, rj)−
∫
Γ

G(ri, r
′)∂n′ϕ(r′)ds(r′). (4.10)

Using the jump relation for the single-layer and double-layer potentials and taking the normal
derivative, we obtain a boundary integral equation on Γ:

1

2
∂nϕ(r) = (∂n − iη)ϕinc(r) +

m∑
j=1

σjϕj∂nG(r, rj)

−
∫
Γ

[∂nG(r, r
′)− iηG(r, r′)] ∂n′ϕ(r′)ds(r′). (4.11)

It is noticed that the boundary integral over Γ vanishes in (4.10) if the extended obstacle is not
present, which reduces to the original Foldy–Lax formulation (2.4); the summation over the number
of point scatterers vanishes in (4.11) if the point scatterers are not present, which reduces to
the regular boundary integral equation (3.8) for solving the obstacle scattering problem. Thus,
equations (4.10) and (4.11) form the self-consistent generalized Foldy–Lax formulation to compute
the interaction between the extended obstacle and a set of point scatterers.

Remark 4.1. If there are multiple extended scatterers, then the generalized Foldy–Lax formulation
can be written as the following coupled system

ϕi = ϕinc(ri) +
m∑
j=1
j ̸=i

σjϕjG(ri, rj)−
n∑

k=1

∫
Γk

G(ri, r
′)φk(r

′)ds(r′), (4.12)

1

2
φ(r) = (∂n − iη)ϕinc(r) +

m∑
j=1

σjϕj∂nG(r, rj)

−
n∑

k=1

∫
Γk

[∂nG(r, r
′)− iηG(r, r′)]φk(r

′)ds(r′), (4.13)

where φ(r) = ∂nϕ(r) and φk(r) = φ(r)|r∈Γk
.

4.2 Well-posedness of the formulation

This section is concerned with the well-posedness of the generalized Foldy–Lax formulation (4.10)–
(4.11). An iterative approach is proposed to deduce criteria which assure the convergence of
the iteration, and thus the existence and uniqueness of a solution to the generalized Foldy–Lax
formulation.

Theorem 4.1. Given the number of point scatterers m and the arclength of the extended obstacle
scatterer |Γ|, the generalized Foldy–Lax formulation (4.10)–(4.11) has a unique solution if one of
the following two conditions holds: (i) σmax is sufficiently small; (ii) ρP and ρPE are sufficiently
large.

Proof. Define the separation distance parameter between the point scatterers and the extended
obstacle scatterer

ρPE = min
1≤j≤m

min
r∈Γ

|rj − r|.
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Define two linear operators that characterizes wave field scattered by the extended scatterers and
the point scatterers respectively

Mu =

(∫
Γ

G(r1, r
′)u(r′)ds(r′), . . . ,

∫
Γ

G(rm, r
′)u(r′)ds(r′)

)⊤

and

(Nϕ)(r) = −
m∑
j=1

σjϕjG(r, rj).

The generalized Foldy–Lax formulation (4.10)–(4.11) can be written as the operator form[
A M

N 1
2
I +K ′ − iηS

][
ϕ

φ

]
=

[
ϕinc

f

]
, (4.14)

where f = (∂n − iη)ϕinc(r), and S,K ′ are the single layer and the adjoint double layer potential
operators defined as

(Su)(r) =

∫
Γ

G(r, r′)u(r′)ds(r′),

(K ′u)(r) =

∫
Γ

∂nG(r, r
′)u(r′)ds(r′).

Consider the following iteration: let ϕ(0) = (0, . . . , 0)⊤ and φ(0)(r) = 0, define ϕ(ν) and φ(ν) for
ν ≥ 1 by the solutions of the following system of equations

Aϕ(ν) = ϕinc −Mφ(ν−1) (4.15)

and (
1

2
I +K ′ − iηS

)
φ(ν) = f −Nϕ(ν). (4.16)

Clearly, the vector ϕ(ν) and the function φ(ν) are well-defined due to the invertibility of the matrix
A from Theorem 2.1 and the operator 1

2
I+K ′− iηS from Theorem 3.1. After ν-th iteration, waves

that have been scattered fewer or equal to ν times between points scatterers and the extended
obstacle have been captured.

To prove the convergence of the iteration (4.15) and (4.16), we define the differences of two
consecutive approximations

δϕ(ν) = ϕ(ν) − ϕ(ν−1) and δφ(ν) = φ(ν) − φ(ν−1).

It follows from (4.15) and (4.16) that we have the error equations

Aδϕ(ν) = −Mδφ(ν−1) (4.17)

and (
1

2
I +K ′ − iηS

)
δφ(ν) = −Nδϕ(ν). (4.18)

An application of Theorem 2.1 to (4.17) yields

∥ δϕ(ν) ∥∞≤ γ1 ∥Mδφ(ν−1) ∥∞ .
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Using the asymptotic behavior of the Hankel function (2.8) and the definition of the operator M ,
we have

∥ δϕ(ν) ∥∞≤ γ0γ1|Γ| ρ−1/2
PE ∥ δφ(ν−1) ∥0,∞,Γ, (4.19)

where |Γ| is the arclength of the boundary Γ for the extended obstacle scatterer. An application
of Theorem 3.1 to (4.18) gives

∥ δφ(ν) ∥0,∞,Γ≤ γ2 ∥ Nδϕ(ν) ∥0,∞,Γ

It follows from the asymptotic behavior of the Hankel function (2.8) and the definition of the
operator N that

∥ δφ(ν) ∥0,∞,Γ≤ mγ0γ2σmax ρ
−1/2
PE ∥ δϕ(ν) ∥∞ . (4.20)

Combining (4.19) and (4.20) gives

∥ δφ(ν) ∥0,∞,Γ≤ ξ ∥ δφ(ν−1) ∥0,∞,Γ and ∥ δϕ(ν) ∥∞≤ ξ ∥ δϕ(ν−1) ∥∞, (4.21)

where
ξ = mγ20γ1γ2|Γ|σmax ρ

−1
PE < 1

for sufficiently small σmax or sufficiently large ρPE.
Following the definition of φ(ν), we obtain

φ(ν) = δφ(1) + δφ(2) + · · ·+ δφ(ν),

which gives after using (4.21)

∥ φ(ν) ∥0,∞,Γ≤ (1 + ξ + ξ2 + · · ·+ ξν) ∥ φ(1) ∥0,∞,Γ≤ (1− ξ)−1 ∥ φ(1) ∥0,∞,Γ .

Obviously, it follows from the well-posedness of the Foldy–Lax formulation (2.6) and the boundary
integral equation (3.8) that ∥ φ(1) ∥0,∞,Γ<∞. Hence, the above estimate indicate that the sequence
{φ(ν)} is a bounded sequence, and thus there exists a subsequence, which will be still denoted by
{φ(ν)}, converge to a limit φ.

Similarly, we have from the definition of δϕ that

ϕ(ν) = δϕ(1) + δϕ(2) + · · ·+ δϕ(ν),

which gives after using (4.21)

∥ ϕ(ν) ∥∞≤ (1 + ξ + ξ2 + · · ·+ ξν) ∥ ϕ(1) ∥∞≤ (1− ξ)−1 ∥ ϕ(1) ∥∞ .

Since ∥ ϕ(1) ∥∞<∞, there exists a subsequence, which will be still denoted by {ϕ(ν)}, converge to
a limit ϕ.

Next is to prove the uniqueness of the limits. If ϕ′ = (ϕ′
1, . . . , ϕ

′
m)

⊤ and φ′ are also limits of
subsequences {ϕ(ν)} and {φ(ν)}, then we have

ϕ′
i = ϕinc(ri) +

m∑
j=1
j ̸=i

σjϕ
′
jG(ri, rj)−

∫
Γ

G(ri, r
′)φ′(r′)ds(r′), (4.22)

1

2
φ′(r) = (∂n − iη)ϕinc(r) +

m∑
j=1

σjϕ
′
j∂nG(r, rj)

−
∫
Γ

[∂nG(r, r
′)− iηG(r, r′)]φ′(r′)ds(r′). (4.23)
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Subtracting (4.22) and (4.23) from (4.10) and (4.11), respectively, and denoting δϕ = ϕ− ϕ′ and
δφ = φ− φ′, we obtain

δϕi −
m∑
j=1
j ̸=i

σjδϕjG(ri, rj) =−
∫
Γ

G(ri, r
′)δφ(r′)ds(r′), (4.24)

1

2
δφ(r) +

∫
Γ

[∂nG(r, r
′)− iηG(r, r′)]δφ(r′)ds(r′) =

m∑
j=1

σjδϕj∂nG(r, rj). (4.25)

Regarding (4.24), it follows from Theorem 2.1 that we have

∥ δϕ ∥∞≤ γ0γ1|Γ| ρ−1/2
PE ∥ δφ ∥0,∞,Γ .

Regarding (4.25), using Theorem 3.1 yields

∥ δφ ∥0,∞,Γ≤ mγ0γ2σmax ρ
−1/2
PE ∥ δϕ ∥∞ .

Combining above two estimates gives

∥ δϕ ∥∞≤ ξ ∥ δϕ ∥∞ and ∥ δφ ∥0,∞,Γ≤ ξ ∥ δφ ∥0,∞,Γ .

The uniqueness of the solutions follow from δϕ = 0 and δφ = 0 since ξ < 1 for either sufficiently
small σmax or sufficiently large ρPE.

Remark 4.2. The conditions in Theorem (4.1) are sufficient but may not be necessary for the
well-posedness of the generalized Foldy–Lax formulation (4.10)–(4.11).

4.3 Block Gauss–Seidel iterative method

In this section, we propose an efficient block Gauss–Seidel iterative method to numerically solve
the generalized Foldy–Lax formulation (4.12)–(4.13), especially when there are multiple obstacles,
and deduce some criteria to characterize the convergence of the proposed iterative method.

Theorem 4.2. Given the number of point scatterers m and the arclength of the extended obstacle
|Γ|, the block Gauss–Seidel iteration (4.27)–(4.28) is convergent if one of the following two con-
ditions holds: (i) σmax is sufficiently small and ρE is sufficiently large; (ii) ρP, ρPE, and ρE are
sufficiently large.

Proof. Denote two linear operators over the boundary Γk:

Mku =

(∫
Γk

G(r1, r
′)u(r′)ds(r′), . . . ,

∫
Γk

G(rm, r
′)u(r′)ds(r′)

)⊤

,

and

(Nkϕ)(r) = −
m∑
j=1

σjϕjG(r, rj)|r∈Γk
.

Recall the single-layer and adjoint double-layer potential operators defined on the boundary Γk :

(Sku)(r) =

∫
Γk

G(r, r′)u(r′)ds(r′),

(K ′
ku)(r) =

∫
Γk

∂nG(r, r
′)u(r′)ds(r′).
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The generalized Foldy–Lax formulation (4.12)–(4.13) can be written as

A M1 M2 · · · Mn

N1
1
2
I +K ′

1 − iηS1 K ′
2 − iηS2 · · · K ′

n − iηSn

N2 K ′
1 − iηS1

1
2
I +K ′

2 − iηS2 · · · K ′
n − iηSn

...
...

...
. . .

...

Nn K ′
1 − iηS1 K ′

2 − iηS2
... 1

2
I +K ′

n − iηSn





ϕ

φ1

φ2

...

φn


=



ϕinc

f1

f2
...

fn


, (4.26)

where fk(r) = (∂n − iη)ϕinc(r)|r∈Γk
= f(r)|r∈Γk

, k = 1, . . . , n. A block Gauss–Seidel method for the

solution of (4.26) reads: Let ϕ(0) = (0, . . . , 0)⊤ and φ
(0)
k (r) = 0 for k = 1, . . . , n, define ϕ(ν) and

φ
(ν)
k for ν ≥ 1 by the solutions of the following system of equations

Aϕ(ν) = ϕinc −
n∑

k=1

Mkφ
(ν−1)
k (4.27)

and(
1

2
I +K ′

k − iηSk

)
φ
(ν)
k = fk −Nkϕ

(ν) −
k−1∑
j=1

(K ′
j − iηSj)φ

(ν)
j −

n∑
j=k+1

(K ′
j − iηSj)φ

(ν−1)
j . (4.28)

Next we analyze the convergence of the block Gauss–Seidel iteration (4.27)–(4.28). Let ϕ and
φk for k = 1, . . . , n be the solution of the generalized Foldy–Lax formulation (4.12)–(4.13). Denote
by

δϕ(ν) = ϕ− ϕ(ν−1) and δφ
(ν)
k = φk − φ

(ν−1)
k

the error between the exact solution and the iterative solution at the step ν. Subtracting (4.27)
and (4.28) from (4.12) and (4.13), respectively, we obtain

Aδϕ(ν) = −
n∑

k=1

Mkδφ
(ν−1)
k (4.29)

and(
1

2
I +K ′

k − iηSk

)
δφ

(ν)
k = −Nkδϕ

(ν) −
k−1∑
j=1

(K ′
j − iηSj)δφ

(ν)
j −

n∑
j=k+1

(K ′
j − iηSj)δφ

(ν−1)
j . (4.30)

Regarding (4.29), an application of Theorem 2.1 yields

∥ δϕ(ν) ∥∞≤ γ1

n∑
k=1

∥Mkδφ
(ν−1)
k ∥∞ .

Using the asymptotic behavior of the Hankel function (2.8) and the definition of the operator Mk,
we have

∥ δϕ(ν) ∥∞≤ γ0γ1 |Γ| ρ−1/2
PE ∥ δφ(ν−1) ∥0,∞,Γ, (4.31)

where
∥ δφ(ν−1) ∥0,∞,Γ= max

1≤k≤n
∥ δφ(ν−1)

k ∥0,∞,Γk
.
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Using Theorem 3.1 for (4.30) gives

∥ δφ(ν)
k ∥0,∞,Γk

≤ γ2

(
∥ Nkδϕ

(ν) ∥0,∞,Γk
+

k−1∑
j=1

∥ (K ′
j − iηSj)δφ

(ν)
j ∥0,∞,Γj

+
n∑

j=k+1

∥ (K ′
j − iηSj)δφ

(ν−1)
j ∥0,∞,Γj

)
. (4.32)

Using the definition of the linear operator Nk gives

∥ Nkδϕ
(ν) ∥0,∞,Γk

≤
∣∣∣∣∣∣ m∑

j=1

σjδϕ
(ν)
j G(r, rj)|r∈Γk

∣∣∣∣∣∣
0,∞,Γk

≤ mγ0 σmax ρ
−1/2
PE ∥ δϕ(ν) ∥∞ . (4.33)

Following the asymptotic behavior of the Hankel functions and the definitions of Sj and K
′
j gives

k−1∑
j=1

∥ (K ′
j − iηSj)δφ

(ν)
j ∥0,∞,Γj

≤ (1 + η)γ0 ρ
−1/2
E

k−1∑
j=1

|Γj| ∥ δφ(ν)
j ∥0,∞,Γj

,

≤ (1 + η)γ0 |Γ| ρ−1/2
E ∥ δφ(ν) ∥0,∞,Γ (4.34)

and

n∑
j=k+1

∥ (K ′
j − iηSj)δφ

(ν−1)
j ∥0,∞,Γj

≤ (1 + η)γ0 ρ
−1/2
E

n∑
j=k+1

|Γj| ∥ δφ(ν−1)
j ∥0,∞,Γj

≤ (1 + η)γ0 |Γ| ρ−1/2
E ∥ δφ(ν−1) ∥0,∞,Γ, (4.35)

where |Γk| is the arclength of the boundary curve Γk and the parameter

ρE = min
r∈Γk, r

′∈Γ′
k

1≤k<k′≤n

|r− r′|

is the separation distance among the different boundary components Γk for the extended obstacle.
Combining (4.32)–(4.35) leads to

∥ δφ(ν) ∥0,∞,Γ≤ mγ0γ2σmax ρ
−1/2
PE ∥ δϕ(ν) ∥∞ + (1 + η)γ0γ2|Γ| ρ−1/2

E ∥ δφ(ν) ∥0,∞,Γ

+ (1 + η)γ0γ2|Γ| ρ−1/2
E ∥ δφ(ν−1) ∥0,∞,Γ . (4.36)

For a sufficiently large separation distance ρE, we have (1 + η)γ0γ2|Γ| ρ−1/2
E < 1. Let

γ3 =
[
1− (1 + η)γ0γ2|Γ| ρ−1/2

E

]−1

.

We obtain from (4.36) that

∥ δφ(ν) ∥0,∞,Γ≤ mγ0γ2γ3σmax ρ
−1/2
PE ∥ δϕ(ν) ∥∞ +(1 + η)γ0γ2γ3|Γ| ρ−1/2

E ∥ δφ(ν−1) ∥0,∞,Γ . (4.37)

Combing the estimates (4.31) and (4.37) yield

∥ δφ(ν) ∥0,∞,Γ≤ ζ1 ∥ δφ(ν−1) ∥0,∞,Γ, (4.38)
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where
ζ1 =

[
mγ0γ1σmax ρ

−1
PE + (1 + η)ρ

−1/2
E

]
γ0γ2γ3|Γ| < 1

for sufficiently small σmax and sufficiently large ρE; or sufficiently large ρPE and ρE. Therefore, we
have from (4.38) that

∥ δφ(ν) ∥0,∞,Γ≤ ζν−1
1 ∥ φ(1) ∥0,∞,Γ→ 0 as ν → ∞.

Here we have used the fact that ∥ φ(1) ∥0,∞,Γ< ∞ due to the well-posedness of the Foldy–Lax
formulation (2.6) and the boundary integral equation (3.8).

Similarly, we have from (4.31) and (4.37) that

∥ δϕ(ν) ∥∞≤ ζ2 ∥ δϕ(ν−1) ∥∞ +ζ3 ∥ δφ(ν−2) ∥0,∞,Γ, (4.39)

where
ζ2 = mγ20γ1γ2γ3σmax ρ

−1
PE |Γ| and ζ3 = (1 + η)γ20γ1γ2γ3 ρ

−1/2
PE ρ

−1/2
E |Γ|.

An application of the recurrence relation (4.38) to the estimate (4.39) yields

∥ δϕ(ν) ∥∞≤ ζ2 ∥ δϕ(ν−1) ∥∞ +ζ3ζ
ν−3
1 ∥ φ(1) ∥0,∞,Γ (4.40)

For either sufficiently small σmax or sufficiently large ρPE, we have ζ2 < 1. We have from the
recurrence relation (4.40) that

∥ δϕ(ν) ∥∞ ≤ ζν−1
2 ∥ ϕ(1) ∥∞ +ζ3(ζ

ν−3
1 + ζ2ζ

ν−4
1 + · · ·+ ζν−4

2 ζ1 + ζν−3
2 ) ∥ φ(1) ∥0,∞,Γ

≤ ζν−1
2 ∥ ϕ(1) ∥∞ +ζ3(ζ1 + ζ2)

ν−3 ∥ φ(1) ∥0,∞,Γ→ 0 as ν → 0. (4.41)

Here we assume that ζ1 + ζ2 < 1 for sufficiently small σmax and sufficiently large ρE; or sufficiently
large ρPE and ρE, and have also used the fact that ∥ ϕ(1) ∥∞<∞ and ∥ φ(1) ∥0,∞,Γ<∞ due to the
well-posedness of the Foldy–Lax formulation (2.6) and the boundary integral equation (3.8).

Remark 4.3. Theorem 4.2 gives a sufficient condition in terms of the physical parameters. In
particular if the separation distance among point scatterers and extended scatterers are sufficiently
large, the physically motivated block Gauss–Seidel iteration is convergent. In practice, we find that
the iteration still converges when separation distance among extended scatterers is much smaller
than a wavelength, as long as the discretization of the boundary curves can resolve the separation
distance, i.e., the discrete sampling can distinguish points on different obstacles, see numerical
results in Section 7.

Remark 4.4. Though the discussion is focused on the two-dimensional Helmholtz equation, all the
results on the well-posedness of the generalized Foldy–Lax formulation and the convergence of the
block Gauss-Seidel iteration can be straightforwardly extended to the three-dimensional Helmholtz
equation with the power changed to −1 for the separation distance parameters.

Remark 4.5. In addition to the block Gauss–Seidel iteration, the block Jacobi iteration may also
be used to solve the generalized Foldy–Lax formulation (4.12)–(4.13). The block Jacobi iteration is
equivalent to the series solution formulation, which is presented in [5] and proceeds as follows: Let

ϕ(0) = (0, . . . , 0)⊤ and φ
(0)
k (r) = 0 for k = 1, . . . , n, define ϕ(ν) and φ

(ν)
k for ν ≥ 1 by the solutions

of the following system of equations

Aϕ(ν) = ϕinc −
n∑

k=1

Mkφ
(ν−1)
k (4.42)
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and(
1

2
I +K ′

k − iηSk

)
φ
(ν)
k = fk −Nkϕ

(ν−1) −
k−1∑
j=1

(K ′
j − iηSj)φ

(ν−1)
j −

n∑
j=k+1

(K ′
j − iηSj)φ

(ν−1)
j . (4.43)

5 Far-field pattern

The far-field pattern of scattered wave plays a fundamental role in the inverse scattering theory
since it contains important geometrical and physical information, e.g., location, shape, and the
impedance of the boundary, of the scattering object. More specifically, given an incident field with
incident direction d, if ψ is the scattered field, then ψ has the asymptotic behavior

ψ(r,d) =
eiκ|r|√
|r|

[
ψ∞(r̂,d) +O(|r|)−1

]
as |r| → ∞ (5.1)

uniformly in all directions r̂ = r/|r|, where the function ψ∞ is called as the far-field pattern of
the scattered field ψ, and r̂ = (cos β, sin β) is known as the observation direction and β is the
observation direction.

Recalling the following asymptotic behavior for the Hankel function (2.8) for large arguments
and comparing with (5.1), we obtain from (2.5) and the following identity

|r− r′| =
√

|r|2 − 2r · r′ + |r′|2 = |r| − r̂ · r′ +O(|r|−1) as |r| → ∞

that the far-field pattern of the scattered field for the scattering problem of a set of m point
scatterers is

ψ∞,FL(r̂,d) =
ei

π
4

√
8πκ

m∑
j=1

σjϕj(d)e
−iκr̂·rj , (5.2)

which is called the far-field pattern of the Foldy–Lax formulation. Under the Born approximation
(2.10), the far-field pattern of the scattered field can be approximated by

ψ∞,B(r̂,d) =
ei

π
4

√
8πκ

m∑
j=1

σje
iκ(d−r̂)·rj , (5.3)

which will be called the far-field pattern of the Born approximation.
It follows from the integral representation of the scattered field (3.7) and the asymptotic ex-

pansion of Green’s function that the far-field pattern for the extended obstacle is given by

ψ∞,E(r̂,d) = − ei
π
4

√
8πκ

∫
Γ

∂n′ϕ(r′;d)e−iκr̂·r′ds(r′). (5.4)

Based on the integral equation representation (4.8) for the multiple scattering problem and the
asymptotic behavior for Green’s function, we may also obtain the far-field pattern of the scattered
field for the generalized Foldy–Lax formulation

ψ∞,GFL(r̂,d) =
ei

π
4

√
8πκ

[
m∑
j=1

σjϕj(d)e
−iκr̂·rj −

∫
Γ

∂n′ϕ(r′;d)e−iκr̂·r′ds(r′)

]
. (5.5)
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Remark 5.1. For the extended obstacle scatterer with more than one component, the far-field
patterns for the extended obstacle and the generalized Foldy–Lax formulation can be written as

ψ∞,E(r̂,d) = − ei
π
4

√
8πκ

n∑
k=1

∫
Γk

∂n′ϕ(r′;d)e−iκr̂·r′ds(r′).

and

ψ∞,GFL(r̂,d) =
ei

π
4

√
8πκ

[
m∑
j=1

σjϕj(d)e
−iκr̂·rj −

n∑
k=1

∫
Γk

∂n′ϕ(r′;d)e−iκr̂·r′ds(r′)

]
.

Remark 5.2. The formulas of the far-field patterns can be extended to the three-dimensional
Helmholtz equation with the constant changed to 1/4π in front of the summation.

6 Numerical techniques

To compute the far-field patterns, we describe the numerical implementation of the Block Gauss–
Seidel iterative method for the generalized Foldy–Lax formulation. As seen in (4.27) and (4.28),
each step of the iteration essentially consists of solving two decoupled systems: a linear system of
algebraic equations (2.4) for the point scatterers and a boundary integral equation (3.8) for a single
extended obstacle scatterer. The linear system (2.4) can be easily solved by using a direct method
such as the LU decomposition. In the following, we describe the Nyström method to solve the
boundary integral equation (3.8). The method is similar to that in [2], where detailed discussion is
given for the implementation of a boundary integral equation based on potential representations.

Recall the block Gauss–Seidel iteration (4.28) for the extended obstacle scatterers with more
than one component, it is only required to solve a boundary integral equation for a single component
at each step. To present the Nyström method, we may assume that the boundary curve Γ possesses
a regular analytic and 2π-periodic parametric representation of the form

r(t) = (x1(t), x2(t)), 0 ≤ t ≤ 2π,

in counterclockwise orientation satisfying |r′(t)| = (|x′1(t)|2 + |x′2(t)|2)1/2 > 0 for all t. Hence we

assume that the obstacle has only one component. By straightforward calculations using H
(1)′

0 =

−H(1)
1 , we transform (3.8) into the parametric form

φ(t) +

∫ 2π

0

[M(t, s)− iηN(t, s)]φ(s)ds = f(t), (6.1)

where φ(t) := ∂nϕ(r(t)), f(t) := 2(∂n − iη)ϕinc(r(t)), and the integral kernels are given by

M(t, s) =
iκ

2
H

(1)
1 (κρ1(t, s))

ρ2(t, s)

ρ1(t, s)

|r′(s)|
|r′(t)|

,

N(t, s) =
i

2
H

(1)
0 (κρ1(t, s))

[
|x′1(s)|2 + |x′2(s)|2

]1/2
,

for t ̸= s. Here

ρ1(t, s) =
(
|x1(t)− x1(s)|2 + |x2(t)− x2(s)|2

)1/2
,

ρ2(t, s) = x′2(t)(x1(s)− x1(t))− x′1(t)(x2(s)− x2(t)).
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It follows from the expansion of the Hankel function that the kernelsM and N have logarithmic
singularities at t = s. Hence, following [2], we split the kernels into

M(t, s) =M1(t, s) ln

(
4 sin2 t− s

2

)
+M2(t, s),

N(t, s) = N1(t, s) ln

(
4 sin2 t− s

2

)
+N2(t, s),

where

M1(t, s) = − κ

2π
J1(κρ1(t, s))

ρ2(t, s)

ρ1(t, s)

|r′(s)|
|r′(t)|

,

M2(t, s) =M(t, s)−M1(t, s) ln

(
4 sin2 t− s

2

)
,

N1(t, s) = − 1

2π
J0(κρ1(t, s))

[
|x′1(s)|2 + |x′2(s)|2

]1/2
,

N2(t, s) = N(t, s)−N1(t, s) ln

(
4 sin2 t− s

2

)
.

The kernels M1,M2, N1, and N2 turn out to be analytic. In particular, using the expansions of the
Bessel functions, we can deduce the diagonal terms

M1(t, t) = 0, M2(t, t) =
1

2π

x′2(t)x
′′
1(t)− x′1(t)x

′′
2(t)

|x′1(t)|2 + |x′2(t)|2
,

and

N2(t, t) =

[
i

2
− E

π
− 1

2π
ln

(
κ2

4
|r′(t)|2

)]
|r′(t)|,

where E is Euler’s constant. We note that despite the continuity of the kernel M , for numerical
accuracy it is advantageous to separate the logarithmic part of M since the derivatives of M fail
to be continuous at t = s.

Hence, we have to numerically solve an integral of the form

φ(t) +

∫ 2π

0

K(t, s)φ(s)ds = f(t), 0 ≤ t ≤ 2π, (6.2)

where the kernel can be written in the form

K(t, s) = K1(t, s) ln

(
4 sin2 t− s

2

)
+K2(t, s).

Here

K1(t, s) =M1(t, s)− iηN1(t, s),

K2(t, s) =M2(t, s)− iηN2(t, s).

The Nyström method consists in the straightforward approximation of the integrals by quadrature
formulas. In our case, for the 2π-periodic integrands, we choose an equidistant set of knots tj :=
jπ/n, j = 0, . . . , 2n− 1, and use the quadrature rule∫ 2π

0

ln

(
4 sin2 t− s

2

)
g(s)ds ≈

2n−1∑
j=0

R
(n)
j (t)g(tj), 0 ≤ t ≤ 2π, (6.3)
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with the quadrature weights given by

R
(n)
j (t) := −2π

n

n−1∑
m=1

1

m
cosm(t− tj)−

π

n2
cosn(t− tj), j = 0, . . . , 2n− 1,

and the trapezoidal rule ∫ 2π

0

g(t)dt ≈ π

n

2n−1∑
j=1

g(tj). (6.4)

In the Nyström method, the integral equation (6.2) is replaced by the approximation equation after
applying the (6.3) and (6.4)

φ(n)(t) +
2n−1∑
j=0

[
R

(n)
j (t)K1(t, tj) +

π

n
K2(t, tj)

]
φ(n)(tj) = f(t) (6.5)

for 0 ≤ t ≤ 2π. In particular, for any solution of (6.5) the value φ
(n)
i = φ(n)(ti), i = 0, . . . , 2n − 1,

at the quadrature points trivially satisfy the linear system

φ
(n)
i +

2n−1∑
j=0

[
R

(n)
|i−j|K1(ti, tj) +

π

n
K2(ti, tj)

]
φ
(n)
j = f(ti) (6.6)

for i = 0, . . . , 2n− 1, where

R
(0)
j := R

(n)
j (0) = −2π

n

n−1∑
m=1

1

m
cos

jmπ

n
− (−1)jπ

n2
, j = 0, . . . , 2n− 1.

To demonstrate the performance of the above method for solving the boundary integral equation
(3.8), we take the benchmark example in [2] and consider the scattering of a plane wave by a kite-
shaped obstacle, which is described by the parametric representation

r(t) = (cos t+ 0.65 cos 2t− 0.65, 1.5 sin t), 0 ≤ t ≤ 2π,

as seen in the middle of Figure 2. The far-field pattern of the scattered wave for the obstacle
scattering problem is given by (5.4), which can be evaluated again by the trapezoidal rule after
solving the integral equation for ∂nϕ. Table 1 gives numerical approximations for the far-field
pattern ψ∞,E(r̂,d) in the forward direction r̂ = d and the backward direction r̂ = −d. The
direction d of the incident wave is d = (1, 0) and the coupling parameter η = κ. Note that the
exponential convergence is clearly exhibited.

7 Numerical experiments

In this section, we present some numerical examples for the computation of the far-field patterns
for the incident angle α ∈ [0, 2π] and the observation angle β ∈ [0, 2π]. As comparisons, we will
show the different far-field patterns: the far-field pattern via the Born approximation ψ∞,B for a
group of point scatterers, the far-field pattern via the original Foldy–Lax formulation ψ∞,FL for
a group of point scatterers, the far-field pattern via the boundary integral equation for extended
obstacle scatterers ψ∞,E, and the far-field pattern via the generalized Foldy–Lax formulation for
both point and extended obstacle scatterers. In Example 1 and Example 2, the wavenumber κ is
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Table 1: Numerical results of the Nyström’s method to solve the boundary integral equation for a
kite-shaped obstacle.

n Reψ∞,E(d,d) Imψ∞,E(d,d) Reψ∞,E(−d,d) Imψ∞,E(−d,d)

κ = 1

8 -1.62399616 0.60308809 1.39015276 0.09425143

16 -1.62746853 0.60222418 1.39696605 0.09499467

32 -1.62745750 0.60222603 1.39694483 0.09499650

64 -1.62745750 0.60222603 1.39694483 0.09499650

κ = 5

8 -2.47821459 1.72919957 -0.39350495 0.11897067

16 -2.46812551 1.68955122 -0.19892628 0.06138907

32 -2.47554472 1.68747934 -0.19945835 0.06015728

64 -2.47554477 1.68747932 -0.19945836 0.06015726

taken to be 4π, i.e., the wavelength is taken to be λ = 2π/κ = 0.5. In Example 3, the wavenumber
κ is taken to be 2π which accounts for the wavelength λ = 2π/κ = 1.0.

Example 1. Consider a group of twenty equally distributed point scatterers on a circle with
radius 3 and a kite-shaped extended obstacle with the parametric representation given by

r(t) = (cos t+ 0.65 cos 2t− 0.65, 1.5 sin t), 0 ≤ t ≤ 2π,

as seen in Figure 2. The scattering coefficient σj is the same for all the twenty point scatterers,
which is σj = σ = 1.0 for Figures 3–7. Figures 3 and 4 show the far-field patterns for the point
scatterers, as seen in the left of Figure 2. Figure 3 shows the real and imaginary parts of the
far-field pattern for the scattered field computed from the Born approximation (2.10), where the
multiple scattering is neglected among the point scatterers. As a comparison, Figure 4 shows
the real and imaginary parts of the far-field pattern for the scattered field computed from the
Foldy–Lax formulation (2.5), where the multiple scattering is taken into account among the point
scatterers. As we can see from Figure 3 and Figure 4, the difference is clear between the far-field
pattern ψ∞,B and the far-field pattern ψ∞,FL. Figure 5 shows the far-field pattern for the single
kite-shaped extended obstacle scatterer, as seen in the middle of Figure 2. It shows the real and
imaginary parts of the far-field pattern for the scattered field (3.7) computed from the boundary
integral equation (3.8). Figure 6 shows the far-field pattern for the heterogeneous medium with
both point and extended obstacle scatterers, as seen in the right of Figure 2. It shows the real and
imaginary parts of the far-field pattern for the scattered field (4.8) computed from the generalized
Foldy–Lax formulation (4.10) and (4.11). Comparing with the far-field pattern in Figure 5, the
far-field pattern in Figure 6 displays a lot of small oscillation, which comes from the presence of
the point scatterers. In order to show whether the generalized Foldy–Lax formulation captures the
multiple scattering between the point scatterers and the extended kite-shaped obstacle scatterer,
Figure 7 shows only the portion of the far-field pattern due to the multiple scattering by subtracting
ψ∞,E and ψ∞,FL from ψ∞,GFL, i.e., the far-field pattern ψ∞,GFL − ψ∞,E − ψ∞,FL.

To show how the convergence of the Block Gauss–Seidel iteration and the block Jacobi iteration
depend on the point scatterers, such as the scattering coefficients and the number of point scatterers,

20



−4 −2 0 2 4
−4

−2

0

2

4

x

y

−4 −2 0 2 4
−4

−2

0

2

4

x

y

−4 −2 0 2 4
−4

−2

0

2

4

x

y

Figure 2: Uniformly distributed point scatterers and a kite-shaped obstacle scatterer in Example
1. (left) a set of twenty equally spaced point scatterers on a circle with radius 3; (middle) a kite-
shaped extended obstacle scatterer; (right) mixed scatterers of a kite-shaped obstacle surrounded
by a set of twenty equally spaced point scatterers.

we define the error between two consecutive approximations

eFL =∥ ϕ(ν) − ϕ(ν−1) ∥2 and eE =∥ φ(ν) − φ(ν−1) ∥L2(Γ),

where ν is the number of iteration. Define

eGFL = max{eFL, eE}.

Given the twenty equally distributed point scatterers with equal scattering coefficient on the circle
with radius 3, Figure 8 shows the error eGFL of two consecutive approximations using σj = σ =
1, 2, 4, 8. As can be seen from Figure 8, the larger of the scattering coefficient is, the stronger
the multiple scattering among the point scatterers, and thus more iterations are needed to reach
the same level of accuracy. Given the scattering coefficients σj = σ = 1.0, Figure 9 investigates
the error eGFL of two consecutive approximations using different number of equally spaced point
scatterers m = 20, 100, 200, 300 on the circle with radius 3. Similarly, it can be observed that more
iterations are needed to reach the same level of accuracy for more number of point scatterers. As
expected, it can be seen from Figure 8 and Figure 9 that the block Gauss–Seidel iteration displays
a faster convergence than the block Jacobi iteration.

Example 2. Consider a group of one hundred randomly distributed point scatterers in annulus
with radii bounded blow by 3 and above by 4 and two extended obstacle scatterers: one is a circular
extended scatterer with the parametric representation given by

r1(t) = (cos t− 1.5, sin t), 0 ≤ t ≤ 2π;

and the other one is a kite-shaped extended scatterer with the parametric representation given by

r2(t) = (cos t+ 0.65 cos 2t+ 0.85, 1.5 sin t), 0 ≤ t ≤ 2π,

as seen in Figure 10. The scattering coefficient σj is taken as a random number from the interval
(0, 1) for j = 1, . . . , 100 in Example 2. Figures 11 and 12 concern with the far-field patterns
for the randomly distributed point scatterers, as seen in the left of Figure 10. Figure 11 shows
the real and imaginary parts of the far-field pattern for the scattered field computed from the
Born approximation (2.10). As a comparison, Figure 12 shows the real and imaginary parts of
the far-field pattern for the scattered field computed from the Foldy–Lax formulation (2.5), where

21



incident angle

ob
se

rv
at

io
n 

an
gl

e

 

 

0 2 4 6
0

2

4

6

−0.5

0

0.5

1

incident angle

ob
se

rv
at

io
n 

an
gl

e

 

 

0 2 4 6
0

2

4

6

−0.5

0

0.5

1

Figure 3: The far-field pattern ψ∞,B of the scattered field from the uniformly distributed point
scatterers in Example 1 via the Born approximation. (left) real part; (right) imaginary part.

incident angle

ob
se

rv
at

io
n 

an
gl

e

 

 

0 2 4 6
0

2

4

6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

incident angle

ob
se

rv
at

io
n 

an
gl

e

 

 

0 2 4 6
0

2

4

6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 4: The far-field pattern ψ∞,FL of the scattered field from the uniformly distributed point
scatterers in Example 1 via the Foldy–Lax formulation. (left) real part; (right) imaginary part.
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Figure 5: The far-field pattern ψ∞,E of the scattered field from the kite-shaped extended obstacle
scatterer in Example 1 via the boundary integral equation. (left) real part; (right) imaginary part.
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Figure 6: The far-field pattern ψ∞,GFL of the scattered field from the uniformly distributed point
scatterers and the kite-shaped extended obstacle scatterer in Example 1 via the generalized Foldy–
Lax formulation. (left) real part; (right) imaginary part.
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Figure 7: The difference of the far-field patterns ψ∞,GFL − ψ∞,E − ψ∞,FL from the uniformly dis-
tributed point scatterers and the kite-shaped extended obstacle scatterer in Example 1. (left) real
part; (right) imaginary part.
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Figure 8: The error of two consecutive approximations is given against the number of iterations
with different scattering coefficients for Example 1. (left) block Gauss–Seidel iteration; (right)
block Jacobi iteration.
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Figure 9: The error of two consecutive approximations is given against the number of iterations
with different number of point scatterers for Example 1. (left) block Gauss–Seidel iteration; (right)
block Jacobi iteration.

the multiple scattering is taken into account among the point scatterers. Due to the randomly
distributed point scatterers, Figures 11 and 12 show no symmetric patterns, which are different
from Figure 3 and 4 for the equally distributed point scatterers. Figure 13 shows the far-field
pattern for the two extended obstacle scatterers, as seen in the middle of Figure 10. It shows
the real and imaginary parts of the far-field pattern for the scattered field (3.7) computed from
the boundary integral equation (3.8). Figure 14 shows the far-field pattern for the heterogeneous
medium with both point and extended obstacle scatterers, as seen on the right of Figure 10. It
shows the real and imaginary parts of the far-field pattern for the scattered field (4.8) computed
from the generalized Foldy–Lax formulation (4.10) and (4.11). Again, in order to show whether the
generalized Foldy–Lax formulation captures the multiple scattering between the point scatterers
and the extended kite-shaped obstacle scatterer, Figure 15 shows only the portion of the far-field
pattern due to the multiple scattering by subtracting ψ∞,E and ψ∞,FL from ψ∞,GFL, i.e., the far-field
pattern ψ∞,GFL − ψ∞,E − ψ∞,FL.

Given the one hundred randomly distributed point scatterers with scattering coefficient cho-
sen as a random number from the interval (0, 1), Figure 16 plots the error eGFL of two con-
secutive approximations with different separation distance of the two extended scatterers, ρE =
0.25λ, 0.5λ, 1.0λ, 2.0λ, in order to show how the convergence of the Block Gauss–Seidel iteration
and the block Jacobi iteration depend on the separation distance between the extended scatterers
ρE. Theorem 4.2 gives a sufficient condition for the convergence of the physically motivated Gauss-
Seidel iteration, which requires that the separation distance among scatterers to be sufficiently
large. In practice, the iteration still converges when the separation distance ρE of the two extended
scatterers is as close as 0.25λ as long as the discretization of the boundary can resolve the separa-
tion distance. Surprisingly, the number of iterations is not necessary to increase as the separation
distance between the two extended scatterer ρE decreases for both the block Gauss–Seidel iteration
and the block Jacobi iteration. The number of iterations increases as the separation distance ρE
decreases to 2λ; and then it decreases as the separation distance further decreases to 0.25λ, as seen
in Figure 16. As usual, the block Gauss–Seidel iteration exhibits a faster convergence than the
block Jacobi iteration.

Example 3. We show an example to illustrate that the developed generalized Foldy–Lax
formulation and the proposed block Gauss–Seidel method can be extended to the three-dimensional
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Figure 10: Randomly distributed point scatterers and two obstacle scatterers in Example 2. (left)
a group of one hundred of randomly distributed point scatterers in the annulus with radii bounded
blow by 3 and above by 4; (middle) a kite-shaped and a circle-shaped extended obstacle scatterers;
(right) mixed scatterers of a kite-shaped and a circle-shaped obstacle scatterers surrounded by a
set of one hundred randomly distributed point scatterers.
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Figure 11: The far-field pattern ψ∞,B of the scattered field from the uniformly distributed point
scatterers in Example 2 via the Born approximation. (left) real part; (right) imaginary part.
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Figure 12: The far-field pattern ψ∞,FL of the scattered field from the uniformly distributed point
scatterers in Example 2 via the Foldy–Lax formulation. (left) real part; (right) imaginary part.
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Figure 13: The far-field pattern ψ∞,E of the scattered field from the kite-shaped extended obstacle
scatterer in Example 2 via the boundary integral equation. (left) real part; (right) imaginary part.
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Figure 14: The far-field pattern ψ∞,GFL of the scattered field from the uniformly distributed point
scatterers and the kite-shaped extended obstacle scatterer in Example 2 via the generalized Foldy–
Lax formulation. (left) real part; (right) imaginary part.
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Figure 15: The difference of the far-field patterns ψ∞,GFL − ψ∞,E − ψ∞,FL from the uniformly
distributed point scatterers and the kite-shaped extended obstacle scatterer in Example 2. (left)
real part; (right) imaginary part.
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Figure 16: Error of two consecutive approximations using different separation distance for Example
2. (left) block Gauss–Seidel iteration; (right) block Jacobi iteration.

Helmholtz equation, with the power of the separation distance changed to −1 and the constant
in the far-field pattern changed to 1/4π. We choose the Galerkin boundary element method for
solving the three-dimensional boundary integral equations, and refer to [5] for detailed descriptions
of the method. In this example, we consider a group of twenty equally distributed point scatterers
on a circle with radius 2 on the xy-plane, as seen in left of Figure 17. The scattering coefficients σj
is chosen to be all equal, i.e., σj = σ = 1.0. The centers of two spherical obstacle scatterers with the
same radius of 0.5 are located at (−1.0, 0.0, 0.0) and (1.0, 0.0, 0.0), respectively, as seen in the middle
of Figure 17. The far-field patterns are plotted on the unit sphere as a function of the variables for
the latitudinal angle and the longitudinal angle varying from 0 to π and from 0 to 2π, respectively.
All the figures are shown from the incident direction of d = (0, 0, 1). Figure 18 shows the real and
imaginary parts of the far-field pattern, ψ∞,FL, for the scattered field computed from the original
Foldy–Lax formulation. Figure 19 shows the far-field pattern, ψ∞,E, for the two spherical scatterers
by using the boundary integral equation, and Figure 20 plots the far-field pattern, ψ∞,GFL, for
the mixed scatterers by using the generalized Foldy–Lax formulation. Finally, Figure 21 shows
the portion of the far-field pattern arising from the multiple scattering among all scatterers by
subtracting ψ∞,E and ψ∞,FL from ψ∞,GFL, i.e., the far-field pattern ψ∞,GFL −ψ∞,E −ψ∞,FL. Figure
22 plots the error eGFL of two consecutive approximations with different separation distance of
the two spheres, ρE = 0.25λ, 0.5λ, 1.0λ to show how the convergence of the Block Gauss–Seidel
iteration and the block Jacobi iteration depend on the separation distance between the extended
scatterers for the three-dimensional Helmholtz equation. Remarkably, the number of iterations and
convergence is almost independent of the separation distance in 3D for both methods of iteration;
while the block Gauss–Seidel iteration shows a faster convergence than the block Jacobi iteration.

8 Conclusions

We presented an efficient algorithm for the generalized Foldy–Lax formulation to capture multi-
ple scattering among a group of isotropic point scatterers and extended obstacle scatterers. The
improved formulation is based on a coupled system which combines the original Foldy–Lax formula-
tion and a uniquely solvable boundary integral equation for exterior boundary value problem. The
uniqueness and existence of the solution for the improved formulation were given in terms of the
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Figure 17: Uniformly distributed point scatterers and two spherical obstacle scatterer in Example
3. (left) a set of twenty equally spaced point scatterers on a circle with radius 2 on the xy-
plane; (middle) two spherical extended obstacle scatterers; (right) mixed scatterers of two spherical
obstacle surrounded by a set of twenty equally spaced point scatterers.
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Figure 18: The far-field pattern ψ∞,FL of the scattered field from the uniformly distributed point
scatterers in Example 3 via the Foldy–Lax formulation. (left) real part; (right) imaginary part.
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Figure 19: The far-field pattern ψ∞,E of the scattered field from the two spherical obstacle scatterers
in Example 3 via the boundary integral equation. (left) real part; (right) imaginary part.
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Figure 20: The far-field pattern ψ∞,GFL of the scattered field from the uniformly distributed point
scatterers and the two spherical obstacle scatterers in Example 3 via the generalized Foldy–Lax
formulation. (left) real part; (right) imaginary part.
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Figure 21: The difference of the far-field patterns ψ∞,GFL − ψ∞,E − ψ∞,FL from the uniformly
distributed point scatterers and the two spherical obstacle scatterers in Example 3. (left) real part;
(right) imaginary part.
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Figure 22: Error of two consecutive approximations using different separation distance for Example
3. (left) block Gauss–Seidel iteration; (right) block Jacobi iteration.
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physical parameters such as the scattering coefficient and the separation distances. Computation-
ally, an efficient block Gauss–Seidel iterative method was proposed to solve the coupled system. At
each step of iteration, only a linear system of algebraic equations or a boundary integral equation
for a single obstacle scatterer needs to be solved. Sufficient condition for the convergence of the
iteration is provided in terms of physical parameters. Convergence is investigated for the effects
of the number of point scatterers, the scattering coefficients, and the separation distances through
numerical experiments. We are intended to extend the proposed method to the three-dimensional
Maxwell equations and will report the progress elsewhere.
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