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Abstract
This paper is devoted to the mathematical analysis of the direct and inverse
modeling of the diffraction by a perfectly conducting grating surface in the
near-field regime. It is motivated by our effort to analyze recent significant
numerical results, in order to solve a class of inverse rough surface scattering
problems in near-field imaging. In a model problem, the diffractive grating
surface is assumed to be a small and smooth deformation of a plane surface.
On the basis of the variational method, the direct problem is shown to have a
unique weak solution. An analytical solution is introduced as a convergent
power series in the deformation parameter by using the transformed field and
Fourier series expansions. A local uniqueness result is proved for the inverse
problem where only a single incident field is needed. On the basis of the
analytic solution of the direct problem, an explicit reconstruction formula is
presented for recovering the grating surface function with resolution beyond
the Rayleigh criterion. Error estimates for the reconstructed grating surface are
established with fully revealed dependence on such quantities as the surface
deformation parameter, measurement distance, noise level of the scattering
data, and regularity of the exact grating surface function.

Keywords: inverse diffraction grating, near-field imaging, error analysis

1. Introduction

Scattering problems are concerned with how an inhomogeneous medium scatters an incident
wave. The direct scattering problem is that of determining the scattered field from a
knowledge of the incident field and the differential equation governing the wave motion; the
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inverse scattering problem is that of determining the nature of the inhomogeneity, such as its
geometry, from a knowledge of the scattered field. These problems play a fundamental role in
many scientific areas such as radar and sonar, geophysical exploration, and medical imaging.
According to the Rayleigh criterion, there is a resolution limit to the sharpness of details that
can be observed by conventional far-field imaging: half of the wavelength, which is also
referred to as the diffraction limit. Near-field imaging is an effective approach to breaking the
diffraction limit and obtaining images with subwavelength resolution, which leads to exciting
applications in broad areas of modern science and technology, including surface chemistry,
biology, materials science, and information storage [23].

We consider, as a model problem, the diffraction when a time-harmonic electromagnetic
plane wave is incident on a periodic structure, which is known as a diffractive grating [38].
There are two kinds of diffractive grating problems: given the periodic structure or the grating
surface and the incident field, the direct problem is that of determining the diffracted field; the
inverse problem is that of determining the grating surface from the measurement of the
diffracted field, given the incident field. Recently, problems of scattering in periodic struc-
tures have received considerable attention in the applied mathematical community, and have
been investigated extensively in both mathematical and numerical aspects. We refer the reader
to [6, 9, 20, 21, 33, 34, 36, 37, 40] and references therein for the existence, uniqueness, and
numerical approximations of solutions for the direct one-dimensional and two-dimensional
grating problems. A comprehensive review can be found in [7] on diffractive optics tech-
nology and its mathematical modeling, as well as computational methods. The mathematical
questions of uniqueness and stability for the inverse problems have been studied by many
researchers [1, 5, 10, 16–18, 24, 28, 31, 41]. Computationally, a number of numerical
methods have been developed for the reconstruction of perfectly conducting grating surfaces
for the one-dimensional grating [4, 14, 15, 19, 25–27, 29, 30, 32, 35, 39]. These works
addressed conventional far-field imaging, where the roles of evanescent wave components
were ignored and the resolution of reconstructions was limited by Rayleighʼs criterion. It is
challenging to achieve a stable construction with subwavelength resolution due to the non-
linear and ill-posed nature of the inverse problem.

Recently, novel approaches have been developed for solving a class of inverse rough
surface scattering problems in near-field imaging [8, 11, 12, 22]. Under the assumption that
the scattering surface is a small and smooth deformation of a plane surface, the method begins
with the transformed field expansion, to convert two-dimensional or three-dimensional
boundary value problems into a successive sequence of one-dimensional two-point boundary
value problems, which can be solved analytically. By keeping only the leading and linear
terms in the power series expansion, the inverse problems are linearized and explicit
reconstruction formulas are obtained. A spectral cutoff regularization is adopted to suppress
the exponential growth of the noise. The method requires only a single incident field with one
frequency and one incident direction, and is realized by using the fast Fourier transform.
Numerical results show that the method is efficient and stable for reconstructing surfaces with
subwavelength resolution.

In [11, 22], the authors presented the method as it was and showed numerical examples
to illustrate the effectiveness of the proposed method. However, there was no justification as
regards the mathematical issues such as the questions of the well-posedness of the model
problem, convergence of the power series, uniqueness of the inverse problem, and error
estimates for the inverse problem. This paper is devoted to the mathematical analysis of the
model problem studied in [11, 22] and is intended to deal with all the mathematical issues
raised above. For the direct problem, we give a criterion under which it has a unique weak
solution by studying its variational form; for the power series, we show the convergence by
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carefully studying the H2 regularity of the solution for the recursive equation; for the inverse
problem, we prove the uniqueness by estimating the first nonzero eigenvalue of the Dirichlet
problem; for the reconstruction method, we show the error estimates for noiseless and noise
data, illustrate the balance among resolution, stability, and accuracy, and, in particular, we
give the best measurement height in terms of the perturbation parameter. Our results in this
paper confirm those numerical observations, clarify the trade-off between the resolution and
stability of reconstructions, and provide a deep understanding of the ill-posed nature of the
inverse problem in near-field imaging. To the best of our knowledge, this is the first paper to
mathematically analyze the near-field imaging of rough surfaces, and all the results are
original contributions to this key area. Other related work may be found in [13] for an inverse
surface scattering problem in the context of near-field imaging, and in [2, 3] for resolution and
stability analysis of conductivity imaging.

The outline of the paper is as follows. Section 2 addresses the direct problem: the model
problem is introduced for the diffraction of a plane wave by a grating surface; the direct
problem is proved to have a unique weak solution by using the variational approach; an
analytic solution is deduced for the direct problem by using the transformed field and Fourier
expansions; the convergence of the power series is shown. The inverse problem is discussed
in section 3: a local uniqueness result is described; an explicit reconstruction formula is
presented; error estimates are established for the reconstruction method. The paper is con-
cluded with some remarks and directions for future work in section 4.

2. Direct scattering

In this section, we introduce a model problem for the diffraction by a perfectly conducting
grating. An analytic solution is deduced as a power series for the direct problem from the
transformed field expansion together with the Fourier series expansion.

2.1. The model problem

Let us first specify the problem geometry. As seen in Figure 1, the problem may be restricted
to a single period of Λ in x due to the periodicity of the grating surface. Without loss of
generality, the period Λ is assumed to be π2 throughout the paper. Let the grating surface in
one period be described by the curve

 π= ∈ = < <{ }S x y y f x x( , ) : ( ), 0 2 ,2

Figure 1. The problem geometry.
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where ⩾f 0 is a periodic function with period π2 and is assumed to take the form

ε= ∈f x g x g C( ) ( ), ( ). (2.1)k

Here ⩽ ∈k2 , ε is assumed to be a sufficiently small positive constant and is called the
surface deformation parameter, and ⩾g 0 is also a periodic function with period π2 . Define



= ⩽ ⩽
∈

M
x

g x m ksup
d

d
( ) , 0 , (2.2)

x

m

m

which is one of the important parameters describing the error bound of the reconstructed
grating surface. Let the space above S be filled with a homogeneous medium characterized by
a positive constant wavenumber κ with an associated wavelength λ π κ= 2 . In the
applications of near-field imaging, the wavelength is comparable in size to the period, i.e.,
λ Λ∼ . Hence, the wavenumber κ is of the order of 1, i.e., κ = (1).

Denote by

Ω π= ∈ < < < <{ }x y f x y h x( , ) : ( ) , 0 22

the domain bounded below by S and bounded above by

Γ π= ∈ = < <{ }x y y h x( , ) : , 0 2 ,2

where h is a positive constant satisfying > π∈h f xmax ( )x (0, 2 ) and described as the
measurement distance.

Let an incoming plane wave = κ θ θ−u x y( , ) e x yinc i ( sin cos ) be incident on the grating
surface from above, where θ π π∈ −( 2, 2) is the incident angle. For normal incidence, i.e.,
θ = 0, the incident field reduces to

= κ−u x y( , ) e . (2.3)yinc i

For simplicity, we focus on the normal incidence from now on, since our method requires
only a single incident wave with one wavenumber and one incident direction. We mention
that the analysis works for general non-normal incidence with obvious modifications.

The diffraction of a time-harmonic electromagnetic wave in the transverse electric
polarization can be modeled by the two-dimensional Helmholtz equation:

Δ κ Ω+ =u u 0 in . (2.4)2

For a perfectly conducting grating, the total field u vanishes on the grating surface:

=u S0 on . (2.5)

Motivated by uniqueness, we are interested in the periodic solution, i.e., u satisfies

π+ =u x y u x y( 2 , ) ( , ).

For any periodic function u(x) with period π2 , it has a Fourier series expansion



∫∑
π

= =
π

∈

−u x u u u x x( ) e ,
1

2
( )e d .

n

n nx n nx( ) i ( )

0

2
i

Define an operator



∑ β=
∈

Tu x u( )( ) i e , (2.6)
n

n
n nx( ) i
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where

β
κ κ

κ κ
=

− ⩾

− <

⎧
⎨⎪

⎩⎪
( )
( )

n n

n n

for ,

i for .
n

2 2 1 2

2 2 1 2

We point out that the assumption that β ≠ 0n , i.e., κ ≠ | |n , for ∈n , is not necessary in this
paper. The resonance β = 0n is included in our analysis. It follows from Rayleighʼs expansion
that u satisfies the transparent boundary condition

ρ Γ∂ = +u Tu on , (2.7)y

where ρ κ= − κ−x( ) 2i e hi .
Given the surface S and the incident field uinc, the direct diffractive grating problem is to

find the periodic solution u of the boundary value problem (2.4)–(2.7). Given the normal
incident field uinc, the inverse diffractive grating problem is that of determining the grating
surface S, i.e., the periodic function f, from the measurement of the noisy field u on Γ, i.e.,

δu x h( , ), at a fixed wavenumber κ, where δ is the noise level. In particular, we are interested in
the inverse problem in the near-field regime where the measurement distance h is much
smaller than the wavelength λ.

We point out that the following two hypotheses are adopted in the paper:

κ ε< <−h M h(H1) 1 and (H2) 1.1

The first hypothesis (H1) ensures the uniqueness and existence of a weak solution for the
direct problem; while the second hypothesis guarantees the convergence of an analytic power
series solution for the direct problem. Recall the grating surface function ε=f g and the
measurement distance ε> =h f x g xmax ( ) max ( )x x . For sufficiently small surface
deformation parameter ε, the measurement distance h can also be taken as a sufficiently
small positive number such that both of the hypotheses (H1) and (H2) can be satisfied. For
instance, we may take ε=h 1 2 and then the hypotheses (H1) and (H2) reduce to κε < 11 2 and

ε <M 11 2 , which are satisfied for sufficiently small ε. Throughout the paper, ≲a b stands for
⩽a Cb, where C is a positive constant independent of ε δh, , , and M.

2.2. The variational problem

To describe the boundary value problem and derive its variational formulation, we need to
introduce some functional spaces.

Define the Sobolev spaces Ω Ω α= ∈ | | ⩽αH u D u L s( ) { : ( )for all }s 2 and
Ω Ω= ∈ =H u H u S( ) { ( ): 0 on }S

1 1 , which are Banach spaces for the norm

∫∑∥ ∥ =Ω
α

Ω
α

⩽

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥u D u x y x y( , ) d d .s

s

,
2

1 2

Introduce the periodic functional space

Ω Ω π= ∈ ={ }H u H u y u y( ) ( ): (0, ) (2 , ) ,S S, p
1 1

which is a subspace of ΩH ( )S
1 . For a periodic function u defined on Γ with Fourier coefficient

u n( ), we define the trace functional space
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

∑Γ Γ= ∈ + < ∞
∈

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭( )H u L n u( ) ( ): 1 ,s

n

s n2 2 ( ) 2

which is also a Banach space for the norm



∑π∥ ∥ = +Γ
∈

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )u n u2 1 .s

n

s n
,

2 ( ) 2
1 2

It is clear that the dual space associated with ΓH ( )s is the space Γ−H ( )s with respect to the
scalar product in ΓL ( )2 defined by



∫ ∑π= ¯ = ¯Γ
Γ

∈

u v uv x u v, d 2 . (2.8)
n

n n( ) ( )

The following Poincaré inequality and trace regularity results are useful in subsequent
analysis.

Lemma 2.1. The estimate

∥ ∥ ≲ ∥ ∥Ω Ωu h u0, 0,

holds for any Ω∈u H ( ).S
1

Proof. Define the rectangular domain

 π Ω= ∈ < < < < ⊇{ }D x y x y h( , ) : 0 2 , 0 .2

For any Ω∈u H ( )S
1 , consider the zero extension of u to the domain D:

Ω
Ω˜ =

∈
∈ ⧹

⎧⎨⎩u x y
u x y x y

x y D
( , )

( , ) for ( , ) ,
0 for ( , ) .

(2.9)

It is clearly seen that

 ∥ ∥ = ∥ ˜ ∥ ∥ ∥ = ∥ ˜ ∥Ω Ωu u u uand .D D0, 0, 0, 0,

Simple calculation yields

∫˜ = ∂ ˜u x y u x y y( , ) ( , ) d ,
y

y
0

which implies, by applying the Cauchy–Schwarz inequality, that

∫˜ ⩽ ∂ ˜u x y h u x y y( , ) ( , ) d .
h

y
2

0

2

Hence we have

∥ ˜ ∥ ≲ ∥ ˜ ∥u h u ,D D0, 0,

which leads to the assertion of the lemma. □

Lemma 2.2. The estimate

∥ ∥ ≲ ∥ ∥Γ Ωu u1 2, 1,

holds for any Ω∈u H ( )S, p
1 .
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Proof. For any Ω∈u H ( )S, p
1 , let ũ be its zero extension to the domain D defined in (2.9). It

is easy to see that



∑= ˜ = ˜
∈

u x h u x h u h( , ) ( , ) ( )e
n

n nx( ) i

and



∑π∥ ∥ = ∥ ˜ ∥ = + ˜Γ Γ
∈

( )u u n u h2 1 ( ) .
n

n
1 2,
2

1 2,
2 2 1 2 ( ) 2

It follows from the Cauchy–Schwarz inequality that

∫ ∫

∫ ∫

˜ = ˜ ⩽ ˜ ˜

⩽ + ˜ + + ˜
−( ) ( )

u h
y

u y y u y
y

u y y

n u y y n
y

u y y

( )
d

d
( ) d 2 ( )

d

d
( ) d

1 ( ) d 1
d

d
( ) , d , (2.10)

n
h

n
h

n n

h
n

h
n

( ) 2

0

( ) 2

0

( ) ( )

2 1 2

0

( ) 2 2 1 2

0

( )
2

which gives

∫ ∫+ ˜ ⩽ + ˜ + ˜( ) ( )n u h n u y y
y

u y y1 ( ) 1 ( ) d
d

d
( ) d .n

h
n

h
n2 1 2 ( ) 2 2

0

( ) 2

0

( )
2

Using the Fourier series expansion of ũ, we can verify that



∫ ∫∑π∥ ∥ = ∥ ˜ ∥ = + ˜ + ˜Ω
∈

( )u u n u y y
y

u y y2 1 ( ) d
d

d
( ) d .

H D
n

h
n

h
n

1,
2

( )
2 2

0

( ) 2

0

( )
2

1

Combining the above estimates yields the result. □

Lemma 2.3. The estimate

∥∂ ∥ ≲ ∥ ∥Γ Ω−u uxx
2

1 2, 2,

holds for any Ω∈u H ( )S, p
2 .

Proof. For any Ω∈u H ( )S, p
2 , let ũ be its zero extension to the domain D defined in (2.9). It

is easy to verify that





∑

∑

π

π

∂ = ∂ ˜ = + ˜

⩽ + ˜ = ˜ =

Γ Γ

Γ Γ

− −
∈

−

∈

( )

( )

u u n n u

n u u u

2 1

2 1 .

xx xx
n

n

n

n

2

1 2,

2 2

1 2,

2 4 2 1 2 ( ) 2

2 3 2 ( ) 2

3 2,

2
3 2,
2

Using (2.10), we have

∫ ∫+ ˜ ⩽ + ˜ + + ˜( ) ( ) ( )n u h n u y y n
y

u y y1 ( ) 1 ( ) d 1
d

d
( ) d .n

h
n

h
n2 3 2 ( ) 2 2 2

0

( ) 2 2

0

( )
2
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Simple calculations yields



∫

∫ ∫

∑π∥ ∥ = ∥ ˜ ∥ = + + ˜

+ + ˜ + ˜

Ω
∈

( )

( )

u u n n u y y

n
y

u y y
y

u y y

2 1 ( ) d

1
d

d
( ) d

d

d
( ) d .

D
n

h
n

h
n

h
n

2,
2

2,
2 2 4

0

( ) 2

2

0

( )
2

0

2

2
( )

2

Combining with the above inequality yields the result. □
The following two lemmas are concerned with the continuity and analyticity of the

boundary operator, respectively.

Lemma 2.4. The boundary operator Γ Γ→ −T H H: ( ) ( )s s 1 is continuous, i.e.,

∥ ∥ ≲ ∥ ∥Γ Γ−Tu us s1, ,

for any Γ∈u H ( )s .

Proof. For any Γ∈u H ( )s , it follows from (2.6) that





∑

∑

π β

π
β

= +

= +
+

Γ−
∈

−

∈

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

( )

( )
( )

Tu n u

n
n

u

2 1

2 1
1

.

s
n

s

n
n

n

s n n

1,
2 2 1 2 ( ) 2

2

2 1 2

2

( ) 2

To prove the lemma, it is necessary to estimate


β κ

=
+

=
−

+
∈

( ) ( )
F

n

n

n
n

1 1
, .n

n

2 1 2

2 2 1 2

2 1 2

Define a function

ξ
κ ξ

ξ
ξ=

−

+
∈

( )
F ( )

1
, .

2 2 1 2

2 1 2

It can be verified that the even function ξF ( ) decreases for ξ κ< <0 and increases for ξ κ> .
Hence a simple calculation yields


ξ κ⩽ = ∞ = =

ξ∈
F F F F Cmax ( ) max { (0), ( )} max { , 1} ,n

which completes the proof. □

Lemma 2.5. The estimates

⩽ ⩾Γ ΓTu u Tu vRe , 0 and Im , 0

hold for any Γ∈u H ( )1 2 .
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Proof. By the definitions of (2.6) and (2.8), we have for any Γ∈u H ( )1 2 that



∑π β=Γ
∈

Tu u u, i 2 .
n

n
n( ) 2

Taking the real part gives

∑π κ= − − ⩽Γ
κ>
( )Tu u n uRe , 2 0

n

n2 2 1 2 ( ) 2

and taking the imaginary part gives

∑π κ= − ⩾Γ
κ<
( )Tu u n uIm , 2 0,

n

n2 2 1 2 ( ) 2

which completes the proof. □
We next present a variational formulation for the direct diffractive grating problem and

give a proof of the well-posedness of this boundary value problem.
Multiplying (2.4) by the complex conjugate of a test function Ω∈v H ( )S, p

1 , integrating
over Ω, and using integration by parts, we deduce the variational formulation for the direct
problem (2.4)–(2.7): find Ω∈u H ( )S, p

1 such that

ρ Ω= ∈Ω Γa u v v v H( , ) , for all ( ), (2.11)S, p
1

where the sesquilinear form

 ∫ ∫κ= · ¯ − ¯ −Ω
Ω Ω

Γa u v u v x y uv x y Tu v( , ) d d d d , . (2.12)2

Theorem 2.6. The variational problem (2.11) has a unique weak solution u in ΩH ( )S, p
1 ,

which satisfies the estimate

ρ∥ ∥ ≲ ∥ ∥Ω Γ−u .1, 1 2,

Proof. It suffices to prove the continuity and coercivity of the sesquilinear form Ωa . The
continuity follows directly from the Cauchy–Schwarz inequality, lemma 2.2, and lemma 2.4:

 
 
 

≲ ∥ ∥ ∥ ∥ + ∥ ∥ ∥ ∥ + ∥ ∥ ∥ ∥
≲ ∥ ∥ ∥ ∥ + ∥ ∥ ∥ ∥ + ∥ ∥ ∥ ∥
≲ ∥ ∥ ∥ ∥ + ∥ ∥ ∥ ∥ + ∥ ∥ ∥ ∥
≲ ∥ ∥ ∥ ∥

Ω Ω Ω Ω Ω Γ Γ

Ω Ω Ω Ω Γ Γ

Ω Ω Ω Ω Ω Ω

Ω Ω

−a u v u v u v Tu v

u v u v u v

u v u v u v

u v

( , )

.

0, 0, 0, 0, 1 2, 1 2,

0, 0, 0, 0, 1 2, 1 2,

0, 0, 0, 0, 1, 1,

1, 1,

Replacing v by u in (2.12) yields

∫ ∫κ= − −Ω
Ω Ω

Γa u u u x y u x y Tu u( , ) d d d d , .2 2 2

Let κ= − + −( )t h h1 ( ) (1 )2 2 . By the hypothesis (H1), i.e., κ <h 1, we have < <t0 1.
Taking the real part, and applying lemma 2.5 and lemma 2.1, we obtain
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 

 



κ κ

κ

κ

κ

= − − ⩾ −

= + − −

⩾ + − −

= −
+

≳

Ω Ω Ω Γ Ω Ω

Ω Ω Ω

Ω Ω

Ω Ω

− ⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

a u u u u Tu u u u

t u t u u

th u t h u

h

h
u u

Re ( , ) Re ,

(1 )

1 ( )

1 ( )

1
.

0,
2 2

0,
2

0,
2 2

0,
2

0,
2

0,
2 2

0,
2

2
0,
2 2

0,
2

2

2 1,
2

1,
2

It follows from the Lax–Milgram lemma that there exists a unique weak solution of the
variational problem (2.11) in ΩH ( )S, p

1 . Furthermore, we have from the coercivity of Ωa and
trace regularity in lemma 2.2 that the solution u satisfies

ρ
ρ ρ

∥ ∥ ≲ =
⩽ ∥ ∥ ∥ ∥ ≲ ∥ ∥ ∥ ∥

Ω Γ

Γ Γ Γ Ω− −

u a u u u

u u

( , ) ,

,
1,
2

1 2, 1 2, 1 2, 1,

which completes the proof. □

2.3. The analytic solution

We present the transformed field expansion for analytically deriving the solution of the direct
problem. Consider the change of variables

˜ = ˜ = −
−

⎛
⎝⎜

⎞
⎠⎟x x y h

y f

h f
, ,

which maps the domain Ω to the rectangle D.
Introduce a new function ˜ ˜ ˜ =u x y u x y( , ) ( , ) under the transformation. Dropping the tilde

for simplicity of notation, we can verify from (2.4)–(2.7) that u satisfies the following
boundary value problem:

κ

ρ

∂ + ∂ + ∂ + ∂ + =
= =

∂ = − + =−

⎧
⎨
⎪⎪

⎩
⎪⎪ ( )

c u c u c u c u c u D

u y

u h f Tu y h

0 in ,

0 on 0,

1 ( ) on ,

(2.13)

xx yy xy y

y

1
2

2
2

3
2

4 1
2

1

where

= −
= ′ − +
= − ′ − −

= − − ″ − + ′⎡⎣ ⎤⎦

c h f

c f h y h

c f h y h f

c h y f h f f

( ) ,

[ ( )] ,
2 ( )( ),

( ) ( ) 2 ( ) .

1
2

2
2 2

3

4
2

Following the boundary perturbation method, we consider a formal expansion of u in a
power series in ε:

∑ε ε=
=

∞

u x y u x y( , ; ) ( , ) . (2.14)
m

m
m

0

Substituting ε=f g into cj and inserting (2.14) into (2.13), we may derive a recursion
equation for um:

Δ κ+ =u u v Din , (2.15)m m m
2
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where

κ

κ

= ∂ + ′ − ∂ + ″ − ∂ +

− ∂ − ′ − ∂ − ′ − ∂

+ ′ − ″ − ∂ −

−
− − − −

−
− − −

− −

⎡⎣ ⎤⎦
⎡⎣

⎤⎦( )

v h g u g h y u g h y u gu

h g u g h y u gg h y u

g gg h y u g u

2 2 ( ) ( ) 2

( ) ( ) 2 ( )

2 ( ) ( ) . (2.16)

m xx m xy m y m m

xx m yy m xy m

y m m

1 2
1

2
1 1

2
1

2 2 2
2

2 2 2
2

2
2

2
2

2 2
2

In addition, um satisfies the boundary conditions

ρ
= =

∂ − = =
⎧⎨⎩

u x y y

u Tu y h

( , ) 0 on 0
on ,

(2.17)
m

y m m m

where

ρ ρ ρ= = − ⩾−
−gh Tu m, , 1. (2.18)m m0

1
1

Next we deduce an analytic solution to the problem (2.15)–(2.18). Since ρu v, ,m m m are all
periodic functions in x with period π2 , they follow the Fourier series expansions







∑

∑

∑ρ ρ

=

=

=

∈

∈

∈

u x y u y

v x y v y

x

( , ) ( )e ,

( , ) ( )e ,

( ) e .

m

m
m
n nx

m

m
m
n nx

m
m

m
n nx

( ) i

( ) i

( ) i

Substituting these expansions into (2.15)–(2.17), we obtain a two-point boundary value
problem for the Fourier coefficient um

n( ) :

β

β ρ

+ = < <

= =

− = =

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

u

y
u v y h

u y

u

y
u y h

d

d
, 0 ,

0 at 0,

d

d
i at .

(2.19)

m
n

n m
n

m
n

m
n

m
n

n m
n

m
n

2 ( )

2
2 ( ) ( )

( )

( )
( ) ( )

It follows from [11, 22] that we may obtain an explicit solution of (2.19).

Theorem 2.7. The two−point boundary value problem (2.19) has a unique solution, which
is given by

∫ρ= −u y K y K y z v z z( ) ( ) ( , ) ( )d , (2.20)m
n n

m
n

h
n

m
n( )

1
( ) ( )

0
2
( ) ( )
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where

β
= −

β
β β−( )K y( )

e

2i
e e (2.21)n

h

n

y y
1
( )

i
i i

n
n n

and

β

β

=
− <

− >

β
β β

β
β β

−

−

⎧

⎨
⎪⎪

⎩
⎪⎪

( )

( )
K y z

z y

z y

( , )

e

2i
e e , ,

e

2i
e e , .

(2.22)n

y

n

z z

z

n

y y
2
( )

i
i i

i
i i

n
n n

n
n n

Remark 2.8. The solution representation (2.20) is still valid for β = 0n . In this case, K n
1
( ) and

K n
2
( ) reduce to

= =
<
>{K y y K y z

z z y
y z y( ) , ( , )
, ,
, .

n n
1
( )

2
( )

In particular, we may derive a compact form for the leading term u0. Recalling (2.16) and
(2.18), we have

ρ κ= = − κ−v 0, 2i e ,h
0 0

i

whose Fourier coefficients are

ρ κ= = − =
≠

κ−⎧⎨⎩v n
n

0, 2i e , 0,
0, 0.

n n
h

0
( )

0
( )

i

Using the solution representation (2.20) and noting that β β=0 , we get

ρ
κ

ρ= = −

= − =
≠

κ
κ κ

κ κ

−

−⎧⎨⎩

( )u y K y

n
n

( ) ( )
e

2i
e e

e e , 0,
0, 0,

n n n
h

y y n

y y

0
( )

1
( )

0
( )

i
i i

0
( )

i i

which yields



∑= = −α κ κ

∈

−u x y u y( , ) ( )e e e . (2.23)
n

n x y y
0 0

( ) i i in

It is clearly seen that the leading term u0 consists of the incident field κ−e yi and the reflected
field − κe yi , which arise from the interaction of the incident wave and the plane surface y = 0.

2.4. Convergence

In this section, we prove the well-posedness of and present an energy estimate of the solution
for the recursion problem (2.15)–(2.18) in order to show the convergence of the power
series (2.14).
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Introduce the Banach space

π π= ∈ = = < <{ }H D u H D u y u y u x x( ) ( ): (0, ) (2 , ), ( , 0) 0, 0 2 .0, p
1 1

Multiplying (2.15) by a test function ∈w H D( )0, p
1 and using integration by parts, we may

deduce the variational formulation for the problem (2.15)–(2.18): find ∈u H D( )m 0, p
1 such

that

ρ= − ∈Γa u w w v w w H D( , ) , , for all ( ), (2.24)D m m m D 0, p
1

where the sesquilinear form

 ∫ ∫κ= · ¯ − ¯ − Γa u w u w x y u w x y Tu w( , ) d d d d , , (2.25)D m
D

m
D

m m
2

and the linear functional

∫= ¯v w v w x y, d d .m D
D

m

Theorem 2.9. The variational problem (2.24) has a unique weak solution um in ΩH ( )0, p
1 ,

which satisfies the estimate

ρ∥ ∥ ≲ ∥ ∥ + ∥ ∥Γ−u v .m D m m D1, 1 2, 0,

Proof. Following a proof analogous to that of theorem 2.6, we may show that the
sesquilinear form aD is bounded and coercive. Therefore, the variational problem (2.24) has a
unique weak solution um in H D( )0, p

1 . In addition, the solution um satisfies

ρ

ρ

ρ

∥ ∥ ≲ = −

⩽ ∥ ∥ ∥ ∥ + ∥ ∥ ∥ ∥

≲ ∥ ∥ + ∥ ∥ ∥ ∥

Γ

Γ Γ

Γ

−

−( )

u a u u u v u

u v u

v u

( , ) , ,

,

m D D m m m m m m D

m m m D m D

m m D m D

1,
2

1 2, 1 2, 0, 0,

1 2, 0, 1,

which yields the energy estimate and completes the proof. □
The following lemmas help to prove the convergence of the power series (2.14).

Lemma 2.10. The estimate

∥ ∥ ≲ ∥ ∥Γ Γgw M w1 2, 1 2,

holds for any Γ∈w H ( )1 2 .
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Proof. Using an equivalent norm in ΓH ( )1 2 and the mean value theorem, we have

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∥ ∥ = ∥ ∥ + −
−

≲ ∥ ∥ + −
−

+ −
−

≲ ∥ ∥ + ∥ ∥ +

≲ ∥ ∥ + ∥ ∥ + ∥ ∥

≲ ∥ ∥

Γ Γ
Γ Γ

Γ
Γ Γ

Γ Γ

Γ Γ
Γ Γ

Γ Γ Γ

Γ

gw gw
g t w t g s w s

t s
t s

M w
w t w s

t s
g s t s

g t g s

t s
w t t s

M w M w M w t t s

M w M w M w

M w

( ) ( ) ( ) ( )
d d

( ) ( )
( ) d d

( ) ( )
( ) d d

( ) d d

.

1 2,
2

0,
2

2

2

2
0,
2

2

2
2

2

2
2

2
0,
2 2

1 2,
2 2 2

2
0,
2 2

1 2,
2 2

0,
2

2
1 2,
2

The proof is completed after taking the square root on both sides of the above inequality. □

Lemma 2.11. The estimate

ρ∥ ∥ ≲ ∥ ∥Γ−
−

−Mh um m D1 2,
1

1 2,

holds.

Proof. It follows from (2.16) and lemma 2.10 that

ρ∥ ∥ = ∥ ∥ =
∥ ∥

=
∥ ∥

⩽
∥ ∥ ∥ ∥

∥ ∥

≲ ∥ ∥ ≲ ∥ ∥ ≲ ∥ ∥

Γ Γ
Γ

Γ

Γ

Γ

Γ

Γ

Γ

Γ Γ

Γ

Γ

−
−

− −
−

∈

−

−
∈

−

−
∈

− −

−
−

−
−

−
−

h g Tu h
g Tu w

w

h
Tu gw

w

h
Tu gw

w

Mh u Mh u Mh u

max
,

max
,

max

,

m m
w H

m

w H

m

w H

m

m m D m D

1 2,
1

1 1 2,
1

( )

1

1 2,

1

( )

1

1 2,

1

( )

1 1 2, 1 2,

1 2,

1
1 1 2,

1
1 1,

1
1 2,

1 2

1 2

1 2

which completes the proof. □

Lemma 2.12. The estimate

∥ ∥ ≲ ∥ ∥ + ∥ ∥−
−

−
−( ) ( )v Mh u Mh um D m D m D0,

2 1 2
1 2,

2 1 4
2 2,

2

holds.

Proof. Let

κ= ∂ + ′ − ∂ + ″ − ∂ +−
− − − −

⎡⎣ ⎤⎦w h g u g h y u g h y u gu2 2 ( ) ( ) 2xx m xy m y m m1
1 2

1
2

1 1
2

1
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and

κ

= ∂ + ′ − ∂ + ′ − ∂

− ′ − ″ − ∂ +

−
− − −

− −

⎡⎣
⎤⎦( )

w h g u g h y u gg h y u

g gg h y u g u

( ) ( ) 2 ( )

2 ( ) ( ) .

xx m yy m xy m

y m m

2
2 2 2

2
2 2 2

2
2

2

2
2

2 2
2

It follows from (2.16) that we have

= − ≲ +v w w v w wand .m m1 2
2

1
2

2
2

Using the Cauchy–Schwarz inequality, we obtain

∑

κ⩽ + ′ + ″ + × ∂

+ − ∂ + − ∂ +

≲
α

α

−
−

− − −

−

⩽
−

⎜ ⎟ ⎜

⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

w h g g g g u

h y u h y u u

Mh D u

2 2 2 xx m

xy m y m m

m

1
2 2 2 2 2 2 2 2

1
2

2 2
1

2 2
1

2
1

2

1 2

2

1
2

and

∑

κ⩽ + ′ + ′ + ′ − ″ + × ∂

+ − ∂ + − ∂ + − ∂ +

≲
α

α

−
−

− − − −

−

⩽
−

⎜

⎟

⎛
⎝

⎞
⎠

( )

( )

w h g g gg g gg g u

h y u h y u h y u u

Mh D u

2 2( )

.

xx m

yy m xy m y m m

m

2
2 4 4 4 2 2 2 4 4 2

2
2

4 2
2

2 2 2
2

2 2
2

2
2

2

1 4

2

2
2

Combining the above estimates yields

∥ ∥ ≲ ∥ ∥ + ∥ ∥ ≲ ∥ ∥ + ∥ ∥−
−

−
−( ) ( )v w w Mh u Mh u ,m D D D m D m D0,

2
1 0,

2
2 0,

2 1 2
1 2,

2 1 4
2 2,

2

which completes the proof after taking the square root. □
The following H2 estimate plays an important role in the convergence of the power

series.

Lemma 2.13. The solution um of the variational problem (2.24) satisfies the estimate

∥ ∥ ≲ ⩾−( )u Mh m, 0.m D
m

2,
1

Proof. The proof is based on the method of induction. Clearly, the explicit solution of the
leading term u0 in (2.23) verifies the assertion for m = 0. Assuming that the assertion is true
for all −m0, 1 ,..., 1, we next show that the assertion is also true for m.

Using integration by parts and the periodicity of the solution, we obtain from a
straightforward calculation that
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∫ ∫
∫ ∫ ∫

∫ ∫ ∫

Δ = ∂ + ∂

= ∂ + ∂ + ∂ ¯ ∂

= ∂ + ∂ + ∂

+ ∂ ∂ Γ

u x y u u x y

u x y u x y u u x y

u x y u x y u x y

u u

d d d d

d d d d 2 Re d d

d d d d 2 d d

2 Re , .

D
m

D
xx m yy m

D
xx m

D
yy m

D
xx m yy m

D
xx m

D
yy m

D
xy m

y m xx m

2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2

Using the boundary condition (2.17), we have

ρ ρ∂ ∂ = + ∂ = ∂ + ∂Γ Γ Γ Γu u Tu u Tu u u, , , ,y m xx m m m xx m m xx m m xx m
2 2 2 2

Let u x h( , )m have the following Fourier series expansion:



∑=
∈

u x h u h( , ) ( )e .m

n
m
n nx( ) i

Simple calculation yields

∑π κ∂ = − ⩾Γ
κ>

Tu u n n u hRe , 2 ( ) ( ) 0.m xx m

n
m
n2 2 2 2 1 2 ( ) 2

Using lemma 2.3 and lemma 2.10, we get

ρ ∂ = ∂

⩽ ∥ ∥ ∥∂ ∥

⩽ ∥ ∥ ∥∂ ∥

⩽ ∥ ∥ ∥∂ ∥

⩽ ∥ ∥ ∥ ∥

Γ Γ

Γ Γ

Γ Γ

Γ Γ

−
−

−
− −

−
− −

−
− −

−
−

u h gTu u

h gTu u

Mh Tu u

Mh u u

Mh u u

, ,

,

m xx m m xx m

m xx m

m xx m

m xx m

m D m D

2 1
1

2

1
1 1 2,

2
1 2,

1
1 1 2,

2
1 2,

1
1 3 2,

2
1 2,

1
1 2, 2,

which yields after using the Cauchy–Schwarz inequality that

ρ ∂ ⩽ ∥ ∥ + ∥ ∥Γ
−

−( )u Mh u u2 , 2
1

2
.m xx m m D m D

2 1 2
1 2,

2
2,
2

Consequently we have

Δ

κ ρ

ρ

∥ ∥ ⩽ ∥ ∥ + ∥ ∥ − ∂ ∂

⩽ ∥ − ∥ + ∥ ∥ − ∂

≲ ∥ ∥ + ∥ ∥ + ∂

≲ ∥ ∥ + ∥ ∥ + ∥ ∥ + ∥ ∥

Γ

Γ

Γ

−
−( )

u u u u u

v u u u

v u u

v u Mh u u

2 Re ,

2 Re ,

2 ,

2
1

2
,

m D m D m D y m xx m

m m D m D m xx m

m D m D m xx m

m D m D m D m D

2,
2

0,
2

1,
2 2

2
0,
2

1,
2 2

0,
2

1,
2 2

0,
2

1,
2 1 2

1 2,
2

2,
2

which yields

∥ ∥ ≲ ∥ ∥ + ∥ ∥ + ∥ ∥−
−( )u v u Mh u . (2.26)m D m D m D m D2,

2
0,
2

1,
2 1 2

1 2,
2
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Using (2.26) and theorem 2.9, we obtain

ρ∥ ∥ ≲ ∥ ∥ + ∥ ∥ + ∥ ∥

≲ ∥ ∥ + ∥ ∥

≲ +

≲

Γ−
−

−

−
−

−
−

− − − − − −

−

( )
( ) ( )
( ) ( ) ( ) ( )
( )

u v Mh u

Mh u Mh u

Mh Mh Mh Mh

Mh ,

m D m D m m D

m D m D

m m

m

2,
2

0,
2

1 2,
2 1 2

1 2,
2

1 2
1 2,

2 1 4
2 2,

2

1 2 1 2( 1) 1 4 1 2( 2)

1 2

which completes the proof. □

Theorem 2.14. The power series (2.15) converges strongly.

Proof. It suffices to prove that the power series (2.15) is dominated by a convergent
geometric series. It follows from theorem 2.13 that

∑ ∑ ∑ε ε ε∥ ∥ = ⩽ ∥ ∥ ≲
=

∞

=

∞

=

∞
−( )u u u M h ,D

m

m
m

D m

m D
m

m

m
2,

0 2, 0

2,

0

1

which converges under the hypothesis (H2), i.e., ε <−M h 11 . □
In theorem 2.6, it is shown that the direct problem (2.4)–(2.7) has a unique weak solution

u in ΩH ( )S, p
1 . In this section, the convergence analysis gives an indirect proof of the reg-

ularity of u, which is in ΩH ( )S, p
2 .

3. Inverse scattering

In this section, we give a simple proof of uniqueness for the inverse diffraction grating
problem, present an explicit inversion formula for the grating surface, and show error esti-
mates for the reconstructed grating surface.

3.1. Uniqueness

The following local uniqueness result only requires a single incident field with one frequency
and one incident direction. The proof is based on a combination of Holmgrenʼs uniqueness
and unique continuation theorems.

Let ⊂G 2 be an bounded set with Lipschitz boundary ∂G. Define the depth of domain
G by

= − ∈G y y x y x y Gdep( ) sup for any ( , ), ( , ) .1 2 1 1 2 2

Lemma 3.1. The boundary value problem

Δ κ+ =
= ∂

⎧⎨⎩
u u G

u G
0 in ,

0 on ,

2

has only a trivial solution if κ <Gdep( ) 1.
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Proof. It is easy to verify that the solution u satisfies

 κ∥ ∥ = ∥ ∥u u .G G0, 0,

Following the same method of proof as for lemma 2.1, we have

∥ ∥ ⩽ ∥ ∥u G udep( ) .G G0, 0,

Combining the above estimates yields κ ⩾Gdep( ) 1, which contradicts the assumption. □

Theorem 3.2. Assume ε= ∈ =f g g C j, ( ), 1, 2j j j
k , to be a periodic function with period

π2 . Define Ω π= ∈ < < < <x y x f y h{( , ) : 0 2 , }j j
2 . Let uj be the unique weak solution

of (2.11) in Ωj. If =u u1 2 on Γ, then =f f1 2.

Proof. Define  π= ∈ = < <S x y y f x x{( , ) : ( ), 0 2 }j j . Assume that ≠f f1 2. Then
∩Ω Ω Ω⧹( )1 1 2 or ∩Ω Ω Ω⧹( )2 1 2 is a non-empty set. Without loss of generality, we assume

that ∩Ω Ω Ω= ⧹ ≠ ∅G ( )1 1 2 . It is easy to see that

ε⩽
π π∈ ∈

⎧⎨⎩
⎫⎬⎭G g x g xdep( ) max max ( ), max ( ) ,

x x(0, 2 )
1

(0, 2 )
2

which gives κ <Gdep( ) 1 for sufficiently small ε. Denote ∂G by ∪C C1 2 with ⊂C Sj j. Since
− =u u 01 2 on Γ, it follows from (2.7) that ∂ − ∂ =u u 0y y1 2 on Γ. An application of

Holmgrenʼs uniqueness theorem yields − =u u 01 2 above Γ. By unique continuation, we get
− =u u 01 2 in ∩Ω Ω1 2 and, in particular, − =u u 01 2 on C2. It follows from =u 02 on C2

that we have =u 01 on C2 and the problem

Δ κ+ =
= ∂

⎧⎨⎩
u u G

u G

0 in ,
0 on .

1
2

1

1

According to lemma 3.1, the above boundary value problem only has a trivial solution =u 01

in G. An application of unique continuation again gives =u 01 in Ω. But this contradicts the
transparent boundary condition (2.7) since ρ is a nonzero function involving the incoming
plane wave. □

The uniqueness result indicates that two grating surfaces will be identical if the diffracted
fields are identical and if the two surfaces are close to a plane surface or, essentially, the area
between the two surfaces is sufficiently small.

3.2. The reconstruction formula

We briefly describe an explicit reconstruction formula in this section. The details may be
found in [11, 22].

Rewrite power series (2.14) as

ε= + +u x y u x y u x y r x y( , ) ( , ) ( , ) ( , ), (3.1)0 1

where the remainder

∑ ε=
=

∞

r x y u x y( , ) ( , ) .
m

m
m

2
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Lemma 3.3. The remainder satisfies the estimate

ε∥ ∥ ≲Γ
−( )r M h .0,

1 2

Proof. It follows from theorem 2.14 that

∑ ∑ ∑

∑ ∑ ∑

ε ε ε

ε ε ε ε

∥ ∥ = ⩽ ∥ ∥ ⩽ ∥ ∥

⩽ ∥ ∥ ⩽ ∥ ∥ ≲ ≲

Γ

Γ

Γ Γ
=

∞

=

∞

=

∞

=

∞

=

∞

=

∞
− −( ) ( )

r u u u

u u M h M h ,

m

m
m

m

m
m

m

m
m

m

m D
m

m

m D
m

m

m

0,

2 0, 2

0,

2

1 2,

2

1,

2

2,

2

1 1 2

where the hypothesis (H2) and the property of the convergent geometric series are used in the
last inequality. □

Evaluating (3.1) at y = h we have

ε= + +u x h u x h u x h r x h( , ) ( , ) ( , ) ( , ).0 1

Rearranging yields

ε = − −u x h u x h u x h r x h( , ) ( , ) ( , ) ( , ). (3.2)1 0

In [11, 22], we showed a key identity

κ= βu h g( ) 2i e , (3.3)n h
n1

( ) i n

where u h( )n
1
( ) and g n( ) are the Fourier coefficients of u x y( , )1 and g(x), respectively. Let f n( )

be the Fourier coefficient of f. Combining (3.2) and (3.3) and noting that ε=f gn n( ) ( ), we
obtain

κ
= − − − β−⎡⎣ ⎤⎦f u h u h r h

i

2
( ) ( ) ( ) e , (3.4)n n n n h( ) ( )

0
( ) ( ) i n

where u h u h r h( ), ( ), ( )n n n( )
0
( ) ( ) are the Fourier coefficients of u x h u x h r x h( , ), ( , ), ( , )0 ,

respectively. Explicitly, we have

= − =
≠

κ κ−⎧⎨⎩u h n
n

( ) e e , 0,
0, 0.

n
h h

0
( )

i i

Using the Fourier coefficient (3.4), the grating surface function can be written as



∑=
∈

f x f( ) e . (3.5)
n

n nx( ) i

Neglecting the remainder r h( )n( ) in (3.4), we obtain

κ
= − −ε

β−⎡⎣ ⎤⎦f u h u h
i

2
( ) ( ) e , (3.6)n n n h( ) ( )

0
( ) i n

which is the reconstruction formula for the linearized inverse problem with noise-free data. In
practice, in the scattering data u x h( , ) there is always a certain level of noise contained. Let

δu x h( , ) be the noise data, satisfying



∑π δ∥ − ∥ = − ⩽δ Γ δ
∈

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥u u u h u h2 ( ) ( ) , (3.7)

n

n n
0,

( ) ( ) 2
1 2
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where δ< <0 1 represents the noise level and δu h( )n( ) is the Fourier coefficient of the noise
data δu x h( , ). Replacing u h( )n( ) with δu h( )n( ) in (3.6) yields an explicit reconstruction formula
for the Fourier coefficient of the grating surface function with noise data:

κ
= − −ε δ δ

β−⎡⎣ ⎤⎦f u h u h
i

2
( ) ( ) e . (3.8)n n n h

,
( ) ( )

0
( ) i n

It follows from the definition of βn and (3.8) that it is well-posed to reconstruct those
Fourier coefficients f n( ) with κ| | <n , since the small variations of the measured data will not
be amplified and lead to large errors in the reconstruction, but the resolution of the recon-
structed function f is restricted by the given wavenumber κ. In contrast, it is severely ill-posed
to reconstruct those Fourier coefficients f n( ) with κ| | >n , since the small variations in the data
will be exponentially enlarged and lead to huge errors in the reconstruction, but they con-
tribute to the superresolution of the reconstructed function f.

To obtain a stable and superresolved reconstruction, we may adopt a regularization to
suppress the exponential growth of the reconstruction errors. We consider the spectral cutoff
regularization. For fixed wavenumber κ and measurement distance h, the cutoff frequency ω
is chosen in such a way that

=ω κ− Ne ,h( )2 2 1 2

where N is called the frequency cutoff criterion or the signal-to-noise ratio (SNR) [13]. More
explicitly, we have

ω κ= + −⎡
⎣⎢

⎤
⎦⎥( )h Nlog , (3.9)2 1 2 1 2

which indicates that ω κ> as long as >N 1, as is natural to assume, and superresolution may
be achieved.

Taking into account the frequency cutoff and using the Fourier coefficient (3.8), we may
have the regularized reconstruction formula for noise-free scattering data:



∑ χ=ε ε ω ω
∈

−f x f n( ) ( )e , (3.10)
n

n nx( )
[ , ]

i

and the regularized reconstruction formula for noisy scattering data:



∑ χ=ε δ ε δ ω ω
∈

−f x f n( ) ( )e , (3.11)
n

n nx
, ,

( )
[ , ]

i

where the characteristic function

χ
ω
ω

=
⩽
>ω ω−

⎧⎨⎩n
n
n

( )
1 for ,
0 for .[ , ]

Therefore, the cutoff frequency ω determines the highest Fourier mode which can be
recovered from the reconstruction formulas (3.10) and (3.11). As shown in (3.9), the cutoff
frequency ω is an increasing function of N and a decreasing function of the measurement
distance h; larger N or smaller h may help to achieve better resolution of the reconstruction.
However, larger N or smaller h makes the method less stable and may bring about a larger
approximation error. Therefore, there is a trade-off between the resolution and the stability of
the reconstruction, which is clarified by the error estimates.
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3.3. The error estimate

In this section, we present two error estimates of the reconstructed grating surface functions εf
and ε δf , , corresponding to the noise-free and noise scattering data, respectively.

The following lemma is a standard result about the regularity of a function and the decay
rate of its Fourier coefficient.

Lemma 3.4. Let ∈g Ck and g n( ) be its Fourier coefficient. The estimate

⩽ ∈g
M

n
n, ,n

k
( )

holds.

Proof. By the periodicity of g, we have from integration by parts that

∫ ∫π π
= = ′

π π
− −g g x x

n
g x x

1

2
( )e d

1

i

1

2
( )e d .n nx nx( )

0

2
i

0

2
i

Repeating the integration by parts yields

∫π
=

π
−g

n x
g x x

1

(i )

1

2

d

d
( )e d ,n

k

k

k
nx( )

0

2
i

which completes the proof on noting the definition of M. □
We begin with an error estimate for the noise-free scattering data.

Theorem 3.5. Let f and εf be the exact and reconstructed grating surface functions in (3.5)
and (3.10), respectively. The error estimate

ε ε∥ − ∥ ≲ +ε Γ
− − − −( ) ( )f f N M h M h Nlog

k
0,

1 2 1 (2 1) 2

holds.

Proof. It follows from (3.5), (3.6), and (3.10) that we have

∑ ∑π π∥ − ∥ = − +ε Γ
ω

ε
ω⩽ >

f f f f f2 2 . (3.12)
n

n n

n

n
0,
2 ( ) ( ) 2 ( ) 2

Using (3.4), (3.6), (3.9), and lemma 3.3 gives
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∑

∑

κ

κ

− = − + −

⩽

+

ω
ε

κ
ε

κ ω
ε

κ

κ

κ ω

κ

⩽ < < ⩽

<

− −

< ⩽

−

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

f f f f f f

r h

r h

1

2
( ) e

1

2
( ) e

n

n n

n

n n

n

n n

n

n n h

n

n n h

( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2

2
( ) 2 i

2

2
( ) 2

2

2 2 1 2

2 2 1 2

Inverse Problems 30 (2014) 085008 G Bao and P Li

21





∑ ∑

∑ ∑

κ κ

κ κ

ε

⩽ +

⩽ ⩽

≲ ∥ ∥ ≲

κ κ ω

ω

Γ

< < ⩽

⩽ ∈

−

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

r h
N

r h

N
r h

N
r h

N r N M h

1

2
( )

2
( )

2
( )

2
( )

. (3.13)

n

n

n

n

n

n

n

n

2
( ) 2 2
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( ) 2
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It follows from lemma 3.4 and the integral test that

∫

∑ ∑ ∑ε ε

ε ε ω

ε κ

ε

= ⩽

≲ ≲

≲ +

≲

ω ω ω

ω

> > >

−

∞
− − +

−
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M t t M

M h N
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( ) log

( ) log . (3.14)

n

n

n

n

n

k

k k

k

k

( ) 2 2 ( ) 2 2 2

2 2 2 2 1

2 2 1 2 (2 1) 2

2 1 (2 1)

Combining (3.12)–(3.14), we obtain

ε ε∥ − ∥ ≲ +ε Γ
− − − −( ) ( )f f N M h M h N( ) log .

k
0,
2 2 1 4 2 1 (2 1)

Taking the square root on both sides of the above estimate yields the result. □
It is clearly seen from theorem 3.5 that the error consists of two parts: the first part arises

from the linearization on dropping higher order terms in the power series expansion; the
second part comes from the truncation of the Fourier series expansion of the diffraction
surface function. For a sufficiently smooth surface function, i.e., where k is large, the error is
dominated by the first part, which is small for small enough ε.

Though it is preferred to choose a large N in order to recover more Fourier modes of the
diffraction surface function, i.e., to achieve a better resolution, the estimate shows that the
error grows almost linearly with respect to N. Therefore, the frequency cutoff criterion N is a
delicate quantity which should be chosen to balance the resolution and the error. For noise-
free data, N can be chosen as a power function of the surface deformation parameter ε, i.e.,

ε= −N , (3.15)p

where < <p0 1 is a user-specified parameter. Plugging (3.15) into the error estimate in
theorem 3.5, we obtain an estimate

ε ε ε∥ − ∥ ≲ +ε Γ
− − − − −( )f f Mh M h( ) log . (3.16)p k

0,
1 2 2 1 (2 1) 2

Clearly, we have ∥ − ∥ →ε Γf f 00, as ε → 0 fixed h. However, the measurement distance h
cannot be chosen as an arbitrarily small number, as the first part in the error estimate (3.16) is
a decreasing function of h and dominates the overall error for sufficiently small h. As we
mentioned at the end of section 2.1, we may take

ε=h , (3.17)1 2

and then the error estimate (3.16) reduces to

ε ε ε∥ − ∥ ≲ +ε Γ
− + − −f f M M ( log ) .p k k

0,
2 1 (2 3) 4 (2 1) 2
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The above estimate is completely characterized only by the two intrinsic parameters M and ε,
which are associated with the problem itself.

Next we consider an error estimate for the noisy scattering data, which is the main result
of the paper.

Theorem 3.6. Let f and ε δf , be the exact and reconstructed grating surface functions in (3.5)
and (3.11), respectively. The error estimate

ε δ ε∥ − ∥ ≲ + +ε δ Γ
− − − −( )f f N M h N M h N( ) log

k

, 0,
1 2 1 (2 1) 2

holds.

Proof. It follows from (3.5), (3.11), and the triangle inequality that
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It suffices to estimate the middle term in (3.18). Using (3.6) and (3.8) yields



∑ ∑ ∑

∑

∑

∑ ∑

∑

∑

κ

κ

κ κ

κ

κ κ
δ

− = − + −

⩽ −

+ −

⩽ − + −

⩽ −

⩽ − = ∥ − ∥ ≲

ω
ε ε δ

κ
ε ε δ

κ ω
ε ε δ

κ
δ

κ

κ ω
δ

κ

κ
δ

κ ω
δ

ω
δ

δ δ Γ

⩽ < < ⩽

<

− −

< ⩽

−

< < ⩽

⩽

∈

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

f f f f f f

u u

u u

u u
N

u u

N
u u

N
u u

N
u u N

1

2
e

1

2
e

1

2 2

2

2 2
( ) . (3.19)

n

n n

n

n n

n

n n

n

n n n h

n

n n n h

n

n n

n

n n

n

n n

n

n n

( )
,
( ) 2 ( )

,
( ) 2 ( )

,
( ) 2

2
( ) ( ) 2 i

2

2
( ) ( ) 2

2

2
( ) ( ) 2 2

( ) ( ) 2

2
( ) ( ) 2

2
( ) ( ) 2 2

0,
2 2

2 2 1 2

2 2 1 2

Combining (3.18)–(3.19) and the estimates in theorem 3.5, we obtain

ε δ ε∥ − ∥ ≲ + +ε δ Γ
− − − −( )f f N M h N M h N( ) ( ) ( ) log .

k

, 0,
2 2 1 4 2 2 1 (2 1)

Taking the square root on both sides of the above estimate yields the result. □
As is shown in theorem 3.6, the error consists of three parts: besides the linearization and

the truncation errors, which are the same as in theorem 3.5, an extra error arises from the noise
of the scattering data.

Again, we take ε=h 1 2 in (3.17). The error estimate in theorem 3.6 reduces to

ε δ ε∥ − ∥ ≲ + +ε δ Γ
+ − −f f NM N M N(log ) . (3.20)k k

, 0,
2 (2 3) 4 (2 1) 2
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For noise data, the frequency cutoff criterion N can be chosen as

ε δ= − −{ }N min , , (3.21)p q

where < <q0 1 is also a user-specified parameter. We consider two cases:
(i) ε δ<− −p q. It follows from (3.21) that ε= −N p and δ ε⩽ p q. Plugging N and δ into

(3.20), we obtain

ε ε ε ε∥ − ∥ ≲ + +ε δ Γ
− − + − −f f M M ( log ) .p p q q k k

, 0,
2 1 (1 ) (2 3) 4 (2 1) 2

(ii) ε δ>− −p q. It follows from (3.21) that δ= −N q and ε δ< q p. Plugging N and ε into (3.20),
we get

δ δ δ δ∥ − ∥ ≲ + +ε δ Γ
− − + − −f f M M ( log ) .q p p q q k p k

, 0,
2 (1 ) 1 (2 3) 4 (2 1) 2

It is clearly seen that the above two estimates are also completely characterized by the
intrinsic parameters of the problem itself, either M and ε or M and δ.

4. Conclusions

We have shown an error analysis of the inverse diffractive grating problem in the application
of near-field imaging. An error estimate is established for the noisy scattering data with
explicit dependence on intrinsic parameters. The analysis raises several questions for future
research including that of an error estimate beyond the linearization and extensions of the
results to the two-dimensional grating problem.
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