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Abstract: Consider a time-harmonic electromagnetic plane wave incident
on a perfectly conducting biperiodic surface (crossed grating). The diffrac-
tion is modeled as a boundary value problem for the three-dimensional
Maxwell equation. The surface is assumed to be a small and smooth defor-
mation of a planar surface. In this paper, a novel approach is developed to
solve the inverse diffraction grating problem in the near-field regime, which
is to reconstruct the surface with resolution beyond Rayleigh’s criterion. The
method requires only a single incident field with one polarization, one fre-
quency, and one incident direction, and is realized by using the fast Fourier
transform. Numerical results show that the method is simple, efficient,
and stable to reconstruct biperiodic surfaces with subwavelength resolution.
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1. Introduction

Consider the scattering of a time-harmonic electromagnetic plane wave by a biperiodic struc-
ture, known as crossed grating or two-dimensional grating. Scattering theory in periodic struc-
tures has many applications in micro-optics including the design and fabrication of optical ele-
ments such as corrective lenses, anti-reflective interfaces, beam splitters, and sensors. Depend-
ing on the direction and polarization of the incident plane wave, the governing mathematical
model can be simplified from the full three-dimensional Maxwell equations to two fundamen-
tal polarizations: the transverse electric polarization and the transverse magnetic polarization,
known as linear grating or one-dimensional grating. In both polarizations, the scalar compo-
nents of electromagnetic waves satisfy the two-dimensional Helmholtz equation. We refer to
the monograph [1] for a good introduction to the problems of electromagnetic diffraction.

Recently, the scattering problems in periodic structures have been studied extensively on both
mathematical and numerical aspects. We refer to [2] and references therein for the mathematical
studies of existence and uniqueness of the diffraction grating problems. Numerical methods
can be found in [3–5] for either an integral equation approach or a variational approach. A
comprehensive review can be found in [6] on diffractive optics technology and its mathematical
modeling as well as computational methods.

We consider an inverse problem, which is to reconstruct the grating surface from a measured
data field at a constant height above the surface. The mathematical questions on uniqueness and
stability of the inverse problem have been studied by many researchers for the one-dimensional
grating [7–11]. Computationally, a number of methods have been developed for the reconstruc-
tion of perfectly conducting grating surfaces in the transverse electric polarization [12–19]. We
refer to [20–23] for related optimal design problems in diffractive optics, which are to design
grating structures to obtain some specified diffraction patterns, and [24–27] for general inverse
surface scattering problems. These work addressed conventional far-field imaging, where the
scattering data is taken at distances which are greater than the wavelength of the incident field.
The role of evanescent wave components were ignored and the resolution of reconstructions
was limited by Rayleigh’s criterion, approximately half of the incident wavelength, also known

#204116 - $15.00 USD Received 3 Jan 2014; revised 5 Feb 2014; accepted 6 Feb 2014; published 21 Feb 2014
(C) 2014 OSA 24 February 2014 | Vol. 22,  No. 4 | DOI:10.1364/OE.22.004799 | OPTICS EXPRESS  4801



as the diffraction limit. We refer to [28–31] for the existence, uniqueness, and numerical ap-
proximations of solutions for the direct two-dimensional grating problems. Mathematical stud-
ies can be found in [32–37] on the uniqueness results for detecting biperiodic grating surfaces.
In contrast, numerical results are very rare due to nonlinearity and ill-posedness of the inverse
problem plus complexity of the three-dimensional Maxwell equations. A qualitative imaging
method can be found in [38] for solving an inverse scattering problem from penetrable biperi-
odic structures. More recent reviews can be found in [39,40] on the direct and inverse scattering
problems in periodic media.

In this work, we develop an efficient and stable computational method to solve the inverse
problem. The grating surface is assumed to be a small and smooth deformation of a planar
surface. Based on the transformed field expansion, the method reduces the boundary value
problem into a successive sequence of two-point boundary value problems. For transformed
field expansion and related boundary perturbation method, we refer to [41–47] for solving the
direct and inverse diffraction grating problems. An explicit reconstruction formula is derived for
the linearized inverse problem by dropping higher order terms in the expansions. A spectral cut-
off regularization is adopted to suppress the exponential growth of the noise in the evanescent
wave components, which carry high spatial frequency of the scattering surface and contribute
to the super resolution in the near-field regime. The method requires only a single incident field
with one polarization, one frequency, and one incident direction, and is realized by using the
fast Fourier transform. The numerical results are computed by using synthetic scattering data
provided by an adaptive edge element method with a perfectly matched absorbing layer [29].
Two numerical examples, one smooth surface and one non-smooth surface, are presented to
demonstrate the effectivenss of the proposed method. The influence is carefully investigated
on the reconstructions for such parameters as surface deformation, measurement distance, and
noise level. The numerical results show that the method is simple, efficient, stable to reconstruct
biperiodic grating surfaces with subwavelength resolution.

This paper significantly extends our previous work on near-field imaging of one-dimensional
surfaces [48–50], where the two-dimensional scalar Helmholtz equation was considered, to
two-dimensional grating surfaces. Apparently, the techniques differ greatly from existing work
because of the complicated model problem of three-dimensional Maxwell’s equations. To the
best of our knowledge, we develop the first quantitative method for solving the inverse diffrac-
tion grating problem of Maxwell’s equations in biperiodic structures and provide numerical
examples of reconstruction with super resolved resolution. We point out a closely related work
on the inverse surface scattering in near-field imaging [51], where the scattering surface is as-
sumed to be a small and local perturbation of a planar surface. Other related work may be found
in [52, 53] for solving an inverse medium scattering problem in near-field optical imaging and
in [54, 55] for resolution and stability analysis of conductivity imaging.

2. Model problem

In this section, we define some notations and introduce a boundary value problem for the
diffraction by a biperiodic structure.

2.1. Maxwell’s equations

Let us first specify the diffraction grating problem geometry. Denote (ρ ,z) ∈ R
3, where ρ =

(x,y) ∈ R
2. As seen in Fig. 1, the problem may be restricted to a single period of Λ = (Λ1,Λ2)

in ρ due to the periodicity of the structure. Let the surface in one period be described by S =
{(ρ ,z) ∈ R

3 : z = φ(ρ), 0 < x < Λ1,0 < y < Λ2}, where φ ∈ C2(R2) is a biperiodic function
satisfying φ(ρ +Λ,z) = φ(ρ ,z). The grating surface function φ is assumed to be in the form

φ(ρ) = εψ(ρ), (1)
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z = h
Γ

S

Ω

ρ = (x, y)

z
νS

νΓ

ΩS

ΩΓ

· · ·· · ·

Λ = (Λ1,Λ2)

z = φ(ρ)

Fig. 1. Geometry of the diffraction grating problem.

where ψ ∈C2(R2) is a biperiodic function with period Λ and is called the grating profile, and
ε is sufficiently small and is called the surface deformation parameter.

Denote by ΩS = {(ρ ,z) ∈ R
3 : z > φ(ρ), 0 < x < Λ1,0 < y < Λ2} the space above S, which

is filled with some homogeneous medium characterized by a positive constant wavenumber κ .
Denote Ω= {(ρ ,z)∈R

3 : φ(ρ)< z< h, 0< x<Λ1,0< y<Λ2} be the domain bounded below
by S and bounded above by the plane surface Γ = {(ρ ,z)∈R

3 : z = h, 0 < x < Λ1,0 < y < Λ2},
where h > max0<x<Λ1,0<y<Λ2 φ(ρ).

Let (Einc, Hinc) be the incoming plane waves that are incident upon the grating surface from
above, where

Einc = texp(iκ(α ·ρ −β z)) , Hinc = sexp(iκ(α ·ρ −β z)) . (2)

Here α = (α1,α2), α1 = sinθ1 cosθ2, α2 = sinθ1 sinθ2, and β = cosθ1, where θ1 and θ2 are the
latitudinal and longitudinal incident angles, which satisfy 0 ≤ θ1 < π/2,0 ≤ θ2 < 2π . Denote
by d = (α1,α2,−β ) the unit propagation direction vector. The unit polarization vectors t =
(t1, t2, t3),s = (s1,s2,s3) satisfy t ·d = 0 and s = d× t, which gives explicitly

s1 = α2t3 +β t2, s2 =−(α1t3 +β t1), s3 = α1t2 −α2t1.

For normal incident, i.e., θ1 = 0, we have α1 = 0,α2 = 0,β = 1, and s1 = t2,s2 =−t1,s3 = 0.
Hence we get from |t|= |s|= 1 that t2

1 + t2
2 = 1, t3 = 0.

For the sake of simplicity, we focus on the case of normal incidence from now on since our
method requires only a single incident wave for solving the inverse problem. We mention that
the method works for general non-normal incidence with obvious modifications.

Denote Einc = (E inc
1 ,E inc

2 ,E inc
3 ) and Hinc = (H inc

1 ,H inc
2 ,H inc

3 ). Under the normal incidence,
the incoming plane waves (2) reduce to

E inc
j = t j exp(−iκz), H inc

j = s j exp(−iκz). (3)

It can be verified that the incident electromagnetic waves satisfy the three-dimensional time-
harmonic Maxwell equation:

∇×Einc − iκHinc = 0, ∇×Hinc + iκEinc = 0, in R
3. (4)

The scattering of time-harmonic electromagnetic waves follows Maxwell’s equations in the
space above the grating surface:

∇×E− iκH = 0, ∇×H+ iκE = 0, in ΩS, (5)

#204116 - $15.00 USD Received 3 Jan 2014; revised 5 Feb 2014; accepted 6 Feb 2014; published 21 Feb 2014
(C) 2014 OSA 24 February 2014 | Vol. 22,  No. 4 | DOI:10.1364/OE.22.004799 | OPTICS EXPRESS  4803



where E is the total electric field and H is the total magnetic field. Due to the homogeneous
medium, the electromagnetic fields satisfy the divergence free condition:

∇ ·E = 0 and ∇ ·H = 0 in ΩS. (6)

We consider the perfect electric conductor condition:

E×νS = 0 on S, (7)

where νS = (ν1,ν2,ν3) ∈ R
3 is the unit normal vector on S, given explicitly as

ν1 =
φx

(1+φ 2
x +φ 2

y )
1/2

, ν2 =
φy

(1+φ 2
x +φ 2

y )
1/2

, ν3 =
−1

(1+φ 2
x +φ 2

y )
1/2

. (8)

Here φx = ∂xφ(x,y) and φy = ∂yφ(x,y) are the partial derivatives.

2.2. Transparent boundary condition

To reduced the diffraction grating problem from an unbounded domain ΩS into a bounded
domain Ω, a transparent boundary condition needs to be imposed on Γ.

Let n = (n1, n2) ∈ Z
2 and denote αn = (α1n, α2n), where α1n = 2πn1/Λ1 and α2n =

2πn2/Λ2. For a biperiodic function u(ρ) with period Λ in ρ , it has the Fourier series expansion

u(ρ) = ∑
n∈Z2

un exp(iαn ·ρ), un = Λ−1
1 Λ−1

2

∫ Λ1

0

∫ Λ2

0
u(ρ)exp(−iαn ·ρ)dρ .

For any vector field u = (u1, u2, u3), denote its tangential component on Γ by

uΓ = νΓ × (u×νΓ) = (u1(ρ ,h), u2(ρ ,h), 0),

where νΓ = (0, 0, 1) is the unit normal vector on Γ.
For any tangential vector u(ρ ,h) = (u1(ρ ,h), u2(ρ ,h), 0) on Γ, where u j is a biperiodic

function in ρ with period Λ, we define a boundary operator T :

Tu = (v1(ρ ,h), v2(ρ ,h), 0), (9)

where v j is also a biperiodic function in ρ with the same period Λ. Here uj and v j have the
following Fourier expansions

u j(ρ ,h) = ∑
n∈Z2

u jn(h)exp(iαn ·ρ), v j(ρ ,h) = ∑
n∈Z2

v jn(h)exp(iαn ·ρ),

and the Fourier coefficients ujn and v jn satisfy
⎧⎪⎪⎨
⎪⎪⎩

v1n(h) =
1

κβn

[
(κ2 −α2

2n)u1n(h)+α1nα2nu2n(h)
]
,

v2n(h) =
1

κβn

[
(κ2 −α2

1n)u2n(h)+α1nα2nu1n(h))
]
.

Using the boundary operator (9), we may derive the transparent boundary condition [29]:

(∇×E)×νΓ = iκTEΓ + f, on Γ, (10)

where
f = iκ(Hinc ×νΓ −TEinc

Γ ) = ( f1, f2, 0).

Recalling the incident fields (3) and using the boundary operator (9), we have explicitly that

f1 =−2iκt1 exp(−iκh) and f2 =−2iκt2 exp(−iκh).
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2.3. Reduced model problem

Taking curl on both sides of (5), we may eliminate the magnetic field and deduce a boundary
value problem for the electric field:

⎧⎪⎨
⎪⎩

∇× (∇×E)−κ2E = 0 in Ω,

E×νS = 0 on S,

(∇×E)×νΓ − iκTEΓ = f on Γ.

(11)

It is convenient introducing an equivalent scalar form of the problem (11) in order to apply
the transformed field expansion. Denote E = (E1, E2, E3). Noting the divergence condition (6),
we may reduce Maxwell’s equations to the Helmholtz equation for Ej:

ΔEj +κ2Ej = 0 in Ω. (12)

The divergence free condition (6) can be explicitly written as

∂xE1 +∂yE2 +∂zE3 = 0 in Ω. (13)

Substituting (8) into (7) yields

E2 +φyE3 = 0, E1 +φxE3 = 0, φyE1 −φxE2 = 0, on z = φ(ρ). (14)

The transparent boundary condition (10) becomes

∂zE1 −∂xE3 = iκH1 + f1, ∂zE2 −∂yE3 = iκH2 + f2, on z = h, (15)

where the Fourier coefficients of H1 and H2 are given by

⎧⎪⎪⎨
⎪⎪⎩

H1n(h) =
1

κβn

[
(κ2 −α2

2n)E1n(h)+α1nα2nE2n(h)
]
,

H2n(h) =
1

κβn

[
(κ2 −α2

1n)E2n(h)+α1nα2nE1n(h)
]
.

Here E1n(h) and E2n(h) are the Fourier coefficients of E1(ρ ,h) and E2(ρ ,h), respectively.
Given the incident field, the direct problem is to solve the boundary value problem (12)–

(15) for the known surface function φ(ρ). The inverse problem is to reconstruct the func-
tion φ(ρ) from the tangential trace of the total field measured at Γ, i.e., Eδ (ρ ,h)× νΓ =
(Eδ

2 (ρ ,h),−Eδ
1 (ρ ,h), 0), where δ is the noise level. In particular, we are interested in the

inverse problem in the near-field regime where the measurement distance h is much smaller
than the wavelength λ = 2π/κ .

3. Transformed field expansion

In this section, we introduce a transformed field expansion to find a power series solution for
the direct problem (12)–(15).

3.1. Change of variables

The transformed field expansion method begins with the change of variables:

x̃ = x, ỹ = y, z̃ = h

(
z−φ
h−φ

)
,
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which maps the domain Ω into a rectangular slab

D = {(x̃, ỹ, z̃) ∈ R
3 : 0 < z̃ < h}= R

2 × (0, h).

Introduce a new function Ẽ = (Ẽ1, Ẽ2, Ẽ3) and let Ẽ j(x̃, ỹ, z̃) = Ej(x, y, z) under the transfor-
mation. After tedious but straightforward calculations, it can be verified from (12) that the total
electric field, upon dropping the tilde, satisfies the equation

c1
∂ 2Ej

∂x2 + c1
∂ 2Ej

∂y2 + c2
∂ 2Ej

∂ z2 − c3
∂ 2Ej

∂x∂ z
− c4

∂ 2Ej

∂y∂ z
− c5

∂Ej

∂ z
+κ2c1Ej = 0 in D, (16)

where

c1 = (h−φ)2,

c2 = (φ 2
x +φ 2

y )(h− z)2 +h2,

c3 = 2φx(h− z)(h−φ),
c4 = 2φy(h− z)(h−φ),

c5 = (h− z)
[
(φxx +φyy)(h−φ)+2(φ 2

x +φ 2
y )
]
.

The divergence free condition (13) becomes

∂xE1 +∂yE2 −
(

h− z
h−φ

)
(φx∂zE1 +φy∂zE2)+

(
h

h−φ

)
∂zE3 = 0 in D. (17)

The perfect electric conductor condition (14) is

E2 +φyE3 = 0, E1 +φxE3 = 0, φyE1 −φxE2 = 0, z = 0. (18)

The transparent boundary condition (15) on z = h reduces to(
h

h−φ

)
∂zE1 −∂xE3 = iκH1 + f1,

(
h

h−φ

)
∂zE2 −∂yE3 = iκH2 + f2. (19)

3.2. Power series solution

Consider a formal expansion of Ej in a power series of ε:

Ej(ρ ,z;ε) =
∞

∑
k=0

E(k)
j (ρ ,z)εk. (20)

Substituting φ = εψ into c j and inserting (20) into (16), we may derive

ΔE(k)
j +κ2E(k)

j = F(k)
j in D, (21)

where

F(k)
j =

2ψ
h

∂ 2E(k−1)
j

∂x2 +
2ψ
h

∂ 2E(k−1)
j

∂y2 +
2(h− z)ψx

h

∂ 2E(k−1)
j

∂x∂ z
+

2(h− z)ψy

h

∂ 2E(k−1)
j

∂y∂ z

+
(h− z)(ψxx +ψyy)

h

∂E(k−1)
j

∂ z
+

2κ2ψ
h

E(k−1)
j − ψ2

h2

∂ 2E(k−2)
j

∂x2 − ψ2

h2

∂ 2E(k−2)
j

∂y2

− (h− z)2(ψ2
x +ψ2

y )

h2

∂ 2E(k−2)
j

∂ z2 − 2ψψx(h− z)
h2

∂ 2E(k−2)
j

∂x∂ z
− 2ψψy(h− z)

h2

∂ 2E(k−2)
j

∂y∂ z

+
(h− z)

[
2(ψ2

x +ψ2
y )−ψ(ψxx +ψyy)

]
h2

∂E(k−2)
j

∂ z
− κ2ψ2

h2 E(k−2)
j .
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Here ψx = ∂xψ(x,y) and ψy = ∂yψ(x,y) are the partial derivatives.
Substituting (20) into the divergence free condition (17) yields

∂xE
(k)
1 +∂yE

(k)
2 +∂zE

(k)
3 = w(k) in D, (22)

where

w(k) =
ψ
h

(
∂xE

(k−1)
1 +∂yE

(k−1)
2

)
+

(
h− z

h

)(
ψx∂zE

(k−1)
1 +ψy∂zE

(k−1)
2

)
.

The perfect electric conductor boundary condition (18) can be written as

E(k)
1 = u(k)1 , E(k)

2 = u(k)2 , (23)

where
u(k)1 (ρ) =−ψxE

(k−1)
3 , u(k)2 =−ψyE

(k−1)
3 .

Evaluating (22) at z = 0, we have

∂xE
(k)
1 +∂yE

(k)
2 +∂zE

(k)
3 = u(k)3 , z = 0, (24)

where
u(k)3 (ρ) =

ψ
h

(
∂xE

(k−1)
1 +∂yE

(k−1)
2

)
+
(

ψx∂zE
(k−1)
1 +ψy∂zE

(k−1)
2

)
.

Inserting (20) into the transparent boundary condition (19), we get
⎧⎨
⎩

∂zE
(k)
1 −∂xE

(k)
3 = iκH(k)

1 + v(k)1 ,

∂zE
(k)
2 −∂yE

(k)
3 = iκH(k)

2 + v(k)2 ,

(25)

where

v(0)1 = f1, v(1)1 =−ψ
h

∂zE
(0)
1 , v(k)1 =−ψ

h

(
∂xE

(k−1)
3 + iκH(k−1)

1

)
,

v(0)2 = f2, v(1)2 =−ψ
h

∂zE
(0)
2 , v(k)2 =−ψ

h

(
∂yE

(k−1)
3 + iκH(k−1)

2

)
,

and the Fourier coefficients of H(k)
1 (ρ ,h) and H(k)

2 (ρ ,h) are
⎧⎪⎪⎨
⎪⎪⎩

H(k)
1n (h) =

1
κβn

[
(κ2 −α2

2n)E
(k)
1n (h)+α1nα2nE(k)

2n (h)
]
,

H(k)
2n (h) =

1
κβn

[
(κ2 −α2

1n)E
(k)
2n (h)+α1nα2nE(k)

1n (h)
]
.

Here E(k)
1n (h) and E(k)

2n (h) are the Fourier coefficients of E(k)
1 (ρ ,h) and E(k)

1 (ρ ,h), respectively.
The divergence free condition (22) on z = h reduces to

∂xE
(k)
1 +∂yE

(k)
2 +∂zE

(k)
3 = v(k)3 , (26)

where
v(k)3 (ρ) =

ψ
h

(
∂xE

(k−1)
1 +∂yE

(k−1)
2

)
.

Clearly, the problem (21)–(26) for E(k)
j involves F(k)

j ,u(k)j ,v(k)j , which depend only on previ-

ous two terms of E(k−1)
j and E(k−2)

j . Thus, the transformed problem (21)–(26) indeed can be
solved efficiently in a recursive manner starting from k = 0.
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3.3. Zeroth order term

Recalling the recurrence relation (21) and letting k = 0, we have

ΔE(0)
j +κ2E(0)

j = 0 in D. (27)

The divergence free condition (22) reduces to

∂xE
(0)
1 +∂yE

(0)
2 +∂zE

(0)
3 = 0 in D. (28)

The perfect electric conductor boundary condition (23) is

E(0)
1 (ρ ,0) = 0, E(0)

2 (ρ ,0) = 0. (29)

Using (28) and (29), we have

∂zE
(0)
3 (ρ ,0) =−∂xE

(0)
1 (ρ ,0)−∂yE

(0)
2 (ρ ,0) = 0. (30)

The transparent boundary condition (25) becomes
⎧⎨
⎩

∂zE
(0)
1 (ρ ,h)−∂xE

(0)
3 (ρ ,h) = iκH(0)

1 (ρ ,h)+ f1(ρ),

∂zE
(0)
2 (ρ ,h)−∂yE

(0)
3 (ρ ,h) = iκH(0)

2 (ρ ,h)+ f2(ρ).
(31)

In addition, the divergence free condition (28) gives one more boundary condition:

∂xE
(0)
1 (ρ ,h)+∂yE

(0)
2 (ρ ,h)+∂zE

(0)
3 (ρ ,h) = 0. (32)

Since E(0)
j (ρ ,z) and f j are periodic functions of ρ , they have the Fourier expansions

E(0)
j (ρ ,z) = ∑

n∈Z2

E(0)
jn (z)exp(iαn ·ρ), f j = ∑

n∈Z2

f jn exp(iαn ·ρ), (33)

where f j0 =−2iκt j exp(−iκh) and f jn = 0 for n �= 0.
Substituting (33) into (27), we derive a second order ordinary differential equation for the

Fourier coefficient E(0)
jn (z):

d2E(0)
jn (z)

dz2 +
(
κ2 −|αn|2

)
E(0)

jn (z) = 0, 0 < z < h. (34)

Similarly, we have the boundary conditions at z = 0:

E(0)
1n = 0, E(0)

2n = 0, E(0)
3n

′
= 0, (35)

and the boundary conditions at z = h:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E(0)
1n

′ − iα1nE(0)
3n =

i
βn

[
(κ2 −α2

2n)E
(0)
1n +α1nα2nE(0)

2n

]
+ f1n,

E(0)
2n

′ − iα2nE(0)
3n =

i
βn

[
(κ2 −α2

1n)E
(0)
2n +α1nα2nE(0)

1n

]
+ f2n,

E(0)
3n

′
+ iα1nE(0)

1n + iα2nE(0)
2n = 0.

(36)

Simple calculations yield that the solution of the two-point bounary value problem (34)–(36) is

E(0)
j (ρ ,z) = t j (exp(−iκz)− exp(iκz)) . (37)
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3.4. First order term

Recalling (21) and letting k = 1, we have

ΔE(1)
j +κ2E(1)

j = F(1)
j in D, (38)

where

F(1)
j =

2ψ
h

∂ 2E(0)
j

∂x2 +
2ψ
h

∂ 2E(0)
j

∂y2 +
2(h− z)ψx

h

∂ 2E(0)
j

∂x∂ z
+

2(h− z)ψy

h

∂ 2E(0)
j

∂y∂ z

+
(h− z)(ψxx +ψyy)

h

∂E(0)
j

∂ z
+

2κ2ψ
h

E(0)
j .

It follows from (37) that we have explicitly

F(1)
j (ρ ,z) =

2κ2t j

h
ψ (exp(−iκz)− exp(iκz))

− iκt j(h− z)

h
(ψxx +ψyy)(exp(−iκz)+ exp(iκz)) .

The divergence free condition (22) reduces to

∂xE
(1)
1 +∂yE

(1)
2 +∂zE

(1)
3 = w(1) in D, (39)

where

w(1)(ρ ,z) =
ψ
h

(
∂xE

(0)
1 +∂yE

(0)
2

)
+

(
h− z

h

)(
ψx∂zE

(0)
1 +ψy∂zE

(0)
2

)

=− iκ(h− z)
h

(t1ψx + t2ψy)(exp(−iκz)+ exp(iκz)) .

The perfectly conducting boundary condition (23) on z = 0 is

E(1)
1 (ρ ,0) = u(1)1 (ρ) =−ψx(ρ)E

(0)
3 (ρ ,0) = 0,

E(1)
2 (ρ ,0) = u(1)2 (ρ) =−ψy(ρ)E

(0)
3 (ρ ,0) = 0.

Evaluating (39) at z = 0 gives

∂zE
(1)
3 (ρ ,0) = w(1)(ρ ,0)−∂xE

(1)
1 (ρ ,0)−∂yE

(1)
2 (ρ ,0) =−2iκ(t1ψx + t2ψy).

The transparent boundary condition (25) becomes

∂zE
(1)
1 −∂xE

(1)
3 = iκH(1)

1 + v(1)1 , ∂zE
(1)
2 −∂yE

(1)
3 = iκH(1)

2 + v(1)2 , (40)

where

v(1)j (ρ) =−ψ
h

∂zE
(0)
j (ρ ,h) =

iκt j

h
(exp(−iκh)+ exp(iκh))ψ.

The divergence free condition (26) gives one more boundary condition on z = h:

∂xE
(1)
1 (ρ ,h)+∂yE

(1)
2 (ρ ,z)+∂zE

(1)
3 (ρ ,z) = 0.
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Consider the Fourier expansions for periodic functions of E(1)
j (ρ ,z),F(1)

j (ρ ,z), and ψ(ρ):

ψ(ρ) = ∑
n∈Z2

ψn exp(iαn ·ρ),

E(1)
j (ρ ,z) = ∑

n∈Z2

E(1)
jn (z)exp(iαn ·ρ),

F(1)
j (ρ ,z) = ∑

n∈Z2

F(1)
jn (z)exp(iαn ·ρ),

where

F(1)
jn (z) =

[2κ2t j

h
(exp(−iκz)− exp(iκz))

+
iκt j(h− z)

h
(α2

1n +α2
2n)(exp(−iκz)+ exp(iκz))

]
ψn.

Substituting the above Fourier expansions into (38), we derive an equation for E(1)
jn (z):

d2E(1)
jn (z)

dz2 +
(
κ2 −|αn|2

)
E(1)

jn (z) = F(1)
jn (z), 0 < z < h, (41)

together with boundary conditions at z = 0:

E(1)
1n = 0, E(1)

2n = 0, E(1)
3n

′
(0) = 2κ(α1n +α2n)ψn, (42)

and boundary conditions at z = h:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E(1)
1n

′ − iα1nE(1)
3n =

i
βn

[
(κ2 −α2

2n)E
(1)
1n +α1nα2nE(1)

2n

]
+ v(1)1n ,

E(1)
2n

′ − iα2nE(1)
3n =

i
βn

[
(κ2 −α2

1n)E
(1)
2n +α1nα2nE(1)

1n

]
+ v(1)2n ,

E(1)
3n

′
+ iα1nE(1)

1n + iα2nE(1)
2n = 0,

(43)

where v(1)1n and v(2)1n are the Fourier coefficients of v(1)1 (ρ) and v(1)2 (ρ). Explicitly, we have

v(1)jn =
iκt j

h
(exp(−iκh)+ exp(iκh))ψn.

Following straightforward but tedious calculations, we may solve the two-point boundary
value problem (41)–(43) and obtain elegant equations

E(1)
1n (h) = 2iκt1 exp(iβnh)ψn and E(1)

2n (h) = 2iκt2 exp(iβnh)ψn, (44)

which relate the Fourier coefficients of order one terms E(1)
j (ρ ,h) with the Fourier coefficient

of the grating profile function ψ(ρ).

4. Reconstruction formula

Assume that the noisy data takes the form

Eδ
j (ρ ,h) = Ej(ρ ,h)+O(δ ),
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where Ej(ρ ,h), j = 1,2 is the exact data and δ is the noise level.
Evaluating the power series (20) at z = h and replacing Ej(ρ ,h) with Eδ

j (ρ ,h), we have

Ej(ρ ,h) = E(0)
j (ρ ,h)+ εE(1)

j (ρ ,h)+O(ε2)+O(δ ). (45)

Rearranging (45), and dropping O(ε2) and O(δ ) yield

εE(1)
j (ρ ,h) = Eδ

j (ρ ,h)−E(0)
j (ρ ,h) (46)

which is the linearization of the nonlinear inverse problem and enables us to find an explicit
reconstruction formula for the linearized inverse problem.

Noting φ = εψ and thus φn = εψn, where φn is the Fourier coefficient of φ . Substituting (44)
into (46), we deduce that

φn = (2iκt j)
−1

[
Eδ

jn(h)−E(0)
jn (h)

]
exp(−iβnh), (47)

where Eδ
jn(h) is the Fourier coefficient of the noisy data Eδ

j (x,h) and E(0)
jn (h) is the Fourier

coefficient of E(0)
j (x,h) given as

E(0)
jn (h) = t j (exp(−iκh)− exp(iκh))δ0n.

Here δ0n the Kronecker’s delta function.
It follows from the definition of βn and (47) that it is well-posed to reconstruct those Fourier

coefficients φn with |αn|< κ , since the small variations of the measured data will not be ampli-
fied and lead to large errors in the reconstruction, but the resolution of the reconstructed func-
tion φ is restricted by the given wavenumber κ . In contrast, it is severely ill-posed to reconstruct
those Fourier coefficients φn with |αn|> κ , since the small variations in the data will be expo-
nentially enlarged and lead to huge errors in the reconstruction, but they contribute to the super
resolution of the reconstructed function φ . To obtain a stable and super-resolved reconstruction,
we may adopt a regularization to suppress the exponential growth of the reconstruction errors.

Following [51], we consider the spectral cut-off regularization. Define the signal-to-noise
ratio (SNR) by

SNR = min{ε−2, δ−1}.
For fixed h, the cut-off wavenumber κc is chosen in such a way that

exp
(
(κ2

c −κ2)1/2h
)
= SNR,

which implies that the spatial frequency will be cut-off for those below the noise level. More
explicitly, we have

κc

κ
=

[
1+

(
logSNR

κh

)2
]1/2

, (48)

which indicates κc > κ as long as SNR > 0 and super resolution may be achieved.
Taking into account the frequency cut-off, we have a regularized reconstruction formulation

φn = (2iκt j)
−1

[
Eδ

jn(h)−E(0)
jn (h)

]
exp(−iβnh)χn, (49)

where the characteristic function

χn =

{
1 for |αn| ≤ κc,

0 for |αn|> κc.
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Once φn are computed, the grating surface function can be approximated by

φ(ρ)≈ ∑
n∈Z

φn exp(iαn ·ρ) = ∑
|αn|≤κc

(2iκt j)
−1

[
Eδ

jn(h)−E(0)
jn (h)

]
exp(i(αn ·ρ −βnh))

= ∑
|αn|≤κc

(2iκt j)
−1Eδ

jn(h)exp(i(αn ·ρ −βnh))+(2iκ)−1 (1− exp(−2iκh)) .

Hence, the method requires only two fast Fourier transforms: one is done for the data to obtain
Eδ

jn(h) and another is done to obtain the approximated function φ .

5. Numerical experiment

In this section, we discuss the algorithmic implementation for the direct and inverse problems,
present two numerical examples to illustrate the effectiveness of the proposed method, and
examine influence of the parameters ε , h, and δ on the reconstruction results. As seen in Fig. 2,
we consider two types of grating profiles: one is a smooth function with finitely many Fourier
modes and another is a non-smooth function with infinitely many Fourier modes. Although
the method requires that the grating profile function ψ(ρ) is C2(R2), it is still applicable to
non-smooth functions numerically.
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Fig. 2. The exact grating profile ψ . (a) Example 1: smooth grating profile with finite Fourier
modes; (b) Example 2: non-smooth grating profile with infinite Fourier modes.

The first-order Nédélec edge element is used for solving the direct problem and obtaining the
synthetic scattering data. Uniaxial perfect matched layer (PML) boundary condition is imposed
on z direction so that no artificial wave reflection occurs to ruin the wave field inside the domain.
Adaptive refinement technique [29] is used to achieve the solution having a specified accuracy
in an optimal fashion. Our implementation is based on parallel hierarchical grid (PHG) [56],
which is a toolbox for developing parallel adaptive finite element programs on unstructured
tetrahedral meshes and it is under active development at the State Key Laboratory of Scientific
and Engineering Computing. The finite elements implemented in PHG are the Largrange el-
ement, hierarchical H1 and H(curl) element. In order to generate the tetrahedral mesh with a
biperiodic structure, we generate a non-uniform hexahedral mesh firstly and divide each hex-
ahedron into six tetrahedrons. The linear system resulted from finite element discretization is
solve by the multifrontal massively parallel sparse direct solver [57, 58].

In the following two examples, the incident wave is taken as Einc = (1, 0, 0)exp(−iκz), i.e.,
t1 = 1 and t2 = t3 = 0, and only the first component of the electric field, E1(ρ ,h), needs to be
measured. The wavenumber is κ = 2π , which corresponds to the wavenlength λ = 1. Define
by R the unit rectangular domain, i.e., R = [0, 1.0λ ]× [0, 1.0λ ]. The computational domain is
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R× [φ , 1.0λ ] with the PML region R× [0.5λ , 1.0λ ]. The scattering data E1(ρ ,h) is obtained
by interpolation into the uniform 256× 256 grid points on the measurment plane z = h. In all
the figures, the plots are rescaled with respect to the wavelength λ to clearly show the relative
size, and the meshes are done in 32× 32 instead of 256× 256 grid points in order to reduce
the display sizes. To test the stability of the method, some relative random noise is added to the
scattering data, i.e., the scattering data takes the form

Eδ
1 (ρ ,h) = E1(ρ ,h)(1+δ rand),

where rand stands for uniformly distributed random numbers in [−1, 1]. The relative L2(R)
error is defined by

e =
‖φ −φδ ,ε‖0,R

‖φ‖0,R
,

where φ is the exact surface function and φδ ,ε is the reconstructed surface function.
Example 1. This example illustrates the reconstruction results of a smooth grating profile

with finitely many Fourier modes. The exact grating surface function is given by φ(ρ)= εψ(ρ),
where the grating profile function

ψ(x,y) = 0.6sin(2πx)sin(2πy)+ sin(4πx)sin(4πy). (50)

First, consider the surface deviation parameter ε . The measurement is taken at h = 0.4λ and
no additional random noise is added to the scattering data, i.e., δ = 0. This test is to investigate
the influence of surface deviation parameter on the reconstructions. In (46), higher order terms
of ε are dropped in the power series to linearize the inverse problem and to obtain the explicit
reconstruction formula. As expected, the smaller the surface deviation ε is, the more accurate
is the approximation of the linearized model to the original nonlinear model problem. Table 1
shows the relative L2(R) error of the reconstructions with four different surface deformation
parameter ε = 0.2λ ,0.1λ ,0.05λ ,0.025λ for fixed measurement distance h = 0.4λ . It is clear
to note that the error decreases from 85.0% to 9.86% as ε decreases from 0.2λ to 0.025λ .

Table 1. Example 1: Relative error of the reconstructions by using different ε with h= 0.4λ
and δ = 0.0.

ε 0.2λ 0.1λ 0.05λ 0.025λ

e 8.50×10−1 5.27×10−1 1.72×10−1 9.86×10−2

Table 2. Example 1: Relative error of the reconstructions by using different h with ε =
0.025λ and δ = 5%.

h 0.4λ 0.3λ 0.2λ 0.1λ

e 8.63×10−1 8.59×10−1 1.88×10−1 1.20×10−1

Next, consider the noise level δ and the measurement distance h. In practice, the scattering
data always contains certain level of noise. To test the stability and super resolving capability
of the method, we add an amount of 5% random noise to the scattering data. Table 2 reports

#204116 - $15.00 USD Received 3 Jan 2014; revised 5 Feb 2014; accepted 6 Feb 2014; published 21 Feb 2014
(C) 2014 OSA 24 February 2014 | Vol. 22,  No. 4 | DOI:10.1364/OE.22.004799 | OPTICS EXPRESS  4813



the relative L2(R) error of the reconstructions with four different measurement distance h =
0.4λ ,0.3λ ,0.2λ ,0.1λ for fixed ε = 0.025λ . Comparing the results for the same ε = 0.025λ
and h = 0.4λ in Tables 1 and 2, we can see that the relative error increases dramatically from
9.86% by using noise free data to 86.3% by using 5% noise data. The reason is that a smaller
cut-off should be chosen to suppress the expotentially increasing noise in the data and thus the
Fourier modes of the exact grating surface function can not be recovered for those higher than
the cutoff frequency, which leads to a large error and poor resolution in the reconstruction. A
smaller measurement distance is desirable in order to have a large cut-off frequency, which
enhances the resolution and reduces the error. As can be seen in Table 2, the reconstruction
error decreases from 86.3% by using h = 0.4λ to as low as 12.0% by using h = 0.1λ even for
5% noise data. Figure 3 plots the reconstructed surfaces by using h = 0.4λ ,0.3λ ,0.2λ ,0.1λ .
Comparing the exact surface profile in Fig. 2(a) and the reconstructed surface in Fig. 3(d), we
can see that the reconstruction is nearly perfect and the difference is really minor by carefully
checking the contour plots.
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Fig. 3. Example 1: Reconstructed grating surfaces by using different h with ε = 0.025λ
and δ = 5%. (a) h = 0.4λ ; (b) h = 0.3λ ; (c) h = 0.2λ ; (d) h = 0.1λ .

Example 2. This example illustrates the reconstruction results of a non-smooth grating pro-
file with infinitely many Fourier modes, as seen in Fig. 2(b). The exact grating surface function
is given by φ(ρ) = εψ(ρ), where the grating profile function

ψ(x,y) = |sin(2πx)sin(2πy)|− |cos(2πx)cos(2πy)|. (51)

Clearly, the profile function (51) is nondifferentiable and its Fourier coefficients decay slowly.
Comparing with the grating profile (50), it is more challenging to obtain as good reconstructions
as those in Example 1 since a much higher cutoff frequency is desirable to recover as many
Fourier modes as possible for (51).
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Consider the influence of ε by using noise-free data. The measurement is taken at h = 0.2λ .
Table 3 presents the relative L2(R) error of the reconstructions with four different surface defor-
mation parameter ε = 0.1λ ,0.05λ ,0.025λ ,0.0125λ . The error decreases from 72.9% to 15.2%
as ε decreases from 0.1λ to 0.0125λ . Based on these results, the following observation can be
made: a smaller deformation parameter ε yields a better reconstruction; smaller ε and h are
required in order to obtain comparable error with that in Table 2 for Example 1 due to the
non-smooth nature of the grating surface function of Example 2.

Table 3. Example 2: Relative error of the reconstructions by using different ε with h= 0.2λ
and δ = 0.0.

ε 0.1λ 0.05λ 0.025λ 0.0125λ

e 7.29×10−1 3.03×10−1 1.82×10−1 1.52×10−1

Table 4. Example 2: Relative error of the reconstructions by using different h with ε =
0.0125λ and δ = 5%.

h 0.2λ 0.1λ 0.05λ 0.025λ

e 3.99×10−1 1.72×10−1 1.40×10−1 1.19×10−1

Next, consider the influence of the noise level δ and the measurement distance h. An amount
of 5% random noise is added to the scattering data. Table 4 reports the relative L2(R) error of
the reconstructions with four different measurement distance h= 0.2λ ,0.1λ ,0.05λ ,0.025λ for
fixed ε = 0.0125λ . Comparing the results for the same ε = 0.0125λ and h = 0.2λ in Tables 3
and 4, we can see that the relative error is more than doubled from 15.2% by using noise-free
data to 39.9% by using 5% noise data. Again, the reason is that a smaller cut-off is chosen to
suppress the expotentially increasing noise in the data and thus higher Fourier modes of the
exact grating surface function can not be recovered. A smaller measurement distance helps to
enhance the resolution and reduce the error. In Table 4, the reconstruction error decreases from
39.9% by using h = 0.2λ to as low as 11.9% by using h = 0.025λ . Figure 4 shows the recon-
structed surfaces by using h = 0.2λ ,0.1λ ,0.05λ ,0.025λ . Comparing the exact surface profile
in Fig. 2(b) and the reconstructed surface in Fig. 4(d), we can see that a good reconstruction
can still be possible when using a small measurement distance.

6. Conclusion

We have presented a simple, stable, and effective computational method for reconstructing
biperiodic grating surfaces and achieved subwavelength resolution. Using the transformed field
and Fourier expansions, we deduced a power series solution for the direct problem. By dropping
higher order terms in power series, we linearized the nonlinear inverse problem and obtained
an explicit reconstruction formula, which was implemented by using the fast Fourier transform.
We considered two examples, one of which has finite Fourier modes and another one has infinite
Fourier modes, and investigated how the parameters influence the reconstructions. The results
show that super resolution may be achieved by using small measurement distance. As for future
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Fig. 4. Example 2: Reconstructed grating surfaces by using different h with ε = 0.0125λ
and δ = 5%. (a) h = 0.2λ ; (b) h = 0.1λ ; (c) h = 0.05λ ; (d) h = 0.025λ .

work, we will study a more complicated transmission problem where the surface is penetrable,
and investigate the mathematical issues such as uniqueness, stability, and resolution.
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