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A new spectral method is developed to solve the unbounded rough surface scattering prob-
lem. An unbounded rough surface is referred to as a non-local perturbation of an infinite 
plane surface such that the whole rough surface lies within a finite distance of the original 
plane. The method uses a transformed field expansion to reduce the boundary value prob-
lem with a complex scattering surface into a successive sequence of transmission problems 
of a planar surface. Hermite orthonormal basis functions are adopted to further simplify 
these problems to fully decoupled one-dimensional two-point boundary value problems, 
which are solved efficiently by the Legendre–Galerkin method. Numerical results indicate 
that the method is efficient, accurate, and well-suited for solving the scattering problem by 
unbounded rough surfaces.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The problems of acoustic and electromagnetic scattering by unbounded rough surfaces have received much attention 
from both the engineering and mathematical communities for their important applications in a wide range of scientific 
areas, such as modeling acoustic and electromagnetic wave propagation over outdoor ground and sea surfaces [29], optical 
scattering from the surface of materials in near-field optics or nano-optics [13], detection of underwater mines, especially 
those buried in soft sediments [34]. An unbounded rough surface is referred to as a non-local perturbation of an infinite 
plane surface such that the whole rough surface lies within a finite distance of the original plane. Due to the non-local 
perturbation, precise modeling and accurate computing present challenging mathematical and computational questions.

Mathematically, the well-posedness of the solution was studied in [9,10,12,22,25] for the acoustic wave scattering prob-
lem. In [24], a model problem was considered for the three-dimensional electromagnetic wave scattering by rough surfaces. 
The two-dimensional scalar model problem was also considered by integral equation methods in [8,11,15–17,36,37]. We 
refer to [7,30] for related scattering problems where weighted Sobolev spaces were considered for unbounded domains. 
In addition, the solutions are available by using approximate, asymptotic, or statistical methods in [14,19,29,31,34,35] and 
the references cited therein. Despite the large amount of work done so far, we are not aware of any efficient and accurate 
numerical method for solving the scattering problem by unbounded rough surfaces.

The present work is concerned with the numerical solution for such a scattering problem. We propose, as the first time, 
a new spectral method to rigorously solve the unbounded rough surface scattering problem. Specifically, we consider the 
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Fig. 1. Problem geometry. A wave from the point source at (x0, y0) is incident on the scattering surface S from the top. The spaces Ω+
f (above S) and Ω−

f
(below S) are filled with materials whose wavenumbers are constants κ+ and κ− , respectively.

scattering of a time-harmonic wave field, which is generated from a point source and incident on an unbounded rough sur-
face from the top. The spaces above and below the surface are filled with some homogeneous absorbing materials, which 
account for the dielectric permittivity with positive imaginary parts. The scattering phenomenon is modeled as a bound-
ary value problem of the two-dimensional Helmholtz equation with transparent boundary conditions proposed on planar 
surfaces confining the surface. Under the assumption that the surface is a sufficiently small and smooth deformation of a 
planar surface, we use the transformed field expansion to reduce the two-dimensional Helmholtz equation with complex 
scattering surface into a successive sequence of the transmission problems with a planar interface. We adopt Hermite or-
thonormal basis functions to handle the difficulty from the infinite domain in horizontal direction, and further reduce the 
two-dimensional transmission problems into fully decoupled one-dimensional two-point boundary value problems, which 
are solved efficiently by the Legendre–Galerkin method. Numerical examples are reported for both the rough surface scat-
tering problem and the plane surface scattering problem, where the analytic solution is available. Numerical errors are 
investigated for all the parameters such as the perturbation parameter and the wavenumbers, the truncation in the hori-
zontal direction of the Hermite expansion and in the vertical direction of the Legendre expansion, and the transformed field 
power series expansion.

We refer to a series of papers [2–6,26] for the boundary perturbation methods for solving the diffraction grating prob-
lems. An improved boundary perturbation algorithm, termed as the transformed field expansion, was proposed in [27], 
where a change of variables was done first to flatten the scattering surface and then followed by the boundary pertur-
bation technique. The transformed field expansion method was shown to be accurate, stable, and robust even at higher 
order [20,28] for solving the two- and three-dimensional bounded obstacle scattering problems. Recently, an efficient and 
stable spectral method was developed in [21] for the two-dimensional Helmholtz equation in a two-layered periodic struc-
ture, where a Legendre–Galerkin approximation was used to solve the reduced one-dimensional problems.

The outline of this paper is as follows. In Section 2, a model problem is introduced for scattering by an unbounded rough 
surface. Section 3 is devoted to the transformed field expansion. In Section 4, numerical approximations are considered for 
the reduced transmission problems. Numerical examples are presented to demonstrate the efficiency and accuracy of the 
proposed method in Section 5. The paper is concluded with some general remarks and directions for future research in 
Section 6.

2. Model problem

In this section, we shall introduce a mathematical model and define some notation for the unbounded rough surface 
scattering problem. As seen in Fig. 1, let the scattering surface be described by the curve

S = {
(x, y) : y = f (x), x ∈R

}
,

where f is a bounded and Lipschitz continuous function. The scattering surface S is embedded in the strip

Ω = {
(x, y) ∈ R

2 : y− < y < y+
} = R× (y−, y+),

where y− is a negative constant and y+ is a positive constant. Let Ω+
f = {(x, y) : y > f (x)} and Ω−

f = {(x, y) : y < f (x)}
be filled with materials whose wavenumbers are constants κ+ and κ− , respectively. In fact, the wavenumbers satisfy 
κ2± = ω2με± , where ω is the angular frequency, μ is the magnetic permeability which is assumed to be a constant ev-
erywhere, and ε± are the electric permittivity in Ω±

f . In this work, the electric permittivity ε± are assumed to be two 
complex numbers with positive imaginary parts. The condition Imκ2± > 0 physically accounts for energy absorption and 
mathematically ensures the existence and uniqueness of the solution. Denote by Γ+ = {y = y+} and Γ− = {y = y−} the top 
and bottom boundaries of the domain Ω .
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Suppose that a wave generated from a point source at (x0, y0) is incident on S from the top. Explicitly, the point incident 
field is taken as the fundamental solution of the Helmholtz equation in Ω+ , i.e.,

uinc(x, y; x0, y0) = i

4
H (1)

0

(
κ+

∣∣(x, y) − (x0, y0)
∣∣), (1)

where H (1)
0 is the Hankel function of first kind with order zero, (x, y) is the observation point, and (x0, y0) is the given 

source point in Ω+ . Clearly the incident field satisfies the two-dimensional Helmholtz equation:

�uinc(x, y) + κ2+uinc(x, y) = −δ(x − x0)δ(y − y0) in R
2,

where δ is the Dirac delta function.
The scattering of time-harmonic electromagnetic waves in the transverse electric case can also be modeled by the two 

dimensional Helmholtz equation:

�u(x, y) + κ2u(x, y) = −δ(x − x0)δ(y − y0) in R
2, (2)

where the wavenumber

κ =
{

κ+ in Ω+
f ,

κ− in Ω−
f .

Due to the unbounded scattering surface, the usual Sommerfeld radiation condition is no longer valid [1]. We insist that u
is composed of bounded outgoing waves in Ω+ and Ω− plus the incident wave uinc in Ω+ .

For any given u on Γ± , define the boundary operators T±:

T±u = 1√
2π

∫
R

±iβ±û(ξ, y±)eiξxdξ,

where

β2±(ξ) = κ2± − |ξ |2 with Imβ±(ξ) > 0.

Following [25], we can deduce transparent boundary conditions on Γ±:

∂yu = T±u + ρ± on Γ±, (3)

where

ρ+ = ∂yuinc − T+uinc and ρ− = 0. (4)

Next we reformulate the scattering problem (2) and (3) into a transmission problem which is convenient to introduce 
the transformed field expansion [27].

Denote Ω± = Ω±
f ∩ Ω , as seen in Fig. 1. Consider the Helmholtz equation (2) in Ω±:

�u± + κ2±u± = 0 in Ω±. (5)

Recall the non-local transparent boundary conditions (3)

∂yu± = T±u± + ρ± on Γ±. (6)

Following from the jump conditions, we obtain that the field and its normal derivative are continuous across S , i.e.,

u+(
x, f (x)

) = u−(
x, f (x)

)
, (7)

∂nu+(
x, f (x)

) = ∂nu−(
x, f (x)

)
, (8)

where n = (n1, n2)
� is the unit normal vector pointing from Ω+ to Ω− . Explicitly, we have

n1 = f ′(x)√
1 + [ f ′(x)]2

and n2 = − 1√
1 + [ f ′(x)]2

.

Hence, the transmission problem is to find the fields u+ and u− , which satisfy the Helmholtz equation (5), the boundary 
condition (6), and the continuity conditions (7) and (8). It was shown in [25] that the transmission problem has a unique 
weak solution; furthermore, an analytic solution was deduced as an infinite series under the assumption that the scattering 
surface S is a sufficiently small and smooth deformation of a plane surface.
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3. Transformed field expansion

The transformed field expansion method begins with the change of variables:

x1 = x, y1 = y+
(

y − f

y+ − f

)
, f < y < y+,

and

x2 = x, y2 = y−
(

y − f

y− − f

)
, y− < y < f ,

which maps the domains Ω+ and Ω− to the rectangular domains D+ = {(x, y) ∈ R
2 : 0 < y < y+} and D− = {(x, y) ∈ R

2 :
y− < y < 0}, respectively.

It is easy to verify the differentiation rules

∂x = ∂x1 − f ′
(

y+ − y1

y+ − f

)
∂y1 ,

∂y =
(

y+
y+ − f

)
∂y1 ,

for f < y < y+ , and

∂x = ∂x2 − f ′
(

y− − y2

y− − f

)
∂y2 ,

∂y =
(

y−
y− − f

)
∂y2 ,

for y− < y < f .
Introduce new functions w+(x1, y1) = u+(x, y) and w−(x2, y2) = u−(x, y) under the transformation. It can be verified 

after tedious but straightforward calculations that w± , upon dropping the subscript, satisfy the equation

c±
1

∂2 w±

∂x2
+ c±

2
∂2 w±

∂ y2
+ c±

3
∂2 w±

∂x∂ y
+ c±

4
∂ w±

∂ y
+ c±

1 κ2±w± = 0 in D±, (9)

where

c±
1 = (y± − f )2,

c±
2 = [

f ′(y± − y)
]2 + y2+,

c±
3 = −2 f ′(y± − y)(y± − f ),

c±
4 = −(y± − y)

[
f ′′(y± − f ) + 2

(
f ′)2]

.

The non-local transparent boundary conditions (6) are

∂y w± =
(

1 − f

y±

)(
T±w± + ρ±)

on Γ±. (10)

The continuity conditions (7) and (8) reduce to

w+(x,0) = w−(x,0), (11)(
y+

y+ − f

)
∂y w+(x,0) =

(
y−

y− − f

)
∂y w−(x,0). (12)

We assume that the scattering surface S is a sufficiently small perturbation of the flat plane, i.e., f = εg with ε suffi-
ciently small comparing with the wavelength of the incident field. We consider the formal expansions of w± in a power 
series of ε:

w±(x, y;ε) =
∞∑

k=0

w±
k (x, y)εk. (13)

Substituting f = εg into c±
j and inserting the above expansions into (9), we may derive the recursions for w±

k :

∂2 w±
k

2
+ ∂2 w±

k
2

+ κ2±w±
k = v±

k in D±, (14)

∂x ∂ y
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where

v±
k = 2g

y±
∂2 w±

k−1

∂x2
+ 2g′(y± − y)

y±
∂2 w±

k−1

∂x∂ y
+ g′′(y± − y)

y±
∂ w±

k−1

∂ y
+ 2κ2±g

y±
w±

k−1

− g2

y2±

∂2 w±
k−2

∂x2
− (g′)2(y± − y)2

y2±

∂2 w±
k−2

∂ y2
− 2gg′(y± − y)

y2±

∂2 w±
k−2

∂x∂ y

+ [2(g′)2 − gg′′](y± − y)

y2±

∂ w±
k−2

∂ y
− κ2±g2

y2±
w±

k−2.

The non-local boundary conditions (10) become

∂y w±
k − T±w±

k = ρ±
k , y = y±, (15)

where

ρ+
0 = ρ, ρ+

1 = −
(

g

y+

)
T+w+

0 −
(

g

y+

)
ρ, ρ+

k = −
(

g

y+

)
T+w+

k−1, k = 2,3, . . . ,

ρ−
0 = 0, ρ−

k =
(

g

y−

)
T−w−

k−1, k = 1,2, . . . .

The continuity conditions (11) and (12) at the interface y = 0 reduce to

w+
k (x,0) − w−

k (x,0) = 0, (16)

∂y w+
k (x,0) − ∂y w−

k (x,0) = hk, (17)

where

h0 = 0, hk =
(

g

y−

)
∂y w+

k−1 −
(

g

y+

)
∂y w−

k−1, k = 1,2, . . . .

We notice that the Helmholtz problem (14) for the current terms w±
k involve some non-homogeneous terms v±

k , ρ±
k , 

and hk , which only depend on previous two terms w±
k−1 and w±

k−2. Thus, the transmission problem (14)–(17) in rectangular 
domains D± indeed can be solved efficiently in a recursive manner starting from k = 0.

When solving the transmission problem (14)–(17) numerically, a main difficulty is how to treat the non-local boundary 
conditions (15). It is shown in [25] that the boundary conditions (15) become local in the frequency space after taking the 
Fourier transform in x. Indeed, dropping the subscript k for simplicity of notation and taking the Fourier transform of (14)
with respect to the variable x, we obtain

∂2 ŵ±

∂ y2
+ (

κ2± − ξ2)ŵ± = v̂±. (18)

The non-local boundary conditions (15) become:

∂y ŵ± ∓ iβ± ŵ± = ρ̂±, (19)

which is local in the Fourier variable ξ . The continuity conditions reduce to

ŵ+(ξ,0) − ŵ−(ξ,0) = 0, (20)

∂y ŵ+(ξ,0) − ∂y ŵ−(ξ,0) = ĥ. (21)

We observe that for each ξ ∈ R, the problem (18)–(21) is a one-dimensional two-point boundary value problem whose 
solution can expressed analytically [25]. However, these analytic expressions are of limited use in practice, since the solution 
is expressed in the Fourier variable ξ which cannot readily converted to the physical variable x due to the lack of discrete 
Fourier transform in R. In the next section, we use orthonormal Hermite basis functions which play the role of the Fourier 
transform numerically and allow us to reduce the two-dimensional problem (14)–(17) into a sequence of one-dimensional 
problems that can be solved efficiently and accurately by a Legendre–Galerkin method.

4. Approximation

In this section, we consider an approximation to the transmission problem (18)–(21) by using the Hermite orthonormal 
functions for the horizontal x-direction and the Legendre–Galerkin method for the reduced one-dimensional problem in the 
vertical y-direction.
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4.1. Hermite orthonormal basis

Denote by Hm(x) the Hermite polynomial of degree m on R for m = 0, 1, 2, · · · . These polynomials are orthogonal with 
respect to the weigh function e−x2

, i.e.,∫
R

Hm(x)Hk(x)e−x2
dx = 2mm!√πδmk, (22)

where δmk is the Dirac delta function. The sequence of Hermite polynomials satisfies the recursion

Hm+1(x) = 2xHm(x) − 2mHm−1(x) (23)

and the identity

H ′
m(x) = 2mHm−1(x). (24)

Define a sequence of Hermite functions

ψm(x) = (
2mm!√π

)−1/2
Hm(x)e−x2/2.

It follows from (22) that the Hermite functions form an orthonormal basis of the Hilbert space L2(R), i.e.,∫
R

ψm(x)ψk(x)dx = δmk. (25)

Furthermore, they satisfy the recursion

ψm+1(x) =
√

2

m + 1
xψm(x) −

√
m

m + 1
ψm−1(x) (26)

and the identity

ψ ′
m(x) = −xψm(x) + √

2mψm−1(x). (27)

The following result plays a key role in our algorithm. We refer to [18] (cf. page 22) for the proof.

Lemma 4.1. The Hermite function ψm is the eigenfunction of the Fourier transform operator with eigenvalue (−i)m, m = 0, 1, . . . , i.e.,

ψ̂m(ξ) = 1√
2π

∫
R

ψm(x)e−iξxdx = (−i)mψm(ξ).

Using the Hermite basis functions, we consider the expansions

w±(x, y) =
∞∑

m=0

w±
m(y)ψm(x),

v±(x, y) =
∞∑

m=0

v±
m(y)ψm(x),

ρ±(x) =
∞∑

m=0

ρ±
m ψm(x),

h(x) =
∞∑

m=0

hmψm(x).

Taking the Fourier transform with respect to x of the above expansions and using Lemma 4.1, we have

ŵ±(ξ, y) =
∞∑

m=0

(−i)m w±
m(y)ψm(ξ),

v̂±(ξ, y) =
∞∑

m=0

(−i)m v±
m(y)ψm(ξ),

ρ̂±(ξ) =
∞∑

m=0

(−i)mρ±
m ψm(ξ),

ĥ(ξ) =
∞∑

(−i)mhmψm(ξ).
m=0
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Plugging the above expansions into (18) yields

∞∑
m=0

[
(−i)m d2 w±

m(y)

dy2
ψm(ξ) + (−i)m(

κ2± − ξ2)w±
m(y)ψm(ξ)

]
=

∞∑
m=0

(−i)m v±
m(y)ψm(ξ). (28)

The boundary condition (19) reduce to
∞∑

m=0

[
(−i)m dw±

m(y±)

dy
ψm(ξ) ∓ (−i)miβ±w±

m(y±)ψm(ξ)

]
=

∞∑
m=0

(−i)mρ±
m ψm(ξ). (29)

The continuity conditions (20) and (21) reduce to
∞∑

m=0

(−i)m[
w+

m(0) − w−
m(0)

]
ψm(ξ) = 0, (30)

and
∞∑

m=0

(−i)m
[

dw+
m(0)

dy
− dw−

m(0)

dy

]
ψm(ξ) =

∞∑
m=0

(−i)mhmψm(ξ). (31)

Define a diagonal matrix

D = diag
(
(−i)0, (−i)1, (−i)2, . . . , (−i)m, . . .

)
and vectors

w±(y) = D · (w±
0 (y), w±

1 (y), . . . , w±
m(y), . . .

)�
,

v±(y) = D · (v±
0 (y), v±

1 (y), . . . , v±
m(y), . . .

)�
,

ρ± = D · (ρ±
0 ,ρ±

1 , . . . , ρ±
m , . . .

)�
,

h = D · (h1,h2, . . . ,hm, . . .)�.

Define matrices A = (aij) and S± = (s±
i j ) with entries given by

aij =
∫
R

ξ2ψ j(ξ)ψi(ξ)dξ

and

s±
i j =

∫
R

±iβ±ψ j(ξ)ψi(ξ)dξ.

It can be easily verified from (25) and (26) that the matrix A is symmetric and tri-diagonal with entry given by

aij =
√

(i + 1)( j + 1) + √
i j

2
δi, j +

√
(i + 1) j

2
δi+1, j−1 +

√
i( j + 1)

2
δi−1, j+1.

Multiplying the Hermite basis function and integrating in R, we may rewrite (28) into the matrix form:

d2w±(y)

dy2
+ (

κ2± I − A
)
w±(y) = v±(y), (32)

where I is the identity matrix. The boundary conditions (29) can be written as

dw±(y±)

dy
− S±w±(y±) = ρ±. (33)

The continuity conditions (30) and (31) can be written as

w+(0) − w−(0) = 0, (34)

and

dw+(0)

dy
− dw−(0)

dy
= h. (35)

Hence the one-dimensional two-point boundary value problem (18)–(21) is formulated as a coupled infinite sys-
tem (32)–(35).
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Lemma 4.2. For any real polynomials g1(ξ) and g2(ξ), it holds

∞∑
k=0

∫
R2

g1(ξ)g2(η)ψi(ξ)ψk(ξ)ψk(η)ψ j(η)dξdη =
∫
R

g1(ξ)g2(ξ)ψi(ξ)ψ j(ξ)dξ, i, j ≥ 0. (36)

Proof. We prove this lemma by the method of induction. First, without loss of generality, we may assume g1 is a constant 
function, e.g., g1 = 1. By the orthogonality of the Hermite basis functions, we have

∞∑
k=0

∫
R2

g1(ξ)g2(η)ψi(ξ)ψk(ξ)ψk(η)ψ j(η)dξdη =
∞∑

k=0

∫
R

g2(η)ψk(η)ψ j(η)dη

∫
R

ψi(ξ)ψk(ξ)dξ

=
∫
R

g1(η)g2(η)ψi(η)ψ j(η)dη.

Next we show that it holds for g1(ξ) = ξ . Using the recursion (26) and the orthogonality of the Hermite basis functions 
yield

∞∑
k=0

∫
R2

g1(ξ)g2(η)ψi(ξ)ψk(ξ)ψk(η)ψ j(η)dξdη

=
∞∑

k=0

∫
R

g2(η)ψk(η)ψ j(η)dη

∫
R

ξψi(ξ)ψk(ξ)dξ

=
∞∑

k=0

∫
R

g2(η)ψk(η)ψ j(η)dη

∫
R

(√
i + 1

2
ψi+1(ξ) +

√
i

2
ψi−1(ξ)

)
ψk(ξ)dξ

=
∫
R

g2(η)

(√
i + 1

2
ψi+1(η) +

√
i

2
ψi−1(η)

)
ψ j(η)dη

=
∫
R

g2(η)ηψi(η)ψ j(η)dη =
∫
R

g1(η)g2(η)ψi(η)ψ j(η)dη.

Now we may assume that it holds for any polynomial g1(ξ) with degree less than or equal to n. It suffices to show that 
it holds for any polynomial g1(ξ) with degree n + 1. Here we can assume g1(ξ) has no constant term since (36) is proved 
for any constant function of g1. Then we can write g1(ξ) = ξ f (ξ), where f (ξ) is a polynomial of degree n.

Using the recursion (26) and the orthogonality of the Hermite basis functions again, we have

∞∑
k=0

∫
R2

g1(ξ)g2(η)ψi(ξ)ψk(ξ)ψk(η)ψ j(η)dξdη

=
∞∑

k=0

∫
R

g2(η)ψk(η)ψ j(η)dη

∫
R

f (ξ)ξψi(ξ)ψk(ξ)dξ

=
∞∑

k=0

∫
R

g2(η)ψk(η)ψ j(η)dη

∫
R

f (ξ)

(√
i + 1

2
ψi+1(ξ) +

√
i

2
ψi−1(ξ)

)
ψk(ξ)dξ

=
∞∑

k=0

√
i + 1

2

∫
R2

f (η)g2(ξ)ψi+1(ξ)ψk(ξ)ψk(η)ψ j(η)dξdη

+
∞∑

k=0

√
i

2

∫
R2

f (η)g2(ξ)ψi−1(ξ)ψk(ξ)ψk(η)ψ j(η)dξdη

=
√

i + 1

2

∫
f (η)g2(η)ψi+1(η)ψ j(η)dη +

√
i

2

∫
f (η)g2(η)ψi−1(η)ψ j(η)dη
R R
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=
∫
R

g2(η) f (η)

(√
i + 1

2
ψi+1(η) +

√
i

2
ψi−1(η)

)
ψ j(η)dη

=
∫
R

g2(η) f (η)ηψi(η)ψ j(η)dη =
∫
R

g2(η)g1(η)ψi(η)ψ j(η)dη,

which completes the proof. �
Denote by 〈·, ·〉 and (·, ·) the inner products in l2 and L2, respectively. Let u = [u0, u1, . . .]�, v = [v0, v1, . . .]� ∈ l2, and

u(x) =
∞∑

k=0

ukψk(x) and v(x) =
∞∑

k=0

ukψk(x).

Lemma 4.3. For any integer k ≥ 0, it holds〈
Aku,v

〉 = (
x2ku(x), v(x)

)
. (37)

Proof. We prove this lemma by the method of induction. Clearly, it follows from the definitions of the inner products in l2
and L2 that the identity (37) is satisfied, i.e.,

〈u,v〉 = (
u(x), v(x)

)
.

So, we first prove that the identity (37) is satisfied for k = 1. It follows from the definitions that we have

(
x2u(x), v(x)

) =
(

x2
∞∑

i=0

uiψi(x),
∞∑
j=0

v jψ j(x)

)
=

∞∑
i=0

∞∑
j=0

ui v j
(
x2ψi(x),ψ j(x)

) =
∞∑

i=0

∞∑
j=0

ui v ja ji = 〈Au,v〉.

We assume that (37) is satisfied for some integer k > 1, i.e.,〈
Aku,v

〉 = (
x2ku(x), v(x)

)
.

Next we show that (37) is satisfied for the integer k + 1. Using Lemma 4.2, we have

(
x2(k+1)u(x), v(x)

) = (
x2(x2ku(x)

)
, v(x)

) =
∞∑

i=0

∞∑
j=0

ui v j
(
x2x2kψi(x),ψ j(x)

)

=
∞∑

i=0

∞∑
j=0

ui v j

∞∑
m=0

(
x2ψi(x),ψm(x)

)(
x2kψm(x),ψ j(x)

) =
∞∑

i=0

∞∑
j=0

ui v j

∞∑
m=0

ami
〈
Akem,e j

〉

=
∞∑

m=0

( ∞∑
i=0

uiami

)( ∞∑
j=0

v j
〈
Akem,e j

〉) =
∞∑

m=0

(Au)m
〈
Akem,v

〉

=
〈

Ak
∞∑

m=0

(Au)mem,v

〉
= 〈

Ak Au,v
〉 = 〈

Ak+1u,v
〉
,

where em is the unit vector, whose mth component is one and others are zeros. �
Lemma 4.4. The matrices S± can be expressed as

S± =
∞∑

k=0

g(k)
± (0)

k! Ak,

where g±(ξ) = i
√

κ2± − ξ .

Proof. Since κ± are complex numbers and g±(ξ) are analytic on the whole real axis, we have the Maclaurin series expan-
sions for g±(ξ):

g±(ξ) =
∞∑ g(k)

± (0)

n! ξk for all real ξ. (38)

k=0
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It follows from (37) that we have

〈
S±e j,ei

〉 = (
g±

(
ξ2)ψ j(ξ),ψi(ξ)

) =
( ∞∑

k=0

g(k)
± (0)

k!
(
ξ2k)ψ j(ξ),ψi(ξ)

)

=
∞∑

k=0

g(k)
± (0)

k!
(
ξ2kψ j(ξ),ψi(ξ)

)

=
∞∑

k=0

g(k)
± (0)

k!
〈
Ake j,ei

〉 =
〈 ∞∑

k=0

g(k)
± (0)

k! Ake j,ei

〉
,

which completes the proof. �
As a direct consequence of Lemma 4.4, we have

Theorem 4.1. The matrices A and S± commute, i.e.,

A S± = S± A. (39)

This theorem implies that A and S± can be simultaneously diagonalized, and consequently, the system (32)–(35) can be 
decoupled.

4.2. Finite dimensional approximation

We now construct a finite dimensional approximation to the system (32)–(35) which can be decoupled by simultaneous 
diagonalization. We note that while the infinite matrices A and S± commute (cf. (39)), a direct truncation does not preserve 
the commutativity (cf. Remark 4.1) which is essential for the decoupling.

Define a finite dimensional subspace of L2(R):

XM = span{ψ0,ψ1, . . . ,ψM}.
Numerically, we shall seek the solution in the finite dimensional subspace XM . We assume that the numerical solution has 
the expansion

w±
M(x, y) =

M∑
m=0

w±
m(y)ψm(x).

Define a diagonal matrix

D M = diag
(
(−i)0, (−i)1, (−i)2, . . . , (−i)M)

and vectors

w±
M(y) = D M · (w±

0 (y), w±
1 (y), . . . , w±

M(y)
)�

,

v±
M(y) = D M · (v±

0 (y), v±
1 (y), . . . , v±

M(y)
)�

,

ρ±
M = D N · (ρ±

0 ,ρ±
1 , . . . , ρ±

M

)�
,

hM = D M · (h1,h2, . . . ,hM)�.

Denote by AM = (aij)0≤i, j≤M the truncation of the matrix A. Define

S±
M =

∞∑
k=0

g(k)
± (0)

k! (AM)k. (40)

Remark 4.1. The matrices S±
M are not simply the truncation of the matrices S± given by

(
S±)

M =
∞∑

k=0

g(k)
± (0)

k!
(

Ak)
M .

However, the difference between S± and (S±)M are high order terms which converge to zero as M increases.
M
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The finite dimensional approximation to (32)–(35) is

d2w±
M(y)

dy2
+ (

κ2± IM − AM
)
w±

M(y) = v±
M(y), (41)

with the boundary conditions

dw±
M(y±)

dy
− S±

M w±
M(y±) = ρ±

M , (42)

and the continuity conditions

w+
M(0) − w−

M(0) = 0, (43)

and

dw+
M(0)

dy
− dw−

M(0)

dy
= hM . (44)

The above system of (M + 1) equations is coupled together by the matrices AM and S±
M .

Theorem 4.2. The matrices AM and S±
M are simultaneously diagonalizable. Moreover, let {λ j}0≤ j≤M be the set of eigenvalues of AM, 

then the eigenvalues of S±
M are given by

σ±
j = i

√
κ2± − λ j, 0 ≤ j ≤ M. (45)

Proof. By definition, AM is a real symmetric matrix. Hence, there exists an M × M orthonormal matrix Q M such that

Q �
M AM Q M = ΛM ,

where ΛM is an M × M diagonal matrix.
It follows from the definitions of S±

M that we have

Q �
M S±

M Q M =
∞∑

k=0

g(k)
± (0)

k! Q �
M(AM)k Q M =

∞∑
k=0

g(k)
± (0)

k!
(

Q �
M AM Q M

)k

=
∞∑

k=0

g(k)
± (0)

k! Λk
M := Σ±

M = diag
{
σ±

0 ,σ±
1 , · · · ,σ±

M

}
, (46)

which completes the proof. �
By Theorem 4.2, the matrices S±

M and AM can be simultaneously diagonalized by the same orthogonal matrix Q M , i.e., 
there exist an orthonormal matrix Q M and two M × M diagonal matrices ΛM and ΣM such that

Q �
M AM Q M = ΛM and Q �

M S±
M Q M = Σ±

M .

Denote w̃±
M(y) = Q �

M w±
M(y), ṽ±

M(y) = Q �
M v±

M(y), ρ̃±
M = Q �

Mρ±
M , h̃M = Q �

M hM . Multiplying Q �
M on both sides of (41) and 

using the simultaneous diagonalization property, we deduce a fully decoupled system of M + 1 equations:

d2w̃±
M(y)

dy2
+ (

κ2± IM − ΛM
)
w̃±

M(y) = ṽ±
M(y), (47)

with the boundary conditions

dw̃±
M(y±)

dy
− Σ±

M w̃±
M(y±) = ρ̃±

M , (48)

and the continuity conditions

w̃+
M(0) − w̃−

M(0) = 0, (49)

and

dw̃+
M(0)

dy
− dw̃−

M(0)

dy
= h̃M . (50)

Once w̃±
M is obtained by solving the above decoupled two-point boundary value problem (47)–(50), we can compute 

w±
M = Q M w̃±

M .

Remark 4.2. In practice, it is not required to generate the matrix S±
M explicitly since all we need is the diagonal matrix Σ±

M
whose elements can be computed directly by using (45).
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4.3. Legendre–Galerkin approximation

The problem (47)–(50) consists of a sequence of decoupled two-point boundary value problem which can be solved, for 
example, by the Legendre–Galerkin method [32]. In this section, we briefly discuss the Legendre–Galerkin method to solve 
the following two-point boundary value model problem, and refer to the book [33] for more detail.

Consider the second-order ordinary differential equation

d2u±(y)

dy2
+ η±u±(y) = v±(y), (51)

together with the boundary conditions on y = y±

du±(y±)

dy
− σ±u±(

y±) = ρ±, (52)

and the continuity conditions

u+(0) − u−(0) = 0, (53)

du+(0)

dy
− du−(0)

dy
= h. (54)

The above one-dimensional transmission problem (51)–(54) is exactly the same as the one studied in [21], and can be 
efficiently solved by using a Legendre–Galerkin method (cf. [32]) which is described in detail in Section 4 of [21]. With a 
suitable choice of basis functions, the Legendre–Galerkin method leads to a sequence of sparse linear system which can be 
inverted in O (N) operations, where N is the number of unknowns in the Legendre expansion.

4.4. Algorithm and complexity

Given the problem parameters: wave numbers (κ+, κ−), surface perturbation ε, we choose the numerical parameters: 
M to be the number of Hermite expansion in the horizontal x direction, N to be the number of Legendre expansion in the 
vertical y direction, and K to be the number of Taylor expansion retained in the perturbation expansion. The numerical 
solution can be written in the following form:

u±(x, y) =
M∑

m=0

N∑
n=0

K∑
k=0

w±
m,n,kψm(x)φ±

n (y)εk. (55)

Therefore, the numerical algorithm is to compute the coefficients set {w±
m,n,k} for m = 0, ..., M , n = 0, ..., N , and k = 0, ..., K , 

which can be summarized as follows:

Pre-computation: (independent of wavenumbers κ±)

1. Compute the Hermite Gauss points {xn}n=0,...,M , Legendre–Gaussian–Lobatto collocation points {y+
n }n=0,...,N on interval 

[0, y+] and {y−
n }n=0,...,N on interval [y−, 0]. (O (N) + O (M) flops.)

2. Compute the matrix AM , and its eigenpair (Q M , ΛM). (O (M2) flops.)

Then, for each incident wave:

1. Compute Σ±
M through (45);

2. for k = 1 : K do
for m = 1 : M do

Solve each one dimensional problem to obtain {w±
m,n,k} for n = 0, ..., N

end for
end for

3. Calculate u±(x, y) through (55).

The computational complexity for each k in Step 2 is of order O (M2N) + O (MN2) which comes from the matrix–matrix 
multiplications involving the eigenmatrix Q M and also comes from applying the discrete Legendre transforms and discrete 
Hermite transforms [33]. Hence, the total computational complexity is of order O (M2 N K ) + O (MN2 K ).

5. Numerical experiments

In this section, we present some numerical experiments to demonstrate the efficiency and accuracy of the proposed 
method. Two cases are considered; one is a plane surface scattering, where the analytic solution is available and can be 
used for accuracy test of the numerical solution, and another is rough surface scattering. The code was written in Matlab 
and the computations were run on an Intel Core i5 processor (1.7 GHz, 4 GB 1333 MHz DDR3 memory).
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5.1. Plane surface scattering

In [23], the fundamental solution is introduced for the two-dimensional Helmholtz equation in a two-layered medium. 
For the observation point r = (x, y) and source point r′ = (x′, y′), the fundamental solution of Helmholtz equation in a 
two-layered background medium in R2 satisfies

�G
(
r, r′) + κ2(r)G

(
r, r′) = −δ

(
r − r′),

with continuity conditions on the interface

G
(
r, r′)∣∣

y=0+ = G
(
r, r′)∣∣

y=0−

∂y G
(
r, r′)∣∣

y=0+ = ∂y G
(
r, r′)∣∣

y=0− ,

where the wavenumber

κ(r) =
{

κ1 for y > 0,

κ2 for y < 0.

Denote β2
i = κ2

i − ξ2 with Imβi ≥ 0. It follows from the Fourier transform that the fundamental solution is given by

G
(
r, r′) =

⎧⎪⎪⎨
⎪⎪⎩

Ψ (1)(r, r′) + Φ1(r, r′) for y > 0, y′ > 0,

Ψ (2)(r, r′) + Φ2(r, r′) for y < 0, y′ < 0,

Ψ (3)(r, r′) for y > 0, y′ < 0,

Ψ (4)(r, r′) for y < 0, y′ > 0,

where

Ψ (1)
(
r, r′) = i

4π

∞∫
−∞

1

β1

β1 − β2

β1 + β2
eiβ1(y+y′)eiξ(x−x′)dξ,

Ψ (2)
(
r, r′) = i

4π

∞∫
−∞

1

β2

β2 − β1

β1 + β2
e−iβ2(y+y′)eiξ(x−x′)dξ,

Ψ (3)
(
r, r′) = i

2π

∞∫
−∞

ei(β1 y−β2 y′)

β1 + β2
eiξ(x−x′)dξ,

Ψ (4)
(
r, r′) = i

2π

∞∫
−∞

ei(β1 y−β2 y′)

β1 + β2
eiξ(x−x′)dξ,

and Φi is the fundamental solution of the Helmholtz equation in homogeneous background medium in R2 with wavenum-
ber κi , i.e.,

Φi
(
r, r′) = i

4
H (1)

0

(
κi

∣∣r − r′∣∣), i = 1,2.

We consider the case where the surface is a plane, i.e., f (x) = 0. We can compare numerical solution with the analytic 
solution given above. Recall that the point (x0, y0) is where the source is placed. In this section, we always assume the 
point source is placed at (x0, y0) = (0.0, 1.5) and the transparent boundaries are put at y+ = 1 and y− = −1.

First, we investigate the convergence of the series solution in the horizontal x-direction. We fix N = 40 and vary M with 
four different wavenumber cases:

Case 1: (κ+, κ−) = (10.5 + 1.0i,20.5 + 1.0i),

Case 2: (κ+, κ−) = (1.5 + 1.0i,2.5 + 1.0i),

Case 3: (κ+, κ−) = (10.5 + 0.5i,20.5 + 0.5i),

Case 4: (κ+, κ−) = (1.5 + 0.5i,2.5 + 0.5i).

The results are shown in Fig. 2 (left) and in Fig. 3 (left), which plot the L2(Ω) error and the CPU time of the numerical so-
lution again the number of truncation in the x-direction M , respectively. It can be seen from the results that the numerical 
solutions converge exponentially as M is increased and the computational time is consistent with our theoretical computa-
tional complexity. We point out that the wavenumbers with large real and small imaginary values require much larger M
in order to maintain the same order of accuracy. However, for those wavenumber with either big real and imaginary values 
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Fig. 2. The L2(Ω) error of the numerical solution is plotted against the number of truncation terms for flat surface scattering. (Left) The error is plotted 
against the truncation term in the horizontal x-direction M; (right) the error is plotted against the truncation term in the vertical y-direction N .

Fig. 3. The CPU time is plotted against the number of truncation terms for flat surface scattering. (left) The CPU is plotted against the truncation term in 
the horizontal x-direction M; (right) The CPU is plotted against the truncation term in the vertical y-direction N .

or small real and imaginary values, e.g., Case 1 and Case 4, the impact of the imaginary value of the wavenumber will 
eventually affect the numerical accuracy.

Next, we investigate the convergence of the series solution in vertical y-direction. In this test, we only vary the pa-
rameter N , and take a sufficiently large M , e.g., M = 160, such that the approximation error is negligibly small in the 
x-direction. We consider the same four cases as the previous investigation. The results are shown in Fig. 2 (right) and in 
Fig. 3 (right), which plot the L2(Ω) error and the CPU time of the numerical solution against the number of truncation in 
the y-direction N . Again, we notice an exponential convergence as N is increased and the consistence of the actual CPU 
time with the theoretical computational complexity. It is clear to note that the wavenumbers with large real and small 
imaginary values require much larger N to reach the same level of accuracy. Similarly, for the wavenumbers with either big 
real and imaginary values or small real and imaginary values, e.g., Case 1 and Case 4, the impact of the imaginary value of 
the wavenumber will eventually affect the numerical accuracy.

Finally, we investigate the convergence of the series solution with respect to the wavenumber. We fix the real part of κ± , 
e.g., Re(κ+) = 1.5 and Re(κ−) = 2.5, and vary both of the imaginary parts of κ± from 0.1 to 1. The results are displayed in 
Fig. 4 (left) for fixed M = 200 and N = 80. Then we fix the imaginary part of κ± , e.g., Im(κ+) = 1 and Im(κ−) = 1, and vary 
both of the real parts of κ± from Re(κ+) = 1 to 20 and Re(κ−) = 2 Re(κ+). The result are displayed in Fig. 4 (right) with 
fixed truncation terms M = 200 and N = 80. As expected, the error decreases as the imaginary part of the wavenumber 
increases, while the error increases as the real part of the wavenumber increases.

5.2. Rough surface scattering

In this subsection, we investigate the case of rough surface scattering and determine how the numerical accuracy de-
pends on the parameter K , i.e., the term in the series solution. We fix the parameters M and N such that the approximation 
error is negligibly small in terms of M and N . To test the convergence of the method, we denote a relative L2(Ω) error:

EK = ‖uK − uK−1‖L2(Ω)

‖uK ‖L2(Ω)

.

First, we consider Case 2, i.e., (κ+, κ−) = (1.5 + 1.0i, 2.5 + 1.0i) and choose the function g1(x) = cos(x) to represent the 
rough surface. We fix ε = 0.1, M = 100, N = 30, and vary K from 1 to 16. The convergent result is shown in the column of 
Test 1 in Table 1. We also change ε from 0.2 to 0.8. The convergent results with respect to different ε are displayed in Fig. 5, 
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Fig. 4. The L2(Ω) error of the numerical solution is plotted against the wavenumbers for flat surface scattering. (Left) The error is plotted against the real 
parts of the wavenumbers; (right) the error is plotted against the imaginary parts of the wavenumbers.

Table 1
Convergence test for different wavenumbers and perturbation parameter ε for rough surface scattering.

K Test 1 Test 2 Test 3 Test 4

1 1.0E+00 1.0E+00 1.0E+00 1.0E+00
2 1.09E−01 5.71E−01 8.68E−02 6.07E−01
3 1.14E−02 3.03E−01 4.03E−03 3.83E−01
4 8.67E−04 3.56E−01 9.33E−04 3.71E−01
5 1.75E−04 3.74E−01 1.33E−04 1.27E−01
6 2.47E−05 9.12E−02 1.00E−05 1.87E−01
7 7.31E−07 8.15E−02 3.73E−07 9.91E−02
8 1.14E−07 1.01E−01 1.15E−07 9.27E−02
9 2.51E−08 3.29E−02 1.00E−08 6.64E−02

10 2.69E−09 3.64E−02 6.76E−10 3.22E−02
11 1.41E−10 5.20E−02 1.28E−10 3.89E−02
12 2.91E−11 2.80E−02 1.58E−11 1.57E−02
13 4.11E−12 1.03E−02 8.80E−13 1.99E−02
14 2.93E−13 2.18E−02 1.51E−13 1.25E−02
15 1.70E−14 1.56E−02 2.40E−14 8.52E−03
16 5.01E−15 4.49E−03 2.00E−15 8.26E−03

Fig. 5. Relative L2(Ω) error is plotted against the number of truncation K in the series solution.

which plots the relative L2(Ω) error EK against the number of truncation in the series solution K . It can be observed that 
the convergence rate highly depends on the value of ε when fixing all the other parameters, and smaller ε leads to faster 
convergence with a few iterations.

Second, we still consider Case 2, i.e., (κ+, κ−) = (1.5 + 1.0i, 2.5 + 1.0i), choose the same truncation terms M = 100
and N = 30, and vary K from 1 to 16. We choose the function g2(x) = cos(4x) + 2 cos(2x) + 4 cos(x) for the rough surface 
with two different values of parameter ε: ε1 = 0.1 and ε2 = 0.1/7 such that max{ε2 g2(x)} = 0.1. The convergent results 
are displayed in the column Test 2 and Test 3 in Table 1. The convergence for Test 2, corresponding to larger perturbation 
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Table 2
Three test examples for rough surface scattering.

Test (κ+, κ−) ε g(x) (M, N, K ) CPU time (s)

Case 5 (1.5 + 1.0i,2.5 + 1.0i) 0.1 g1(x) (100,30,20) 64.98
Case 6 (5.5 + 1.0i,10.5 + 1.0i) 0.2 g1(x) (160,30,20) 181.45
Case 7 (1.5 + 0.5i,2.5 + 1.0i) 0.1 g2(x) (150,40,20) 215.11

Fig. 6. Contour plot of the total field for Case 5. (Left) Real part of the total field; (right) imaginary part of the total field.

Fig. 7. Contour plot of the total field for Case 6. (Left) Real part of the total field; (right) imaginary part of the total field.

parameter ε1 = 0.1, is much slower than the convergence for Test 3, corresponding to smaller perturbation parameter 
ε2 = 0.1/7.

Next, we consider Case 1, i.e., (κ+, κ−) = (10.5 + 1.0i, 20.5 + 1.0i) for the same M = 160, N = 30, and vary K from 1 
to 16. The rough surface is chosen as g1(x) = cos(x) and ε = 0.1. The convergent results are displayed in the column Test 4 
in Table 1.

Although we consider the same wave numbers (κ+, κ−), parameters (M, N) and the same value of ε but with different 
profiles g1(x) and g2(x), we can observe from those results for Test 1 and Test 2 in Table 1 that the convergence rate of 
Test 1 is apparently much faster than that of Test 2. The reason is that max |g2(x)| is almost seven times of max |g1(x)|. 
When we decrease the value of ε to 0.1/7 in Test 3, we can see that the convergence rate of Test 1 and Test 3 are almost 
the same as we increase K . Therefore the maximum height of the perturbed profile plays more important role on the 
convergence of our numerical algorithm than its shape, which is also consistent with the results in Fig. 5. Comparing the 
results of Test 1 and Test 4, we can observe that Test 4 with large wave numbers converges much slower than Test 1 
with small wave numbers. So we can conclude that the value of the wavenumber is also another important factor on the 
convergence rate.

Finally, we consider three different examples given in Table 2. The contour plot of the total field are displayed in Fig. 6, 
Fig. 7, and Fig. 8, respectively.
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Fig. 8. Contour plot of the total field for Case 7. (Left) Real part of the total field; (right) imaginary part of the total field.

6. Summary

We developed a new spectral method for solving the two-dimensional acoustic wave scattering problem by unbounded 
rough surfaces. The main difficulty of the problem is that the non-local boundary conditions prevent us from decoupling 
the two-dimensional system to a sequence of one-dimensional problems with a usual approach. The main novelty of the 
proposed method is to expand the solution using the Hermite orthonormal basis functions in the Fourier space, and to 
simultaneously diagonalize the two coupling matrices by using the essential property that the Hermite functions are eigen-
functions of the Fourier transform. The combined approach allows us to reduce the original two-dimensional boundary value 
problem into a sequence of fully decoupled the one-dimensional Helmholtz equations, with piecewise constant wavenum-
bers, that can be efficiently solved by using a Legendre–Galerkin method.

We investigated the errors of the numerical solution in terms of the horizontal truncation term M , vertical truncation 
term N , power series truncation term K , and the wavenumbers κ± , for both the plane surface scattering and the rough 
surface scattering. The numerical results indicate that the method is efficient, accurate, and well suited for the unbounded 
rough surface scattering problem. To the best of our knowledge, this is the first rigorous and robust numerical method for 
the scattering problem by unbounded rough surfaces.

It is clear that the current approach can be extended to handle the two-dimensional multi-layered unbounded rough 
surface scattering. We plan to extend the method to the electromagnetic wave scattering by unbounded rough surfaces, 
where the three-dimensional Maxwell equations have to be considered.
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