
Commun. Comput. Phys.
doi: 10.4208/cicp.010414.250914a

Vol. 17, No. 2, pp. 542-563
February 2015

Near-Field Imaging of Interior Cavities

Peijun Li∗ and Yuliang Wang

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA.

Received 1 April 2014; Accepted (in revised version) 25 September 2014

Abstract. A novel method is developed for solving the inverse problem of reconstruct-
ing the shape of an interior cavity. The boundary of the cavity is assumed to be a small
and smooth perturbation of a circle. The incident field is generated by a point source
inside the cavity. The scattering data is taken on a circle centered at the source. The
method requires only a single incident wave at one frequency. Using a transformed
field expansion, the original boundary value problem is reduced to a successive se-
quence of two-point boundary value problems and is solved in a closed form. By
dropping higher order terms in the power series expansion, the inverse problem is lin-
earized and an explicit relation is established between the Fourier coefficients of the
cavity surface function and the total field. A nonlinear correction algorithm is devised
to improve the accuracy of the reconstruction. Numerical results are presented to show
the effectiveness of the method and its ability to obtain subwavelength resolution.
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1 Introduction

Inverse scattering problems are concerned with determining the property of the medium
by sending an incident wave and measuring the scattered field. These problems arise in a
diverse range of applications, including radar, medical imaging, geophysical exploration,
and non-destructive testing [12]. In this paper, we consider the problem of reconstructing
the shape of an interior cavity by sending and receiving waves from inside. The cavity
is represented by a simply connected domain in R

2, and its exterior is assumed to be
impenetrable. A time harmonic incident field is generated by a point source placed inside
the cavity. Given the incident field, the direct problem is to determine the total field
from the known cavity. We are mainly interested in the inverse problem, which is to
reconstruct the shape of the cavity from the noisy data of the total field.
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The inverse problem was studied by using either the linear sampling method or the
nonlinear integral equation method [23–26]. These work addressed conventional far-field
imaging and the resolution was limited by the Rayleigh criterion [13]. Recently novel
methods have been developed for solving a class of inverse surface scattering problems
in the near-field imaging [3–6, 10, 17]. The surfaces are assumed to be small and smooth
perturbations of planar surfaces. The methods require only a single incident field at one
frequency, and are shown to be simple, efficient, and stable to reconstruct surfaces with
subwavelength resolution. We refer to [7, 15] for near-field imaging of locally perturbed
surfaces and [1, 2] for the resolution and stability analysis of a related wave imaging
problem.

This work is an extension of near-field imaging from open surfaces to interior cavi-
ties. The boundary of the cavity is assumed to be a small and smooth perturbation of a
circle centered at the origin. Using the Fourier series expansion, we derive a transpar-
ent boundary condition on an artificial circle inside the cavity, and formulate a boundary
value problem for the total field. Based on the transformed field expansion, the problem
is reduced to a successive sequence of two-point boundary value problems and is solved
in a closed form. By dropping higher order terms in the power series expansion, the
inverse problem is linearized and a simple reconstruction formula is obtained. Further-
more, a nonlinear correction algorithm is devised to improve the accuracy of the recon-
struction. Numerical examples are presented to show the effectiveness of the method.
The interior inverse cavity problem has been recently investigated in [27], where a de-
composition method was studied to reconstruct the shape of the cavity by using the same
data set, i.e., one point source and multiple measurements. The results in this paper are
better than those reported in [27]. We refer to [8, 16, 18–22] for the application of trans-
formed field expansion and related boundary perturbation methods for solving some
direct scattering problems.

The paper is organized as follows. In Section 2, we introduce the model and formula-
tion of the inverse problem. Section 3 is dedicated to the direct problem where the trans-
formed field expansion is introduced to obtain an analytical solution. The reconstruction
formula and the nonlinear correction algorithm are described in Section 4. Numerical
examples are presented in Section 5. We conclude the paper in Section 6 with remarks
and directions for future research.

2 Model problem

As seen in Fig. 1, the cavity is assumed to be a smooth perturbation of a disk and is
defined by the domain

Ω={(r,θ) : 0≤ r< a+ f (θ), θ∈ [0,2π)},
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Figure 1: Problem geometry. The source is placed at the origin and the measurement is taken on the circle Γ.

where a>0 is the base radius and f (θ) is the cavity surface function. We assume that f is
smooth and small comparing to the wavelength λ and can be written as

f (θ)= εg(θ), (2.1)

where ε≪λ is called the surface perturbation parameter and g is the cavity profile func-
tion. A single point source is placed at the origin and generates the incident field

ui(r,θ)=H
(1)
0 (κr) in Ω,

where H
(1)
0 is the zero-th order Hankel function of the first kind and κ = 2π/λ is the

wavenumber. The total field u satisfies one of the following boundary conditions:

(I) sound soft: u=0 on ∂Ω, (2.2a)

(II) sound hard: ∂νu=0 on ∂Ω, (2.2b)

(III) impedance: (∂ν+iη)u=0 on ∂Ω, (2.2c)

where ν is the unit outward normal vector on ∂Ω and η>0 is a given impedance constant.

Remark 2.1. Note that the impedance boundary condition (2.2c) reduces to the sound
soft boundary condition (2.2a) when η = ∞, and reduces to the sound hard boundary
condition (2.2b) when η = 0. Hence we present the details for the impedance boundary
condition and state the results for the other two boundary conditions without proofs.

Given the incident field and f (θ), the direct problem is to find the total field u(r,θ) in
Ω. It is well known from [9] that the direct problem has a unique solution in H1(Ω): if κ2

is not a Dirichlet eigenvalue of −∆ in Ω for the sound soft boundary condition; if κ2 is not
a Neumann eigenvalue of −∆ in Ω for the sound hard boundary condition; for all values
of κ for the impedance boundary condition. We are interested in the inverse problem: to
reconstruct the cavity surface function f (θ) from the noise total field uδ(b,θ)= u(b,θ)+
O(δ) at the circle

Γ={(r,θ) : r=b, θ∈ [0,2π)}⊂Ω.
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Next we derive a transparent boundary condition on Γ. The scattered field us satisfies
the Helmholtz equation

(∆+κ2)us(r,θ)=0 in B,

where B is the ball enclosed by Γ. It follows from the separation of variables that the
solution admits the expansion

us(r,θ)= ∑
n∈Z

αn Jn(κr)einθ in B, (2.3)

where Jn is the n-th order Bessel function of the first kind. Note that the Bessel func-
tions of the second kind are excluded in the expansion to ensure the boundedness of the
scattered field.

Taking ∂r on both sides of (2.3) and comparing ∂rus(b,θ) with us(b,θ) yield

(∂r−T)us =0 on Γ, (2.4)

where the linear operator T is defined as

Teinθ =
κ J′n(κb)

Jn(κb)
einθ .

Taking (∂r−T) on ui and using the Wronskian formula (e.g. [14]), we have

(∂r−T)ui=
2i

bπ J0(κb)
on Γ. (2.5)

Adding (2.4) and (2.5), we obtain the boundary condition

(∂r−T)u=
2i

bπ J0(κb)
on Γ. (2.6)

Let D be the domain bounded by ∂Ω and Γ, i.e.,

D={(r,θ) : b< r< a+ f (θ), θ∈ [0,2π)}.

It can be verified that the total field u satisfies

(∆+κ2)u=0 in D. (2.7)

Based on the Rayleigh-Faber-Krahn inequality, we have the following uniqueness re-
sult for the inverse problem with sound soft boundary condition.
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Theorem 2.1. Let Ω1,Ω2 be two sound soft cavities defined by the same base radius a and two
surface functions f1(θ), f2(θ) such that

κ< j0,1

√

π

A
, (2.8)

where j0,1≈2.4048 is the first zero of J0 and A is the area enclosed between Ω1,Ω2, given explicitly
by

A=
1

2

∫ 2π

0

∣

∣(a+ f1(θ))
2−(a+ f2(θ))

2
∣

∣dθ.

Let b<minj=1,2{a−|| f j ||∞} and Γ be the circle with radius b and center 0. Let u1(b,θ), u2(b,θ)
be the total field at Γ for Ω1,Ω2 respectively. If u1(b,θ)=u2(b,θ), then f1(θ)= f2(θ).

Proof. Suppose f1 6= f2. Let Ω=Ω1∩Ω2. Then either Ω1\Ω 6=∅ or Ω2\Ω 6=∅. Without
loss of generality, assume the former case and let Ω′ be a simply connected component
of Ω1\Ω. Let u = u1−u2. Then u|Γ = 0 and ∂νu|Γ = Tu|Γ = 0. An application of the
Holmgren’s Theorem yields u= 0 in Ω\B, and by unique continuation we obtain u= 0
on ∂Ω. In particular, we have u=0 on ∂Ω′∩∂Ω2. Hence u1=u2=0 on ∂Ω′∩∂Ω2. Besides
we have u1 = 0 on ∂Ω′∩∂Ω1. Hence u1 = 0 on ∂Ω′. If follows from the uniqueness for
the direct scattering problem and the Rayleigh-Faber-Krahn inequality that u1 = 0 in Ω′

if (2.8) is satisfied. By unique continuation again we have u1 = 0 in Ω1\B′, where B′ is
the ball with center 0 and radius b′< b. In particular, we have u= ∂νu=0 on Γ. This is a
contradiction since u1 satisfies (2.6).

Remark 2.2. The condition (2.8) is satisfied for sufficiently small a, for which we have
global uniqueness. For the sound hard boundary condition, we have the same result
except that j0,1 in (2.8) is replaced by p1,1≈1.8412, the first positive zero of J′1. The unique-
ness result holds globally for the impedance boundary condition.

3 Transformed field expansion

In this section we apply the transformed field expansion to solve analytically the direct
scattering problem (2.7), (2.6), and (2.2).

Let h= a−b. We consider the change of variables

r̃=
hr+b f (θ)

h+ f (θ)
, θ̃= θ, ũ

(

r̃, θ̃
)

=u(r,θ), (3.1)

which transforms the problem from the domain D to the annulus b < r < a. A simple
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calculation yields

∂r =
h

h+ f
∂r̃, ∂θ =−

f ′

h+ f
(r̃−b)∂r̃+∂θ̃ , ∂rr =

(

h

h+ f

)2

∂r̃r̃,

∂θθ =

(

f ′

h+ f

)2

(r̃−b)2∂r̃r̃+
2( f ′)2−(h+ f ) f ′′

(h+ f )2
(r̃−b)∂r̃−

2 f ′

h+ f
(r̃−b)∂r̃θ̃+∂θ̃ θ̃.

To simplify calculations, we apply another set of change of variables

ˆ̃r=κr̃, ˆ̃θ= θ̃, ˆ̃u
(

ˆ̃r, ˆ̃θ
)

= ũ
(

r̃, θ̃
)

,

â=κa, b̂=κb, f̂ =κ f , ĝ=κg, ĥ=κh, η̂=
η

κ
, (3.2)

which normalize the problem with respect to the wavenumber. After a tedious but
straightforward calculation, Eq. (2.7), after dropping the tildes and hats on the variables,
becomes

(c1∂rr+c2∂r+c3∂rθ+c4∂θθ+c5)u(r,θ)=0, b< r< a, (3.3)

where

c1=h2+2hp f +p2
[

f 2+( f ′)2
]

,

c2=
1

r

{

h2+h
[

(p+1) f −p f ′′
]

+p
[

f 2−2( f ′)2+ f f ′′
]}

,

c3=−
2p(h f ′+ f f ′)

r
,

c4=
h2+2h f + f 2

r2
,

c5=h2+2h(p+1) f +
(

p2+4p+1
)

f 2+
2
(

p+p2
)

f 3

h
+

p2 f 4

h2
,

and the variable

p=1−b/r

is introduced to simplify the expressions.
Next we consider the boundary conditions (2.2) and (2.6). On a curve r=r(θ) we have

∂νu=
1

√

r2+(r′)2

(

rur−
r′

r
uθ

)

.

Substituting into the impedance boundary conditions (2.2c) and using the change of vari-
ables (3.1), (3.2), we obtain

{

[

h(a+ f )2+(h+ f )( f ′)2
]

∂r−(h+ f ) f ′∂θ

+iη(a+ f )(h+ f )
√

(a+ f )2+( f ′)2
}

u=0 on r= a. (3.4)
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Remark 3.1. Under the same change of variables, the sound soft boundary condition
(2.2a) becomes

u=0 on r= a, (3.5)

and the sound hard boundary condition (2.2b) becomes
{[

h(a+ f )2+(h+ f )( f ′)2
]

∂r−(h+ f ) f ′∂θ

}

u=0 on r= a, (3.6)

both of which can also be obtained from (3.4) by letting η=∞ or η=0.

Similarly the transparent boundary condition (2.6) reduces to

∂ru=

(

1+
f

h

)

(Tu+ρ) on r=b, (3.7)

where T is a linear operator satisfying

Teinθ =
J′n(b)

Jn(b)
einθ ,

and

ρ=
2i

bπ J0(b)
.

Due to the small perturbation assumption (2.1), we consider a formal expansion of u:

u(r,θ)=
∞

∑
m=0

εmum(r,θ). (3.8)

Substituting (3.8) and (2.1) into (3.3), and comparing the coefficients of the power series,
we obtain the recurrence relation

(∆+1)um =−vm, (3.9)

where

vm =
4

∑
j=1

Ajum−j, (3.10)

and

A1=
1

h

{

2pg∂rr+
[

(p+1)g−pg′′
] ∂r

r
−2pg′

∂rθ

r
+2g

∂θθ

r2
+2(p+1)g

}

,

A2=
1

h2

{

p2
[

g2+(g′)2
]

∂rr+p
[

g2−2(g′)2+gg′′
] ∂r

r

−2pgg′
∂rθ

r
+g2 ∂θθ

r2
+(p2+4p+1)g2

}

,

A3=
2(p+p2)g3

h3
,

A4=
p2g4

h4
.
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Substituting (3.8) and (2.1) into the boundary condition (3.4) yields

(∂r+iη)um = ϕm on r= a, (3.11)

where

ϕm=

[

−
2g

a
∂r+

g′

a2
∂θ−iη

(

1

h
+

2

a

)

g

]

um−1−iηRm, (3.12)

and Rm is a term which only contains um−j for j≥2:

Rm=
m

∑
j=2

{

⌊j/2⌋−1

∑
k=0

(

g2+(g′)2

a2

)k(
2g

a

)j−2k

[

C1/2
k,j−2k+

1

2

( a

h
+1
)

C1/2
k,j−2k−1+

a

4h
C1/2

k,j−2k−2

]

}

um−j.

Here ⌊n⌋ denotes the largest integer not greater than n and the generalized trinomial
coefficient

C1/2
k,l =

1
2

(

1
2−1

)

···
(

1
2 −k−l+1

)

k! l!
.

Remark 3.2. Using the same power series expansion, the sound soft boundary condition
(3.5) yields

um =0 on r= a, (3.13)

and the sound hard boundary condition (3.6) yields

∂rum = ϕm on r= a, (3.14)

where

ϕm=

(

−
2g

a
∂r+

g′

a2
∂θ

)

um−1.

Again, (3.13) and (3.14) can be obtained from (3.11), (3.12) by setting η = ∞ and η = 0
respectively.

Similarly the transparent boundary condition (3.7) reduces to

(∂r−T)um=ρm on r=b, (3.15)

where
ρ0 =ρ, ρ1=

g

h
(Tu0+ρ), ρm =

g

h
(Tum−1), m≥2. (3.16)
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It is understood that um =0 for m<0 in all recurrence relations.
Since um,vm,ϕm, and ρm are 2π-periodic functions in θ, the boundary value problem

(3.9), (3.11), (3.15) can be reduced to

Lnu
(n)
m =−v

(n)
m in (a,b), (3.17a)

(

d

dr
+iη

)

u
(n)
m = ϕ

(n)
m on r= a, (3.17b)

(

d

dr
−

J′n(b)

Jn(b)

)

u
(n)
m =ρ

(n)
m on r=b, (3.17c)

where the superscript (n) denotes the n-th Fourier coefficient and Ln is the Bessel opera-
tor of order n. By Theorem B.1, we obtain the solution in the closed form

u
(n)
m (r)=Φn(r,b)ρ

(n)
m −Φn(r,a)ϕ

(n)
m +

∫ b

a
Φn(r,s)v

(n)
m (s)ds, r∈ [a,b], (3.18)

where

Φn(r,s)=
1

W(s)

{

Jn(r)En(s), s< r,

Jn(s)En(r), s> r,
(3.19)

W(s)=W(Jn(s),Yn(s))=
2

πs
, (3.20)

En(z)=Yn(z)−
Y′

n(a)+iηYn(a)

J′n(a)+iη Jn(a)
Jn(z). (3.21)

In particular, we may use (3.18) to obtain the closed forms for u0 and u1. By (3.10),
(3.12) and (3.16) we have

v
(n)
0 =0, ϕ

(n)
0 =0, ρ

(n)
0 =δ0nρ,

where δ0n is the Kronecker delta. Substituting into (3.18) yields

u0=
ρ

W(b)
J0(b)E0(r)= iE0(r). (3.22)

It follows from (3.9) and (3.10) that

v1=A1u0=
1

h

{

2pg∂rr+
[

(p+1)g−pg′′
] ∂r

r
+2(p+1)g

}

u0

=
1

h

{

[

(1−p)g−pg′′
] ∂r

r
+2g

}

u0,

where we have used the fact that u0 is independent of θ and satisfies the Bessel equation
of order 0. Taking the Fourier transform of v1 in θ yields

v
(n)
1 =

i

h

{

[

1+(n2−1)p
] ∂r

r
+2

}

E0(r)g(n). (3.23)
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By (3.12) we have

ϕ
(n)
1 =

[

η

(

1

h
+

2

a

)

E0(a)−
2i

a
E′

0(a)

]

g(n)=
η

h
E0(a)g(n).

By (3.16) we have

ρ
(n)
1 =

1

h

(

J′0(b)

J0(b)
u0(b)+ρ

)

g(n)=
i

hJ0(b)

(

J′0(b)E0(b)+W(b)
)

g(n). (3.24)

Substituting (3.23), (3.24) into (3.18) and evaluating at r=b, we obtain

u
(n)
1 (b)=Cng(n), (3.25)

where

Cn=
iπ

2h
Jn(b)

{

bJ′0(b)E0(b)+
2
π

J0(b)
En(b)+iηaE0(a)En(a)

+
∫ b

a
En(s)

{[

1+(n2−1)p(s)
]

E′
0(s)+2sE0(s)

}

ds

}

.

Remark 3.3. Using Theorem B.2 and B.3, we can show (3.25) with

Cn=
iπ

2h
Jn(b)

{

bJ′0(b)E0(b)+
2
π

J0(b)
En(b)

+
∫ b

a
En(s)

{[

1+(n2−1)p(s)
]

E′
0(s)+2sE0(s)

}

ds

}

,

where

En =Yn(z)−
Yn(a)

Jn(a)
Jn(z), (3.26)

if u satisfies the sound-soft boundary condition, and

En =Yn(z)−
Y′

n(a)

J′n(a)
Jn(z), (3.27)

if u satisfies the sound-hard boundary condition.
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4 Reconstruction formula

Based on (3.25), we now present the reconstruction formula. Let

uδ(b,θ)=u(b,θ)+O(δ)

be a noisy measurement of the total field at the circle r = b, where δ denotes the noise
level. By the power series expansion (3.8) we obtain

uδ(b,θ)=u0(b,θ)+εu1(b,θ)+O(ε2)+O(δ).

By Fourier series expansion in θ we have

u
(n)
δ (b)=u

(n)
0 (b)+εu

(n)
1 (b)+O(ε2)+O(δ).

Substituting (3.25) and noticing f (n)= εg(n), we obtain

f (n)=Sn

(

u
(n)
δ (b)−u

(n)
0 (b)+O(ε2)+O(δ)

)

, Sn =C−1
n . (4.1)

Dropping O(ε2) and O(δ) yields

f (n)≈Sn

(

u
(n)
δ (b)−u

(n)
0 (b)

)

. (4.2)

Note that u
(n)
0 = iE0(b) by (3.22). Hence the right hand side of (4.2) consists of the mea-

surement data and a known constant.

For the purpose of stability, we adopt the truncated Fourier series expansion

f (θ)≈ ∑
|n|≤N

f (n)einθ , (4.3)

where N is the cut-off frequency.

It follows from (4.1) that the ill-posedness of the inverse problem is determined by
the behavior of |Sn|. In Fig. 2 we plot |Sn| against n for a model problem with base radius
a = 1λ, impedance η = 2κ, and measurement height h = 0.1λ,0.2λ,0.3λ. Observe that
|Sn| stays relatively small for smaller n and begins to increase at a roughly exponential
rate for larger n. Plots for different values of a indicate that the transition occurs at n≈
2πa/λ, the critical frequency for achieving subwavelength resolution. Hence it is stable
to reconstruct the rough features above the wavelength and exponentially unstable to
reconstruct the fine features below the wavelength. Moreover the growth rate of |Sn| is
lower for smaller h, which means the reconstruction is more stable and higher resolution
can be achieved if the measurement is closer to the boundary.
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Figure 2: |Sn| is plotted against n for a model problem with a=1λ, η=2κ and h=0.1λ, 0.2λ, 0.3λ.

4.1 Nonlinear correction

It follows from (4.1) that the error in the reconstruction consists of two parts: the model
error O(ε2) originated from linearization and the data error O(δ) introduced by mea-
surement. In this section we present an iterative algorithm to correct the model error. We
rewrite (4.1) as

f (n)=Sn

(

u
(n)
δ (b)−u

(n)
0 (b)+Rn( f )

)

,

where Rn( f )=O(ε2) denotes the model error when the cavity surface function is f . Let
f0 be the initial guess reconstructed using (4.2) and (4.3). If u f0

is the total field with f0 as
the profile function, then we have

f
(n)
0 =Sn

(

u
(n)
f0
(b)−u

(n)
0 (b)+Rn( f0)

)

. (4.4)

Subtracting (4.4) from (4.1) and dropping the higher order error Rn( f )−Rn( f0), we have
the updated Fourier coefficients

f
(n)
1 = f

(n)
0 +Sn

(

u
(n)
δ (b)−u

(n)
f0
(b)
)

.

An updated cavity surface function f1 is then obtained using (4.3) again. By repeating
the above procedures, we have an iterative correction scheme:

f
(n)
k+1= f

(n)
k +Sn

(

u
(n)
δ (b)−u

(n)
k (b)

)

,

where k denotes the iteration step and u
(n)
k is the Fourier coefficient of the total field

corresponding to the surface function fk.
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5 Numerical examples

In this section we present numerical examples to show the effectiveness of our method.
In all the examples we set the wavenumber κ=2π so that the wavelength λ=1. The base
radius of the cavity is assumed to be a=λ/2. As an example, we only report the results
for the impedance boundary condition and the impedance is fixed at η = 2κ. The data
is simulated by solving the direct problem with the integral equation method presented
in Section A. The integral equation is discretized by dividing [0,2π) uniformly into 256
subintervals. The total field u(b,θ) is taken at 127 uniformly distributed angles in [0,2π).
Relative noise is added to the data using

uδ(b,θi)=u(b,θi)(1+δNi),

where Ni are i.i.d. random variables following the standard normal distribution.

5.1 Example one

The profile function is given by f (θ)= εg(θ), where

g(θ)=0.5(sinθ+sin5θ).

Let h = 0.2λ,δ = 0 be fixed. Fig. 3 shows the reconstructed shape (dashed line) and the
exact shape (solid line) of the cavity when the perturbation parameter ε= 0.05,0.1,0.15.
The dotted circle indicates where the measurement is taken in this and all the following
figures. We have a nearly exact match when ε = 0.05 and the result deteriorates as ε
increases. In particular, we achieved subwavelength resolution in all cases.

Next we fix h=0.2λ,ε=0.05 and consider the effect of the noise level δ. Fig. 4 shows the
results for δ=0.01,0.05,0.1 respectively. Clearly the accuracy decreases as the δ increases.

It can be seen from Fig. 2 that the inverse problem becomes more unstable as the
measurement height h increases. Fig. 5 shows the results of the reconstruction when
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Figure 3: Example 1: Reconstructed shape (dashed line) and the exact shape (solid line) for h=0.2λ,δ=0 and
(a) ε=0.05; (b) ε=0.1; (c) ε=0.15.
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Figure 4: Example 1: Reconstructed shape (dashed line) and the exact shape (solid line) for h=0.2λ,ε=0.05
and (a) δ=0.01; (b) δ=0.05; (c) δ=0.1.
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Figure 5: Example 1: Reconstructed shape (dashed line) and the exact shape (solid line) for ε= 0.05,δ= 0.05
and (a) h=0.1λ; (b) h=0.2λ; (c) h=0.3λ.
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Figure 6: Example 1: Reconstructed shape (dashed line) and the exact shape (solid line) for ε=0.15,h=0.2λ,δ=0.
(a) initial reconstruction; (b) after 3 iterations of nonlinear correction; (c) after 10 iterations of nonlinear
correction.

ε=0.05,δ=0.05 are fixed and h is taken as 0.1λ,0.2λ,0.3λ respectively. As anticipated the
results deteriorates as h increases.

Lastly we test the nonlinear correction algorithm presented in Section 4.1. Let ε =
0.15,h= 0.2λ,δ = 0 be fixed. Fig. 6(a) shows the initial result of the reconstruction. No-
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tice some amplitude information is not completely resolved. After 3 iterations of the
correction algorithm, we obtain the result in Fig. 6(b) and observe an evident improve-
ment. Fig. 6(c) shows the result after 10 iterations and the shape is almost completely
reconstructed. It is worthwhile to point out that our algorithm will converge only if ε
is sufficiently small. More advanced algorithms may be devised and is a direction for
future research.

5.2 Example two

Let the exact profile function be given by f (θ)= εg(θ), where

g(θ)= esin6θ .

This example is more difficult since the profile function contains infinitely many Fourier
modes. Nevertheless the observations on the effect of the parameters ε,h,δ are similar.
Thus we shall not present all the experiments but only the effect of ε and the perfor-
mance of the nonlinear correction. Let h=0.2λ,δ=0 be fixed. Fig. 7(a) and (b) shows the
results for ε= 0.02 and ε= 0.04 respectively. Fig. 7(c) shows the result after 10 iterations
of nonlinear correction with ε=0.04.
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Figure 7: Example 2: Reconstructed shape (dashed line) and the exact shape (solid line) for h=0.2λ,δ=0. (a)
ε=0.02; (b) ε=0.04, without correction; (c) ε=0.04, after 10 iterations of correction.

6 Conclusion

We considered the inverse problem of reconstructing the shape of an interior cavity by
using a single point source and measurement data taken at a circle centered at the point
source. The boundary of the cavity was assumed to be a small and smooth perturbation
of a circle. We formulated a boundary value problem with sound soft, sound hard or
impedance boundary condition on the boundary of the circle and a transparent bound-
ary condition on the measurement circle. Using the transformed field expansion, we
reduced the problem to a successive sequence of two-point boundary value problems
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and obtained the solutions in closed form. By dropping higher order terms in the power
series expansion, we linearized the inverse problem and obtained the reconstruction for-
mula: an explicit and simple relation between the Fourier modes of the data and the
surface of the cavity. In addition, we proposed a nonlinear correction algorithm to im-
prove the accuracy which is limited by the linearization. Numerical experiments showed
that the method is simple, efficient, and stable to reconstruct the shape of cavities with
subwavelength resolution.

As a future research project, we plan to extend the method to 3D cavities, where
the full Maxwell equations should be considered. It is also worthwhile to relax the as-
sumptions on the shape of the cavity. For example, we shall consider the case when the
boundary can not be represented by a function but two parametric equations. We may
also consider cavity that is not smooth, is a perturbation of more general shape, contains
multiple scale or random features.
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A Integral equation method

In this section we present an integral equation method for solving the direct cavity scat-
tering problem. As before we normalize the problem with respect to the wavenumber κ
by the change of variables

x̂=κx, ŷ=κy, η̂=
η

κ
.

In the sequel we will work in the new variables, which are still denoted by x,y,η for
simplicity. Consider a cavity represented by a smooth domain Ω with 0∈Ω. Let

G(x,y)=
i

4
H

(1)
0 (|x−y|)

be the Green’s function for the Helmholtz equation. Let ui=H
(1)
0 (|x|) be the incident field

and us be the scattered field. Then we have

Lemma A.1.

∫

∂Ω
G(x,y)∂νui(y)−∂νy G(x,y)ui(y)dsy =0, x∈Ω, x 6=0, (A.1)

∫

∂Ω
G(x,y)∂νus(y)−∂νy G(x,y)us(y)dsy =us(x), x∈Ω. (A.2)
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Proof. Let x∈Ω,x 6=0 be fixed. Denote by Bx,σ,B0,τ two balls centered at x,0 with radius
σ,τ respectively. Let σ,τ be sufficiently small so that Bx,σ,B0,τ⊂Ω and Bx,σ∩B0,τ=∅. Since
both ui(y) and G(·,y) satisfy the Helmholtz equation in Ω\[Bx,σ∪B0,τ], an application of
the second Green’s identity yields

∫

∂Ω\[∂Bx,σ∪∂B0,τ ]
G(x,y)∂νui(y)−∂νy G(x,y)ui(y)dsy =0. (A.3)

Straightforward calculations yield

∂νy G(x,y)=
i

4
H

(1)
1 (|x−y|), y∈∂Bx,σ.

Using the asymptotic forms (e.g. [14])

H
(1)
0 (z)∼

2i

π
lnz, H

(1)
1 (z)∼−

2i

πz
as z→0,

and the mean value theorem, we obtain

lim
σ→0

∫

∂Bx,σ

G(x,y)∂νui(y)−∂νy G(x,y)ui(y)dsy

= lim
σ→0

i

4

∫

∂Bx,σ

H
(1)
0 (σ)∂νui(y)−H

(1)
1 (σ)ui(y)dsy

=
i

4

[

lim
σ→0

(

2i

π
ln(σ)2πσ

)

∂νui(x)+ lim
σ→0

(

2i

πσ
2πσ

)

ui(x)

]

=−ui(x)=−H
(1)
0 (|x|). (A.4)

Similarly we have

lim
τ→0

∫

∂B0,τ

G(x,y)∂νui(y)−∂νy G(x,y)ui(y)dsy =H
(1)
0 (|x|). (A.5)

Taking limσ→0,τ→0 on (A.3) and using (A.4), (A.5) yields (A.1). The proof of (A.2) is similar
and omitted.

Now we present the integral equation method for solving the boundary value prob-
lem (2.7), (2.6), (2.2).

Theorem A.1. Let u=ui+us be the total field.

1. If u satisfies the sound soft boundary condition (2.2a), then

us=
∫

∂Ω
G(x,y)φ(y)dsy, x∈Ω, (A.6)

where φ(·)=∂νu|∂Ω solves the integral equation

φ(x)

2
−
∫

∂Ω
∂νx G(x,y)φ(y)dsy =∂νui(x), x∈∂Ω. (A.7)
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2. If u satisfies the sound hard boundary condition (2.2b), then

us =−
∫

∂Ω
∂νy G(x,y)φ(y)dsy, x∈Ω,

where φ(·)=u|∂Ω solves the integral equation

φ(x)

2
+
∫

∂Ω
∂νy G(x,y)φ(y)dsy =ui(x), x∈∂Ω.

3. If u satisfies the impedance boundary condition (2.2c), then

us=−
∫

∂Ω

[

∂νy G(x,y)+iηG(x,y)
]

φ(y)dsy, x∈Ω,

where φ(·)=u|∂Ω solves the integral equation

φ(x)

2
+
∫

∂Ω

[

∂νy G(x,y)+iηG(x,y)
]

φ(y)dsy=ui(x), x∈∂Ω.

Proof. Eq. (A.6) follows immediately by adding (A.1) to (A.2) and letting φ(y)= ∂νu(y).
Eq. (A.7) follows by taking ∂νx on (A.6) and using the well known jump conditions for
layer potentials. (see e.g. [11]). The other cases are similar.

B A two-point boundary value problem

In this section we present the solution method for the two-point boundary value problem
(3.17).

Theorem B.1. Consider the following boundary value problem:

Lnu=−v in (a,b), (B.1a)
(

d

dr
+iη

)

u= ϕ on r= a, (B.1b)

(

d

dr
−

J′n(b)

Jn(b)

)

u=ρ on r=b, (B.1c)

where Ln is the Bessel operator of order n, b>a>0 and η 6=0. Then there exists a unique solution,
which is given by

u(r)=Φn(r,b)ρ−Φn(r,a)ϕ+
∫ b

a
Φn(r,s)v(s)ds, r∈ [a,b], (B.2)

where Φn is given by (3.19).
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Proof. Let u1,u2 be two solutions of (B.1), then u = u1−u2 satisfies the corresponding
homogeneous boundary value problem

Lnu=0 in (a,b), (B.3a)
(

d

dr
+iη

)

u=0 on r= a, (B.3b)

(

d

dr
−

J′n(b)

Jn(b)

)

u=0 on r=b. (B.3c)

A fundamental set of solutions for (B.3a) can be chosen as {Jn(r),Yn(r)}, where Jn and Yn

are n-th order Bessel functions of the first and second kind, respectively. Hence we have
u= c1 Jn+c2Yn for some constants c1,c2. Using the boundary condition (B.3c) yields

c2
W(b)

Jn(b)
=0,

where the Wronskian W is given by (3.20). Since W(b) 6= 0, we have c2 = 0. Using the
boundary condition (B.3b) yields

c1

[

J′n(a)+iη Jn(a)
]

=0.

Since Jn(a) and J′n(a) can not be zero simultaneously and η 6= 0, we have c1 = 0. Hence
u=0 and the uniqueness is established.

Now we return to the nonhomogeneous boundary value problem (B.1). Using varia-
tion of parameters, the general solution of the (B.1a) can be written as

u(r)= c1 Jn(r)+c2Yn(r)+ Jn(r)
∫ r

a

Yn(s)v(s)

W(s)
ds−Yn(r)

∫ r

a

Jn(s)v(s)

W(s)
ds, (B.4)

where the Wronskian W is given explicitly by (3.20). Substituting (B.4) into the boundary
condition (B.1b) yields

c1

[

J′n(a)+iη Jn(a)
]

+c2

[

Y′
n(a)+iηYn(a)

]

= ϕ. (B.5)

Substituting (B.4) into the boundary condition (B.1c) yields

W(b)

Jn(b)

(

c2−
∫ b

a

Jn(s)v(s)

W(s)
ds

)

=ρ. (B.6)

Solving (B.5), (B.6) for c1,c2, we obtain

c1=
ϕ−c2 [Y′

n(a)+iηYn(a)]

J′n(a)+iη Jn(a)
,

c2=
Jn(b)ρ

W(b)
+
∫ b

a

Jn(s)v(s)

W(s)
ds.
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Substituting into (B.4) and rearranging, we have

u=
Jn(b)En(r)

W(b)
ρ−

Jn(r)En(a)

W(a)
ϕ

+En(r)
∫ b

a

Jn(s)v(s)

W(s)
ds+ Jn(r)

∫ r

a

Yn(s)v(s)

W(s)
ds−Yn(r)

∫ r

a

Jn(s)v(s)

W(s)
ds, (B.7)

where En is given by (3.21). Now

En(r)
∫ b

a

Jn(s)v(s)

W(s)
ds+ Jn(r)

∫ r

a

Yn(s)v(s)

W(s)
ds−Yn(r)

∫ r

a

Jn(s)v(s)

W(s)
ds

=En(r)
∫ b

r

Jn(s)v(s)

W(s)
ds+ Jn(r)

∫ r

a

Yn(s)v(s)

W(s)
ds+(En(r)−Yn(r))

∫ r

a

Jn(s)v(s)

W(s)
ds

=En(r)
∫ b

r

Jn(s)v(s)

W(s)
ds+

∫ r

a

[(En(r)−Yn(r))Jn(s)+ Jn(r)Yn(s)]v(s)

W(s)
ds

=En(r)
∫ b

r

Jn(s)v(s)

W(s)
ds+ Jn(r)

∫ r

a

En(s)v(s)

W(s)
ds

=
∫ b

a
Φn(r,s)v(s)ds, (B.8)

where Φn is given by (3.19). Substituting (B.8) into (B.7) and noticing

Φn(r,b)=
Jn(b)En(r)

W(b)
, Φn(r,a)=

Jn(r)En(a)

W(a)
,

we obtain (B.2).

Similarly we can solve the boundary value problem with sound soft or sound hard
boundary conditions.

Theorem B.2. Consider the following boundary value problem:

Lnu=−v in (a,b),

u=0 on r= a,
(

d

dr
−

J′n(b)

Jn(b)

)

u=ρ on r=b,

where Ln is the Bessel operator of order n and b> a> 0. If Jn(a) 6= 0, then there exists a unique
solution, which is given by

u(r)=Φn(r,b)ρ+
∫ b

a
Φn(r,s)v(s)ds, r∈ [a,b],

where Φn is given by (3.19), in which En is defined by (3.26).
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Theorem B.3. Consider the following boundary value problem:

Lnu=−v in (a,b),

du

dr
=0 on r= a,

(

d

dr
−

J′n(b)

Jn(b)

)

u=ρ on r=b,

where Ln is the Bessel operator of order n and b> a> 0. If J′n(a) 6= 0, then there exists a unique
solution, which is given by

u(r)=Φn(r,b)ρ+
∫ b

a
Φn(r,s)v(s)ds, r∈ [a,b],

where Φn is given by (3.19), in which En is defined by (3.27).
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