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Abstract. A novel method is developed for solving the inverse obstacle scat-
tering problem in near-field imaging. The obstacle surface is assumed to be a

small and smooth deformation of a circle. Using the transformed field expan-

sion, the direct obstacle scattering problem is reduced to a successive sequence
of two-point boundary value problems. Analytical solutions of these problems

are derived by a Green’s function method. The nonlinear inverse problem is

linearized by dropping the higher order terms in the power series expansion.
Based on the linear model and analytical solutions, an explicit reconstruction

formula is obtained. In addition, a nonlinear correction scheme is devised to

improve the results dramatically when the deformation is large. The method
requires only a single incident wave at a fixed frequency. Numerical tests show

that the method is stable and effective for near-field imaging of obstacles with

subwavelength resolution.

1. Introduction. Obstacle scattering problems are concerned with how an inci-
dent wave is scattered by a bounded impenetrable medium. The direct problem
is to determine the wave field from a knowledge of the obstacle, while the inverse
problem is to determine the obstacle from the measured wave field. These prob-
lems have played a fundamental role in diverse scientific areas such as radar and
sonar, geophysical exploration, medical imaging, nondestructive testing [15], and
more recently near-field optics [11, 16].

The direct problem has been studied extensively by numerous researchers via
either boundary integral equation methods or variational approaches [14]. Com-
putational methods can be classified into two categories for solving the inverse
problem: nonlinear optimization based iterative methods and imaging based direct
methods. The former are known as quantitative methods and are aimed at recover-
ing unknown functions which represent the obstacles [18, 20, 23, 24]. These methods
are computationally more intensive as a sequence of direct and adjoint scattering
problems need to be solved at iterations. The latter are called qualitative methods
and attempt to visualize the obstacles by highlighting the boundary with designed
imaging functions [10, 13, 19, 21, 31, 32]. They are computationally more efficient
but are not as accurate as those quantitative methods.

In far-field imaging, data is measured at a distance which is a few wavelength
or longer away from the targets, which imposes a limit on the sharpness of details
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on the reconstructions. This resolution limit is about half of the wavelength and is
referred to as the Rayleigh criterion or the diffraction limit [17]. Near-field imaging
and is an effective approach to break the diffraction limit [16]. It has led to emerging
applications in modern science and technology, such as nanotechnology, biology,
information storage, and surface chemistry. Using near-field imaging, we intend to
develop an effective mathematical model and an efficient computational method for
solving the inverse obstacle scattering problem.

As a model problem, we consider the scattering of a time-harmonic acoustic wave
by a sound soft obstacle in two dimensions. The obstacle is assumed to be a small
and smooth deformation of a disk. Specifically, an incoming cylindrical wave is
incident upon the obstacle from infinity and generates a scattered field. The direct
problem is to determine the total field in the exterior space given the obstacle. We
are mainly interested in the inverse problem: to reconstruct the obstacle given the
measured field at a fixed distance away from the obstacle. The inverse problem is
challenging because of the intrinsic nature of nonlinearity and ill-posedness.

In this paper, a boundary value problem (BVP) is formulated for the total field
in a bounded domain by using a transparent boundary condition. Based on the
transformed field expansion, the total field is expanded as a power series of defor-
mation parameter; the coefficient functions satisfy a successive sequence of BVPs
in an annular domain. By using the Fourier series expansion, each of the BVPs is
further reduced into a two-point BVP and solved analytically by the Green’s func-
tion method. The nonlinear relation between the obstacle and the measured field is
approximated by a linear equation by dropping the higher order terms in the power
series expansion. An explicit reconstruction formula is finally obtained by using
the derived analytical expressions for the zeroth and first order terms. The spec-
tral cut-off regularization method is adopted to obtain stable reconstruction in the
numerical computation. In addition, a nonlinear correction method is developed to
improve the results for larger deformations. To avoid the so-called “inverse crime”,
the measurement data is simulated by solving the direct problem by using a derived
integral equation method rather than the transformed field expansion method. Our
method requires only a single incident wave at a fixed frequency. Numerical experi-
ments show that the method is stable and effective for reconstructing the obstacles
with subwavelength resolution. Transformed field expansion and related boundary
perturbation methods have been applied for solving the direct obstacle scattering
problem [30], the direct rough surface scattering problem [25, 28, 29], and the di-
rect diffraction grating problem [9, 26]. A boundary perturbation method is used to
solve an inverse scattering problem with a periodic layered medium [27]. Interested
readers are referred to [2, 3, 7, 8] for other related inverse problems in near-field
imaging.

This paper is an extension of our recent work on near-field imaging of infinite
and periodic rough surfaces [4, 5, 1, 12]. Due to the notable change in the problem
geometry, this work differs in several important aspects. First, the incident field is
a cylindrical wave rather than a plane wave. The major motivation for this con-
sideration is to make the reconstruction formula as simple as possible. Besides, it
is a natural choice since the fundamental solution for the direct obstacle scattering
problem is composed of cylindrical functions instead of complex exponential func-
tions. This observation gives rise to the second difference: the derivation for the
analytical solutions to the two-point BVPs and the reconstruction formula become
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more complicated. Though the reconstruction formula is less explicit and the ill-
posed nature is not immediately available, the numerical results indicate that the
present problem has a similar nature of ill-posedness of those previous work.

The paper is organized as follows. The model problem is introduced in Section
2. In Section 3, an analytical solution is obtained from the transformed field and
Fourier expansions. An explicit reconstruction formula and a nonlinear correction
scheme are presented in Section 4. Numerical results are presented and discussed
in Section 5. We conclude the paper with remarks and direction for future work in
Section 6.

2. Model problem. As seen in Figure 1, the obstacle is assumed to be a small
and smooth deformation of a disk in R2, so that it can be defined by the domain

Ω = {(r, θ) : 0 < r < a+ f(θ), 0 ≤ θ < 2π}.
Here a > 0 is a constant and f ∈ C2(R) is a 2π-periodic function which can be
written as

(1) f(θ) = εg(θ),

where ε > 0 is a small deformation parameter and g ∈ C2(R) is a 2π-periodic
function describing the profile of the obstacle. To reduce the problem into a bounded
domain, we consider

D = {(r, θ) : a+ f(θ) < r < b, 0 ≤ θ < 2π},
where b > a + ||f(θ)||∞ is a constant and r = b is the boundary where the data is
taken for the inverse problem.

r = b

r = a + f (θ)

Figure 1. Geometry of the model problem.

Let the exterior domain R2 \ Ω̄ be filled with a homogeneous medium with a
constant wavenumber κ. An incoming cylindrical wave

(2) uinc(r, θ) = H
(2)
0 (κr)

is incident upon the obstacle from outside, where H
(2)
0 is the zeroth order Hankel

function of the second kind.

Remark 1. As we shall see later, this particular choice of the incident field simplifies
the mathematical model and yields a more explicit reconstruction formula. The
calculations are more tedious for the reconstruction formula which may not benefit
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a clear presentation of the method, even though it is a common choice using the
plane wave to illuminate the obstacle.

The total field u satisfies the Helmholtz equation

(3)
(
∆ + κ2

)
u(r, θ) = 0 in D,

where the Laplace operator ∆ is given in the polar coordinate by

∆ = ∂rr +
1

r
∂r +

1

r2
∂θθ.

For a sound soft obstacle, u vanishes on the inner boundary of D:

(4) u(r, θ) = 0 on r = a+ f(θ).

The total field u consists of the incident field uinc and the scattered field usca, i.e.,
u = uinc + usca. Evidently, we have

(5)
(
∆ + κ2

)
usca(r, θ) = 0 in D.

In addition, usca is required to satisfy the Sommerfeld radiation condition

(6) (∂r − iκ)usca(r, θ) = o(r−1/2) as r →∞.
Using separation of variables and periodicity of usca(r, θ) in θ, we obtain that the

general solution of (5) and (6) can be written as the Fourier series expansion

(7) usca(r, θ) =
∑
n∈Z

anH
(1)
n (κr)einθ, r ≥ b,

where H
(1)
n is the n-th Hankel function of the first kind. Taking partial derivative

with respect to r on both sides of (7) yields

(8) ∂ru
sca(r, θ) =

∑
n∈Z

κanH
(1)′

n (κr)einθ, r ≥ b.

Evaluating (7) and (8) at r = b and comparing the Fourier coefficients, we obtain
the transparent boundary condition for usca:

(9) (∂r − T )usca(r, θ) = 0 on r = b.

For any 2π-periodic function φ, the boundary operator T is defined by

T (φ) =
∑
n∈Z

κH
(1)′

n (κb)

H
(1)
n (κb)

φne
inθ.

Applying ∂r − T to the incident field in (2) yields

(10) (∂r − T )uinc(b, θ) = ψ = − 4i

πbH
(1)
0 (κb)

,

where we have used the formula for the Wronskian of Hankel functions [22]:

H
(1)
0 (z)H

(2)′

0 (z)−H(1)′

0 (z)H
(2)
0 (z) = −

4i

πz
.

Finally, adding (9) to (10) yields the transparent boundary condition for u:

(11) (∂r − T )u(r, θ) = ψ on r = b.

The direct problem is to solve the BVP of u(r, θ) by (3), (4) and (11) given
the obstacle deformation function f(θ). The inverse problem is to reconstruct f(θ)
from the measured field uδ(b, θ), where δ is the noise level. To obtain subwavelength
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resolution in a stable manner, the measurement distance h = b−a needs to be much
smaller than the wavelength λ = κ/2π.

Remark 2. Although this particular modality, i.e., to measure the field close to
and all around the obstacle, may not be done in experiments as far as we know,
similar configurations have been realized, such as in the photon scanning tunneling
microscopy [16], to measure the field closely in a constant height above a surface.

3. Transformed field expansion. In this section we adopt the transformed field
expansion to obtain an analytical solution for the direct problem.

Consider the change of variables:

r̃ =
hr − bf(θ)

h− f(θ)
, θ̃ = θ,

which transforms D to an annulus with inner radius a and outer radius b. Applying
the chain rule, we may verify that

∂r =∂r̃
∂r̃

∂r
+ ∂θ̃

∂θ̃
∂r

=
h

h− f
∂r̃,

∂θ =∂r̃
∂r̃

∂θ
+ ∂θ̃

∂θ̃
∂θ

=
f ′

h− f
(r̃ − b)∂r̃ + ∂θ̃,

∂rr =

(
h

h− f

)2

∂r̃r̃,

∂θθ =

(
f ′

h− f

)2

(r̃ − b)2∂r̃r̃ +
f ′′(h− f) + 2(f ′)2

(h− f)2
(r̃ − b)∂r̃

+
2f ′

h− f
(r̃ − b)∂r̃θ̃ + ∂θ̃θ̃.

Letting w(r̃, θ̃) = u(r, θ) and substituting the above relations into the Helmholtz
equation (3), we obtain, after dropping the tilde for simplicity of notation, that

(12)

(
c1∂rr + c2

1

r
∂r + c3

1

r
∂rθ + c4

1

r2
∂θθ + c5

1

r2
κ2

)
w(r, θ) = 0, a < r < b,

where

c1 =h2 − 2h

(
1−

b

r

)
f +

1

r2
f2 +

(
1−

b

r

)2

(f ′)2,

c2 =h2 −

(
2−

b

r

)
hf +

(
1−

b

r

)
hf ′′

+

(
1−

b

r

)
f2 + 2

(
1−

b

r

)
(f ′)2 −

(
1−

b

r

)
ff ′′,

c3 =2

(
1−

b

r

)
(hf ′ − ff ′),

c4 =h2 − 2hf + f2,
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c5 =h2 − 2h

(
2−

b

r

)
f +

6− 6

(
b

r

)
+

(
b

r

)2
 f2

− 2

h

(
1−

b

r

)(
2−

b

r

)
f3 +

1

h2

(
1−

b

r

)2

f4.

The Dirichlet boundary condition (4) becomes

w(r, θ) = 0 on r = a,

and the transparent boundary condition (11) reduces to

(13) ∂rw(r, θ) =

(
1−

f

h

)
[Tw(r, θ) + ψ] on r = b.

Hence the original BVP for the total field u is transformed to a BVP for w given
by (12)–(13).

3.1. Power series expansion. Due to the small perturbation assumption (36),
we may consider a formal expansion of w(r, θ) as a power series in ε:

(14) w(r, θ) =

∞∑
m=0

wm(r, θ)εm.

Substituting f = εg into the defining equations for cj and collecting terms according
to the power of ε, we obtain

c1 =h2 − 2h

(
1−

b

r

)
gε+

g2 +

(
1−

b

r

)2

(g′)2

 ε2,

c2 =h2 + h

[(
1− 2

b

r

)
g +

(
1−

b

r

)
g′′

]
ε

+

(
1−

b

r

)[
g2 + 2(g′)2 − gg′′

]
ε2,

c3 =2h

(
1−

b

r

)
g′ε− 2

(
1−

b

r

)
gg′ε2,

c4 =h2 − 2hgε+ g2ε2,

c5 =h2 − 2h

(
2−

b

r

)
gε+

6− 6

(
b

r

)
+

(
b

r

)2
 g2ε2

− 2

h

(
1−

b

r

)(
2−

b

r

)
g3ε3 +

1

h2

(
1−

b

r

)2

g4ε4.

Substituting these expressions and (14) into (12) yields a successive sequence of
equations for wm:

(15)
(
∆ + κ2

)
wm = vm,
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where

vm =
1

h

{
2

(
1−

b

r

)
g∂rr +

[(
2−

b

r

)
g −

(
1−

b

r

)
g′′

]
1

r
∂r

−2

(
1− b

r

)
g′

1

r
∂rθ + 2g

1

r2
∂θθ + 2

(
2−

b

r

)
κ2g

}
wm−1

+
1

h2


−g2 −

(
1−

b

r

)2

(g′)2

 ∂rr −(1−
b

r

)[
g2 + 2(g′)2 − gg′′

] 1

r
∂r

+2

(
1−

b

r

)
gg′

1

r
∂rθ − g2 1

r2
∂θθ −

6− 6

(
b

r

)
+

(
b

r

)2
 g2κ2

wm−2

+
1

h3

[
2

(
1−

b

r

)(
2−

b

r

)
g3κ2

]
wm−3

+
1

h4

−(1−
b

r

)2

g4κ2

wm−4.(16)

Similarly we obtain the Dirichlet boundary condition

(17) wm(r, θ) = 0 on r = a,

and the transparent boundary conditions

(18) (∂r − T )wm(r, θ) = ψm(θ) on r = b,

where

(19) ψ0 = ψ, ψ1 = − g
h

(Tw0(b, θ) + ψ) , ψm = − g
h
Twm−1(b, θ).

It is understood that wm = 0 for m < 0 in all the above recurrence relations.
Thus all the terms wm in the power series (14) can be obtained by solving the BVPs
(15), (17), and (18) recursively starting from m = 0.

3.2. Fourier series expansion. To reduce the problems further and derive an-
alytical solutions, we consider each BVP for wm in the frequency domain. Since
wm(r, θ), vm(r, θ), and ψm(θ) are 2π-periodic functions in θ, we have the following
Fourier series expansions:

wm(r, θ) =
∑
n∈Z

w(n)
m (r)einθ,

vm(r, θ) =
∑
n∈Z

v(n)
m (r)einθ,

ψm(θ) =
∑
n∈Z

ψ(n)
m einθ.

Substituting the expansions into (15), (17), (18) and applying the definition of T ,

we obtain the two-point BVP for w
(n)
m :[

d2

dr2
+

1

r

d

dr
+

(
κ2 −

n2

r2

)]
w(n)
m (r) = v(n)

m (r), in (a, b)(20)

w(n)
m (a) = 0,(21)
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d

dr
−
κH

(1)′

n (κb)

H
(1)
n (κb)

]
w(n)
m (b) = ψ(n)

m .(22)

For simplicity, we normalize all variables with respect to the wavenumber κ through
the change of variables:

(23) r̂ = κr, â = κa, b̂ = κb,

(24) ŵ(n)
m (r̂) = w(n)

m (r), v̂(n)
m (r̂) = κ−2v(n)

m (r), ψ̂(n)
m = κ−1ψ(n)

m .

Substituting (23) and (24) into (20)–(22) yields[
d2

dr̂2
+

1

r̂

d

dr̂
+

(
1−

n2

r̂2

)]
ŵ(n)
m (r̂) = v̂(n)

m (r̂), in (â, b̂)(25)

ŵ(n)
m (â) = 0,(26) [

d

dr̂
−
H

(1)′

n (b̂)

H
(1)
n (b̂)

]
ŵ(n)
m (b̂) = ψ̂(n)

m .(27)

Using the analytical solution (B.9) in Appendix B, we have

(28) ŵ(n)
m (r̂) = Gn(r̂, b̂)ψ̂(n)

m −
∫ b̂

â

Gn(r̂, ŝ)v̂(n)
m (ŝ)dŝ,

where

(29) Gn(r̂, ŝ) =
iπŝ

4

En(r̂)H
(1)
n (ŝ), r̂ < ŝ,

En(ŝ)H
(1)
n (r̂), r̂ > ŝ,

and

(30) En(z) = H(2)
n (z)− H

(2)
n (a)

H
(1)
n (a)

H(1)
n (z)

3.3. Explicit solutions. Based on the analytical solutions (28), we may derive
more explicit forms for the zeroth order term ŵ0 and the first order term ŵ1.

It follows from (16) and (19) that

v0 = 0, ψ0 = ψ.

Taking Fourier coefficients and using the change of variables (24), we have

v̂
(n)
0 = 0, ψ̂

(n)
0 = κ−1ψδ0,n,

where δ0,n is the Kronecker delta function. Substituting the above quantities into
(28) and using (29) yields

ŵ
(n)
0 = E0(r̂)δ0,n,

which gives

(31) ŵ0(r̂) = E0(r̂).

Remark 3. It is interesting to observe that u(r, θ) = ŵ0(r̂) is just the total field
when the obstacle is a disk with radius a, which can be easily verified by solving
the BVP for the corresponding direct scattering problem.
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After ŵ0 is obtained, we may find ŵ1 by using the recurrence relation. Applying
(16) at m = 1 yields

v1(r, θ) =
1

h

{
2

(
1−

b

r

)
g∂rr +

[(
2−

b

r

)
g −

(
1−

b

r

)
g′′

]
1

r
∂r

−2

(
1− b

r

)
g′

1

r
∂rθ + 2g

1

r2
∂θθ + 2

(
2−

b

r

)
κ2g

}
w0(r, θ).

Since w0 is independent of the variable θ and (∆ + κ2)w0 = 0, the above quantity
can be reduced to

v1(r, θ) =
1

h

{
2

(
1−

b

r

)
g∂rr +

[(
2−

b

r

)
g −

(
1−

b

r

)
g′′

]
1

r
∂r

+2

(
2−

b

r

)
κ2g

}
w0(r)

=
2g

h

(
1−

b

r

)
(∆ + κ2)w0(r) +

1

h

{[
b

r
g −

(
1−

b

r

)
g′′

]
1

r
∂r + 2κ2g

}
w0(r)

=
1

h

{[
b

r
g −

(
1−

b

r

)
g′′

]
1

r
∂r + 2κ2g

}
w0(r).

Taking Fourier coefficients in θ and using the change of variables (23) and (24), we
obtain

(32) v̂
(n)
1 (r̂) =

1

h

{[
n2 +

b̂(1− n2)

r̂

]
1

r̂
∂r̂ + 2

}
E0(r̂)g(n).

Similarly, it follows from (19) that

(33) ψ̂
(n)
1 =

1

hH
(1)
0 (b̂)

[
4i

πb̂
− E0(b̂)

(
H

(1)
0

)′
(b̂)

]
g(n).

Substituting (32), (33), into (28) and evaluating at r̂ = b̂ yield

(34) ŵ
(n)
1 (b̂) = Cng

(n),

where

(35) Cn =
iπ

4h
H(1)
n (b̂)(M1 −M2 −M3),

and

M1 =
b̂En(b̂)

H
(1)
0 (b̂)

[
4i

πb̂
− E0(b̂)H

(1)′

0 (b̂)

]
,(36)

M2 =

∫ b̂

â

[
n2 +

b̂(1− n2)

ŝ

]
En(ŝ)E′0(ŝ)dŝ,(37)

M3 =

∫ b̂

â

2sEn(ŝ)E0(ŝ)dŝ.(38)

Inverse Problems and Imaging Volume 9, No. 1 (2015), 189–210



198 Peijun Li and Yuliang Wang

Remark 4. In the work for inverse surface scattering problems [4, 5, 1, 12], we
were able to obtain much simpler forms for the scaling factor Cn by evaluating the
involved integrals analytically. In this paper we resort to numerical integrations to
compute Cn since no futher simplication is possbile.

4. Reconstruction formula. Based on the transformed field expansion, we are
ready to present the explicit reconstruction formula for the linearized inverse prob-
lem and the nonlinear correction scheme to improve the results.

4.1. Linearization. The noisy data is assumed to take the form

uδ(b, θ) = u(b, θ) +O(δ),

where u(b, θ) denotes the noise-free data and δ indicates the noise level. Since
w(b, θ) = u(b, θ), the measurement data may also be rewritten as

(39) wδ(b, θ) = w(b, θ) +O(δ).

Truncating the power series expansion (14) at m = 1 and evaluating at r = b, we
obtain

(40) w(b, θ) = w0(b, θ) + εw1(b, θ) +O(ε2),

where w0(b, θ) = ŵ0(b̂) is given explicitly by (31) and thus is independent on f .
Substituting (40) into (39) and taking Fourier coefficients in θ yields

(41) εw
(n)
1 (b) = w

(n)
δ (b)− w(n)

0 (b) +O(δ) +O(ε2),

Multiplying (34) by ε and noticing that ŵ
(n)
1 (b̂) = w

(n)
1 (b), f (n) = εg(n), we obtain

(42) εw
(n)
1 (b) = Cnf

(n),

where Cn is given by (35). It follows from (41) and (42) that

(43) f (n) = Sn[w
(n)
δ (b)− w(n)

0 (b) +O(δ) +O(ε2)],

where Sn = C−1
n . By dropping the terms of O(δ) and O(ε2), we obtain the recon-

struction formula

(44) f (n) ≈ Sn[w
(n)
δ (b)− w(n)

0 (b)].

To obtain a stable reconstruction, we adopt the spectral cut-off regularization
method. Since |Sn| = |S−n| for all n ∈ N, the cut-off is symmetric with respect to
n = 0 and the regularized reconstruction formula is given by

(45) f(θ) ≈
∑
|n|≤N

f (n)einθ,

where N ∈ N is an empirical cut-off frequency and may be determined based on the
discrepancy principle if the noise level δ is known.

The reconstruction method is simple and efficient: apply the fast Fourier trans-

form (FFT) on the data wδ(b) to obtain w
(n)
δ (b), substitute into (44) to find f (n),

and insert into (45) to retrieve the deformation function f .
In [4, 12], the scaling factor Sn may have much more explicit forms. For example,

in the perfectly electrical conducting diffraction grating problem, it is given by

Sn(h) = −
i

2κ
e−iβnh,
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where

βn =


√
κ2 − n2, |n| < κ,

i
√
n2 − κ2, |n| > κ.

It is clear to note that |Sn| is a constant for |n| < κ and increases exponentially
for |n| > κ. The transition occurs precisely at |n| = κ, which corresponds to the
critical frequency for achieving subwavelength resolution. The inverse problem is
severely ill-posed. Moreover, |Sn(h)| also increases exponentially with respect to
h. Thus the reconstruction deteriorates quickly as h increases, which implies the
data must be measured at a very small distance from the surface in order to achieve
subwavelength resolution.

Remark 5. The notion of “subwavelength” can be defined precisely when the
scatterer is a small perturbation of a plane. For a Λ-periodic infinite surface f(x),
a frequency mode fne

iαnx belongs to the subwavelength regime if n > Λ/λ since
the space between two crests is ∆x = Λ/n < λ. In our case we may define that the
frequency mode fne

inθ belongs to the subwavelength regime if n > 2πa/λ since the
distance between two crests is

∆r ≈
2πa

n
< λ.

Hence the role of the period Λ in the diffraction grating problem is nearly equivalent
to the role of the perimeter 2πa in the obstacle problem.

A precise behavior is not immediately seen for our Sn due to its complex form.
In particular, it is not clear whether Cn is never zero so that Sn is always well
defined. The following theorem shows that it is true, at least when h is sufficiently
small.

Theorem 4.1. For fixed n, it holds

Cn(h) = C +O(h) as h→ 0,(46)

where C is a nonzero constant independent of h and n.

Proof. For simplicity of notations, we drop the hats over all the variables in the
proof. By (30) and the Wronskian formula for the Hankel functions, we have

En(a) = 0, E′n(a) = − 4i

πaH
(1)
n (a)

.(47)

Substituting them into (36)–(38) and using the Taylor series expansion yield

M1 =
Ch

H
(1)
n (a)

+O(h2), M2 = O(h2), M3 = O(h3),(48)

where C is a nonzero constant independent of h and n. Using the Taylor series

expansion again for H
(1)
n (s) yields

H
(1)
n (b)

H
(1)
n (a)

= 1 +O(h).(49)

Substituting (48) and (49) into (35) yields the desired result (46).
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We may also compute the value of Sn numerically and investigate its dependence
on the parameters κ, n, a, and h. Since the problem is invariant under the scaling of
the wavelength, we fix κ = 2π, which corresponds to a wavelength λ = 1. First we
investigate the dependence on n for fixed a and h. Consider an obstacle with base
radius a = λ and measurement distance h = 0.1λ, 0.2λ, 0.3λ, respectively. In Figure
2(a) the magnitude of Sn is plotted against n ∈ [0, 50]. Clearly the dependence of
|Sn| on n is similar as that in the infinite surface problems, i.e. its value remains
small and relatively constant for smaller n and and grows exponentially for larger
n. The transition occurs approximately at n = 2πa/λ, which corresponds to the
critical frequency for subwavelength resolution in view of Remark 5. Hence it is sta-
ble to reconstruct rough features in the resonance (wavelength comparable) region
and exponentially more unstable to reconstruct finer features in the subwavelength
region. Moreover, the growth rate is roughly proportional to h, which means the
reconstruction is more stable when the data is measured at a closer distance from
the obstacle. This is in accordance with the physical principle of near-field imaging
since the evanescent wave decays exponentially away from the object.
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Figure 2. Dependence of |Sn| on parameters n, h, a.

Next we investigate the dependence on the measurement distance h. Let a = λ
be fixed. In Figure 2(b) the magnitude of Sn is plotted against h ∈ [0, 0.4λ] for
n = 10, 20, 30 respectively. As anticipated we observe a nearly exponential growth
of |Sn| with respect to h and the growth rate is roughy proportional to n. Lastly
we examine the effect of the base radius a. In view of Remark 5, we expect that the
growth rate of |Sn| is invariant in terms of n/a. This is confirmed in Figure 2(c),
where |Sn| is plotted against n/a for fixed h = 0.2λ and a = λ/2, λ, 2λ respectively.
Hence the inverse problem has the same nature of ill-posedness regardless of the
size of the obstacles.

Remark 6. The convergence of our method requires a dedicated regularity analysis
of the solution for the direct scattering problem and is beyond the scope of this
paper. We will study the convergence analysis in a future work. A related work
can be found in [6] for the convergence analysis of the power series for solving a
diffraction grating problem in near-field imaging.

4.2. Nonlinear correction. Due to the linearization error O(ε2) in (43), the re-
construction deteriorates as the deformation parameter ε becomes larger. In this
section we present a nonlinear correction scheme that can improve the results.

Rewrite (43) as

(50) f (n) = Sn[w
(n)
δ (b)− w(n)

0 (b) + ρ],
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where ρ is denoted as the remainder. Given the measurement data wδ(b, θ) or

its Fourier coefficient w
(n)
δ (b), an approximation f̌ can be obtained by using (44).

Based on f̌ , we may solve the direct problem and obtain the computed data w̌(n)(b).
Applying (50) on f̌ yields

(51) f̌ (n) = Sn[w̌(n)(b)− w(n)
0 (b) + ρ̌],

where ρ̌ is the remainder for the approximate solution. Subtracting (51) from (50)
yields the correction term

f (n) − f̌ (n) = Sn[w
(n)
δ (b)− w̌(n)(b) + ρ− ρ̌].

Dropping ρ− ρ̌, we obtain the updated Fourier coefficients

f (n) ≈ f̌ (n) + Sn[w(n)(b)− w̌(n)(b)].

The above discussion leads to an iterative scheme formulated in Algorithm 1.

Initialize: Set k = 0. Given the data wδ(b, θ), compute its Fourier coefficient

w
(n)
δ (b) by using the FFT; compute the Fourier coefficients

f
(n)
0 = Sn

[
w

(n)
δ (b)− w(n)

0

]
.

Generate an initial approximation by using the inverse FFT:

f0(θ) =
∑
|n|≤N

f
(n)
0 einθ.

while stopping criterion is not met do
Based on fk, solve the direct problem to obtain w̌k(b) and its Fourier

coefficient w̌
(n)
k (b), update the Fourier coefficients

f
(n)
k+1 = f

(n)
k + Sn[w

(n)
δ (b)− w̌(n)

k (b)].

Generate a new approximation fk+1:

fk+1(θ) =
∑
|n|≤N

f
(n)
k+1e

inθ.

k ← k + 1.
end

Algorithm 1: Reconstruction with a nonlinear correction.

5. Numerical results. In this section we present several numerical experiments to
demonstrate the effectiveness of our method, examine the dependence of the results
on h and ε, and show the improved results by using the nonlinear correction.

To avoid the so-called “inverse crime”, we simulate the scattering data by solving
the direct problem with an integral equation method in Theorem A.3 instead of the
method of transformed field expansion in [30]. We add noise to the exact data:

wδ(b, θ) = w(b, θ)[1 + δ rand],

where rand denotes a uniformly distributed random number in [−1, 1]. The wave-
number is κ = 2π, which corresponds the wavelength λ = 1 and ensures that all
physical lengths are normalized with respect to the wavelength.
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5.1. Example 1. Consider an obstacle with base radius a = λ. The exact defor-
mation function is given by f(θ) = εg(θ) where

g(θ) = 0.5 sin(4θ) + 0.5 sin(16θ).

In Remark 5, the Fourier modes fn belongs to the subwavelength regime if n >
2πa/λ = 2π. Hence this particular deformation function contains both resonance
and subwavelength features. First we examine the dependence of the reconstruction
on the deformation parameter ε. Let h = 0.1λ and δ = 0.05 be fixed. In Figure
3(a) and 3(b), the exact g(θ) (solid line) is plotted against the reconstructed one
(dashed line) for ε = 0.01 and ε = 0.08 respectively. We observe that subwavelength
resolution is achieved in both cases. Clearly better result is obtained for smaller ε.
All the fine features are completely resolved when ε = 0.01, while some amplitude
information is lost when ε = 0.08.

Next we investigate the dependence of the reconstruction on the measurement
distance h. Let ε = 0.01 and δ = 0.05 be fixed. The results for h = 0.1λ and h =
0.2λ are show in Figure 3 (a) and (c) respectively. Apparently the reconstruction
becomes unstable and the result deteriorates as h increases. Hence one should
measure as close as possible to the obstacle to achieve higher resolutions. Finally
we consider the effect of the noise level δ. Figure 3 (d) shows the result where the
values of ε and h are the same as used in Figure 3 (c) but the δ is decreased from
0.05 to 0.01. As expected, a better reconstruction is achieved with a lower noise
level.
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Figure 3. Example 1: A model problem with a = λ. The
exact surface profile (normalized, solid line) is plotted against
the reconstructed profile (normalized, dashed line) using differ-
ent values of ε, h and δ. (a) ε = 0.01, h = 0.1λ, δ = 0.05; (b)
ε = 0.08, h = 0.1λ, δ = 0.05; (c) ε = 0.01, h = 0.2λ, δ = 0.05; (d)
ε = 0.01, h = 0.2, δ = 0.01.

The measurement distance h and noise level δ may be made small through better
facilities. The error due to deformation parameter ε is induced by the linearization
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and is intrinsic to the mathematical model. For small ε, the results are already
satisfactory and no correction is needed. However, the nonlinear correction is nec-
essary in order to obtain good reconstruction for larger ε. Now we test the proposed
Algorithm 1 and show the improvement that can be made in the reconstruction.
Let ε = 0.1, h = 0.2λ, δ = 0.01 be fixed. Figure 4(a) shows the original result with-
out nonlinear correction. As before some amplitude information is not completely
reconstructed. Figure 4(b) shows the result after 10 iterations of the correction
algorithm. We observe a dramatic improvement, where the lost amplitude informa-
tion is completely retrieved and the result is as good as the one shown in Figure
3(d) where ε = 0.01 is much smaller. Figure 4(c) shows the convergence plot of the
relative L2 error.
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Figure 4. Example 1: A model problem with a = λ. The ex-
act surface profile (normalized, solid line) is plotted against the
reconstructed profile (normalized, dashed line). The parameters
ε = 0.1, h = 0.2λ, δ = 0.01 are fixed. (a) without nonlinear correc-
tion; (b) after 10 iterations of nonlinear correction; (c) convergence
plot of the relative L2 error.

5.2. Example 2. Now we consider a smaller obstacle where the base radius a =
λ/(2π). Thus the Fourier modes fn belongs to the subwavelength regime if n > 1.
Let the normalized deformation function be given by

g(θ) = 0.5 sin(θ) + 0.5 sin(4θ).

The observations on the dependence of the reconstructions on the parameters are
similar as those in the first example, so we only show the results for different ε
and the nonlinear correction. Since ε is not too small relative to a in this exam-
ple, we are able to draw the results in polar coordinate and essential features are
visible. Let h = 0.1λ and δ = 0.05 be fixed. In Figure 5(a), 5(b), 5(c), the exact
obstacles (solid line) are plotted against the reconstructed obstacles (dashed line)
for ε = 0.02, 0.04, 0.08 respectively. Figure 5 shows the result with ε = 0.08 after
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10 iterations of nonlinear correction. Since the perimeter of the base disk is λ, any
perturbation on the obstacle is beyond diffraction limit. Hence we also obtained
subwavelength resolution in all cases. The best result is achieved with smallest ε
and nonlinear correction can improve the results dramatically.
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Figure 5. Example 2: A model problem with a = λ/2π. The
parameters h = 0.1λ and δ = 0.05 are fixed. The exact obstacle
(solid line) is plotted against the reconstructed obstacle (dashed
line). (a) ε = 0.02; (b) ε = 0.04; (c) ε = 0.08; (d) ε = 0.08, after
10 iterations of nonlinear correction is applied.

6. Conclusion. We presented a numerical method for near-field imaging of sound
soft obstacles in two dimensions. The surface was assumed to be a small and smooth
deformation of a circle. Based on the transformed field expansion, we converted the
original BVP into a successive sequence of BVPs in an annulus and derived their
analytic solutions. Dropping higher order terms in the power series expansion, we
linearized the nonlinear inverse problem and obtained an explicit reconstruction
formula. A nonlinear correction scheme was devised to improve the results for large
deformation. The method requires only a single cylindrical incident wave at a fixed
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frequency. Numerical tests showed that the method is effective and efficient to
achieve subwavelength resolution. Better resolution was obtained by using smaller
parameters, which is in accordance with the principle of near-field imaging.

Although the method is derived for sound soft obstacles, similar reconstruction
formulas are expected for sound hard and impedance boundary conditions. It is also
worthwhile to consider the transmission problem in which the obstacle is penetrable.
We chose cylindrical incident wave because of its mathematical simplicity. We will
consider the commonly used plane wave as the incident field in a future work.
Other interesting and challenging problems include inverse scattering with limited
aperture and/or phaseless data. Finally we wish to extend the proposed method to
three-dimensional obstacles, where the full Maxwell equations should be considered.

Appendix A. Direct problem. Due to the singularity of the incident wave, the
usual boundary integral equations for plane incident wave [14] need to be modified.
We derive new equations to accommodate the change in this section.

Let Ω be a bounded domain in R2, which contains the origin and has a C2

boundary ∂Ω. Consider the incident field

uinc(x) = H
(2)
0 (κ|x|),

where x = (x1, x2) ∈ R2 and κ is the wavenumber. Let usca(x) be the scattered
field satisfying the Sommerfeld radiation condition

(A.1) lim
|x|→∞

√
|x|
(
∂|x| − iκ

)
usca(x) = 0

uniformly for all directions x/|x|. The fundamental solution for the Helmholtz
equation in R2 is given by

(A.2) G(x, y) =
i

4
H

(1)
0 (κ|x− y|),

where y = (y1, y2) ∈ R2.

Lemma A.1. The incident field uinc satisfies∫
∂Ω

uinc(y)∂ny
G(x, y)−G(x, y)∂ny

uinc(y)ds(y)

=

−2J0(κ|x|), x ∈ Ω,

−H(1)
0 (κ|x|), x ∈ R2 \ Ω̄,

(A.3)

where J0 is the zeroth order Bessel function of the first kind.

Proof. Let x ∈ Ω be fixed. First assume x 6= 0. Then G(·, y) has a singularity
at y = x and uinc(y) has a singularity at y = 0, both of which are inside Ω. Let
B(x, σ) and B(0, τ) be balls centered at x, 0 with radius σ, τ respectively, where
σ, τ are sufficiently small so that B(x, σ), B(0, ρ) ⊂ Ω and B(x, σ) ∩ B(0, ρ) = ∅.
See Figure 6 for a depiction. Applying the second Green’s identity and using the
Helmholtz equations for G(·, y) and u(y) in the domain Ω \ (B(x, σ) ∪ B(0, τ), we
obtain ∫

∂Ω∪∂B(x,σ)∪∂B(0,τ)

[
uinc(y)∂ny

G(x, y)−G(x, y)∂ny
uinc(y)

]
ds(y)

=

∫
Ω\[B(x,σ)∪B(0,τ)]

[
uinc(y)∆G(x, y)−G(x, y)∆u(y)

]
dy
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B(x, σ)

B(0, τ)

Ω

Figure 6. Illustration for the proof of Lemma A.1.

=

∫
Ω\[B(x,σ)∪B(0,τ)]

[
−κ2uinc(y)G(x, y) + κ2G(x, y)u(y)

]
dy = 0.(A.4)

Taking partial derivatives with respect to y on A.2 yields

(A.5) ∇yG(x, y) =
i(y − x)

4|y − x|

(
H

(1)
0

)′
(κ|x− y|) = −

i(y − x)

4|y − x|
H

(1)
1 (κ|x− y|).

The normal vector ny goes inward at B(x, σ) and is given by

(A.6) ny = −
y − x
|y − x|

, y ∈ ∂B(x, σ).

From (A.5) and (A.6) we obtain

∂ny
G(x, y) =

iκ

4
H

(1)
1 (κ|x− y|), y ∈ ∂B(x, σ).

Using the asymptotic forms of Bessel functions for small arguments [22], we have

H
(1)
0 (z) ∼

(
2i

π

)
ln z, H

(1)
1 (z) ∼

(
−

2i

π

)
z−1, as z → 0,

which gives together with the mean value theorem that

lim
σ→0

∫
∂B(x,σ)

[
uinc(y)∂ny

G(x, y)−G(x, y)∂ny
uinc(y)

]
ds(y)

= lim
σ→0

iκ

4

∫
∂B(x,σ)

[
uinc(y)H

(1)
1 (κ|x− y|)− ∂ny

uinc(y)H
(1)
0 (κ|x− y|)

]
ds(y)

= lim
σ→0

iκ

4

∫
∂B(x,σ)

[
uinc(y)H

(1)
1 (κσ)− ∂nyu

inc(y)H
(1)
0 (κσ)

]
ds(y)

=
iκ

4

{
uinc(x) lim

σ→0

[(
−

2i

π

)
1

κσ
2πσ

]
− ∂nx

uinc(x) lim
σ→0

[(
2i

π

)
ln(κσ)2πσ

]}
=uinc(x) = H

(2)
0 (κ|x|).(A.7)

By similar calculations we obtain

(A.8) lim
τ→0

∫
∂B(0,τ)

[
uinc(y)∂ny

G(x, y)−G(x, y)∂ny
uinc(y)

]
ds(y) = H

(1)
0 (κ|x|).
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Taking limσ,τ→0 on (A.4) and using (A.7), (A.8) yields∫
∂Ω

[
uinc(y)∂ny

G(x, y)−G(x, y)∂ny
uinc(y)

]
ds(y)

=−
[
H

(2)
0 (κ|x|) +H

(1)
0 (κ|x|)

]
= −2J0(κ|x|).

Since both left and right hand side are continuous for x ∈ Ω, the above identity is
also valid when x = 0, which completes the proof for the first part of (A.3). The
proof for the second part is very similar and is omitted.

By using the radiation condition (A.1) and similar arguments as in the proof of
Lemma A.1, we can prove the following identity for the scattered field. The details
may be found in [14] and are omitted here.

Lemma A.2. The scattered field usca satisfies the relation:∫
∂Ω

[
usca(y)∂ny

G(x, y)−G(x, y)∂ny
usca(y)

]
ds(y)

=

0, x ∈ D,

usca(x), x ∈ R2 \ D̄.
(A.9)

The main result of this section follows from Lemma A.1 and A.2.

Theorem A.3. Let u = uinc + usca be the total field and satisfies

(A.10) u(x) = 0, x ∈ ∂Ω.

Then ∂nu satisfies

1

2
∂nx

u(x) +

∫
∂Ω

[∂nx
G(x, y) + iηG(x, y)] ∂nx

u(y)ds(y)

= 2(∂nx
+ iη)J0(κ|x|), x ∈ ∂Ω,(A.11)

where η 6= 0 is a real coupling constant. The scattered field can be computed from

(A.12) usca(x) = H
(1)
0 (κ|x|)−

∫
∂Ω

G(x, y)∂ny
u(y)ds(y), x ∈ R2 \ Ω̄.

Proof. Adding (A.3), (A.9) for x ∈ Ω and using the boundary condition (A.10), we
obtain ∫

∂Ω

G(x, y)∂nyu(y)ds(y) = 2J0(κ|x|), x ∈ Ω.

Taking ∂nx
+ iη on both sides and applying the well known jump conditions for

the single and double layer potentials [14] yields (A.11). Equation (A.12) follows
immediately from adding (A.3) and (A.9) for x ∈ R2 \ Ω̄.

Appendix B. A two-point boundary value problem. In this section we pre-
sent a method to obtain analytical solutions for the BVP (25)–(27). The method is
based on the solution for the following general boundary value problem:

Lu(x) = f(x), x ∈ (a, b)(B.1)

A1u(a) +B1u
′(a) = 0,(B.2)

A2u(b) +B2u
′(b) = 0,(B.3)
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where L is the Sturm–Liouville operator given by

L =
d

dx

(
p(x)

d

dx

)
+ q(x).

It is well known that the solution to the above BVP can be written as

u(x) =

∫ b

a

G(x, y)f(y)dy,

where G(x, y) is called the Green’s function, which is unique and satisfies the fol-
lowing properties when considered as a function of x for fixed y:

1. satisfies the homogeneous Sturm–Liouville equation:

LG(x, y) = 0, in (a, b)

for all x 6= y;
2. satisfies the homogeneous boundary conditions (B.2) and (B.3);
3. continuous for all x;
4. has continuous first and second derivatives for all x 6= y;
5. ∂xG(x, y) has a jump discontinuity at x = y given by

∂xG(y+, y)− ∂xG(y−, y) =
1

p(y)
.

It can be verified the unique Green’s function satisfying the above properties is
given by

(B.4) G(x, y) =
1

C(y)

u1(x)u2(y), x < y,

u1(y)u2(x), x > y,

where u1, u2 are linearly independent solutions to Lu = 0 with u1 satisfying the
boundary condition (B.2) and u2 satisfying the boundary condition (B.3), and where

(B.5) C(y) = p(y) [u1(y)u′2(y)− u′1(y)u2(y)] .

The BVP (25)–(27) can be written as the following Sturm–Liouville form:

Lu(x) = f(x), x ∈ (a, b),(B.6)

u(a) = ϕ,(B.7)

u′(b)−

(
H

(1)
n

)′
(b)

H
(1)
n (b)

u(b) = ψ,(B.8)

where L is the Sturm-Liouville operator with

p(x) = x, q(x) = x−
n2

x
.

The solutions u1 and u2 in (B.5) are linearly independent solutions to the following
problems:

Lu(x) = 0, x ∈ (a, b),

u(a) = 0,

and

Lu(x) = 0, x ∈ (a, b),
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u′(b)−

(
H

(1)
n

)′
(b)

H
(1)
n (b)

u(b) = 0.

Since L is the Bessel operator of order n, a set of linearly independent solutions u1

and u2 are given by

u1 = En(x), u2 = H(1)
n (x),

where En is defined in (30). Substituting the above solutions into (B.5) yields

C(y) =
4i

π
,

By (B.4) we obtain the Green’s function

G(x, y) =
π

4i

En(x)H
(1)
n (y), x < y,

En(y)H
(1)
n (x), x > y.

After the Green’s function G(x, y) is found, the solution to the BVP (B.6)–(B.8)
can be written as

u(x) = c1H
(1)
n (x) + c2H

(2)
n (x) +

∫ b

a

G(x, y)f(y)dy.

Applying the boundary conditions (B.7) and (B.8) yields

(B.9) u(x) =
H

(1)
n (x)

H
(1)
n (a)

ϕ−G(x, b)bψ +

∫ b

a

G(x, y)f(y)dy.
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