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AN INVERSE RANDOM SOURCE PROBLEM FOR THE

HELMHOLTZ EQUATION

GANG BAO, SHUI-NEE CHOW, PEIJUN LI, AND HAOMIN ZHOU

Abstract. This paper is concerned with an inverse random source problem
for the one-dimensional stochastic Helmholtz equation, which is to reconstruct
the statistical properties of the random source function from boundary mea-
surements of the radiating random electric field. Although the emphasis of
the paper is on the inverse problem, we adapt a computationally more effi-
cient approach to study the solution of the direct problem in the context of
the scattering model. Specifically, the direct model problem is equivalently
formulated into a two-point spatially stochastic boundary value problem, for
which the existence and uniqueness of the pathwise solution is proved. In
particular, an explicit formula is deduced for the solution from an integral rep-
resentation by solving the two-point boundary value problem. Based on this
formula, a novel and efficient strategy, which is entirely done by using the fast

Fourier transform, is proposed to reconstruct the mean and the variance of
the random source function from measurements at one boundary point, where
the measurements are assumed to be available for many realizations of the
source term. Numerical examples are presented to demonstrate the validity
and effectiveness of the proposed method.

1. Introduction

The inverse source problem for wave propagation has been considered as a basic
tool for the solution of reflection tomography, diffusion-based optical tomography
[13], and more recently fluorescence microscopy [32], where the fluorescence in the
specimen (such as green fluorescent protein) gives rise to emitted light which is
focused to the detector by the same objective that is used for the excitation. This
problem is largely motivated by medical applications in which it is desirable to
use electric or magnetic measurements on the surface of the human body, such as
the head, to infer the source currents inside of the body, such as the brain, that
produced these measured data.

The problem has been extensively investigated in the literature both from the
point of view of applied biomedical engineering and also as a mathematical problem.
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There are a number of works on the scalar and the full vector electromagnetic inverse
source problem in the free space as well as in nonhomogeneous background media;
see e.g., Devaney, Marengo, and Li [13], Eller and Valdivia [15], and the references
cited therein. Most of the works make use of the fact that the radiation pattern
determines the field everywhere outside the source volume. In other words, the
inverse source problem is to determine a source function that generates a prescribed
radiation pattern.

It is also known that there exist an infinite number of sources that radiate fields
which vanish identically outside their support volumes so that the inverse source
problem does not have a unique solution, i.e., an infinite number of solutions can
be obtained by adding any one of these nonradiating sources to any given solution;
see e.g. Devaney and Sherman [14]. Therefore, it is clear that the inverse source
problem is ill-posed. In order to obtain a unique solution, it is necessary to give
additional constraints that the source must satisfy. A typical choice of the constraint
is to pick up the minimum energy solution, which represents the pseudo-inverse of
the inverse source problem; see e.g. Marengo and Devaney [24]. Recently Bao
et al. [3–5] investigated the multi-frequency inverse source problem in which the
uniqueness is shown and some stability estimates are established from the radiated
fields outside the source volume for a set of frequencies. We refer to Chen and
Rokhlin [10] for an inverse medium scattering problem for the one-dimensional
Helmholtz equation. See also Gelfand and Levitan [16] for a related inverse Sturm–
Liouville problem.

In many applications the source and hence the radiating field may not be de-
terministic but rather are modeled by random processes, such as the Gaussian
random field. Therefore, their governing equations are stochastic differential equa-
tions. In general, stochastic partial differential equations are known to be effective
tools in modeling complex physical and engineering phenomena including the wave
propagation; see e.g. Ishimaru [18], Keller [21], and Papanicolaou [29]. In this pa-
per, we focus on the wave propagation governed by the one-dimensional stochastic
Helmholtz equation with sources generated by a spatial Wiener process. Unlike de-
terministic differential equations, solutions of stochastic differential equations are
random functions. Hence it is more important to study their statistical characteris-
tics such as mean value, variance, and even higher order moments in many practical
problems.

Stochastic inverse problems refer to the inverse problems that involve uncertain-
ties, which are widely introduced to the mathematical models for three major rea-
sons: (1) randomness directly appears in the studied systems; (2) incomplete knowl-
edge of the systems must be modeled by uncertainties; (3) stochastic techniques
are introduced to couple the interference between different scales more effectively,
especially when the scale span is large. The first two reasons are commonly en-
countered and they can happen simultaneously for many different problems. Only
recently has the third one been recognized as an effective tool for handling long
range multiscale problems. It is our intention to study the inverse scattering with
randomness and uncertainties which enter into the problem for all of these reasons.

In the context of the inverse random source problem, our goal is to deduce the
statistical structure such as the mean value and standard deviation or variance of
the source from physically realizable measurements of the radiated fields, such as
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the measurements taken on the boundaries. Although the deterministic counter-
part has been extensively investigated from both the mathematical and numerical
viewpoints, little is known for the stochastic case. To our best knowledge, the
only available result is the so-called uniqueness result by Devaney [12], who showed
that the auto-correlation function of the random source is uniquely determined
everywhere outside the source region by the auto-correlation function of the ra-
diated field. The computational result is at present completely open. Recently,
a novel and efficient Wiener chaos expansion based technique has been developed
for modeling and simulation of spatially incoherent sources in photonic crystals by
Badieirostami et al. [1]. See Bao et al. [2] for a related inverse medium scattering
problem with a stochastic source which is to reconstruct the refractive index of an
inhomogeneous medium from the boundary measurements of the scattered random
field. We refer to Cao et al. [9] for the finite element and discontinuous Galerkin
method for solving the stochastic Helmholtz equation, Kloeden and Platen [22] for
an account of various numerical methods and approximation schemes for general
stochastic partial differential equations, and Calvetti and Somersalo [8] and Kai-
pio and Somersalo [19] for statistical inversion theory for general random inverse
problems.

This work is devoted to the one-dimensional stochastic Helmholtz equation in a
homogeneous background medium. The random source function, representing the
electric current density, is assumed to have a compact support contained in a finite
interval. The problem is modeled with an outgoing wave condition imposed on the
lateral end points of the finite interval, which reduces the model to a second order
stochastic two-point boundary value problem. We first convert this model problem
into an equivalent first order stochastic two-point boundary value problem and show
the pathwise existence and uniqueness of the solution for the direct source scattering
problem. Then we explicitly deduce the solution from an integral representation by
solving the two-point boundary value problem. The solution for the direct problem
is given by a combination of a regular integral and an Itô integral. Furthermore, it
connects the random wave field with the Fourier transform of the mean and variance
of the random source function in an explicit manner. The boundary measurements
of the radiating field are assumed to be available for many realizations of the source
term. By studying the expectation and variance of the integral equation, we are
able to develop an efficient algorithm to reconstruct the mean and variance, which
is based on the fast Fourier transform (FFT). Our numerical examples, including
the reconstructions of both smooth and non-smooth functions, demonstrate the
validity and effectiveness of the proposed method. A related inverse random source
scattering problem in inhomogeneous media may be found in [23], where Fredholm
integral equations of the first kind are derived to reconstruct the mean and standard
deviation of the random source function. We also refer to [7] and [25] for closely
related works that address how the randomness affects the reconstruction of the
deterministic part and how to improve the estimate of the deterministic part by
introducing the uncertainty in a boundary value problem via a stochastic coefficient
or source term.

The paper is organized as follows. In Section 2, we present the model problem
and formulate it as a first order two-point stochastic boundary value problem. The
existence and uniqueness of the direct problem are established, and the solution
formula is explicitly derived from the integral representation for the solution of the
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two-point boundary value problem. Based on the solution, we propose an inversion
method for the reconstruction of the mean and variance of the random source. In
Section 3, we discuss numerical implementation of the method and present three
numerical examples to demonstrate the validity and effectiveness of the proposed
approach. The paper is concluded with general remarks and directions for future
research in Section 4.

2. Inverse source problem

In this section, we introduce a mathematical model for the inverse random source
problem in wave propagation. Although the emphasis of the paper is on the inverse
problem, we present a computationally more efficient approach to study the solution
of the direct problem in the context of the scattering model. The model problem is
first converted into a two-point stochastic boundary value problem. A theoretical
framework for the direct model problem is established via the integral representation
for the solution of the boundary value problem, which allows us to derive explicit
reconstruction formulas for the solution of the inverse random source problem.

2.1. The model problem. Consider the one-dimensional Helmholtz equation in
homogeneous background medium

(2.1) u′′(x, ω) + ω2u(x, ω) = f(x),

where the magnetic permeability and the electric permittivity of the vacuum are
assumed to be the unity for simplicity, ω > 0 is the angular frequency, and f ,
representing the electric current density, is a stochastic source function assumed to
have the form

f(x) = g(x) + h(x)dWx.

Here g and h are deterministic real functions with compact supports contained in
[0, 1], and Wx is a one-dimensional spatial Wiener process, and dWx is its stochastic
differential in the Itô sense which is commonly used as a model for the white noise,
i.e, a spatial Gaussian random field. Following from the standard stochastic theory
on the white noise, we have

E[f(x)] = g(x) and V[f(x)] = h2(x),

where E and V are the expectation and variance operators, respectively. Obviously,
because of the random source, the solution u, the radiating field, is also a random
function. Typical boundary conditions imposed on u are the so-called outgoing
radiation boundary conditions, which are equivalent to the boundary conditions

(2.2) u′(0, ω) + iωu(0, ω) = 0,

which accounts for the left-going wave at x = 0, and

(2.3) u′(1, ω)− iωu(1, ω) = 0,

which accounts for the right-going wave at x = 1.
There are two types of source scattering problems posed for the above equations:

the direct (forward) random source scattering problem and the inverse random
source scattering problem. Given the mean g and the standard deviation h of the
random source function f , the direct problem is to determine the random wave field
u. On the contrary, the inverse problem is to determine the mean value g and the
standard deviation h or the variance h2 of the random source from the boundary
measurements of the random wave field u(0, ω), which are assumed to be available
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for many realizations of the source term over a range of frequencies. Our main
goal is to investigate both the direct and inverse problems and propose a novel and
efficient numerical algorithm to solve the inverse source problem. We remark that
we use the left boundary point x = 0 in our discussion, all of the results are still
true if the measurements are taken at the right boundary point x = 1.

First, we show that the direct problem has a unique pathwise solution for each
realization of the random field dWx, and the solution is given by an explicit formula,
which serves as the foundation of our numerical algorithm for the inverse problem.
To begin with, we convert the second order wave equation in the direct problem
into a first order two-point stochastic boundary value problem.

Let u1(x, ω) = u(x, ω) and u2(x, ω) = u′(x, ω), the second order stochastic
boundary value problem (2.1)–(2.3) can be equivalently written as the first order
stochastic two-point boundary value problem

(2.4) du = (Mu+ g)dx+ hdWx,

together with the boundary conditions given in the form of the linear equations

A0u0 = 0,(2.5)

B1u1 = 0,(2.6)

where

u(x, ω) =

[
u1(x, ω)
u2(x, ω)

]
, g(x) =

[
0

g(x)

]
, h(x) =

[
0

h(x)

]
, M =

[
0 1

−ω2 0

]
,

and

A0 = [iω 1], B1 = [−iω 1].

Here we have set

u0 = u(0, ω) and u1 = u(1, ω).

We will study this stochastic two-point boundary value problem to establish our
analysis for the direct and inverse source scattering problems in the rest of this
section. Before presenting the results for the stochastic source scattering problem,
we first briefly describe the solutions for the direct and inverse deterministic source
scattering problems, i.e., when the standard deviation h is zero, in the following
section.

2.2. Inverse deterministic source problem. Consider the one-dimensional de-
terministic Helmholtz equation in the interval [0, 1]

(2.7) u′′(x, ω) + ω2u(x, ω) = g(x),

together with the outgoing radiation boundary conditions

(2.8) u′(0, ω) + iωu(0, ω) = 0 and u′(1, ω)− iωu(1, ω) = 0.

Given the deterministic real source function g, the direct source scattering problem
is to determine the wave field u; the inverse source scattering problem is to deter-
mine the function g from the boundary measurements of the wave field u(0, ω) over
a range of frequencies.

It is known that the two-point boundary value problem (2.7) and (2.8) has a
unique solution [20]. More precisely, let

G(x, y, ω) =
eiω|x−y|

2iω
,
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then the solution to the direct source scattering problem for (2.7) and (2.8) can be
written explicitly as

(2.9) u(x, ω) =

∫ 1

0

G(x, y, ω)g(y)dy =
1

2iω

∫ 1

0

eiω|x−y|g(y)dy.

So G is the Green’s function for the one-dimensional Helmholtz equation (2.7) with
the outgoing radiation condition (2.8).

Next we derive reconstruction formulas for the source function g. Evaluating
(2.9) on both sides at x = 0 yields

(2.10) 2iωu(0, ω) =

∫ 1

0

eiωyg(y)dy.

Therefore the source function g can be reconstructed by taking the inverse Fourier
transform on both sides of (2.10). Let

u(0, ω) = Reu(0, ω) + iImu(0, ω).

We may split (2.11) into real and imaginary parts:

2ωReu(0, ω) =

∫ 1

0

sin(ωy)g(y)dy,(2.11)

2ωImu(0, ω) = −
∫ 1

0

cos(ωy)g(y)dy.(2.12)

Equivalently, the source function g can be recovered from either the inverse sine
transform (2.11) or the inverse cosine transform (2.12).

2.3. Inverse random source problem. In this section, we discuss the solution
for the stochastic two-point boundary value problem (2.4)–(2.6) in terms of the
source scattering problem. Using the theory presented in Appendix, we first obtain
the existence and uniqueness for the direct random source problem for Eqs. (2.4)–
(2.6). Then we deduce the integral equations to recover the mean and the variance
of the random source function based on the constructive proof in Appendix A.
We refer to Bal [6] for an alternative approach for the proof of the existence of
the solution for the direct random source scattering problem from the point of the
classical central limit result.

Corollary 2.1. The two-point stochastic boundary value problem (2.4)–(2.6) at-
tains a unique solution.

Proof. Following Theorem A.1, it suffices to prove

det

[
A0

B1e
M

]
�= 0

for A0 = [iω 1], B1 = [−iω 1], and

M =

[
0 1

−ω2 0

]
.

Since M is a non-singular matrix, it can be verified that there exists a non-singular
matrix Q such that

Q−1MQ = Λ,
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where

Λ =

[
iω

−iω

]
, Q =

[
1 1
iω −iω

]
, and Q−1 =

1

2iω

[
iω 1
iω −1

]
.

A simple calculation yields

det

[
A0

B1e
M

]
=

∣∣∣∣ iω 1
−iωe−iω e−iω

∣∣∣∣ = 2iωe−iω �= 0.

It follows from Theorem A.1 that the two-point boundary value problem (2.4)–(2.6)
has a unique solution. �

It is known that the solution for the initial value problem of the stochastic
differential equation (2.4) is given by

(2.13) u(x, ω) = eMx

[
u0 +

∫ x

0

e−Myg(y)dy +

∫ x

0

e−Myh(y)dWy

]
,

where

u(x, ω) =

[
u1(x, ω)
u2(x, ω)

]
, g(x) =

[
0

g(x)

]
, h(x) =

[
0

h(x)

]
, M =

[
0 1

−ω2 0

]
.

Here we have set

u0 = u(0, ω) =

[
u1(0, ω)
u2(0, ω)

]
.

It follows from the radiation condition (2.5) that

u1(0, ω) = u(0, ω) and u2(0, ω) = u′(0, ω) = −iωu(0, ω).

Evaluating the solution (2.13) at x = 1 yields

(2.14) u1 = eM
[
u0 +

∫ 1

0

e−Myg(y)dy +

∫ 1

0

e−Myh(y)dWy

]
,

where

u1 = u(1, ω) =

[
u1(1, ω)
u2(1, ω)

]
.

Explicitly, we can compute

eM =

[
cosω 1

ω sinω
−ω sinω cosω

]
, eMu0 = u(0, ω)e−iω

[
1

−iω

]
,

and

eM(1−y) =

[
cos[(1− y)ω] 1

ω sin[(1− y)ω]
−ω sin[(1− y)ω] cos[(1− y)ω]

]
.

Substituting the above expressions into (2.14), we get the two components for the
vector u1:

u1(1, ω) = u(0, ω)e−iω +
1

ω

∫ 1

0

sin[(1− y)ω]g(y)dy(2.15)

+
1

ω

∫ 1

0

sin[(1− y)ω]h(y)dWy,

u2(1, ω) = −iωu(0, ω)e−iω +

∫ 1

0

cos[(1− y)ω]g(y)dy(2.16)

+

∫ 1

0

cos[(1− y)ω]h(y)dWy.
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It follows from the radiation condition (2.6) that

u2(1, ω) = u′(1, ω) = iωu(1, ω) = iωu1(1, ω).

Combining the above equation with (2.15) and (2.16), we arrive at the integral
representation for the radiating field at x = 0:

(2.17) u(0, ω) =
1

2iω

∫ 1

0

eiωyg(y)dy +
1

2iω

∫ 1

0

eiωyh(y)dWy.

Once u(0, ω) is available, we may plug it into (2.13) and derive the explicit expres-
sion of the solution for the direct source scattering problem:

(2.18) u(x, ω) =
1

2iω

∫ 1

0

eiω|x−y|g(y)dy +
1

2iω

∫ 1

0

eiω|x−y|h(y)dWy.

Remark 2.1. It is readily seen that the solution (2.18) for the direct stochastic
source scattering problem will reduce to the solution (2.9) for the deterministic
source scattering problem when the standard deviation h is zero. Therefore the
solution formula (2.18) can be seen as a generalization of the solution formula (2.9)
from the deterministic problem to the stochastic problem.

Next we derive the formulas to reconstruct the mean and variance of the random
source function. Evaluating at x = 0 and multiplying 2iω on both sides of (2.18)
gives

(2.19) 2iωu(0, ω) =

∫ 1

0

eiωyg(y)dy +

∫ 1

0

eiωyh(y)dWy.

We easily obtain the relation between the data u(0, ω) and the mean value g after
taking the expectation on both sides of (2.19):

(2.20) 2iωE[u(0, ω)] =

∫ 1

0

eiωyg(y)dy,

where the following basic property for the Itô integral is used

E

[∫ 1

0

eiωyh(y)dWy

]
= 0.

Remark 2.2. Comparing the analogous reconstruction formulas (2.20) and (2.10)
for the mean g, it is clear that the solution formula (2.20) is a generalization of the
solution formula (2.10) from the deterministic problem to its stochastic counterpart.

We split all the complex functions into the sum of real part and imaginary part
in order to derive the connection between the boundary measurements u(0, ω) and
the standard deviation h.

Denote

u(0, ω) = Reu(0, ω) + i Imu(0, ω).

Then (2.19) can be decomposed into two equations corresponding to the real part
and the imaginary part:

2ωReu(0, ω) =

∫ 1

0

sin(ωy)g(y)dy +

∫ 1

0

sin(ωy)h(y)dWy,(2.21)

2ωImu(0, ω) = −
∫ 1

0

cos(ωy)g(y)dy −
∫ 1

0

cos(ωy)h(y)dWy.(2.22)
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Recalling the basic property for the Itô integrals

E

[∫ 1

0

sin(ωy)h(y)dWy

]
= E

[∫ 1

0

cos(ωy)h(y)dWy

]
= 0,

we take the expectation on both sides of (2.21) and (2.22) and obtain

2ωE [Reu(0, ω)] =

∫ 1

0

sin(ωy)g(y)dy,(2.23)

2ωE [Imu(0, ω)] = −
∫ 1

0

cos(ωy)g(y)dy.(2.24)

Therefore the mean value g can be recovered from either the inverse sine transform
from (2.23) or the inverse cosine transform from (2.24).

Remark 2.3. Clearly, the reconstruction formulas (2.23) and (2.24) for the stochas-
tic problem are analogous to the reconstruction formulas (2.11) and (2.12) for the
deterministic problem.

Both (2.23) and (2.24) are only valid for positive angular frequency ω > 0. The
zero Fourier mode is missing which leads to the non-uniqueness of the reconstruc-
tion, i.e., any vertical shift of the reconstructed function will give the same non-zero
Fourier modes corresponding to the positive angular frequencies. In practice, the
zero Fourier mode is set to be zero. After the inverse sine or cosine transform, the
reconstructed function can be artificially shifted in the vertical direction to make
the value vanish at the lateral point x = 0 or x = 1 since the function g is assumed
to have a compact support contained in the interval [0, 1].

Using the Itô isometry, we have

E

[(∫ 1

0

sin(ωy)h(y)dWy

)2
]
=

∫ 1

0

sin2(ωy)h2(y)dy =
1

2

∫ 1

0

[1− cos(2ωy)]h2(y)dy,

E

[(∫ 1

0

cos(ωy)h(y)dWy

)2
]
=

∫ 1

0

cos2(ωy)h2(y)dy =
1

2

∫ 1

0

[1 + cos(2ωy)]h2(y)dy.

Taking the variance on both sides of (2.21) and (2.22) and using the Itô isometry,
we get

4ω2
V [Reu(0, ω)] =

1

2

∫ 1

0

[1− cos(2ωy)]h2(y)dy,

4ω2
V [Imu(0, ω)] =

1

2

∫ 1

0

[1 + cos(2ωy)]h2(y)dy.

Subtracting the two equations above we deduce

(2.25) 4ω2{V [Imu(0, ω)]− V [Reu(0, ω)]} =

∫ 1

0

cos(2ωy)h2(y)dy.

The variance h2 or the standard deviation h of the random source function can thus
be retrieved from taking the inverse cosine transform on both sides of (2.25). Fur-
thermore, the zero Fourier mode can also be recovered by adding the two equations
above

(2.26) 4ω2{V [Imu(0, ω)] + V [Reu(0, ω)]} =

∫ 1

0

h2(y)dy.
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Following equations (2.21), (2.22), and (2.25), we may conclude that the inverse
problem has a unique solution, i.e., the mean value g and the standard deviation h
can be uniquely determined, if the data E [Reu(0, ω)], E [Imu(0, ω)], V [Reu(0, ω)],
and V [Imu(0, ω)] are given for all frequencies ω > 0. This is certainly an ideal
situation since the data may only be available at a finite number of a discrete set
of frequencies in practice. The uniqueness is still valid as long as the data covers
all the Fourier modes of the mean value g and the standard deviation h. Otherwise
the uniqueness will not hold if some Fourier coefficients of the functions g and h are
missing. In the reconstruction, we adopt so-called filtered backprojection algorithm
which assumes that the Fourier coefficients at all of the unobserved frequencies are
zero. This algorithm produces the reconstruction with minimal energy solution
under the observation constraints where the Fourier coefficients at all of the unob-
served frequencies are set to be zero. Finally, we comment that the inverse sine or
cosine transform is realized by the fast Fourier transform (FFT) [30].

3. Numerical experiments

In this section, we discuss the algorithmic implementation and present three
numerical examples to demonstrate the validity and effectiveness of the proposed
method.

The scattering data u(0, ω) is obtained from two different approaches to avoid
the so-called inverse crime. One is based on an integral equation and another is
based on a differential equation. Both approaches are numerically implemented
and give the same performance of the reconstructions. We briefly introduce how
we obtain the scattering data in the following.

In the integral equation approach, we use the solution representation in (2.18).
We evaluate both sides at x = 0:

u(0, ω) =
1

2iω

∫ 1

0

eiωyg(y)dy +
1

2iω

∫ 1

0

eiωyh(y)dWy.

Numerically the integrals are approximated by the trapezoidal rule

u(0, ω) ≈ 1

2iω

[
Δy

M−1∑
m=0

eiωymg(ym) +
N−1∑
n=0

eiωynh(yn)dWn

]
,

where Δy = 1/M, ym = mΔy = m/M, yn = n/N , and the spatial Brownian

motion dWn = ξn/
√
N , in which ξn ∈ N(0, 1) is a random variable in the standard

Gaussian distribution with zero mean and unit variance. We generate ξn by a
random number generator in FORTRAN90. In the following examples, M and N
are taken as M = N = 256.

Another approach is based on solving a stochastic initial value problem. It can
be verified that

u(0, ω) = −v(0)

2iω
.

To obtain the data u(0, ω), it suffices to solve the stochastic ordinary differential
equation

dv = (g − iωv)dx+ hdWx,

v(1) = 0.

Then we apply a numerical method over [0, 1] to compute the solution. We first
discretize the interval. Let Δx = 1/N for some positive integer N , and xi = iΔx =
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i/N . Denote the numerical approximation to v1(xn) by vn1 . The Euler–Maruyama
method takes the form

vn+1
1 = vn1 +

[
g(xn+1)− iωvn+1

1

]
Δx+ h(xn+1) [W (xn+1)−W (xn)]

for n = N − 1, N − 2, . . . , 0. We refer to [17] for an introduction to numerical
simulation of stochastic differential equations.

Example 1. Let

g(x) = 0.3

[
(1− cos(2x))− 16

21
(1− cos(3x)) +

5

28
(1− cos(4x))

]
,

h(x) = 0.6− 0.3 cos(x)− 0.3 cos(2x),

reconstruct the mean value and the standard deviation given by

g1(x) = g(2πx) and h1(x) = h(2πx)

inside the interval [0, 1]. This is a relatively simple example as both functions g1 and
h1 contain few low frequency Fourier modes. For the reconstruction of the mean
value g1, the scattering data u(0, ωk) is computed at discrete frequencies ωk =
kπ, k = 1, 2, . . . , 8; while the scattering data u(0, ωk) is computed at frequencies
ωk = kπ/2, k = 1, 2, . . . , 8, for the reconstruction of the standard deviation h1.
The data covers all the frequency coefficients of this example. To test the stability
of the method, we reconstruct the mean value and the standard deviation or the
variance using different numbers of realization. This is equivalent to using data with
different level of error. Figure 1 shows the reconstructed mean value and variance
and the exact ones with different numbers of realizations. As expected, the relative
L2([0, 1]) error “err” decreases from err = 3.05 × 10−1 to err = 6.44 × 10−3 and
from err = 1.16 × 10−1 to err = 4.00 × 10−3 for the mean value and the variance,
respectively, as the number of realization “nr” increases from nr = 103 to nr = 106.
It is obvious that the better reconstruction may be obtained when the more accurate
data is used. In fact, the reconstruction corresponding to the number of realizations
nr = 106 is actually indistinguishable from the exact functions from the graphs.

Example 2. Let

g(x) = 0.4

[
(1− cos(3x))− 1215

2783
(1− cos(11x)) +

7

23
(1− cos(12x))

]
,

h(x) = 0.5e1 − 0.3ecos(2x) − 0.3ecos(3x),

reconstruct the mean value and the standard deviation given by

g2(x) = g(2πx) and h2(x) = h(2πx)

inside the interval [0, 1]. This example is more complicated than Example 1 since
both functions contain more higher frequency modes. Correspondingly, the data at
high frequencies should be computed to recover the mean value g2 and the standard
deviation h2. For the reconstruction of the mean value g2, the scattering data
u(0, ωk) is computed at discrete frequencies ωk = kπ, k = 1, 2, . . . , 16; while the
scattering data u(0, ωk) is computed at frequencies ωk = kπ/2, k = 1, 2, . . . , 16, for
the reconstruction of the standard deviation h2. Figure 2 shows the reconstructed
mean value and variance and the exact ones with different numbers of realizations.
Not surprisingly, the relative error decreases from err = 3.84 × 10−1 to err =
9.15 × 10−3 and from err = 1.67 × 10−1 to err = 5.03 × 10−3 for the mean value
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and the variance, respectively, as the number of realization increases from nr = 103

to nr = 106.

Example 3. Reconstruct the mean value

g3(x) =

⎧⎨
⎩

0.5 for 0.15 < x < 0.35,
0.5 for 0.65 < x < 0.85,
0 otherwise,

and the standard deviation

h3(x) =

{
0.5 for 0.3 < x < 0.7,
0 otherwise,

inside the interval [0, 1]. In this example, the functions are discontinuous. It is
well known that the piecewise constant function contains infinitely many Fourier
coefficients that decay slowly. To show the effect of the maximum frequency on
the reconstruction, we use the number of realization nr = 106 to generate the data
which is intended to reduce the effect of the data error. For the reconstruction of the
mean value g3, the scattering data u(0, ωk) is computed at frequencies ωk = kπ, k =
1, 2, . . . , nw; while the scattering data u(0, ωk) is computed at ωk = kπ/2, k =
1, 2, . . . , nw, for the reconstruction of the standard deviation h2, where “nw” is
the maximum number of frequency. Figure 3 shows the reconstructed mean value
and variance and the exact ones with different numbers of frequencies. As one can
see, the relative error decreases from err = 3.13 × 10−1 to err = 1.90 × 10−1 and
from err = 2.32 × 10−1 to err = 1.23 × 10−1 for the mean value and the variance,
respectively, as the number of frequency increases from nw = 8 to nw = 32.

In summary, the following observations can be made from Figure 1 to Figure 3.
When the functions contain few low Fourier modes or fast decaying Fourier coeffi-
cients, accurate and stable reconstructions can be obtained easily. When the func-
tions are discontinuous, the oscillatory behavior near the discontinuities displays the
well-known Gibbs phenomenon. To encounter this challenge, we have also imple-
mented an alternative approach of the �1-minimization based method together with
the Bregman iteration [31] for all presented three examples. Generally speaking, the
alternative approach produces similar results for smooth functions and may reduce
the oscillations for discontinuous functions if appropriate parameters are chosen in
the iteration. However, we feel the alternative approach is beyond the scope of the
current paper, since our main intention is to report the novel numerical methods
to reconstruct random source functions from boundary measurements. Therefore
we decide to show only the numerical results based on filtered backprojection al-
gorithm which involves just one FFT in the computation. Finally, we comment on
the reconstructed variances, which should be positive functions. Due to the error
or the Gibbs phenomenon, it is possible that negative values may appear for the
reconstructed variances. In practice, the variance could be artificially set to be zero
wherever it is negative.
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Figure 1. Example 1. Solid blue line: exact solutions; circled red
line: reconstructed solutions. (left column) reconstruction of the
mean g. The reconstruction error (err) decreases from 3.05× 10−1

to 6.44 × 10−3 as the number of realization (nr) increases from
103 to 106 from top to bottom; (right column) reconstruction of
the variance h2. The reconstruction error (err) decreases from
1.16×10−1 to 4.00×10−3 as the number of realization (nr) increases
from 103 to 106 from top to bottom.
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Figure 2. Example 2. Solid blue line: exact solutions; circled red
line: reconstructed solutions. (left column) reconstruction of the
mean g. The reconstruction error (err) decreases from 3.84× 10−1

to 9.15 × 10−3 as the number of realization (nr) increases from
103 to 106 from top to bottom; (right column) reconstruction of
the variance h2. The reconstruction error (err) decreases from
1.67×10−1 to 5.03×10−3 as the number of realization (nr) increases
from 103 to 106 from top to bottom.
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Figure 3. Example 3. Solid blue line: exact solutions; circled red
line: reconstructed solutions. (left column) reconstruction of the
mean g. The reconstruction error (err) decreases from 3.13× 10−1

to 1.90 × 10−1 as the number of frequency (nw) increases from 8
to 32 from top to bottom; (right column) reconstruction of the
variance h2. The reconstruction error (err) decreases from 2.32 ×
10−1 to 1.23×10−1 as the number of frequency (nw) increases from
8 to 32 from top to bottom.
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4. Concluding remarks

We have studied an inverse scattering problem for the stochastic Helmholtz equa-
tion in one dimension with a random source function. The problem is to reconstruct
the mean and the standard deviation of the random source function from boundary
measurements of the radiating wave field. The scattering model problem was for-
mulated as a two-point stochastic boundary value problem and an integral equation
was derived for the solution, which sets up the relation between the data and the
target functions through FFT. The method is extremely efficient and accurate for
smooth functions. Although we only consider the Gaussian random field in this
paper, the strategy can be extended to other types of randomness in the source
function with minor modification. The inverse random source scattering problem
in higher dimensions and in inhomogeneous background medium are being investi-
gated, and we will report the progress elsewhere in the future.

Appendix A. Two-point stochastic boundary value problem

In this appendix, we establish a criterion for the existence and uniqueness of
the pathwise solution for a general two-point stochastic boundary value problem.
To solve the two-point stochastic boundary value problem, we first treat it as a
standard initial value problem at the left boundary point x = 0, and then enforce
the solution to satisfy the boundary condition at the right end boundary point
x = 1. We refer to Nualart and Pardoux [26], and Ocone and Pardoux [27] for
discussions on general boundary value problems for stochastic differential equations.

Consider the general first order stochastic differential equation

(A.1) du = (Mu+ g)dx+ hdWx

together with the boundary conditions given in the form of the linear equations

A0u0 = v0,(A.2)

B1u1 = v1,(A.3)

where u(x) ∈ Cn,g(x) ∈ Cn, and h(x) ∈ Cn are n-dimensional vector fields,
v0 ∈ Cn1 (n1 < n) is a given n1-dimensional vector field, M ∈ Cn×n is a constant
matrix, A0 ∈ Cn1×n matrix, and B1 ∈ Cn2×n and v1 ∈ Cn2 with n1+n2 = n. Here
we have set u0 = u(0) and u1 = u(1).

For the general first order two-point stochastic boundary value problem (A.1)–
(A.3), we give a necessary and sufficient condition for the pathwise existence and
uniqueness of the solution for any fixed realization of the Wiener process Wx.

Assume that u0 is known, then the solution for the initial value problem of the
first order stochastic differential equation (A.1) can be explicitly written as

(A.4) u(x) = eMx

[
u0 +

∫ x

0

e−Myg(y)dy +

∫ x

0

e−Myh(y)dWy

]
,

where the last expression is given in the sense of the Itô integral. Certainly, it is
only an assumption that u0 is given. In fact, we need to determine u0 by enforcing
the solution (A.4) to satisfy the boundary conditions (A.2) and (A.3).

Evaluating the solution (A.4) at x = 1 yields

u1 = eM
[
u0 +

∫ 1

0

e−Myg(y)dy +

∫ 1

0

e−Myh(y)dWy

]
,
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which is required to satisfy the boundary condition (A.3) at the right end point
x = 1:

B1u1 = B1e
M

[
u0 +

∫ 1

0

e−Myg(y)dy +

∫ 1

0

e−Myh(y)dWy

]
= v1.

We denote the random vector

B1e
M

∫ 1

0

e−Myh(y)dWy = w ∈ C
n.

The well-posedness of the two-point stochastic boundary value problem (A.1)–(A.3)
can be equivalently formulated as follows: Given v0 and v1, for any random process
w, there exists a unique solution u0 to the linear equations

A0u0 = v0,

B1e
Mu0 = v1 −w −B1e

M

∫ 1

0

e−Myg(y)dy.

It follows from the linear algebra that the unique solvability of the above linear
system can be obtained if the coefficient matrix is non-singular. Therefore we
obtain the necessary and sufficient condition for the well-posedness of the two-point
stochastic boundary value problem.

Theorem A.1. The two-point stochastic boundary value problem (A.1)–(A.3) has
a unique solution if and only if

(A.5) det

[
A0

B1e
M

]
�= 0.
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