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Here considered is the mathematical analysis and numerical computation of the electro-
magnetic wave scattering by multiple cavities embedded in an infinite ground plane.
Above the ground plane the space is filled with a homogeneous medium, while the interi-
ors of the cavities are filled with inhomogeneous media characterized by variable permit-
tivities. By introducing a new transparent boundary condition on the cavity apertures, the
multiple cavity scattering problem is reduced to a boundary value problem of the two-
dimensional Helmholtz equation imposed in the separated interior domains of the cavities.
The existence and uniqueness of the weak solution for the model problem is achieved via a
variational approach. A block Gauss–Seidel iterative method is introduced to solve the cou-
pled system of the multiple cavity scattering problem, where only a single cavity scattering
problem is required to be solved at each iteration. Numerical examples demonstrate the
efficiency and accuracy of the proposed method.

Published by Elsevier Inc.
1. Introduction

The phenomenon of electromagnetic scattering by cavity-backed apertures has received much attention by both the engi-
neering and mathematical communities for its important applications. For instance, the radar cross section is a measure of
the detectability of a target by a radar system. Deliberate control in the form of enhancement or reduction of the radar cross
section of a target is of no less importance than many radar applications. The cavity radar cross section caused by jet engine
inlet ducts or cavity-backed antennas can dominate the total radar cross section. A thorough understanding of the electro-
magnetic scattering characteristic of a target, particularly a cavity, is necessary for successful implementation of any desired
control of its radar cross section, and is of high interest to the scientific and engineering community. Another example is that
the cavity can be used to model cracks or holes in metallic surfaces such as aircraft wings. These cracks or holes would be
invisible to a visual inspection but may be revealed by understanding the scattering characteristics of the cavity. As an in-
verse problem, the mathematical model can serve as a predictor of the scattering of electromagnetic waves by the cavity for
use in non-destructive testing. Besides, this work is also motivated by the study of the optimal design problems of the cavity,
where one wishes to design a cavity structure that reduces or enhances the radar cross section.

For the time-harmonic analysis of cavity-backed apertures with penetrable material filling the cavity interior, we men-
tion, for example, works by Jin et al. [23,24,27], Wood and Wood [37], and references cited therein. Mathematical analysis
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of the cavity scattering problem including the scattering from overfilled cavities, where the cavity aperture is not planar and
may protrude the ground plane, can be found in Ammari et al. [1–3], Bao et al. [9], Li et al. [26], Van and Wood [28–33], Wood
[36]. Mode matching based analytical approaches are developed in Bao and Zhang [13], and Bao et al. [10] for solving the
electromagnetic scattering problem involving large cavities. Much research has been devoted to solving the cavity scattering
problem by various numerical methods, including finite element, finite difference, boundary element, and hybrid methods.
See, for example, Bao and Sun [11], Du [15,16], Huang and Wood [19], Huang et al. [20], Wang et al. [34,35], Zhao et al. [39]
and Zhang et al. [40]. To the best of our knowledge, all the known results in the open literature follow the model of a single
cavity, which clearly limits the practical application of the model problem in industry and military. A major challenge in a
multiple cavity model is how to fully capture the interactions among separate cavities. This paper aims to extend the single
cavity model to the more general multiple cavity model, analyze and develop numerical methods for the associated scatter-
ing problem. Some preliminary numerical results are announced in Li and Wood [25].

Our approach calls for the development of a boundary condition over the cavity apertures based on Fourier transform. The
boundary condition is nonlocal and transparent which connects the fields in all individual cavities. By using this boundary
condition, we reduce the multiple cavity scattering problem into a boundary value problem of the two-dimensional Helm-
holtz equation imposed in the interiors of the cavities. The existence and uniqueness of the weak solution of the associated
variational formulation for the model problem is achieved. A block Gauss–Seidel iterative method is introduced to solve the
coupled system, where only a single cavity scattering problem is required to be solved at each iteration, rendering all effi-
cient single cavity solvers applicable to the multiple cavity scattering problem. Two numerical examples are presented to
show the efficiency and accuracy of the proposed method. Numerical methods for multiple obstacle scattering problems
can be found in Grote and Kirsch [17], Huang et al. [18], Jiang and Zheng [22], and references therein. Recently, Bonnetier
and Triki [14] and Babadjian et al. [8] studied the enhancement of electromagnetic fields by interacting subwavelength cav-
ities. More general results could be found in Ammari et al. [6] on the existence of resonances by using layer potential tech-
niques. We also refer to Ammari et al. [4,5,7] for related work on developing imaging functions to reconstruct perfectly
conducting cracks and holes.

We organize the paper as follows. Section 2 presents a mathematical model for the single cavity scattering problem; the
variational formulation is presented for an equivalent boundary value problem by using the transparent boundary condition;
the uniqueness and existence of the solution are examined. Section 3 deals with two cavities. The major new ingredient is
the introduction of a novel transparent boundary condition which reduces the double cavity problem to two coupled single
cavity problems. The results are extended to the general multiple cavity scattering problem in Section 4. In Section 5, we
examine issues related to the numerical implementation. Experiments on two example scenarios are performed and shown
to be efficient and accurate. The paper is concluded in Section 6.

2. One cavity scattering

In this section, we study a mathematical model for a single cavity scattering problem, and discuss the existence and
uniqueness of the solution based on its variational formulation. This section is intended to introduce the background for
the cavity scattering problem and serve as a basis for the two cavity and the general multiple cavity scattering problems.

2.1. A model problem

We focus on a two-dimensional geometry by assuming that the medium and material are invariant in the z-direction.
Throughout, the medium is assumed to be non-magnetic and has a constant magnetic permeability, i.e., l ¼ l0, where l0

is the magnetic permeability of vacuum. The electromagnetic property of the medium is characterized by the dielectric per-
mittivity e.

As shown in Fig. 1, an open cavity X, enclosed by the aperture C and the wall S, is placed on a perfectly conducting ground
plane Cc. Above the flat surface fy ¼ 0g ¼ C [ Cc, the medium is assumed to be homogeneous with a positive dielectric per-
mittivity e0. The medium inside the cavity X is inhomogeneous with a variable relative dielectric permittivity eðx; yÞ. Assume
further that eðx; yÞ 2 L1ðXÞ; Ree > 0; Ime P 0.

Due to the uniformity in the z-axis, the scattering problem can be decomposed into two fundamental polarizations: trans-
verse magnetic (TM) and transverse electric (TE). Its solution then can be expressed as a linear combination of the solutions
to TM and TE problems. In this work, we focus on the TM polarization. The method can be extended to the TE polarization
with obvious modifications.
Fig. 1. The problem geometry for a single cavity scattering problem. An open cavity X, enclosed by the aperture C and the wall S, is placed on a perfectly
conducting ground plane Cc.
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For the TM polarization, the magnetic field is transverse to the invariant direction. The incident and the total electric fields
are parallel to the invariant dimension. By the perfectly electrical conductor condition, the total field u vanishes on the cavity
wall S and the ground plane Cc except over the aperture C. The time-harmonic Maxwell equations are reduced to the two-
dimensional Helmholtz equation
Duþ j2u ¼ 0; in X [ R2
þ; ð2:1Þ
together with the homogeneous Dirichlet boundary condition
u ¼ 0; on Cc [ S: ð2:2Þ
Here j2 ¼ x2el0, where x is the angular frequency and j is known as the wavenumber.
Let an incoming plane wave ui ¼ eij0ðx sin h�y cos hÞ be incident on the cavity from above, where h 2 ð�p=2;p=2Þ is the angle of

incidence with respect to the positive y-axis, and j0 ¼ x ffiffiffiffiffiffiffiffiffiffie0l0
p

is the wavenumber of the free space.
Denote the reference field uref as the solution of the homogeneous Helmholtz equation in the upper half space:
Duref þ j2
0uref ¼ 0; in R2

þ; ð2:3Þ
together with the boundary condition
uref ¼ 0 on Cc [ C: ð2:4Þ
It can be shown from (2.3) and (2.4) that the reference field consists of the incident field ui and the reflected field ur:
uref ¼ ui þ ur;
where ur ¼ �eij0ðx sin hþy cos hÞ.
The total field u is composed of the reference field uref and the scattered field us:
u ¼ uref þ us:
It can be verified from (2.1) and (2.3) that the scattered field satisfies
Dus þ j0us ¼ 0; in R2
þ: ð2:5Þ
In addition, the scattered field is required to satisfy the radiation condition
lim
q!0

ffiffiffiffi
q
p @us

@q
� ij0us

� �
¼ 0; q ¼ jðx; yÞj: ð2:6Þ
To describe the boundary value problem and derive its variational formulation, we need to introduce some functional
space notation. For u 2 L2ðCc [ CÞ, which is identified with L2ðRÞ, we denote by û the Fourier transform of u defined as
ûðnÞ ¼
Z

R

uðxÞeixndx:
Using Fourier modes, the norm on the space L2ðRÞ can be characterized by
kukL2ðRÞ ¼
Z

R

juj2dx
� �1=2

¼
Z

R

jûj2dn

� �1=2

:

Denote the Sobolev space: H1ðXÞ ¼ fu : Dsu 2 L2ðXÞ for all jsj 6 1g. To describe the boundary operator and transparent
boundary condition in the formulation of the boundary value problem, we define the trace functional space
HsðRÞ ¼ u 2 L2ðRÞ :

Z
R

ð1þ n2Þsjûj2dn <1
� �

;

whose norm is defined by
kukHsðRÞ ¼
Z

R

ð1þ n2Þsjûj2dn

� �1=2

:

It is clear that the dual space associated with HsðRÞ is the space H�sðRÞ with respect to the scalar product in L2ðRÞ defined
by
hu; vi ¼
Z

R

û�̂vdn: ð2:7Þ
To simply proofs, we shall employ positive constants C and Ci as generic constants whose precise values are not required
and may be changed line by line but should be always clear from the context.
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2.2. Transparent boundary condition

In this section, we shall derive a boundary operator, which maps the electric field to its normal derivative, and introduce a
transparent boundary condition on the aperture of the cavity, under which the scattering problem may be reduced into a
bounded domain, i.e., inside the cavity X, from the unbounded open domain X [ R2

þ.
By taking the Fourier transform of (2.5) with respect to x, we have an ordinary differential equation with respect to y:
@ûsðn; yÞ
@y2 þ ðj2

0 � n2Þûsðn; yÞ ¼ 0; y > 0: ð2:8Þ
Since the solution of (2.8) satisfies the radiation condition (2.6), we deduce that the solution of (2.8) has the analytical
form
ûsðn; yÞ ¼ ûsðn;0ÞeibðnÞy; ð2:9Þ
where
bðnÞ ¼
ðj2

0 � n2Þ1=2 for jnj < j0;

iðn2 � j2
0Þ

1=2 for jnj > j0:

(

Taking the inverse Fourier transform of (2.9), we find that
usðx; yÞ ¼
Z

R

ûsðn;0ÞeibðnÞye�inxdn in R2
þ:
Taking the normal derivative on Cc [ C, which is the partial derivative with respect to y on Cc [ C, and evaluating at y ¼ 0
yield
@nusðx; yÞjy¼0 ¼
Z

R

ibðnÞûsðn;0Þe�inxdn; ð2:10Þ
where n is the unit outward normal on Cc [ C, i.e., n ¼ ð0;1Þ>.
For any given u on Cc [ C, define the boundary operator T:
Tu ¼
Z

R

ibðnÞûðn;0Þe�inxdn; ð2:11Þ
which leads to a transparent boundary condition for the scattered field on Cc [ C:
@nðu� urefÞ ¼ Tðu� urefÞ:
Equivalently it can be written as a transparent boundary condition for the total field
@nu ¼ Tuþ g on Cc [ C; ð2:12Þ
where
gðxÞ ¼ @nuref � Turef ¼ �2ij0 cos heij0x sin h:
The following two lemmas are concerned with the continuity and analyticity of the boundary operator, and will play an
important role in the proof of the uniqueness and existence of the solution for the cavity scattering problem.

Lemma 2.1. The boundary operator T : H1=2ðRÞ ! H�1=2ðRÞ is continuous.
Proof. For any u;v 2 H1=2ðRÞ, it follows from the definitions (2.7) and (2.11) that
hTu;vi ¼ i
Z

R

bû�̂vdn ¼ i
Z

R

bðnÞð1þ n2Þ�1=2 � ð1þ n2Þ1=4û� ð1þ n2Þ1=4 �̂vdn:
To prove the lemma, it is required to estimate
FðnÞ ¼ jbðnÞj
ð1þ n2Þ1=2 ; �1 < n <1:
Explicitly, we have
FðnÞ ¼
½ðj2

0 � n2Þ=ð1þ n2Þ�1=2 for jnj < j0;

½ðn2 � j2
0Þ=ð1þ n2Þ�1=2 for jnj > j0:

(

It can be verified that the even function FðnÞ decreases for 0 < n < j0 and increases for j0 < n <1. Hence, a simple cal-

culation yields
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FðnÞ 6 maxfFð0Þ; Fð1Þg ¼maxfj0; 1g:
Combining above estimates and using the Cauchy–Schwarz inequality yield
jhTu;vij 6 CkukH1=2ðRÞkvkH1=2ðRÞ;
where
C ¼maxfj0; 1g:
Thus we have
kTukH�1=2ðRÞ 6 sup
v2H1=2ðRÞ

jhTu; vij
kvkH1=2ðRÞ

6 CkukH1=2ðRÞ: �
Lemma 2.2. Let u 2 H1=2ðRÞ. It holds that RehTu;ui 6 0 and ImhTu;uiP 0. Furthermore, if û is an analytical function with respect
to n;RehTu;ui ¼ 0 or ImhTu;ui ¼ 0 implies u ¼ 0.
Proof. By definitions (2.7) and (2.11), we find
hTu;ui ¼ i
Z

R

bjûj2dn:
Taking the real part gives
RehTu;ui ¼ �
Z
jnj>j0

ðn2 � j2
0Þ

1=2jûj2dn 6 0
and taking the imaginary part yields
ImhTu;ui ¼
Z
jnj<j0

ðj2
0 � n2Þ1=2jûj2dn P 0:
Furthermore, RehTu;ui ¼ 0 implies û ¼ 0 for jnj > j0 and ImhTu;ui ¼ 0 implies û ¼ 0 for jnj < j0. If û is assumed to be an ana-
lytical function with respect to n, either RehTu;ui ¼ 0 or ImhTu;ui ¼ 0 implies û ¼ 0 for n 2 R. Taking the inverse Fourier
transform of û ¼ 0 yields u ¼ 0, which completes the proof. h

The transparent boundary condition is derived for u 2 H1=2ðRÞ and u is defined over Cc [ C. To derive a transparent bound-
ary condition for the total field only on the aperture C, we need to make the zero extension as follows: for any given u on C,
define
~uðxÞ ¼
u for x 2 C;

0 for x 2 Cc:

�

The zero extension is consistent with the problem geometry where the cavity is placed on a perfectly conducting ground

plane Cc, i.e., the total field u is required to be zero on Cc. Based on the extension and the transparent boundary condition
(2.12), we have the transparent boundary condition for the total field on the aperture
@nu ¼ T~uþ g on C: ð2:13Þ
2.3. Well-posedness

We now present a variational formulation for the single cavity scattering problem and give a proof of the well-posedness
of the boundary value problem.

Define a trace functional space
eH1=2ðCÞ ¼ fu : ~u 2 H1=2ðRÞg;

whose norm is defined as the H1=2ðRÞ-norm for its extension, i.e.,
kukeH1=2ðCÞ
¼ k~ukH1=2ðRÞ: ð2:14Þ
Define a dual paring h�; �iC by
hu; viC ¼
Z

C
u�v :
Obviously, this dual paring for u and v is equivalent to the scalar product in L2ðRÞ for their extensions, i.e.,
hu; viC ¼ h~u; ~vi:
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Denote by H�1=2ðCÞ the dual space of eH1=2ðCÞ, i.e., H�1=2ðCÞ ¼ ðeH1=2ðCÞÞ0. The norm on the space H�1=2ðCÞ is characterized
by
kukH�1=2ðCÞ ¼ sup
v2eH1=2ðCÞ

hu; viC
kvkeH1=2ðCÞ

¼ sup
~v2H1=2ðRÞ

h~u; ~vi
k~vkH1=2ðRÞ

: ð2:15Þ
Introduce the following space
H1
S ðXÞ ¼ fu 2 H1ðXÞ : u ¼ 0 on S; ujC 2 eH1=2ðCÞg;
which is clearly a Hilbert space with the usual H1ðXÞ-norm.
The following trace regularity in eH1=2ðCÞ is useful in subsequent analysis.

Lemma 2.3. For any u 2 H1
S ðXÞ, it holds the estimate
kukeH1=2ðCÞ
6 CkukH1ðXÞ;
where C is a positive constant.
Proof. Choose a positive number b such that the domain
D ¼ fðx; yÞ 2 R2 : �1 < x <1; �b < y < 0g ¼ R� ð�b;0Þ
contains the cavity X, i.e., X �� D.
Simple calculation yields
bjfð0Þj2 ¼
Z 0

�b
jfðyÞj2dyþ

Z 0

�b

Z 0

y

d
dt
jfðtÞj2dt dy 6

Z 0

�b
jfðyÞj2dyþ b

Z 0

�b
2jfðyÞjjf0ðyÞjdy;
which implies by the Cauchy–Schwarz inequality that
ð1þ jnj2Þ1=2jfð0Þj2 6 C2ð1þ jnj2Þ
Z 0

�b
jfðyÞj2dyþ

Z 0

�b
jf0ðyÞj2dy; ð2:16Þ
where C ¼ ð1þ b�1Þ1=2.
Given u in H1

S ðXÞ, consider the zero extension to the domain D:
~uðxÞ ¼
u for x 2 X;

0 for x 2 D nX:

�

It follows from the definition (2.14) that
kuk2eH1=2ðCÞ
¼ k~uk2

H1=2ðRÞ ¼
Z

R

ð1þ n2Þ1=2j~̂uðn;0Þj2dn:
Using (2.16) we obtain
ð1þ n2Þ1=2j~̂uðn;0Þj2 6 C2ð1þ n2Þ
Z 0

�b
j~̂uðn; yÞj2dyþ

Z 0

�b
j~̂u0ðn; yÞj2dy 6 C2

Z 0

�b
ð1þ n2Þj~̂uðn; yÞj2 þ j~̂u0ðn; yÞj2
h i

dy: ð2:17Þ
Noting
k~uk2
H1ðDÞ ¼

Z
R

Z 0

�b
ð1þ n2Þj~̂uðn; yÞj2 þ j~̂u0ðn; yÞj2
h i

dydn: ð2:18Þ
Combining (2.14), (2.17) and (2.18) yields
kukeH1=2ðCÞ
6 Ck~ukH1ðDÞ ¼ CkukH1ðXÞ;
which completes the proof. h

Multiplying the complex conjugate of a test function v 2 H1
S ðXÞ on both sides of (2.1), integrating over X, using the inte-

gration by parts and boundary conditions (2.2) and (2.13), we deduce the variational formulation for the single cavity scat-
tering problem: find u 2 H1

S ðXÞ such that
a1ðu; vÞ ¼ hg;viC for all v 2 H1
S ðXÞ; ð2:19Þ
where the sesquilinear form is
a1ðu; vÞ ¼
Z

X
ru � r�v � j2u�v
	 


� hT~u;viC:



Noting the definition for the dual paring and using the scalar product in L2ðRÞ, we have an equivalent sesquilinear form
a1ðu;vÞ ¼
Z

X
ru � r�v � j2u�v
	 


� hT~u; ~vi: ð2:20Þ
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Theorem 2.1. The variational problem (2.19) has at most one solution.
Proof. It suffices to show that u ¼ 0 in X if g ¼ 0. If u satisfies the homogeneous variational problem (2.19), then we have
Z
X
ðjruj2 � j2juj2Þ � hT~u; ~ui ¼ 0:
Taking the imaginary part of the above identity yields
Z
X

Imj2juj2 þ ImhT~u; ~ui ¼ 0:
Recall j2 ¼ x2el0; Ime P 0, and ImhT~u; ~uiP 0 from Lemma 2.2, we get
ImhT~u; ~ui ¼ 0:
Since ~u has a compact support on the x-axis, ~̂u is analytical with respect to n. It follows from Lemma 2.2 again that ~u ¼ 0. The
transparent boundary condition (2.12) yields that @n~u ¼ 0 on Cc [ C. An application of Holmgren uniqueness theorem yields
u ¼ 0 in R2

þ. A unique continuation result in [21] concludes that u ¼ 0 in X. h
Theorem 2.2. The variational problem (2.19) has a unique weak solution in H1
S ðXÞ and the solution satisfies the estimate
kukH1ðXÞ 6 CkgkH�1=2ðCÞ;
where C is a positive constant.
Proof. Decompose the sesquilinear form (2.20) into a1 ¼ a11 � a12, where
a11ðu;vÞ ¼
Z

X
ru � r�v � hT~u; ~vi
and
a12ðu;vÞ ¼
Z

X
j2u�v :
We conclude from Lemma 2.2 and Poincaré inequality that a1 is coercive from
Rea11ðu;uÞ ¼
Z

X
jruj2 � RehT~u; ~uiP

Z
X
jruj2 P Ckuk2

H1ðXÞ for all u 2 H1
S ðXÞ:
Next we prove the compactness of a12. Define an operator K1 : L2ðXÞ ! H1ðXÞ by
a11ðK1u; vÞ ¼ a12ðu;vÞ for all v 2 H1
S ðXÞ;
which explicitly gives
Z
X
rK1u � r�v � hTK1~u; ~vi ¼

Z
X
j2u�v for all v 2 H1

S ðXÞ:
Using the coercivity of a11 and the Lax–Milgram Lemma, it follows that
kK1ukH1ðXÞ 6 CkukL2ðXÞ: ð2:21Þ
Thus K1 is bounded from L2ðXÞ to H1ðXÞ and H1ðXÞ is compactly imbedded into L2ðXÞ. Hence K1 : L2ðXÞ ! L2ðXÞ is a com-
pact operator.

Define a function w 2 L2ðXÞ by requiring w 2 H1
S ðXÞ and satisfying
a11ðw; vÞ ¼ hg;viC for all v 2 H1
S ðXÞ:
It follows from Lemma 2.3 and the Lax–Milgram Lemma that
kwkH1ðXÞ 6 CkgkH�1=2ðCÞ: ð2:22Þ
Using the operator K1, we can see that the variational problem (2.19) is equivalent to find u 2 L2 such that
ðI � K1Þu ¼ w: ð2:23Þ
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It follows from the uniqueness result of Theorem 2.1 and the Fredholm alternative that the operator I � K1 has a bounded
inverse. We then have the estimate that
Fig. 2.
S2, are
kukL2ðXÞ 6 CkwkL2ðXÞ: ð2:24Þ
Combining (2.21)–(2.24), we deduce that
kukH1ðXÞ 6 kK1ukH1ðXÞ þ kwkH1ðXÞ 6 CkukL2ðXÞ þ kwkH1ðXÞ 6 CkwkH1ðXÞ 6 CkgkH�1=2ðCÞ;
which completes the proof. h
3. Two cavity scattering

To address the general multiple cavity scattering problem, we begin with the discussion on the two cavity scattering
problem. The two cavity scattering problem shares the same features with the general multiple cavity scattering problem,
but it is easier to present the major ideas in the proof of the well-posedness of the solution for the multiple cavity scattering
problem.

3.1. A model problem

As shown in Fig. 2, two open cavity X1 and X2, enclosed by the aperture C1 and C2 and the walls S1 and S2, are placed on a
perfectly conducting ground plane Cc. Above the flat surface fy ¼ 0g ¼ C1 [ C2 [ Cc, the medium is assumed to be homoge-
neous with a positive dielectric permittivity e0. The medium inside the cavity X1 and X2 is inhomogeneous with a variable
dielectric permittivity e1ðx; yÞ and e2ðx; yÞ, respectively. Assume further that ejðx; yÞ 2 L1ðXÞ; Reej > 0; Imej P 0 for j ¼ 1;2.

We consider the TM polarization, where the time-harmonic Maxwell equations are reduced to the two-dimensional
Helmholtz equation
Duþ j2u ¼ 0; in X1 [X2 [ R2
þ; ð3:1Þ
together with the homogeneous Dirichlet boundary condition
u ¼ 0; on Cc [ S1 [ S2: ð3:2Þ
Let the plane wave ui be incident on the cavities from above. Due to the interaction between the incident wave and the
ground plane and the cavities, the total field u is assumed to be consisted of the incident field ui, the reflected field ur, and the
scattered field us. The scattered field is required to satisfy the radiation condition (2.6).

To reduce the scattering problem from the open domain X1 [X2 [ R2
þ into the bounded domains X1 and X2, we need to

derive transparent boundary conditions on the aperture C1 and C2. Rewrite (3.1) and (3.2) into two single cavity scattering
problem:
Du1 þ j2
1u1 ¼ 0 in X1; ð3:3Þ

u1 ¼ 0 on S1 ð3:4Þ
and
Du2 þ j2
2u2 ¼ 0 in X2; ð3:5Þ

u2 ¼ 0 on S2; ð3:6Þ
where j2
j ¼ x2ejl0; j ¼ 1;2. Clearly, if u is the solution of (3.1) and (3.2), and u1 and u2 are solutions of (3.3) and (3.4) and

(3.5) and (3.6), respectively, then we have
u1 ¼ ujX1
and u2 ¼ ujX2

:

The problem geometry for the two cavity scattering problem. Two open cavities X1 and X2, enclosed by the apertures C1 and C2 and the walls S1 and
placed on a perfectly conducting ground plane Cc.
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Due to the homogeneous medium in the upper half space R2
þ and the radiation condition (2.6), the scattered field us still

satisfies the same ordinary differential equation (2.9) after taking the Fourier transform with respect to x, and thus the total
field u satisfies the transparent boundary condition (2.12), which is now written as
@nu ¼ Tuþ g on Cc [ C1 [ C2: ð3:7Þ
For ujðx; 0Þ; j ¼ 1;2, define their extensions to the whole x-axis by
~ujðx;0Þ ¼
ujðx;0Þ for x 2 Cj;

0 for x 2 R n Cj:

�

For the total field uðx;0Þ, define its extension to the whole x-axis by
~uðx;0Þ ¼
u1ðx;0Þ for x 2 C1;

u2ðx;0Þ for x 2 C2;

0 for x 2 Cc:

8><>:

It follows from the definitions of these extensions that we have
~u ¼ ~u1 þ ~u2 on Cc [ C1 [ C2:
The transparent boundary condition (3.7) can be written as
@n~u ¼ T~uþ g on Cc [ C1 [ C2; ð3:8Þ
which leads to the transparent boundary conditions for u1 and u2:
@nu1 ¼ T~u1 þ T~u2 þ g on C1 ð3:9Þ
and
@nu2 ¼ T~u2 þ T~u1 þ g on C2: ð3:10Þ
As we can see from (3.9) and (3.10), the boundary conditions for u1 and u2 are coupled with each other, which is the major
difference between the single cavity scattering problem and the multiple cavity scattering problem.

The following lemma is analogous to Lemma 2.2 and plays an important role in the analysis of the uniqueness and exis-
tence for the solution of the two cavity scattering problem.

Lemma 3.1. Let u;v 2 H1=2ðRÞ. It holds that
ReðhTu;ui þ hTv ;vi þ hTu;vi þ hTv; uiÞ 6 0
and
ImðhTu;ui þ hTv; vi þ hTu;vi þ hTv ;uiÞP 0:
Furthermore, if û and v̂ are analytical functions with respect to n, either
ReðhTu;ui þ hTv ;vi þ hTu;vi þ hTv; uiÞ ¼ 0
or
ImðhTu;ui þ hTv; vi þ hTu;vi þ hTv ;uiÞ ¼ 0
implies
uþ v ¼ 0:
Proof. By definitions (2.7) and (2.11), we have
hTu;ui þ hTv; vi þ hTu;vi þ hTv ;ui ¼ i
Z

R

b jûj2 þ jv̂j2 þ 2Reðû�̂vÞ
h i

dn ¼ i
Z

R

bjûþ v̂ j2dn:
Taking the real part of above identity gives
ReðhTu;ui þ hTv ;vi þ hTu;vi þ hTv; uiÞ ¼ �
Z
jnj>j0

ðn2 � j2
0Þ

1=2jûþ v̂j2dn 6 0
and taking the imaginary part of above identity yields
ImðhTu;ui þ hTv; vi þ hTu;vi þ hTv ;uiÞ ¼
Z
jnj<j0

ðj2
0 � n2Þ1=2jûþ v̂ j2dn P 0:
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Furthermore,
ReðhTu;ui þ hTv ;vi þ hTu;vi þ hTv ;uiÞ ¼ 0 ð3:11Þ
implies
ûþ v̂ ¼ 0 for jnj > j0
and
ImðhTu;ui þ hTv; vi þ hTu;vi þ hTv ;uiÞ ¼ 0 ð3:12Þ
implies
ûþ v̂ ¼ 0 forjnj < j0:
If û and v̂ are assumed to be analytical functions with respect to n, then either (3.11) or (3.12) implies that ûþ v̂ ¼ 0 for all
n 2 R. Taking the inverse Fourier transform of ûþ v̂ ¼ 0 yields uþ v ¼ 0, which completes the proof. h
3.2. Well-posedness

We now present a variational formulation for the two cavity scattering problem and give a proof of the well-posedness of
solution for the boundary value problem.

Denote X ¼ X1 [X2;C ¼ C1 [ C2, and S ¼ S1 [ S2. Let
u ¼
u1 in X1;

u2 in X2:

�

Define a trace functional space
eH1=2ðCÞ ¼ eH1=2ðC1Þ � eH1=2ðC2Þ;
whose norm is characterized by
kuk2eH1=2ðCÞ
¼ ku1k2eH1=2ðC1Þ

þ ku2k2eH1=2ðC2Þ
:

Denote H�1=2ðCÞ ¼ H�1=2ðC1Þ � H�1=2ðC2Þ, which is the dual space of eH1=2ðCÞ. The norm on the space H�1=2ðCÞ is charac-
terized by
kuk2
H�1=2ðCÞ ¼ ku1k2

H�1=2ðC1Þ þ ku2k2
H�1=2ðC2Þ:
Introduce the following space
H1
S ðXÞ ¼ H1

S1
ðX1Þ � H1

S2
ðX2Þ;
which is a Hilbert space with norm characterized by
kuk2
H1ðXÞ ¼ ku1k2

H1ðX1Þ þ ku2k2
H1ðX2Þ:
Multiplying the complex conjugate of test function v1 2 H1
S1
ðX1Þ on both sides of (3.3), integrating over X1, and using the

integration by parts and the boundary conditions (3.4) and (3.9), we have
Z
X1

ðru1 � r�v1 � j2
1u1 �v1Þ � hT~u1; ~v1i � hT~u2; ~v1i ¼ hg; v1iC1

: ð3:13Þ
Similarly, regarding (3.5), (3.6), and (3.10), we have
Z
X2

ðru2 � r�v2 � j2
2u2 �v2Þ � hT~u1; ~v2i � hT~u2; ~v2i ¼ hg; v2iC2

for all v2 2 H1
S2
ðX2Þ: ð3:14Þ
Adding (3.13) and (3.14), we deduce the variational formulation for the two cavity scattering problem: find u 2 H1
S ðXÞ,

where u1 ¼ ujX1
2 HS1 ðX1Þ and u2 ¼ ujX2

2 HS2 ðX2Þ, such that for all v 2 H1
S ðXÞ, where v1 ¼ v jX1

2 HS1 ðX1Þ and v2 ¼
v jX2

2 HS2 ðX2Þ, it holds
a2ðu; vÞ ¼ hg;v1iC1
þ hg; v2iC2

; ð3:15Þ
with the sesquilinear form
a2ðu; vÞ ¼
Z

X1

ðru1 � r�v1 � j2
1u1 �v1Þ þ

Z
X2

ðru2 � r�v2 � j2
2u2 �v2Þ � hT~u1; ~v1i � hT~u2; ~v1i � hT~u1; ~v2i � hT~u2; ~v2i: ð3:16Þ
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Theorem 3.1. The variational problem (3.15) has at most one solution.
Proof. It suffices to show that u1 ¼ 0 in X1 and u2 ¼ 0 in X2 if g ¼ 0. If u1 and u2 satisfy the homogeneous variational prob-
lem (3.15) in X1 and X2, then we have
Z

X1

ðjru1j2 � j2
1ju1j2Þ þ

Z
X2

ðjru2j2 � j2
2ju2j2Þ � hT~u1; ~u1i � hT~u2; ~u1i � hT~u1; ~u2i � hT~u2; ~u2i ¼ 0:
Recall Ime1 P 0 and Ime2 P 0. Taking the imaginary part of the above identity yields
ImðhT~u1; ~u1i þ hT~u2; ~u1i þ hT~u1; ~u2i þ hT~u2; ~u2iÞ ¼ 0:
Since ~u1 and ~u2 have compact supports on the x-axis, ~̂u1 and ~̂u2 are analytical with respect to n. Hence we have from
Lemma 3.1 that
~u1 þ ~u2 ¼ ~u ¼ 0:
The transparent boundary condition (3.8) yields that @n~u ¼ 0 on Cc [ C1 [ C2. An application of Holmgren uniqueness the-
orem yields u ¼ 0 in R2

þ. A unique continuation result in [21] concludes that u1 ¼ 0 in X1 and u2 ¼ 0 in X2. h
Theorem 3.2. The variational problem (3.15) has a unique weak solution u in H1
S ðXÞ and the solution satisfies the estimate
kukH1ðXÞ 6 CkgkH�1=2ðCÞ;
where C is a positive constant.
Proof. The proof is analogous to that for Theorem 2.2. We sketch it here. Decompose the sesquilinear form (3.16) into
a2 ¼ a21 � a22, where
a2ðu;vÞ ¼
Z

X1

ru1 � r�v1 þ
Z

X2

ru2 � r�v2 � hT~u1; ~v1i � hT~u2; ~v1i � hT~u1; ~v2i � hT~u2; ~v2i
and
a2ðu;vÞ ¼
Z

X1

j2
1u1 �v1 þ

Z
X2

j2
2u2 �v2:
We conclude from Lemma 3.1 and Poincaré inequality that a21 is coercive from
Rea21ðu;uÞ ¼
Z

X1

jru1j2 þ
Z

X2

jru2j2 � ReðhT~u1; ~u1i þ hT~u2; ~u1i þ hT~u1; ~u2i þ hT~u2; ~u2ÞP
Z

X1

jru1j2 þ
Z

X2

jru2j2

P C1ku1k2
H1ðX1Þ þ C2ku2k2

H1ðX2Þ P Ckuk2
H1ðXÞ for all u 2 H1

S ðXÞ:
Next we prove the compactness of a22. Define an operator K2 : L2ðXÞ ! H1ðXÞ by
a21ðK2u; vÞ ¼ a22ðu;vÞ for all v 2 H1
S ðXÞ:
The continuity of the sesquilinear form a22 follows from the Cauchy–Schwarz inequality
ja22ðu;vÞj 6 C1ku1kL2ðX1Þkv1kL2ðX1Þ þ C2ku2kL2ðX2Þkv2kL2ðX2Þ 6 CkukL2ðXÞkvkL2ðXÞ;
where L2ðXÞ ¼ L2ðX1Þ � L2ðX2Þ. Using the Lax–Milgram Lemma and the continuity of a22, we obtain
kK2ukH1ðXÞ 6 CkukL2ðXÞ: ð3:17Þ
Thus K2 is bounded from L2ðXÞ to H1ðXÞ and H1ðXÞ is compactly imbedded into L2ðXÞ. Hence K2 : L2ðXÞ ! L2ðXÞ is a com-
pact operator.

Define a function w 2 L2ðXÞ by requiring w 2 H1
S ðXÞ and satisfying
a21ðw; vÞ ¼ hg;v1iC1
þ hg;v2iC2

for all v 2 H1
S ðXÞ:
It follows from Lemma 2.3 and the Lax–Milgram Lemma that
kwkH1ðXÞ 6 CkgkH�1=2ðCÞ: ð3:18Þ
Using the operator K2, we can see that the variational problem (3.15) is equivalent to find u 2 L2ðXÞ such that
ðI � K2Þu ¼ w: ð3:19Þ
It follows from the uniqueness result of Theorem 3.1 and the Fredholm alternative that the operator I � K2 has a bounded
inverse. We then have the estimate that
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kukL2ðXÞ 6 CkwkL2ðXÞ: ð3:20Þ
From (3.17)–(3.20), we deduce that
kukH1ðXÞ 6 kK2ukH1ðXÞ þ kwkH1ðXÞ 6 CkukL2ðXÞ þ kwkH1ðXÞ 6 CkwkH1ðXÞ 6 CkgkH�1=2ðCÞ;
which completes the proof. h
4. Multiple cavity scattering

Now we generalize the model problem and techniques for the two cavity scattering to the case of multiple cavity scatter-
ing. The proofs are analogous to those for the two cavity scattering problem. For completeness, we shall briefly discuss the
model problem and the solution for the multiple scattering problem.

4.1. A model problem

As shown in Fig. 3, we consider a situation with n cavities, where the multiple open cavity X1; . . . ;Xn, enclosed by the
aperture C1; . . . ;Cn and the walls S1; . . . ; Sn, are placed on a perfectly conducting ground plane Cc. Above the flat surface
fy ¼ 0g ¼ C1 [ � � � [ Cn [ Cc, the medium is assumed to be homogeneous with a positive dielectric permittivity e0. The med-
ium inside the cavity Xj is inhomogeneous with a variable dielectric permittivity ejðx; yÞ. Assume further that
ejðx; yÞ 2 L1ðXÞ; Reej > 0; Imej P 0 for j ¼ 1; . . . ;n.

We consider the same model of the two-dimensional Helmholtz equation for the total field:
Duþ j2u ¼ 0; in X1 [ � � � [Xn [ R2
þ; ð4:1Þ
together with the perfectly electric conductor condition
u ¼ 0; on Cc [ C1 [ � � � [ Cn: ð4:2Þ
The total field u is assumed to consist of the incident field ui, the reflected field ur, and the scattered field us, where the
scattered field is required to satisfy the radiation condition (2.6).

To derive the transparent boundary condition on the aperture Cj; j ¼ 1; . . . ;n, we reformulate the multiple cavity scatter-
ing problem (4.1) and (4.2) into n single cavity scattering problems which are coupled through the boundary condition.
Duj þ j2
j uj ¼ 0 in Xj; ð4:3Þ

uj ¼ 0 on Cj; ð4:4Þ
where j2
j ¼ x2ejl0; j ¼ 1; . . . ;n.

For ujðx;0Þ; j ¼ 1; . . . ;n, define its zero extension to the whole x-axis,
~ujðx;0Þ ¼
ujðx;0Þ for x 2 Cj;

0 for x 2 R n Cj:

�

For the total field uðx;0Þ, define its extension to the whole x-axis by
~uðx;0Þ ¼
ujðx;0Þ for x 2 Cj;

0 for x 2 Cc:

�

It follows from the definition of the extension that we have
~u ¼
Xn

j¼1

~uj on Cc [ C1 [ � � � [ Cn:
The problem geometry for the multiple cavity scattering problem. Multiple open cavities X1; . . . ;Xn , enclosed by the apertures C1; . . . ;Cn and the
1; . . . ; Sn , are placed on a perfectly conducting ground plane Cc.
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The transparent boundary condition can be written as
@n~u ¼ T~uþ g on Cc [ C1 [ � � � [ Cn; ð4:5Þ
which leads to the transparent boundary condition for uj:
@nuj ¼ T~uj þ
Xn

i¼1
i–j

T~ui þ g on Cj: ð4:6Þ
Lemma 4.1. Let uj 2 H1=2ðRÞ; j ¼ 1; . . . ;n. It holds that
Re
Xn

i¼1

Xn

j¼1

hTuj;uii 6 0
and
Im
Xn

i¼1

Xn

j¼1

hTuj;uiiP 0:
Furthermore, if ûj; j ¼ 1; . . . ;n are analytical functions with respect to n, either
Re
Xn

i¼1

Xn

j¼1

hTuj;uii ¼ 0
or
Im
Xn

i¼1

Xn

j¼1

hTuj;uii ¼ 0
implies
Xn

j¼1

uj ¼ 0:
Proof. By definitions (2.7) and (2.11), we have
Xn

i¼1

Xn

j¼1

hTuj;uii ¼ i
Z

bðnÞ
Xn

j¼1

ûj

�����
�����

2

dn:
Taking the real part gives
Re
Xn

i¼1

Xn

j¼1

hTuj;uii ¼ �
Z
jnj>j0

ðn2 � j2
0Þ

1=2
Xn

j¼1

ûj

�����
�����
2

dn 6 0
and taking the imaginary part yields
Im
Xn

i¼1

Xn

j¼1

hTuj;uii ¼
Z
jnj<j0

ðj2
0 � n2Þ1=2

Xn

j¼1

ûj

�����
�����

2

dn P 0:
Furthermore,
Re
Xn

i¼1

Xn

j¼1

hTuj;uii ¼ 0 ð4:7Þ
implies
Xn

j¼1

ûj ¼ 0 for jnj > j0;
and
Im
Xn

i¼1

Xn

j¼1

hTuj;uii ¼ 0 ð4:8Þ
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implies
Xn

j¼1

ûj ¼ 0 for jnj < j0:
If ûj; j ¼ 1; . . . ;n, are assumed to be analytical functions with respect to n, then either (4.7) or (4.8) implies that
Xn

j¼1

ûj ¼ 0 for all n 2 R: ð4:9Þ
The proof is completed by taking the inverse Fourier transform of (4.9). h
4.2. Well-posedness

We now present a variational formulation for the multiple cavity scattering problem and sketch the proof for the well-
posedness of the boundary value problem.

Denote X ¼ X1 [ � � � [Xn; C ¼ C1 [ � � � [ Cn, and S ¼ S1 [ � � � [ Sn. For simplicity, we shall use the same notation as those
adopted in Section 3 for the two cavity scattering problem. The following notation for the general multiple cavity scattering
problem are actually consistent with those for the two cavity scattering problem when letting n ¼ 2.

Define a trace functional space
eH1=2ðCÞ ¼ eH1=2ðC1Þ � � � � � eH1=2ðCnÞ:
Its norm is characterized by
kuk2eH1=2ðCÞ
¼
Xn

j¼1

kujk2eH1=2ðCjÞ
:

Denote H�1=2ðCÞ ¼ H�1=2ðC1Þ � � � � � H�1=2ðCnÞ, which is the dual space of eH1=2ðCÞ. The norm on the space H�1=2ðCÞ is char-
acterized by
kuk2
H�1=2ðCÞ ¼

Xn

j¼1

kujk2
H�1=2ðCjÞ

:

Introduce the following space
H1
S ðXÞ ¼ H1

S1
ðX1Þ � � � � � H1

Sn
ðXnÞ;
which is a Hilbert space with norm characterized by
kuk2
H1ðXÞ ¼

Xn

j¼1

kujk2
H1ðXjÞ

:

Multiplying the complex conjugate of test function v j 2 H1
Sj
ðXjÞ on both sides of (4.3), integrating over Xj, and using the

integration by parts and boundary conditions (4.4) and (4.6), we obtain
Z
Xj

ðruj � r�v j � j2
j uj �v jÞ �

Xn

i¼1

hT~ui; ~v ji ¼ hg; v jiCj
: ð4:10Þ
Taking summation of (4.10) for j ¼ 1; . . . ;n, we deduce the variational formulation for the multiple cavity scattering prob-
lem: find u 2 H1

S ðXÞ with uj ¼ ujXj
such that
a3ðu; vÞ ¼
Xn

j¼1

hg;v jiCj
for all v 2 H1

S ðXÞ; ð4:11Þ
where the sesquilinear form
a3ðu; vÞ ¼
Xn

j¼1

Z
Xj

ðruj � r�v j � j2
j uj �v jÞ �

Xn

j¼1

Xn

i¼1

hT~ui; ~v ji: ð4:12Þ
Theorem 4.1. The variational problem (4.11) has at most one solution.
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Proof. It suffices to show that uj ¼ 0 in Xj for j ¼ 1; . . . ;n if g ¼ 0. If uj satisfy the homogeneous variational problem in Xj,
then we have
Xn

j¼1

Z
Xj

ðjrujj2 � j2
j jujj2Þ �

Xn

j¼1

Xn

i¼1

hT~ui; ~uji ¼ 0:
Noting Imej P 0 and taking the imaginary part yields
Im
Xn

i¼j

Xn

i¼1

hT~ui; ~uji ¼ 0:
Since ~uj has a compact support on the x-axis, ~̂uj is analytical with respect to n. Hence we have from Lemma 4.1 that
~u ¼
Xn

j¼1

~uj ¼ 0:
By the definition of the extensions ~uj we obtain
~uj ¼ 0 on Cc [ C1 [ � � � [ Cn:
The transparent boundary condition (4.5) yields that @n~u ¼ 0 on Cc [ C1 [ � � � [ Cn. An application of Holmgren uniqueness
theorem yields u ¼ 0 in R2

þ. A unique continuation result in [21] concludes that uj ¼ 0 in Xj for j ¼ 1; . . . ;n. h

We have the following well-posedness result for the general multiple cavity scattering problem. The proof is similar in
nature as that of the two cavity model problem and is omitted here for brevity.

Theorem 4.2. The variational problem (4.11) has a unique weak solution u in H1
S ðXÞ and the solution satisfies the estimate
kukH1ðXÞ 6 CkgkH�1=2ðCÞ;
where C is a positive constant.
5. Numerical experiments

In this section, we discuss the computational aspects for solving the multiple scattering problems, including the finite
element approximation, a block Gauss–Seidel iteration method for the discrete weak formulation, and an alternative trans-
parent boundary condition.

5.1. Finite element formulation

LetMj be a regular conforming triangulation of Xj with Mj small triangular element and Vj � H1
Sj

be the conforming linear
finite element space overMj. Denote V ¼ V1 � . . .� Vn. The finite element approximation to the multiple cavity scattering
problem (4.11) is: find uh 2 V with uh

j 2 Vj such that
a3ðuh;vhÞ ¼
Xn

j¼1

hg;vh
j iCj

for all vh 2 V; ð5:1Þ
where the sesquilinear form
a3ðuh;vhÞ ¼
Xn

j¼1

Z
Xj

ðruh
j � r�vh

j � j2
j uh

j �vh
j Þ �

Xn

j¼1

Xn

i¼1

hT~uh
i ; ~vh

j i: ð5:2Þ
For any 1 6 j 6 n, we denote by V j the set of Nj vertices ofMj which are not on the cavity wall Sj, and let ujðrÞ 2 Vj be the
nodal basis function belonging to vertex r 2 V j. Using the basis functions, the solution of (5.1) is represented as
uh
j ¼

X
r2Vj

ujðrÞujðrÞ:
The discrete problem (5.1) is equivalent to the following system of algebraic equations
A1 � B1;1 �B2;1 � � � �Bn;1

�B1;2 A2 � B2;2 � � � �Bn;2

..

. ..
. . .

. ..
.

�B1;n �B2;n � � � An � Bn;n

266664
377775

u1

u2

..

.

un

266664
377775 ¼

g1

g2

..

.

gn

266664
377775; ð5:3Þ
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where each uj is an unknown vector whose entries are ujðrÞ ¼ uh
j ðrÞ for all r 2 V j; Aj is the stiffness matrix for the discrete

problem of uh
j and its entries are defined by
Ajðr; r0Þ ¼
Z

Xj

rujðrÞ � rujðr0Þ � j2
j ujðrÞujðr0Þ

h i
for all r; r0 2 V j;
the entries of Bij are defined by
Bj;iðr; r0Þ ¼ hT ~uiðrÞ; ~ujðr0Þi for all r; r0 2 V j \ Cj
and the entries of each vector gj are given by
gjðrÞ ¼ hg;ujðrÞiCj
for all r 2 V j \ Cj:
The linear system (5.3) requires to solve a large and coupled equation, particularly for multiple cavities. We present an
efficient block Gauss–Seidel method, which may be written as follows: given ðuð0Þ1 ; � � � ;uð0Þn Þ>, define ðuðkÞ1 ; . . . ;uðkÞn Þ>; k P 1 by
the solution of the following system of equations
ðAj � Bj;jÞuðkÞj ¼ gj þ
Xj�1

i¼1

Bj; iu
ðkÞ
i þ

Xn

i¼jþ1

Bj; iu
ðk�1Þ
i ; 1 6 j 6 n: ð5:4Þ
The block Gauss–Seidel iteration (5.4) is equivalent to apply the finite element method for solving the following problem:
Let ðuð0Þ1 ; . . . ;uð0Þn Þ> ¼ ð0; . . . ;0Þ>, define ðuðkÞ1 ; . . . ;uðkÞn Þ> for k P 1 by the solutions of the following decoupled equations for
j ¼ 1; . . . ;n:
DuðkÞj þ j2
j uðkÞj ¼ 0 in Xj; ð5:5Þ

uðkÞj ¼ 0 on Sj; ð5:6Þ

@nuðkÞj ¼
Xj

i¼1

T~uðkÞi þ
Xn

i¼jþ1

T~uðk�1Þ
i þ g on Cj; ð5:7Þ
Therefore, we only need to solve a well-posed single cavity scattering problems (5.5)–(5.7) for the block Gauss–Seidel
method at each iteration.

5.2. Transparent boundary condition

Based on the boundary operator (2.11), the transparent boundary conditions (2.12), (3.7), and (4.5) are useful to carry
mathematical analysis for the boundary value problems. However, they are not convenient to be implemented numerically.
In practice, we adopt an alternative and equivalent transparent boundary condition [38].

Let
Gðx;x0Þ ¼ i
4

Hð1Þ0 ðj0qÞ � Hð1Þ0 ðj0 �qÞ
h i
be the Green function of the Helmholtz equation in the upper half space, where Hð1Þ0 is the Hankel function of the first kind
with order zero, x ¼ ðx; yÞ;x0 ¼ ðx0; y0Þ;q ¼ jx� x0j; �q ¼ jx� �x0j, and �x0 ¼ ðx0;�y0Þ is the image of x0 with respect to the real axis.
By the Green’s theorem and the radiation condition, we obtain
@yusðx;0Þ ¼ ij0

2

Z
C

1
jx� x0jH

ð1Þ
1 ðj0jx� x0jÞusðx0; 0Þdx0;
where H1ð1Þ is the Hankel function of the first kind with order one. Hence, the alternative boundary condition is
@nu ¼ Tuþ g on C; ð5:8Þ
where the boundary operator T is defined as
Tu ¼ ij0

2

Z
C

1
jx� x0jH

ð1Þ
1 ðj0jx� x0jÞuðx0;0Þdx0: ð5:9Þ
Here the integral is understood in the sense of Hadamard finite-part. For multiple cavities with apertures given as
C1 [ . . . [ Cn, the boundary operator is defined as
Tu ¼ ij0

2

Xn

j¼1

Z
Cj

1
jx� x0jH

ð1Þ
1 ðj0jx� x0jÞuðx0;0Þdx0:
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The boundary operator (5.9) can be approximated by
Table 1
Six type

e

Cavi
Cavi
Cavi
TuðxiÞ �
Xm

k¼1

gikuðxk; 0Þ;
where
Regik ¼ �tik
j0jxi � xkj

2
Y1ðj0jxi � xkjÞ;

Imgik ¼
j0hx

2
J1ðj0jxi � xkjÞ
jxi � xkj
and
tik ¼

1
hx
ð1� ln 2Þ for ji� kj ¼ 1;

� 2
hx

for ji� kj ¼ 0;

1
hx

ln ji�kj2

ji�kj2�1
for ji� kjP 2;

8>><>>:

where hx is the step size of the partition for the cavity aperture C. Therefore, the boundary integral hTu; vi in the weak for-
mulation for the cavity scattering problem can be approximated by any numerical quadratures.

5.3. Numerical examples

In this section, two examples of the cavity scattering model problems are presented to illustrate the proposed method.
The physical parameter of interest is the radar cross section (RCS), which is defined by
r ¼ 4
j0
jPðuÞj2:
Here / is the observation angle and P is the far-field coefficient given by
PðuÞ ¼ j0

2
sin /

Z
C

uðx;0Þeij0x cos udx:
When the incident and observation directions are the same, r is called the backscatter RCS, which is defined by
Backscatter RCSðuÞ ¼ 10log10rðuÞdB:
In the following two examples, the numerical results are obtained by using a linear finite element over triangles at the
wavenumber j0 ¼ p, which accounts for the wavelength k ¼ 2.

Example 1. Consider a plane wave scattering from the model problem of three identical rectangular cavities at normal
incidence, i.e., h ¼ 0. Each cavity is 0:5k wide and 0:5k deep; there is 0:5k distance away from each other. Specifically, the
domains are given as follows for the three rectangular cavities:
Cavity1 : ½�2:5;�1:5� � ½�1:0;0:0�;
Cavity2 : ½�0:5;0:5� � ½�1:0; 0:0�;
Cavity3 : ½1:5;2:5� � ½�1:0; 0:0�:
Each rectangular domain is divided into 100� 100 small equal rectangles and then each small rectangle is subdivided into
two equal triangles.

Table 1 lists the six types of combination of cavities, where e ¼ 1 means an empty or unfilled cavity and e ¼ 1þ i stands
for a filled cavity with some homogeneous absorbing medium.

Figs. 4–9 show the magnitude and the phase of the total field on the apertures at the normal incidence and the backscat-
ter RCS for all the six types of cavities. These numerical results are obtained by using the block Gauss–Seidel iterative meth-
od. To show the convergence of the iterative method, we define the error between two consecutive approximations
s of combination of cavities for Example 1.

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

ty 1 1:0 1:0 1:0 1:0þ i 1:0þ i 1:0þ i
ty 2 1:0 1:0 1:0þ i 1:0þ i 1:0 1:0þ i
ty 3 1:0 1:0þ i 1:0 1:0 1:0þ i 1:0þ i
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Fig. 4. The magnitude and the phase of the total field on the aperture at the normal incidence, and the backscatter RCS for Example 1 with type 1 cavity:
(left) magnitude; (middle) phase; (right) backscatter RCS.
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Fig. 6. The magnitude and the phase of the total field on the aperture at the normal incidence, and the backscatter RCS for Example 1 with type 3 cavity:
(left) magnitude; (middle) phase; (right) backscatter RCS.
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Fig. 5. The magnitude and the phase of the total field on the aperture at the normal incidence, and the backscatter RCS for Example 1 with type 2 cavity:
(left) magnitude; (middle) phase; (right) backscatter RCS.
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ek ¼max
16j63
fkuðkÞj � uðk�1Þ

j kL2ðCjÞg;
where k is the number of iteration. Fig. 10 shows the error ek of the block Gauss–Seidel method for two consecutive approx-
imations again the number of iterations for all three types of cavities. It can be seen from Fig. 10 that the type 1 cavity takes
the most number of iterations to reach the same level of accuracy as the other types of cavities; the type 6 uses the least
number of iterations to reach the same level of accuracy; the types 2 and 3 and the types 4 and 5 take almost the same num-
ber of iterations to reach the same level of accuracy, respectively, while the types 4 and 5 take less number of iterations than
the types 2 and 3. The reason is that the types 2–6 cavities are filled with complex medium which accounts for the absorp-
tion of the energy and thus the damping of the amplitude of the field; the more number of cavities are filled with the absorp-
tion material, the less number of iterations are needed to reach certain level of accuracy.
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Fig. 7. The magnitude and the phase of the total field on the aperture at the normal incidence, and the backscatter RCS for Example 1 with type 4 cavity:
(left) magnitude; (middle) phase; (right) backscatter RCS.
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Fig. 8. The magnitude and the phase of the total field on the aperture at the normal incidence, and the backscatter RCS for Example 1 with type 5 cavity:
(left) magnitude; (middle) phase; (right) backscatter RCS.
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Fig. 9. The magnitude and the phase of the total field on the aperture at the normal incidence, and the backscatter RCS for Example 1 with type 6 cavity:
(left) magnitude; (middle) phase; (right) backscatter RCS.

118 P. Li, A. Wood / Journal of Computational Physics 240 (2013) 100–120
Example 2. Consider the scattering of a quintuple cavity model. Let a plane wave be incident onto five identical rectangular
cavities at the normal direction. Each cavity is 0:5k wide and 0:5k deep; there is 0:5k distance away from each other. The
domains for the five rectangular cavities are given as follows:
Cavity 1 : ½�4:5;�3:5� � ½�1:0;0:0�;
Cavity 2 : ½�2:5;�1:5� � ½�1:0;0:0�;
Cavity 3 : ½�0:5;0:5� � ½�1:0;0:0�;
Cavity 4 : ½1:5;2:5� � ½�1:0; 0:0�;
Cavity 5 : ½3:5;4:5� � ½�1:0; 0:0�:
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Fig. 10. The error of two consecutive approximations again the number of iterations for all six types of cavities in Example 1.
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Fig. 11. The magnitude and the phase of the total field on the aperture at the normal incidence, and the backscatter RCS for Example 1: (left) magnitude;
(middle) phase; (right) backscatter RCS.
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Again, each rectangular domain is divided into 100� 100 small equal rectangles and then each small rectangle is subdivided
into two equal triangles. The cavity 2 and 4 are empty cavities with e ¼ 1:0, and the cavities 1, 3, and 5 are filled with the
same homogeneous medium with e ¼ 1:0þ i. Fig. 11 shows the magnitude and the phase of the total field on the apertures at
the normal incidence and the backscatter RCS.
6. Concluding remarks

The problem of electromagnetic scattering by cavities embedded in the infinite two-dimensional ground plane is an
important area of research. This paper marks the first known mathematical investigation into the phenomenon of scattering
by multiple cavities. We solve the problem by reducing the overall scattering problem to coupled single cavity scattering
problems via the introduction of a novel transparent boundary condition over the cavity apertures. Uniqueness and exis-
tence of the variational formulation for the multiple cavity scattering problem is achieved. Numerical experiments of model
problems demonstrate the efficiency and accuracy of our numerical methods. Our numerical approach gives rise to the wide
spread applicability of numerical solvers developed for single cavity models to the general multiple cavity setting. Numerical
examples indicate that the convergence of the Gauss–Seidel iterative method depends on the wavenumber j0 and the
dielectric permittivity ej inside the cavities; it does not depend on the separation distance between cavities even for the dis-
tance which is smaller than half the wavelength. When the number of cavities is large, it does take a lot more time for the
method to go over all the cavities in order to account for the multiple interaction among them. Future research includes the
rigorous analysis of the convergence of the Gauss–Seidel iterative method, which requires the stability analysis of the cavity
scattering problem (see [12] for a single cavity model). Multiple over-filled cavity models are another natural consideration.
Finally, we note that transient scattering problems involving multiple cavities can be particularly interesting and
challenging.
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