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Near-Field Imaging of Infinite Rough Surfaces in Dielectric Media∗
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Abstract. This paper is concerned with an inverse surface scattering problem in near-field optical imaging,
which is to reconstruct the scattering surface of a dielectric medium with a resolution beyond the
diffraction limit. It is a nontrivial extension of the authors’ work on near-field imaging of infinite
rough surfaces from impenetrable to penetrable media [G. Bao and P. Li, SIAM J. Appl. Math., 73
(2013), pp. 2162–2187], where a more sophisticated transmission problem needs to be considered.
The scattering surface is modeled as a small and smooth deformation of a plan surface. Based on a
transformed field expansion, an analytic solution, which is given as a power series, is derived for the
direct scattering problem. By neglecting high order terms in the power series, the original nonlinear
inverse problem is linearized; explicit and unified reconstruction formulas are deduced for both
reflection and transmission configurations. A spectral cut-off regularization is adopted to suppress
the exponential growth of the noise in the evanescent wave components, which carry high spatial
frequency of the scattering surface and contribute to the superresolution in the near-field regime.
The method requires only a single illumination at a fixed frequency and is realized efficiently by the
fast Fourier transform. Numerical results show that the method is simple, stable, and effective in
reconstructing scattering surfaces of dielectric media with subwavelength resolution.
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1. Introduction. Scattering problems are concerned with how an inhomogeneous medium
scatters an incident field. Given the incident field, the direct scattering problem is to determine
the scattered field, while the inverse scattering problem is to determine the nature of the
inhomogeneity, such as geometry and material property, from the measured scattered field [21].
These problems have played a fundamental role in diverse scientific areas such as radar and
sonar, geophysical exploration, and medical imaging. However, there is a resolution limit
to the sharpness of details that can be observed by conventional far-field optical microscopy,
one-half the wavelength, referred to as the Rayleigh criterion or the diffraction limit [23]. Near-
field optical imaging is an effective approach to breaking the diffraction limit and obtaining
images with subwavelength resolution [22], which leads to exciting applications in broad areas
of modern science and technology, including surface chemistry, biology, materials science, and
information storage. This paper is a nontrivial extension of the authors’ work in [9] on near-
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868 GANG BAO AND PEIJUN LI

field imaging of infinite rough surfaces from impenetrable media to penetrable dielectric media
since a more complicated transmission problem needs to be considered. It aims to develop an
effective mathematical model and design an efficient computational method for solving the
inverse scattering problem that arises in near-field optical imaging of infinite rough surfaces
in dielectric media.

We study a model problem of the scattering by an infinite rough surface, which is usu-
ally referred to as a nonlocal perturbation of an infinite plane surface such that the whole
surface lies within a finite distance of the original plane. The wave motion is governed by
the two-dimensional Helmholtz equation, which describes the propagation of acoustic waves
or the transverse electric polarization of electromagnetic waves. Specifically, we consider the
scattering of a time-harmonic plane wave incident on a penetrable rough surface from the top,
where the spaces above and below the scattering surface are filled with some homogeneous
medium, respectively. In the applications of near-field imaging, it is reasonable to assume
that the scattering surface is a small and smooth deformation of a plane surface. The defor-
mation is allowed to be very general. Examples include a nonlocal perturbation of a plane
surface, which is referred to as an unbounded rough surface [40, 41]; a local perturbation of
a plane surface, which is called a cavity wall [29]; a periodic structure, which is known as a
grating surface [2, 6]. Given the scattering surface and a time-harmonic plane incident wave,
the direct scattering problem is to predict the wave field distribution away from the surface.
We are mainly interested in studying the inverse scattering problem: what information can
we extract about the surface from the wave field measured at a constant distance above the
scattering surface, which is called the reflection configuration, or below the scattering surface,
which is called the transmission configuration, particularly in the near-field regime, i.e., at a
distance which is much smaller than the wavelength of the incident wave?

The direct problem has been examined extensively by numerous researchers via either
integral equation methods or variational approaches in the aforementioned three modalities,
such as the unbounded rough surface scattering [16, 25, 33, 37, 42, 43], the cavity scattering
problem [3, 8, 32], the diffraction grating problem [7], and references cited therein. The inverse
problem has also been investigated widely for these modalities; see [1, 10, 11, 20, 26, 30, 32]
and references therein. These results addressed conventional far-field imaging, where the
role of evanescent wave components was ignored and the resolution of reconstructions was
restricted by the Rayleigh criterion or the diffraction limit. As shown experimentally [28],
a light beam illuminating on a sample characterized by a fine structure may be converted
into propagating components, which are able to propagate towards the remote detector, and
evanescent components, which are confined on the surface. The former are associated to the
low spatial frequencies of the sample, whereas the later are connected to their high frequencies,
which do not obey the Rayleigh criterion and contribute to the subwavelength resolution.
However, it is severely ill-posed to directly make use of the evanescent waves since the noise
in the measurements is amplified exponentially and all the useful information is covered by
it. Thus, it is important to consider a regularization technique to suppress the exponential
growth of the noise in the evanescent wave components. A trade-off is necessary between the
resolution and the signal-to-noise ratio (SNR) of the data in order to obtain a stable and
superresolved reconstruction. We refer the reader to [4, 5] for the resolution and stability
analysis of a related wave imaging problem.D
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NEAR-FIELD IMAGING OF ROUGH SURFACES 869

In this paper, we consider a rigorous mathematical model for a class of surface scattering
problems in near-field optical imaging. The model problem is formulated as a boundary value
problem for the two-dimensional Helmholtz equation with transparent boundary conditions
proposed on plane surfaces confining the scattering surface. Based on a transformed field
expansion, the boundary value problem with complex scattering surface is reduced into a
successive sequence of the Helmholtz equation with plane surfaces. The reduced problem is
further converted into a two-point boundary value problem in the frequency domain and is
solved analytically by the method of integration solution. For the transformed field expansion
method and related boundary perturbation method, we refer the reader to [13, 31, 35, 38, 39]
for solving the direct diffraction grating problem and the direct unbounded rough surface
scattering problem, respectively. A boundary perturbation method may be found in [36] for
solving an inverse scattering problem with a periodic surface. By neglecting the high order
terms in the power series for the analytical solution, the nonlinear inverse problem is linearized,
and explicit and unified inversion formulas are deduced for both reflection and transmission
configurations. The inversion method requires only a single illumination of a plane wave,
particularly the normal incidence, at a fixed frequency, and can be done efficiently by the fast
Fourier transform (FFT). Spectral cut-off regularization is adopted to suppress the exponential
growth of the evanescent wave modes. Results show that the method is simple, stable, and
effective in reconstructing scattering surfaces with superresolved resolution.

We point out two closely related papers on the inverse surface scattering in near-field
imaging [12, 24], where the scattering surface is assumed to be a perfect electric conductor
and a local perturbation of a plane surface and thus the usual Sommerfeld radiation condition
is imposed for the scattered field in their model problem. We consider a general scattering
surface, and the Sommerfeld radiation condition may no longer be valid for the case of a
nonlocal perturbation of a plane surface, such as for the unbounded rough surface scattering
problem and the diffraction grating problem. An appropriate transparent boundary condition
needs to be imposed for our model problem. In addition, we give a more rigorous argument
for the linearization procedure and the dependence of the resolution on the parameters of
the deformation parameter, measurement distance, and noise level. Other related work may
be found in [14, 15] for solving an inverse medium scattering problem in near-field optical
imaging.

The outline of this paper is as follows. In section 2, a mathematical model is introduced
and formulated into a boundary value problem by using transparent boundary conditions.
A transformed field expansion is presented to analytically derive the solution for the direct
surface scattering problem in section 3. Section 4 is devoted to the derivation of explicit in-
version formulas of the inverse surface scattering problem for both reflection and transmission
configurations. In section 5, numerical implementations are discussed and numerical examples
are reported to demonstrate the effectiveness of the proposed method. The paper is concluded
with some general remarks and directions for future research in section 6.

2. Model problem. In this section, we introduce a mathematical model, define some
notation for the scattering by a penetrable dielectric rough surface, and present a boundary
value problem for the rough surface scattering model.
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870 GANG BAO AND PEIJUN LI

y = y+

y = y−

Γ+

Γ−

S

Ω+

Ω−

Ω

κ+

κ−

y = f (x)
x

y

n

Ω−
f

Ω+
f

Figure 1. Problem geometry. A plane wave is incident on the scattering surface S from the top. The spaces
Ω+

f (above S) and Ω−
f (below S) are filled with homogeneous materials which are characterized by two different

constant wavenumbers κ+ and κ−, respectively.

2.1. Helmholtz equation. As seen in Figure 1, we let the scattering surface be described
by the curve S = {(x, y) ∈ R

2 : y = f(x), x ∈ R}. Here the function f takes the form

(2.1) f(x) = εg(x), g ∈ C2(R),

where ε is a sufficiently small positive constant and is called the surface deformation parameter.
Using the scattering surface model (2.1), we assume that the scattering surface is a small and
smooth deformation of a plane surface Γ = {(x, y) ∈ R

2 : y = 0}.
The scattering surface S is embedded in the rectangular slab

Ω = {(x, y) ∈ R
2 : y− < y < y+} = R× (y−, y+),

where y+ > 0 and y− < 0 are two constants. Hence the domain Ω is bounded above by
the plane surface Γ+ = {(x, y) ∈ R

2 : y = y+} and bounded blow by the plane surface
Γ− = {(x, y) ∈ R

2 : y = y−}. Two important roles define the artificial boundary surfaces
Γ±: one is that transparent boundary conditions will be imposed on Γ±; the other is that the
scattering data will be measured on Γ±.

Let Ω+
f = {(x, y) ∈ R

2 : y > f(x)} and Ω−
f = {(x, y) ∈ R

2 : y < f(x)} be filled with
homogeneous materials which are characterized by two different constant wavenumbers κ+
and κ−, respectively. In fact, the wavenumbers satisfy κ2± = ω2με±, where ω is the angular
frequency, μ is the magnetic permeability, which is assumed to be a constant everywhere, and
ε± are the electric permittivity in Ω±

f . In this work, ε+ is assumed to be a positive constant,
i.e., ε+ > 0, and ε− is assumed to satisfy Re ε− > 0, Im ε− ≥ 0. Thus, the medium is allowed
to be lossy in Ω−

f for energy absorption.
Let an incoming plane wave

(2.2) uinc(x, y) = ei(αx−β+y)

be incident on the scattering surface S from above, where

α = κ+ sin θ, β+ = κ+ cos θ,D
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NEAR-FIELD IMAGING OF ROUGH SURFACES 871

and θ ∈ (−π/2, π/2) is the angle of incidence with respect to the positive y-axis. The
associated wavelength of the incident wave is λ = 2π/κ+. For normal incidence, i.e., θ = 0,
we have α = 0, β+ = κ+ and the incident field reduces to uinc(x, y) = e−iκ+y. As mentioned
in the introduction, the proposed method requires only a single illumination of the plane
wave at a fixed frequency. We will particularly focus on the case of normal incidence when
deriving reconstruction formulas to determine the scattering surface. It can be verified that
the incident wave satisfies

(2.3) Δuinc + κ2+u
inc = 0 in Ω+

f .

The scattering of time-harmonic electromagnetic waves in the transverse electric polariza-
tion can be modeled by the two-dimensional Helmholtz equation:

(2.4) Δu+ κ2u = 0 in R
2,

where u is the total field and the wavenumber

κ =

{
κ+ in Ω+

f ,

κ− in Ω−
f .

(2.5)

Due to the interaction between the incident field and the scattering surface, the total field u
can be decomposed into

u =

{
uinc + us in Ω+

f ,

us in Ω−
f ,

(2.6)

where us is the scattered field. For the infinite surface scattering problem, the usual Som-
merfeld radiation condition may not be valid for the scattered field. We impose the following
bounded outgoing wave condition: the scattered field us consists of bounded outgoing waves.
We refer the reader to [17, 18] for studies of the unbounded rough surface scattering problem
with a Dirichlet or an impedance boundary condition by introducing an upward propagating
radiation condition.

There are two problems to be solved, the direct surface scattering problem and the inverse
surface scattering problem. The direct problem is to determine the total field u, given the
incident field uinc and the scattering surface function f . This paper is focused on the inverse
surface scattering problem, which is to reconstruct the scattering surface function f from the
measurement of the total field u, given the incident field uinc. More specifically, this work is to
reconstruct the function f(x) from noisy data of the total field measured either at Γ+, which
is called the reflection configuration, or at Γ−, which is called the transmission configuration,
corresponding to a fixed wavenumber and a single incident direction. In particular, we are
interested in the inverse scattering in a near-field regime where the measurement distance |y±|
is much smaller than the wavelength λ, i.e., |y±| � λ.

2.2. Transparent boundary condition. We introduce transparent boundary conditions on
Γ±, which are equivalent to the bounded outgoing wave condition. Since the derivations of the
transparent boundary conditions on Γ+ and Γ− are analogous, we derive only the transparentD
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872 GANG BAO AND PEIJUN LI

boundary condition on Γ+ and state the corresponding transparent boundary condition on
Γ−.

Given a function u(x), the one-dimensional Fourier transform of u is defined by

û(ξ) = (2π)−1/2

∫
R

u(x)e−ixξdx.

It follows from (2.3), (2.4), and (2.6) that the scattered field satisfies

(2.7) Δus + κ2+u
s = 0 for y > y+.

Taking the Fourier transform of (2.7) with respect to x, we have

(2.8)
∂2ûs(ξ, y)

∂y2
+ (κ2+ − ξ2)ûs(ξ, y) = 0 for y > y+.

Noting the outgoing wave condition for the scattered field, the solution of (2.8) may be given
by

(2.9) ûs(ξ, y) = ûs(ξ, y+)e
iη+(y−y+),

where

(2.10) η2+(ξ) = κ2+ − ξ2 with Imη+(ξ) ≥ 0.

Taking the inverse Fourier transform on both sides of (2.9), we obtain

us(x, y) = (2π)−1/2

∫
R

ûs(ξ, y+)e
iη+(y−y+)eiξxdξ.

Taking the partial derivative with respect to y and then evaluating at y = y+ on both sides
of the above equation yield

∂yu
s(x, y+) = (2π)−1/2

∫
R

iη+û
s(ξ, y+)e

iξxdξ.

For any given u on Γ+, i.e., u(x, y+), we define a boundary operator T+:

T+u = (2π)−1/2

∫
R

iη+(ξ)û(ξ, y+)e
iξxdξ,

which maps u(x, y+) to ∂yu(x, y+). Noticing the field decomposition in Ω+ from (2.6), we
deduce a transparent boundary condition on Γ+:

∂y(u− uinc) = T+(u− uinc).

Equivalently, it can be reformulated in terms of the total field:

(2.11) ∂yu− T+u = φ+ on Γ+,D
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where

(2.12) φ+ = ∂yu
inc − T+u

inc = −2iβei(αx−βy+).

Similarly, for any given u on Γ−, i.e., u(x, y−), we define a boundary operator T−:

T−u = (2π)−1/2

∫
R2

iη−(ξ)û(ξ, y−)eiξxdξ,

where

(2.13) η2−(ξ) = κ2− − ξ2 with Imη−(ξ) ≥ 0.

A transparent boundary condition on Γ− can be written as

(2.14) ∂yu+ T−u = φ− on Γ−,

where

(2.15) φ− = 0.

Clearly, the transparent boundary conditions (2.11) and (2.14) are nonlocal in the physical
domain. However, they are local boundary conditions in the frequency domain, which makes
it possible to derive an analytical solution for the direct problem in section 3.

2.3. Transmission problem. We reformulate the boundary value problem (2.4), (2.11),
(2.14) into an equivalent transmission problem, which has a more convenient form for intro-
ducing the method of transformed field expansion.

Denote Ω+ = Ω+
f ∩ Ω = {(x, y) ∈ R

2 : f(x) < y < y+} and Ω− = Ω−
f ∩ Ω = {(x, y) ∈ R

2 :

y− < y < f(x)}, as seen in Figure 1. Let u+ = u|Ω+ and u− = u|Ω− ; then it follows from
(2.4) and (2.5) that we have

(2.16) Δu± + κ2±u
± = 0 in Ω±.

Recall the nonlocal transparent boundary conditions (2.11) and (2.14):

(2.17) ∂yu
± ∓ T±u± = φ± on Γ±.

Following from the jump conditions, we obtain that the field and its normal derivatives are
continuous across the scattering surface S; i.e.,

(2.18) u+(x, f(x)) = u−(x, f(x)) and ∂nu
+(x, f(x)) = ∂nu

−(x, f(x)),

where n = (n1, n2) is the unit normal vector on S pointing from Ω+ to Ω−. Explicitly, we
have

n1 =
f ′(x)

(1 + (f ′(x))2)1/2
and n2 =

−1

(1 + (f ′(x))2)1/2
.

Hence the transmission problem is to find the fields u+ and u− in Ω+ and Ω−, respectively,
such that they satisfy the Helmholtz equations (2.16), the boundary conditions (2.17), and
the continuity conditions (2.18).D
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3. Transformed field expansion. In this section, we introduce the transformed field ex-
pansion to analytically derive the solution for the transmission problem (2.16)–(2.18). The
solution is given as a power series of the surface deformation parameter ε and plays an im-
portant role for our reconstruction formulas.

3.1. Change of variables. The transformed field expansion method, as applied to the
surface scattering, begins with the change of variables

x̃ = x, ỹ = y+

(
y − f

y+ − f

)
, f < y < y+,

and

x̃ = x, ỹ = y−
(
y − f

y− − f

)
, y− < y < f,

which maps Ω+ and Ω− into rectangular slabs D+ = {(x̃, ỹ) ∈ R
2 : 0 < ỹ < y+} and

D− = {(x̃, ỹ) ∈ R
2 : y− < ỹ < 0}, respectively.

We now seek to restate the transmission problem (2.16)–(2.18) in the transformed coor-
dinates. It is easy to verify the differentiation rules

∂x = ∂x̃ − f ′
(
y+ − ỹ

y+ − f

)
∂ỹ, ∂y =

(
y+

y+ − f

)
∂ỹ for f < y < y+

and

∂x = ∂x̃ − f ′
(
y− − ỹ

y− − f

)
∂ỹ, ∂y =

(
y−

y− − f

)
∂ỹ for y− < y < f.

Introduce new functions w±(x̃, ỹ) = u±(x, y) under the transformation. It can be verified
after tedious but straightforward calculations that w±, upon dropping the prime, satisfy the
equation

(3.1) c±1
∂2w±

∂x2
+ c±2

∂2w±

∂y2
− c±3

∂2w±

∂x∂y
− c±4

∂w±

∂y
+ c±1 κ

2
±w

± = 0 in D±,

where

c±1 = (y± − f)2,

c±2 = [f ′(y± − y)]2 + y2±,
c±3 = 2f ′(y± − y)(y± − f),

c±4 = (y± − y)[f ′′(y± − f) + 2(f ′)2].

Correspondingly, the transparent boundary conditions (2.17) are changed into

(3.2) ∂yw
± ∓

(
1− f

y±

)(
T±w± + ρ±

)
= 0 on Γ±,

and the continuity conditions (2.18) are reduced to

(3.3) w+(x, 0) = w−(x, 0) and

(
y+

y+ − f

)
∂yw

+(x, 0) =

(
y−

y− − f

)
∂yw

−(x, 0).
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The original scattering model problem is described by the homogeneous Helmholtz equa-
tion with a complex scattering surface. Under the change of variables, the curved scattering
surface is reduced to a flat surface, but the Helmholtz equation is transformed into a com-
plicated partial differential equation with variable coefficients. Next we consider a classical
boundary perturbation method to reduce the complicated equation (3.1) into a sequence of
the nonhomogeneous Helmholtz equations, which can be solved in an efficient manner.

3.2. Power series. Recalling f = εg in (2.1), we consider formal expansions of the fields
w± in power series of the surface deformation parameter ε:

(3.4) w±(x, y; ε) =
∞∑
n=0

w±
n (x, y)ε

n.

Substituting (2.1) and (3.4) into (3.1), and grouping terms in power of ε, we may derive
recursion equations for w±

n :

(3.5)
∂2w±

n

∂x2
+
∂2w±

n

∂y2
+ κ2±w

±
n = v±n in D±,

where

v±n =
2g

y±

∂2w±
n−1

∂x2
+

2g′(y± − y)

y±

∂2w±
n−1

∂x∂y
+
g′′(y± − y)

y±

∂w±
n−1

∂y
+

2κ2±g
y±

w±
n−1

− g2

y2±

∂2w±
n−2

∂x2
− (g′)2(y± − y)2

y2±

∂2w±
n−2

∂y2
− 2gg′(y± − y)

y2±

∂2w±
n−2

∂x∂y

+
[2(g′)2 − gg′′](y± − y)

y2±

∂w±
n−2

∂y
− κ2±g2

y2±
w±
n−2, n = 0, 1, . . . .(3.6)

Substituting (2.1) and (3.4) into (3.2) yields boundary conditions for w±
n :

(3.7) ∂yw
±
n ∓ T±w±

n = φ±n on y = y±,

where

φ+0 = φ+, φ+1 = −
(
g

y+

)
∂yw

+
0 , φ+n = −

(
g

y+

)
T+w

+
n−1, n = 2, 3, . . . ,(3.8)

φ−0 = 0, φ−n =

(
g

y−

)
T−w−

n−1, n = 1, 2, . . . .(3.9)

Inserting (2.1) and (3.4) into (3.3) gives continuity conditions

(3.10) w+
n (x, 0)− w−

n (x, 0) = 0 and ∂yw
+
n (x, 0)− ∂yw

−
n (x, 0) = ψn,

where

(3.11) ψn =

(
g

y−

)
∂yw

+
n−1 −

(
g

y+

)
∂yw

−
n−1, n = 0, 1, . . . .
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In all of the above recursions, it is understood that w±
n , v

±
n , φ

±
n , and ψn are denoted as

zeros whenever the integer n < 0. We notice that the transmission problem (3.5)–(3.10) for
the current terms w±

n involves some nonhomogeneous terms v±n , φ±n , and ψn, which depend
only on the previous two terms w±

n−1 and w
±
n−1. Thus, the problem (3.5)–(3.11) in rectangular

domains D± indeed can be solved efficiently in a recursive manner starting from n = 0.
Numerically, one of the main difficulties in solving the transmission problem (3.5)–(3.10)

is how to treat the nonlocal boundary conditions in (3.7). Evidently, the boundary conditions
(3.7) are local in the Fourier frequency space after taking the Fourier transform with respect
to x. Taking the Fourier transform of (3.5) with respect to x, we obtain one-dimensional
ordinary differential equations:

∂2ŵ+
n

∂y2
+ η2+ŵ

+
n = v̂+n , 0 < y < y+,(3.12)

∂2ŵ−
n

∂y2
+ η2−ŵ

−
n = v̂−n , y− < y < 0,(3.13)

where η+ and η− are defined in (2.10) and (2.13), respectively. Importantly, the nonlocal
boundary conditions (3.7) become local in the Fourier variable ξ:

∂yŵ
+
n − iη+ŵ

+
n = φ̂+n on y = y+,(3.14)

∂yŵ
−
n + iη−ŵ−

n = φ̂−n on y = y−.(3.15)

The continuity conditions (3.10) reduce to

(3.16) ŵ+
n (ξ, 0)− ŵ−

n (ξ, 0) = 0 and ∂yŵ
+
n (ξ, 0)− ∂yŵ

−
n (ξ, 0) = ψ̂n.

In the frequency domain, the two-dimensional transmission problem (3.5)–(3.11) reduces
to a simple one-dimensional two-point boundary value problem (3.12)–(3.16). As is discussed
in Appendix B, two-point boundary value problems can be solved analytically. Next we
present an explicit solution for the problem (3.12)–(3.11).

Considering the second order equation (3.12) along with the boundary condition (3.14),
we may deduce from Theorem B.1 that the solution can be represented as

(3.17) ŵ+
n (ξ, y) = eiη+yŵ+

n (ξ, 0) +K+
1 (ξ, y)φ̂

+
n (ξ)−

∫ y+

0
K+

2 (ξ, y, z)v̂+n (ξ, z)dz,

where

(3.18) K+
1 (ξ, y) =

eiη+y+

2iη+

(
eiη+y − e−iη+y

)
and

(3.19) K+
2 (ξ, y, z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eiη+y

2iη+

(
eiη+z − e−iη+z

)
, z < y,

eiη+z

2iη+

(
eiη+y − e−iη+y

)
, z > y.
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Similarly, we may apply Theorem B.2 to the second order equation (3.13) along with the
boundary condition (3.15), and derive that the solution is given as

(3.20) ŵ−
n (ξ, y) = e−iη−yŵ−

n (ξ, 0) +K−
1 (ξ, y)φ̂−n (ξ) +

∫ 0

y−
K−

2 (ξ, y, z)v̂
−
n (ξ, z)dz,

where

(3.21) K−
1 (ξ, y) =

e−iη−y−

2iη−

(
eiη−y − e−iη−y

)
and

(3.22) K−
2 (ξ, y, z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−iη−z

2iη−

(
eiη−y − e−iη−y

)
, z < y,

e−iη−y

2iη−

(
eiη−z − e−iη−z

)
, z > y.

In (3.17) and (3.20), the solutions are given in terms of ŵ±
n (ξ, 0), which are unknown but can

be determined from the continuity conditions (3.16). Indeed, simple calculations yield

∂yŵ
+
n (ξ, 0) = iη+ŵ

+
n (ξ, 0) + eiη+y+ φ̂+n (ξ)−

∫ y+

0
eiη+z v̂+n (ξ, z)dz,

∂yŵ
−
n (ξ, 0) = −iη−ŵ−

n (ξ, 0) + e−iη−y− φ̂−n (ξ) +
∫ 0

y−
e−iη−zv̂+n (ξ, z)dz,

which combines with (3.16) to yield

ŵ±
n (ξ, 0) =− i(η+ + η−)−1

[
ψ̂n + e−iη−y−φ̂−n − eiη+y+ φ̂+n

+

∫ y+

0
eiη+z v̂+n (ξ, z)dz +

∫ 0

y−
e−iη−z v̂−n (ξ, z)dz

]
.(3.23)

Once ŵ±
n (ξ, y) are computed from (3.17)–(3.23), the solutions w±

n (x, y) can be obtained
by taking the inverse Fourier transform of ŵ±

n (ξ, y) with respect to ξ.

4. Inverse problem. In this section, we present an efficient and stable method for re-
constructing the scattering surface from the transformed field expansion introduced in the
previous section. Explicit reconstruction formulas are deduced for both the reflection config-
uration and the transmission configuration and are numerically realized by using the FFT.

4.1. Formulation. The inverse surface scattering problem is nonlinear. Based on the
power series (3.4), a linearization is considered in order to derive explicit reconstruction for-
mulas.

Let uδ(x, y+) and u
δ(x, y−) be the noisy data measured from the reflection configuration at

Γ+ and the transmission configuration at Γ−, respectively. We assume that the data uδ(x, y±)
takes the form

(4.1) uδ(x, y±) = u±(x, y±) +O(δ),D
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where u±(x, y±) denotes the noise-free data at Γ± and δ represents the noise level.
It follows from the asymptotic expansion (3.4) that we have

(4.2) w±(x, y) = w±
0 (x, y) + εw±

1 (x, y) +O(ε2).

Evaluating (4.2) at y = y±, and noting w±(x, y±) = u±(x, y±) and wδ(x, y±) = uδ(x, y±)
under the change of variables, we have

(4.3) wδ(x, y±) = w±
0 (x, y±) + εw±

1 (x, y±) +O(ε2) +O(δ).

Rearranging (4.3) yields

(4.4) εw±
1 (x, y±) =

(
wδ(x, y±)− w±

0 (x, y±)
)
+O(ε2) +O(δ),

which is the basis of our reconstruction formulas. Here the two parameters ε and δ indicate
the ill-posed nature of the inverse problem: the larger the two parameters ε and δ are, the
more severe the ill-posedness of the inverse problem is. Neglecting the asymptotic terms of ε2

and δ in (4.4) gives

(4.5) εw±
1 (x, y±) = wδ(x, y±)− w±

0 (x, y±),

which actually linearizes the nonlinear inverse problem and may lead to explicit inversion
formulas for the linearized inverse problem.

In the rest of this section, using solution representations (3.17) and (3.20), we shall derive
an analytic expression of the order zero term w±

0 , which represents the solution of a plane wave
propagating in a two-layered medium, and the order one term w±

1 , which carries information
of the scattering surface f .

4.2. Order zero. Recalling (3.6), (3.8), (3.9), and (3.11), we have

v±0 = 0, φ+0 = −2iβ+e
i(αx−β+y+), φ−0 = 0, ψ0 = 0,

which give, after taking the Fourier transform with respect to x,

v̂±0 = 0, φ̂+0 = −2(2π)1/2iβ+δ(ξ − α)e−iβ+y+ , φ̂−0 = 0, ψ̂0 = 0.

Here δ is the Dirac delta function.
Plugging the above quantities into (3.23), we obtain

ŵ±
0 (ξ, 0) =− i(η+ + η−)−1

[
ψ̂0 + e−iη−y−φ̂−0 − eiη+y+ φ̂+0

+

∫ y+

0
eiη+zv̂+0 (ξ, z)dz +

∫ 0

y−
e−iη−z v̂−0 (ξ, z)dz

]
=

(
ieiη+y+

η+ + η−

)
φ̂+0 .(4.6)

Using the solution representations (3.17) and (3.20), we have

(4.7) ŵ+
0 (ξ, y) = eiη+yŵ+

0 (ξ, 0) +K+
1 (ξ, y)φ̂+0 (ξ)D
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and

(4.8) ŵ−
0 (ξ, y) = e−iη−yŵ−

0 (ξ, 0).

Substituting (4.6) into (4.7) and (4.8) yields

(4.9) ŵ+
0 (ξ, y) =

(
ieiη+y+

η+ + η−

)
eiη+yφ̂+0 +

(
eiη+y+

2iη+

)(
eiη+y − e−iη+y

)
φ̂+0

and

(4.10) ŵ−
0 (ξ, y) =

(
ieiη+y+

η+ + η−

)
e−iη−yφ̂+0 .

It can be verified from (2.10) that η+(α) = β+. Denote β− = η−(α). Plugging φ̂+0 into
(4.9) and (4.10), and taking the inverse Fourier transform, we obtain

w+
0 (x, y) =

∫
R

(
2β+

η+ + η−

)
δ(ξ − α)eiη+yeiξxdξ

−
∫
R

(
β+
η+

)
δ(ξ − α)(eiη+y − e−iη+y)eiξxdξ

=

(
2β+

β+ + β−

)
ei(αx+β+y) + eiαx(e−iβ+y − eiβ+y) = ei(αx−β+y) + rei(αx+β+y)(4.11)

and

w−
0 (x, y) =

∫
R

(
2β+

η+ + η−

)
δ(ξ − α)e−iη−yeiξxdξ = tei(αx−β−y),(4.12)

where

(4.13) r =
β+ − β−
β+ + β−

and t =
2β+

β+ + β−
are known as the reflection coefficient and the transmission coefficient, respectively.

Denote
uref(x, y) = rei(αx+β+y) and utra(x, y) = tei(αx−β−y).

Clearly, uref and utra represent the reflected plane wave and the transmitted plane wave,
respectively. The leading term w+

0 consists of the incident field and the reflected field, i.e.,
w+
0 = uinc + uref , and the leading term w−

0 is the transmitted field, i.e., w−
0 = utra.

Physically, the leading term w±
0 arises from the interaction between the incident field uinc

and the plane dielectric surface, which generate the reflected field uref and the transmitted
field utra. Mathematically, they satisfy the Helmholtz equation

Δw±
0 + κ2±w

±
0 = 0 in D±,

along with the transparent boundary conditions

∂yw
±
0 ∓ T±w±

0 = φ± on Γ±
and the continuity conditions

w+
0 (x, 0) = w−

0 (x, 0) and ∂yw
+
0 (x, 0) = ∂yw0(x, 0).

Indeed, it can be verified that the solutions w±
0 are given in (4.11) and (4.12).D
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4.3. Order one. Recalling (3.11), (4.11), and (4.12), we have from simple calculations
that

ψ1(x) =

(
g

y−

)
∂yw

+
0 (x, 0) −

(
g

y+

)
∂yw

−
0 (x, 0) =

[
iβ−t
y+

− iβ+(1− r)

y−

]
g(x)eiαx,

which gives, after taking the Fourier transform with respect to x,

(4.14) ψ̂1(ξ) =

[
iβ−t
y+

− iβ+(1− r)

y−

]
ĝ(ξ − α).

Following (3.8)–(3.9) and (4.11)–(4.12), we have

φ+1 (x) =−
(
g

y+

)
(T+w

+
0 + φ+)(x, y+) = −

(
g

y+

)
∂yw

+
0 (x, y+)

=

(
iβ+
y+

)
(e−iβ+y+ − reiβ+y+)g(x)eiαx

and

φ−1 (x) =
(
g

y−

)
(T−w−

0 )(x, y−) = −
(
g

y−

)
∂yw

−
0 (x, y−)

=

(
iβ−t
y−

)
e−iβ−y−g(x)eiαx.

Taking the Fourier transform of φ+1 and φ−1 , we obtain

φ̂+1 (ξ) =

(
iβ+
y+

)
(e−iβ+y+ − reiβ+y+)ĝ(ξ − α),(4.15)

φ̂−1 (ξ) =
(
iβ−t
y−

)
e−iβ−y− ĝ(ξ − α).(4.16)

It follows from (3.6) that

v±1 =
2g

y±
∂2w±

0

∂x2
+

2g′(y± − y)

y±
∂2w±

0

∂x∂y
+
g′′(y± − y)

y±
∂w±

0

∂y
+

2κ2±g
y±

w±
0 .

Substituting the expressions of w±
0 in (4.11) and (4.12) into the right-hand side of the above

equation and noting the definitions of β±, we obtain

v+1 =−
(
2α2

y+

)
(e−iβ+y + reiβ+y)g(x)eiαx +

(
2αβ+
y+

)
(y+ − y)(e−iβ+y − reiβ+y)g′(x)eiαx

−
(
iβ+
y+

)
(y+ − y)(e−iβ+y − reiβ+y)g′′(x)eiαx +

(
2κ2+
y+

)
(e−iβ+y + reiβ+y)g(x)eiαx

=

(
2β2+
y+

)
(e−iβ+y + reiβ+y)g(x)eiαx +

(
2αβ+
y+

)
(y+ − y)(e−iβ+y − reiβ+y)g′(x)eiαx

−
(
iβ+
y+

)
(y+ − y)(e−iβ+y − reiβ+y)g′′(x)eiαx
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and

v−1 =−
(
2α2t

y−

)
e−iβ−yg(x)eiαx +

(
2αβ−t
y−

)
(y− − y)e−iβ−yg′(x)eiαx

−
(
iβ−t
y−

)
(y− − y)e−iβ−yg′′(x)eiαx +

(
2κ2−t
y−

)
e−iβ−yg(x)eiαx

=

(
2β2−t
y−

)
e−iβ−yg(x)eiαx +

(
2αβ−t
y−

)
(y− − y)e−iβ−yg′(x)eiαx

−
(
iβ−t
y−

)
(y− − y)e−iβ−yg′′(x)eiαx.

Taking the Fourier transform of v±1 yields

v̂+1 (ξ, y) =

[(
2β2+
y+

)
(e−iβ+y + reiβ+y) +

(
2iξαβ+
y+

)
(y+ − y)(e−iβ+y − reiβ+y)

+

(
iξ2β+
y+

)
(y+ − y)(e−iβ+y − reiβ+y)

]
ĝ(ξ − α)(4.17)

and

v̂−1 (ξ, y) =
[(

2β2−t
y−

)
e−iβ−y +

(
2iξαβ−t
y−

)
(y− − y)e−iβ−y

+

(
iξ2β−t
y−

)
(y− − y)e−iβ−y

]
ĝ(ξ − α).(4.18)

To simplify tedious calculations, from now on, we consider the special case of a normal
incidence for the incident field, i.e.,

θ = 0, α = 0, β± = κ±.

Otherwise, there is a phase shift of the reconstruction for other directions of incidence due to
α �= 0.

Under the normal incidence, (4.14) reduces to

(4.19) ψ̂1(ξ) =

[
iκ−t
y+

− iκ+(1− r)

y−

]
ĝ(ξ),

(4.15) and (4.16) can be written as

φ̂+1 (ξ) =

(
iκ+
y+

)
(e−iκ+y+ − reiκ+y+)ĝ(ξ),(4.20)

φ̂−1 (ξ) =
(
iκ−t
y−

)
e−iκ−y− ĝ(ξ),(4.21)
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and (4.17) and (4.18) are simplified to

v̂+1 (ξ, y) =

[(
2κ2+
y+

)
(e−iκ+y + reiκ+y)

+

(
iξ2κ+
y+

)
(y+ − y)(e−iκ+y − reiκ+y)

]
ĝ(ξ),(4.22)

v̂−1 (ξ, y) =
[(

2κ2−t
y−

)
e−iκ−y +

(
iξ2κ−t
y−

)
(y− − y)e−iκ−y

]
ĝ(ξ).(4.23)

Correspondingly, the reflection coefficient r and the transmission coefficient t are reduced to

(4.24) r =
κ+ − κ−
κ+ + κ−

and t =
2κ+

κ+ + κ−
.

It follows from (3.23) that

ŵ±
1 (ξ, 0) =− i(η+ + η−)−1

[
ψ̂1 + e−iη−y−φ̂−1 − eiη+y+ φ̂+1 +

∫ y+

0
eiη+z v̂+1 (ξ, z)dz

+

∫ 0

y−
e−iη−z v̂−1 (ξ, z)dz

]

=− i(η+ + η−)−1 (M1 +M2 +M3) .(4.25)

Next we compute M1,M2, and M3 explicitly in order to simplify the expression of ŵ±
1 (ξ, 0).

Noting (4.19)–(4.21), we get

M1 =ψ̂1 + e−iη−y−φ̂−1 − eiη+y+ φ̂+1

=

[
iκ−t
y+

− iκ+(1− r)

y−

]
ĝ(ξ) +

(
iκ−t
y−

)
e−i(η−+κ−)y− ĝ(ξ)

−
(
iκ+
y+

)
eiη+y+(e−iκ+y+ − reiκ+y+)ĝ(ξ).(4.26)

Using (4.22) and (4.23), we have from integration by parts that

M2 =

∫ y+

0
eiη+zv̂+1 (ξ, z)dz =

∫ y+

0
eiη+z

[(
2κ2+
y+

)
(e−iκ+z + reiκ+z)

+

(
iξ2κ+
y+

)
(y+ − z)(e−iκ+z − reiκ+z)

]
ĝ(ξ)dz

=

(
2iκ2+
y+

)[(
1− ei(η+−κ+)y+

)
(η+ − κ+)

+
r
(
1− ei(η++κ+)y+

)
(η+ + κ+)

]
ĝ(ξ)

− ξ2κ+

[
1

(η+ − κ+)
− r

(η+ + κ+)

]
ĝ(ξ)
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+

(
iξ2κ+
y+

)[(
1− ei(η+−κ+)y+

)
(η+ − κ+)2

− r
(
1− ei(η++κ+)y+

)
(η+ + κ+)2

]
ĝ(ξ)

=

(
iκ+
y+

)
eiη+y+(e−iκ+y+ − reiκ+y+)ĝ(ξ)−

[
iκ+(1− r)

y+

]
ĝ(ξ)

+ [κ+(η+ + κ+)− rκ+(η+ − κ+)] ĝ(ξ)(4.27)

and

M3 =

∫ 0

y−
e−iη−z v̂−1 (ξ, z)dz =

∫ 0

y−
e−iη−z

[(
2κ2−t
y−

)
e−iκ−z

+

(
iξ2κ−t
y−

)
(y− − z)e−iκ−z

]
ĝ(ξ)dz

=

(
2iκ2−t
y−

)(
1− e−i(η−+κ−)y−

(η− + κ−)

)
ĝ(ξ)− ξ2κ−t

(η− + κ−)
ĝ(ξ)

−
(
iξ2κ−t
y−

)(
1− e−i(η−+κ−)y−

(η− + κ−)2

)
ĝ(ξ)

=

(
iκ−t
y−

)(
1− e−i(η−+κ−)y−

)
ĝ(ξ) + tκ−(η− − κ−)ĝ(ξ).(4.28)

Noting κ+(1− r) = κ−t due to (4.24) and combining (4.26)–(4.28), we can simplify (4.25) to

(4.29) ŵ±
1 (ξ, 0) = C0(ξ, κ±)ĝ(ξ),

where

(4.30) C0(ξ, κ±) = −i(η+ + η−)−1 [κ+(η+ + κ+)− rκ+(η+ − κ+) + tκ−(η− − κ−)].

It follows from the solution representation (3.17) that

(4.31) ŵ+
1 (ξ, y) = N+

1 (ξ, y) +N+
2 (ξ, y)−N+

3 (ξ, y),

where

N+
1 = eiη+yŵ+

1 (ξ, 0), N+
2 = K+

1 (ξ, y)φ̂
+
1 (ξ), N+

3 =

∫ y+

0
K+

2 (ξ, y, z)v̂
+
1 (ξ, z)dz.

Evaluating (4.31) at y = y+ yields

ŵ+
1 (ξ, y+) = N+

1 (ξ, y+) +N+
2 (ξ, y+)−N+

3 (ξ, y+).

Simple calculations yield

(4.32) N+
1 (ξ, y+) = C0(ξ, κ+, κ−)eiη+y+ ĝ(ξ).D
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Using (4.20), we have

N+
2 (ξ, y+) = K+

1 (ξ, y+)φ̂
+
1 (ξ)

=

(
κ+

2η+y+

)(
ei(η+−κ+)y+ − rei(η++κ+)y+

)
(eiη+y+ − e−iη+y+)ĝ(ξ).(4.33)

Following the definitions of K+
2 and v+1 , and using the same integration by parts as for M2,

we obtain

N+
3 (ξ, y+) =

∫ y+

0
K+

2 (ξ, y+, z)v̂
+
1 (ξ, z)dz =

∫ y+

0

eiη+y+

2iη+
(eiη+z − e−iη+z)

×
[(

2κ2+
y+

)
(e−iκ+z + reiκ+z) +

(
iξ2κ+
y+

)
(y+ − z)(e−iκ+z − reiκ+z)

]
ĝ(ξ)dz

=

(
κ+

2η+y+

)(
ei(η+−κ+)y+ − rei(η++κ+)y+

)
(eiη+y+ − e−iη+y+)ĝ(ξ)

− iκ+(1− r)eiη+y+ ĝ(ξ).(4.34)

Combining (4.32)–(4.34) yields

(4.35) ŵ+
1 (ξ, y+) = C+(ξ, κ±)eiη+y+ ĝ(ξ),

where

(4.36) C+(ξ, κ±) = C0(ξ, κ±) + iκ+(1− r).

It follows from the solution representation (3.20) that

(4.37) ŵ−
1 (ξ, y) = N−

1 (ξ, y) +N−
2 (ξ, y) +N−

3 (ξ, y),

where

N−
1 = e−iη−yŵ−

1 (ξ, 0), N−
2 = K−

1 (ξ, y)φ̂−1 (ξ), N−
3 =

∫ 0

y−
K−

2 (ξ, y, z)v̂−1 (ξ, z)dz.

Evaluating (4.37) at y = y− yields

ŵ−
1 (ξ, y−) = N−

1 (ξ, y−) +N−
2 (ξ, y−) +N−

3 (ξ, y−).

Simple calculations yield

(4.38) N−
1 (ξ, y−) = C0(ξ, κ±)e−iη−y− ĝ(ξ).

Using (4.21), we have

N−
2 (ξ, y−) = K−

1 (ξ, y−)φ̂−1 (ξ)D
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=

(
κ−t

2η−y−

)
e−i(η−+κ−)y−(eiη−y− − e−iη−y−)ĝ(ξ).(4.39)

Following the definitions of K−
2 and v−1 , and using the same integration by parts as for M3,

we get

N−
3 (ξ, y−) =

∫ 0

y−
K−

2 (ξ, y−, z)v̂−1 (ξ, z)dz =

∫ 0

y−

e−iη−y−

2iη−
(eiη−z − e−iη−z)

×
[(

2κ2−t
y−

)
e−iκ−z +

(
iξ2κ−t
y+

)
(y− − z)e−iκ−z

]
dz

=−
(

κ−t
2η−y−

)
e−i(η−+κ−)y−(eiη−y− − e−iη−y−)ĝ(ξ) + iκ−tĝ(ξ).(4.40)

Adding (4.38)–(4.40) yields

(4.41) ŵ−
1 (ξ, y−) = C−(ξ, κ±)e−iη−y− ĝ(ξ),

where

(4.42) C−(ξ, κ±) = C0(ξ, κ±) + iκ−t.

Following from the definitions of the reflection coefficient r and the transmission coefficient
t in (4.24), and (4.36) and (4.42), we may verify that

κ+(1− r) = κ−t =
2κ+κ−
κ+ + κ−

,

which gives
C+(ξ, κ±) = C−(ξ, κ±) for all ξ ∈ R.

Hence (4.35) and (4.41) can be written as

(4.43) ŵ±
1 (ξ, y±) = C(ξ, κ±)e±iη±y± ĝ(ξ),

where

(4.44) C(ξ, κ±) = C0(ξ, κ±) +
(

2iκ+κ−
κ+ + κ−

)
.

As shown in (4.43), the first order term ŵ±
1 (ξ, y±) carries essential information of the scattering

surface function f .

4.4. Reconstruction formulas. Taking the Fourier transform of (4.5), we have

(4.45) εŵ±
1 (ξ, y±) = ŵδ(ξ, y±)− ŵ±

0 (ξ, y±).

Noting f̂ = εĝ, and combining (4.45) with (4.35) and (4.41), we deduce explicit inversion
formulas to reconstruct the scattering surface function via the reflection configuration and the
transmission configuration:

(4.46) f̂ε,δ = C−1(ξ, κ±)
(
ŵδ(ξ, y±)− ŵ±

0 (ξ, y±)
)
e∓iη±y± .
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Here the subscripts ε and δ indicate the dependence of the reconstruction on these two pa-
rameters.

It is easily seen from the definitions of η± in (2.10) and (2.13) that the inversion formulas
(4.46) make use of both propagation wave modes and evanescent wave modes. More explicitly,
it follows from the definitions of η± that we have

(4.47) f̂ε,δ = C−1(ξ, κ±)
(
ŵδ(ξ, y±)− ŵ±

0 (ξ, y±)
)
e∓iRe η±(ξ)y± e±Im η±(ξ)y± .

Clearly, the low spatial frequency modes of the scattering surface function f come from the
propagation waves, while the evanescent waves contribute to the high spatial frequency modes
of the scattering surface function f , which do not obey the Rayleigh criterion and display
superresolution.

As shown in (4.47), it is well-posed to reconstruct the scattering surface function for Fourier
modes with Im η±(ξ) = 0 in the sense that small variations in the measured data will not lead
to large errors in the reconstruction. Thus, no regularization is needed for the reconstruction
formulas (4.47) for ξ such that Im η±(ξ) = 0. In contrast, it is severely ill-posed using (4.47)
to reconstruct the scattering surface function for Fourier modes with Im η±(ξ) > 0. Small
variations in the measured data will be exponentially amplified and lead to huge errors in the
reconstruction. Thus, regularization must be considered to suppress the exponential growth
of the reconstruction errors for the reconstruction formulas (4.47) corresponding to those ξ
such that Im η±(ξ) > 0.

There are two ideas to remedy the ill-posedness of the inversion formulas (4.47) and thus
obtain a stable and superresolved reconstruction. One idea is to make |y±| as small as possible,
i.e., measure the data at the height which is as close as possible to the scattering surface.
This is exactly the idea of near-field optics: by bringing a scanning tip into the near-field
(subwavelength) of the sample, the high frequency evanescent field can be detected, and thus
images with subwavelength resolution may be obtained. Another idea is to adopt a commonly
used regularization technique such as spectral cut-off or Tikhonov regularization [27]. We do
not discuss here the relative advantages or disadvantages of different regularization methods.
Following [12, 24], we consider only the cut-off regularization. For a fixed measurement
distance |y±|, the cut-off frequency ω± depends on the noise level δ and the surface deformation
parameter ε. Define the signal-to-noise ratio (SNR) by

SNR = min{ε−2, δ−1},

which measures the noise level and the surface deformation parameter. We choose the cut-off
frequencies ω± in such a way that

(4.48) e±Im η±(ω±)y± = SNR,

which implies that the spatial frequency will be cut off for those below the noise level and the
surface deformation parameter.

Taking into account the frequency cut-off, we have regularized reconstruction formulas

(4.49) f̂ε,δ(ξ) = C−1(ξ, κ±)
(
ŵδ(ξ, y±)− ŵ±

0 (ξ, y±)
)
e∓iη±y± χ[−ω±, ω±](ξ),D
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where the characteristic function

χ[−ω±, ω±](ξ) =

{
1 for |ξ| ≤ ω±,

0 for |ξ| > ω±.

Define

(4.50) f̃±0 (ξ) = C−1(ξ, κ±)ŵ±
0 (ξ, y±)e

∓iη±y± χ[−ω±, ω±](ξ)

and

(4.51) f̃±1 (ξ) = C−1(ξ, κ±)ŵδ(ξ, y±)e∓iη±y± χ[−ω±, ω±](ξ).

It follows from the regularized inversion formulation (4.49) that we obtain the reconstructed
scattering surface after taking the inverse Fourier transform:

(4.52) f̃±(x) = (2π)−1/2

∫
R

[f̃±1 (ξ)− f̃±0 (ξ)]eiξxdξ.

Clearly, the reconstructed scattering surface function f̃± depends on the cut-off frequencies
ω±, which depend on the scattering surface deformation parameter ε and the data noise level
parameter δ.

For the normal incidence, the leading terms w±
0 in (4.11) and (4.12) become

w+
0 (x, y) = e−iκ+y +

(
κ+ − κ−
κ+ + κ−

)
eiκ+y and w−

0 (x, y) =

(
2κ+

κ+ + κ−

)
e−iκ−y,

where the reflection coefficient r and the transmission coefficient t are defined in (4.24). Taking
the Fourier transform of w±(x, y) with respect to x yields

ŵ+
0 (ξ, y) = (2π)1/2

[
e−iκ+y +

(
κ+ − κ−
κ+ + κ−

)
eiκ+y

]
δ(ξ)

and

ŵ−
0 (ξ, y) = (2π)1/2

[(
2κ+

κ+ + κ−

)
e−iκ−y

]
δ(ξ).

It may be verified from (4.30) and (4.44) that

C(0, κ±) = C0(0, κ±) +
2iκ+κ−
κ+ + κ−

= −2iκ+(κ+ − κ−)
κ+ + κ−

.

Noting (4.36), (4.42), and (4.50), we obtain

(2π)−1/2

∫
R

f̃+0 (ξ)eiξxdξ = C−1(0, κ±)
[
e−iκ+y+ +

(
κ+ − κ−
κ+ + κ−

)
eiκ+y+

]
e−iκ+y+

=
i

2κ+

[(
κ+ + κ−
κ+ − κ−

)
e−2iκ+y+ + 1

]
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and

(2π)−1/2

∫
R

f̃−0 (ξ)eiξxdξ = C−1(0, κ±)
[(

2κ+
κ+ + κ−

)
e−iκ−y−

]
eiκ−y− = i(κ+ − κ−)−1.

Therefore, the regularized inversion formulas (4.49) can be finally written as

(4.53) f̃(x) = (2π)−1/2

∫
R

f̃+1 (ξ)eiξxdξ − i

2κ+

[(
κ+ + κ−
κ+ − κ−

)
e−2iκ+y+ + 1

]

and

(4.54) f̃(x) = (2π)−1/2

∫
R

f̃−1 (ξ)eiξxdξ − i(κ+ − κ−)−1.

As shown in (4.53) and (4.54), one Fourier transform and one inverse Fourier transform
are needed to reconstruct the scattering surface function for either the reflection configuration
or the transmission configuration. These transforms are realized by the FFT in our numerical
experiments.

5. Numerical experiments. In this section, we discuss the implementation for the direct
and inverse surface scattering problems, present three numerical examples to illustrate the
effectiveness of the proposed method, and examine the dependence of resolution on all three
parameters: measurement distance |y±|, surface deformation parameter ε, and the noise level
δ. Three types of surfaces are considered: a locally perturbed smooth surface, an oscillatory
periodic smooth surface, and a nonsmooth piecewise constant surface.

In practice, the open domain needs to be truncated into a bounded domain in order
to solve the direct problem and obtain the synthetic scattering data. Suitable boundary
conditions have to be imposed on the boundary of the bounded domain so that no artificial
wave reflection occurs to ruin the wave field inside the domain. In section 2, a transparent
boundary condition is introduced in the y-direction. However, this nonreflecting boundary
condition is nonlocal and involves the issue of the Fourier transform in the whole R. In
addition, an appropriate boundary condition needs to be considered in the x-direction. Since
the focus is on the inverse problem in this work, we consider special examples: the scattering
surfaces are even functions. Due to the symmetry of the problem, normal incidence, and even
scattering surfaces, the solutions to the direct problem are also symmetric to the y-axis and
thus the periodic boundary condition can be used in the x-direction. In the y-direction, we
adopt a convenient perfectly matched layer (PML) technique to truncate the open domain [19].
The scattering data is obtained by the numerical solution of the direct scattering problem,
which is implemented by using the finite element method.

In the following three examples, the incident wave is taken as a single plane wave with
normal incidence, i.e., uinc(x, y) = e−iκ+y. The wavenumber above the scattering surface
is κ+ = 2π, which corresponds to the wavelength λ = 1, and the wavenumber below the
scattering surface is κ− = 2π(4.0+i)1/2 , which is exemplary and stands for a general substrate
with a complex permittivity. Since the results are similar for the reflection configuration
and the transmission configuration, we shall present only the examples for the reflection
configuration and use h to stand for the measurement distance y+, i.e., h = y+. In all theD
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figures, the plots were rescaled with respect to the wavelength λ. The computational domain
for the direct problem is [−0.5, 0.5] × [−0.5, 0.5] with the PML region [−0.5, 0.5] × [−0.5,
−0.3] ∪ [−0.5, 0.5] × [0.3, 0.5]. Due to the unstructured triangular meshes, the wave field
data u(x, h) is not equally spaced with respect to x. We construct a curve u(x, h) by using
the natural cubic spline interpolation formula based on the computed discrete data u(x, h).
The curve u(x, h) is evaluated at equally spaced points xj, j = 0, 1, . . . , 512, in the interval
[−0.5, 0.5] and used as our synthetic scattering data.

To test the stability of the method, some relative random noise is added to the scattering
data; i.e., the scattering data takes the form

uδ(x, h) = u(x, h)(1 + δ rand),

where rand stands for uniformly distributed random numbers in [−1, 1].
Example 1. This example illustrates the results for a locally perturbed smooth surface.

The exact scattering surface is given by f(x) = εg(x), where

g(x) = cos(6πx)e−20x2
.

We examine the effects of y+, δ, and ε on the reconstructions.
First consider the measurement distance h. The surface deformation parameter was fixed

as ε = 0.01. Besides the error from the linearization by dropping higher order terms in the
power series, a small amount of noise with δ = 0.1% is added to the data. Figure 2 shows the
reconstructed surfaces (dashed curves) against the exact surfaces (solid curves) by using the
scattering data measured at different distances h = 0.1λ, 0.15λ, 0.2λ, and 0.25λ. It is clear
that a smaller measurement distance gives better reconstruction results. The fine features of
the scattering surface are completely recovered, and the subwavelength resolution is obviously
achieved especially when using h = 0.1λ. This is attributed to the fact that the larger cut-
off frequency ω+ may be used in the inversion formula when the measurement distance h is
smaller for fixed SNR, i.e., fixed ε and δ.

Next consider the noise level parameter δ. The surface deformation parameter and the
measurement distance were fixed as ε = 0.01 and h = 0.02λ, respectively. Figure 3 plots
the reconstructed surfaces (dashed curves) against the exact surfaces (solid curves) by using
the scattering data with different noise levels δ = 0.01, 0.02, 0.03, 0.04. It can be seen that
smaller noise levels yield better reconstruction results. As expected from the relation between
the cut-off frequency and the SNR in (4.48), a larger noise level parameter δ means a smaller
SNR and thus a smaller cut-off frequency ω in order to get a stable reconstruction.

Finally consider the surface deformation parameter ε. The measurement distance h =
0.08λ, and δ = 0.1% noise is added to the data. Figure 4 shows the reconstructed surfaces
(dashed curves) against the exact surfaces (solid curve) by using the scattering data with
different surface deformation parameters ε = 0.01, 0.02, 0.03, 0.04. Clearly, smaller ε gives
better reconstruction. All the fine features are recovered especially when using ε = 0.01.
Although some amplitude information is not completely correct, all the phase information is
still correctly reconstructed even for large ε. It can be seen from the power series (4.2) that
the linearization procedure (4.5) gives more accurate approximation to the original nonlinear
inverse problem if the surface deformation parameter ε is smaller. For fixed ε and h, smallerD
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Figure 2. Example 1: A locally perturbed smooth surface. Exact surfaces (solid curves) are plotted against
reconstructed surfaces (dashed curves) using the scattering data measured at different heights of h. (a) h =
0.10λ; (b) h = 0.15λ; (c)h = 0.20λ; (d) h = 0.25λ.

δ means larger SNR and thus larger cut-off frequency ω, which contributes to a better and
sharper reconstruction.

Based on the above observation, it can be concluded that a smaller measurement dis-
tance (as small as possible) is preferred in order to obtain a stable reconstruction with a
superresolved resolution, which confirms the principle of near-field optical imaging.

Example 2. This example uses an oscillatory periodic smooth surface to illustrate the
results for a nonlocally perturbed plane surface. The exact scattering surface is described by
the periodic function f(x) = εg(x) with

g(x) = cos(2πx) − 0.2 cos(20πx).

For this example, we will not show the investigation of the reconstructions on all the pa-
rameters since the results and conclusions are the same as those for the first example. This
scattering surface is much more oscillatory and has finer features than the first example does.
It is expected to use larger cut-off frequency ω in order to completely resolve all the features
and get a superresolved resolution for the construction, which requires smaller measurement
distance h. Figure 5 shows the reconstructed surfaces (dashed curves) against the exact sur-
faces (solid curves) by using the scattering data with four different sets of parameters of
(ε, δ, h): (ε = 0.01, δ = 0.001, h = 0.02λ); (ε = 0.01, δ = 0.001, h = 0.05λ); (ε = 0.01, δ =
0.01, h = 0.02λ); (ε = 0.02, δ = 0.01, h = 0.02λ). Again, it can be seen that a smaller surfaceD

ow
nl

oa
de

d 
05

/1
5/

14
 to

 1
24

.1
6.

14
8.

14
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEAR-FIELD IMAGING OF ROUGH SURFACES 891

−0.5 −0.25 0 0.25 0.5
−0.02

−0.01

0

0.01

0.02
ε=0.01, δ=0.01, h=0.02λ

(a)

x/λ

y/
λ

−0.5 −0.25 0 0.25 0.5
−0.02

−0.01

0

0.01

0.02
ε=0.01, δ=0.02, h=0.02λ

(b)

x/λ

y/
λ

−0.5 −0.25 0 0.25 0.5
−0.02

−0.01

0

0.01

0.02
ε=0.01, δ=0.03, h=0.02λ

(c)

x/λ

y/
λ

−0.5 −0.25 0 0.25 0.5
−0.02

−0.01

0

0.01

0.02
ε=0.01, δ=0.04, h=0.02λ

(d)

x/λ

y/
λ

Figure 3. Example 1: A locally perturbed smooth surface. Exact surfaces (solid curves) are plotted against
reconstructed surfaces (dashed lines) using the scattering data with different noise levels of δ. (a) δ = 0.01;
(b) δ = 0.02; (c) δ = 0.03; (d) δ = 0.04.

deformation parameter h is needed in order to achieve equally good reconstruction for a larger
noise level parameter δ.

Example 3. This example uses a piecewise constant scattering surface to illustrate that the
method can also be applied to nonsmooth functions, though the mathematical justification
is shown only for smooth surfaces. The exact scattering surface is described by the periodic
function f(x) = εg(x), where

g(x) =

{
1 in (−0.3, − 0.1) ∪ (0.1, 0.3),

0 in [−0.5, − 0.3] ∪ [−0.1, 0.1] ∪ [0.3, 0.5].

Again, we will not show the investigation of the reconstructions on all the parameters since
the results and conclusions are the same as those for the first example. In this example,
the function is discontinuous. It is well known that the piecewise constant function contains
infinitely many Fourier coefficients that decay slowly, and the oscillatory behavior near the
discontinuities displays the well-known Gibbs phenomenon. Figure 6 shows the reconstructed
surfaces (dashed curves) against the exact surfaces (solid lines) by using the scattering data
with four different sets of parameters of (ε, δ, h): (ε = 0.01, δ = 0.001, h = 0.02λ); (ε =
0.01, δ = 0.001, h = 0.05λ); (ε = 0.01, δ = 0.01, h = 0.02λ); (ε = 0.02, δ = 0.01, h = 0.02λ).D
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Figure 4. Example 1: A locally perturbed smooth surface. Exact surfaces (solid curves) are plotted against
reconstructed surfaces (dashed curves) with different surface deformation parameters of ε. (a) ε = 0.01;
(b) ε = 0.02; (c) ε = 0.03; (d) ε = 0.04.

Similarly, it can be seen that a smaller surface deformation parameter h is needed in order to
achieve equally good reconstruction for a larger noise level parameter δ.

6. Concluding remarks. We have presented a simple, stable, and effective method for
solving an inverse surface scattering problem in near-field optical imaging of dielectric me-
dia, where the wave is allowed to penetrate the substrate below the scattering surface. The
scattering surface model is assumed to be a small and smooth deformation of a plane surface.
Using transformed field expansion, the scattering problem with a complex scattering surface
may be converted into a successive sequence of a two-point boundary value problem in the
frequency domain. An analytical solution for the direct scattering problem is deduced from
the method of integration solution. By dropping the high order terms in the asymptotic ex-
pansion, the nonlinear inverse problem is linearized to obtain explicit and unified inversion
formulas for both the reflection configuration and the transmission configuration. The cut-off
frequency is chosen from the SNR analysis which depends on the surface deformation param-
eter, noise level, and the measurement distance. The reconstruction method requires only a
single illumination at a fixed frequency and is implemented efficiently by executing two FFTs,
one for the data processing and another for the inversion. Three types of scattering surfaces
are considered, a locally perturbed surface, an oscillatory periodic surface, and a nonsmooth
surface. The effects of the deformation parameter, noise level, and measurement distanceD
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Figure 5. Example 2: An oscillatory periodic smooth scattering surface. Exact surfaces (solid curves) are
plotted against reconstructed surfaces (dashed curves) with four different sets of parameters of ε, δ, and y+:
(a) ε = 0.01, δ = 0.001, y+ = 0.02λ; (b) ε = 0.01, δ = 0.001, y+ = 0.05λ; (c) ε = 0.01, δ = 0.01, y+ = 0.02λ;
(d) ε = 0.02, δ = 0.001, y+ = 0.02λ.

were reported on the resolution of the reconstruction. The results show that superresolved
resolution may be achieved for small measurement distance, which confirms the principle of
near-field optical imaging.

We point out some future directions along the line of inverse surface scattering in near-
field imaging. In this paper, the scattering surface is assumed to be a small deformation of
a plane surface, and the linearized inverse problem is a good approximation of the original
nonlinear inverse problem. Results show that the accuracy of the reconstruction deteriorates
as the deformation parameter is increased. Thus the linear mode may not be sufficient and
the nonlinear model needs to be considered for scattering surfaces with large deviation. It is
interesting and challenging to solve the inverse surface scattering using phaseless data and the
model of Maxwell’s equations for electromagnetic wave propagation. An even more challenging
problem is to consider a random surface scattering problem where the scattering surface is
modeled by a random function instead of a deterministic function. We hope to be able to
address these issues and report the progress elsewhere in the future.

Appendix A. Integration solution method. In this section, the integrated solution method
is briefly introduced to solve a two-point boundary value problem. We refer the reader to
Zhang [44] for the details of the integrated solutions of ordinary differential equation systems
and two-point boundary value problems.D
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Figure 6. Example 3: A nonsmooth piecewise constant scattering surface. Exact surfaces (solid lines)
are plotted against reconstructed surfaces (dashed curves) with four different sets of parameters ε, δ, and h:
(a) ε = 0.01, δ = 0.001, h = 0.02λ; (b) ε = 0.01, δ = 0.001, h = 0.05λ; (c) ε = 0.01, δ = 0.01, h = 0.02λ;
(d) ε = 0.02, δ = 0.001, h = 0.02λ.

Consider the two-point boundary value problem

u′(y) +M(y)u(y) = f(y),(A.1)

A0u(y)|y=0 = r0,(A.2)

B1u(y)|y=b = s1,(A.3)

where f(y) ∈ C
m are m-dimensional vector fields, r0 ∈ C

m1 and s1 ∈ C
m2 are given m1-

and m2-dimensional vector fields, respectively, M(y) ∈ C
m×m is an m × m matrix, and

A0 ∈ C
m1×m and B1 ∈ C

m2×m are full rank matrices with m1 +m2 = m, i.e., rankA0 = m1

and rankB1 = m2.
Let Φ(y) be the fundamental matrix of the system

Φ′(y) +M(y)Φ(y) = 0,(A.4)

Φ(0) = Im,(A.5)

where Im is the m×m identity matrix.D
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Theorem A.1. The two-point boundary value problem (A.1)–(A.3) has a unique solution if
and only if

(A.6) det

[
A0

B1Φ(b)

]
�= 0.

Let the pair of functions {A(y), r(y)} and {B(y), s(y)} be the integrated solutions of the
problems (A.1)–(A.2) and (A.1)–(A.3), respectively; then there exist D0(A, y) ∈ C

m1×m1 and
D1(B, y) ∈ C

m2×m2 such that

A′ = AM +D0A, A(0) = A0,(A.7)

r′ = Af +D0r, r(0) = r0,(A.8)

and

B′ = BM +D1B, B(b) = B1,(A.9)

s′ = Bf +D1s, s(b) = s1.(A.10)

Theorem A.2. If the two-point boundary value problem (A.1)–(A.3) has a unique solution,
then the matrix [

A(y)
B(y)

]
∈ C

m×m

is nonsingular.
Theorem A.3. The two-point boundary value problem (A.1)–(A.3) is equivalent to the linear

system

(A.11)

[
A(y)
B(y)

]
u(y) =

[
r(y)
s(y)

]
.

Appendix B. Two-point boundary value problems. In this section, we discuss an appli-
cation of the integration method for solving two specific two-point boundary value problems,
whose solution will be useful for solving the direct surface scattering problem.

Consider a two-point boundary value problem

u′′ + η2u = f, 0 < y < b,(B.1)

u = g at y = 0,(B.2)

u′ − iηu = h at y = b.(B.3)

Let v1 = u and v2 = u′. The second order boundary value problem (B.1)–(B.3) can be
equivalently formulated into a first order two-point boundary value problem:

v′ +Mv = f ,(B.4)

A0v(0) = g,(B.5)

B1v(b) = h,(B.6)
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where

v =

[
v1

v2

]
, f =

[
0

f

]
, M =

[
0 −1

η2 0

]
,

and

A0 = [1 0], B1 = [−iη 1].

Theorem B.1. The boundary value problem (B.1)–(B.3) has a unique solution, given by

(B.7) u(y) = eiηyg +K1(y)h−
∫ b

0
K2(y, z)f(z)dz,

where

K1(y) =
eiηb

2iη

(
eiηy − e−iηy

)
, K2(y, z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eiηy

2iη

(
eiηz − e−iηz

)
, z < y,

eiηz

2iη

(
eiηy − e−iηy

)
, z > y.

Proof. Since M is a nonsingular matrix, there exists a nonsingular matrix Q such that

Q−1MQ = N,

where

N =

[−iη 0

0 iη

]
, Q =

[
1 1

iη −iη

]
, and Q−1 =

1

2iη

[
iη 1

iη −1

]
.

A simple calculation yields that the fundamental matrix of (A.4)–(A.5) is

Φ(y) = Q

[
eiηy

e−iηy

]
Q−1,

which gives

det

[
A0

B1Φ(b)

]
=

∣∣∣∣∣ 1 0

−iηe−iηb e−iηb

∣∣∣∣∣ = e−iηb �= 0.

It follows from Theorem A.1 that the two-point boundary value problem (B.4)–(B.6) and thus
(B.1)–(B.3) have a unique solution.

Let {A(y), r(y)} and {B(y), s(y)} be the integrated solutions of the problems (B.4), (B.5)
and (B.4), (B.6), respectively. Taking

D0 = iη, D1 = −iη,

we obtain from (A.7)–(A.10) that the integrated solutions satisfy

A′ = AM + iηA, A(0) = A0,(B.8)

r′ = Af + iηr, r(0) = g,(B.9)
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and

B′ = BM − iηB, B(h) = B1,(B.10)

s′ = Bf − iηs, s(b) = h.(B.11)

Upon solving the above initial value problem, we obtain the integrated solutions

A = [A1 A2] =
1

2iη

[
iη(1 + e2iηy) 1− e2iηy

]
,(B.12)

B = [B1 B2] = [−iη 1],(B.13)

r = eiηyg +

∫ y

0
eiη(y−z)A2(z)f(z)dz,(B.14)

s = eiη(b−y)h−
∫ b

y
eiη(z−y)f(z)dz.(B.15)

It follows from Theorem A.3 that the two-point boundary value problem (B.4)–(B.6) is equiv-
alent to the linear system [

A1 A2

B1 B2

] [
u

u′

]
=

[
r

s

]
.

An application of Gram’s rule yields

(B.16) u =
rB2 − sA2

A1B2 −B1A2
.

A simple calculation yields
A1B2 −B1A2 = 1.

Substituting (B.12)–(B.15) into (B.16), we deduce (B.7).
Consider another two-point boundary value problem

u′′ + η2u = f, a < y < 0,(B.17)

u = g at y = 0,(B.18)

u′ + iηu = h at y = a.(B.19)

Let v1 = u and v2 = u′. The second order boundary value problem (B.17)–(B.19) can be
equivalently formulated into a first order two-point boundary value problem:

v′ +Mv = f ,(B.20)

A0v(0) = g,(B.21)

B1v(a) = h,(B.22)

where

v =

[
v1

v2

]
, f =

[
0

f

]
, M =

[
0 −1

η2 0

]
,
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and
A0 = [1 0], B1 = [iη 1].

We may follow the same steps to show that the boundary value problem (B.17)–(B.19)
and the two-point boundary value problem (B.20)–(B.22) have a unique solution. The details
are skipped here for simplicity.

Theorem B.2. The boundary value problem (B.17)–(B.19) has a unique solution, given by

(B.23) u(y) = e−iηyg +K1(y)h+

∫ 0

a
K2(y, z)f(z)dz,

where

K1(y) =
e−iηa

2iη

(
eiηy − e−iηy

)
, K2(y, z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−iηz

2iη

(
eiηy − e−iηy

)
, z < y,

e−iηy

2iη

(
eiηz − e−iηz

)
, z > y.
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