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Abstract

This paper is devoted to the mathematical analysis of a time-domain electromagnetic scattering by peri-
odic structures which are known as diffraction gratings. The scattering problem is reduced equivalently into 
an initial-boundary value problem in a bounded domain by using an exact transparent boundary condition. 
The well-posedness and stability of the solution are established for the reduced problem. Moreover, a priori 
energy estimates are obtained with minimum regularity requirement for the data and explicit dependence 
on the time.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with the mathematical analysis of an electromagnetic scattering prob-
lem in periodic structures, where the wave propagation is governed by the time-domain Maxwell 
equations. The scattering theory in periodic diffractive structures, also known as diffraction grat-
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ings, has applications in many cutting-edge scientific areas including ultra-fast and high-energy 
lasers, space flight instruments, astronomy, and synchrotron spectrometers. A good introduction 
can be found in [10] to diffraction grating problems and various numerical approaches. The book 
[19] contains descriptions of several mathematical problems that arise in diffractive optics mod-
eling in industry. Some more recent developments are addressed in [6] on theory, analysis, and 
computational techniques of diffractive optics.

The time-harmonic grating problems have been extensively studied by many researchers via 
either the integral equation methods or the variational methods [2–4,12,17]. A survey may be 
found in [7] for mathematical studies in rigorous grating theory. The general result may be stated 
as follows: The diffraction problem has a unique solution for all but a countable sequence of sin-
gular frequencies. Unique solvability for all frequencies can be obtained for gratings which have 
absorbing media or perfectly electrically conducting surfaces with Lipschitz profiles. Numeri-
cal methods are developed for both the two-dimensional Helmholtz equation (one-dimensional 
gratings) and the three-dimensional Maxwell equations (crossed or two-dimensional gratings) 
[5,8,9,15,30].

The time-domain scattering problems have attracted considerable attention due to their ca-
pability of capturing wide-band signals and modeling more general material and nonlinearity 
[11,22,23,25,29]. Comparing with the time-harmonic problems, the time-domain problems are 
much less studied due to the additional challenge of the temporal dependence. Rigorous mathe-
matical analysis is very rare. The analysis can be found in [14,28] for the time-domain acoustic 
and electromagnetic obstacle scattering problems. We refer to [24] for the analysis of the time-
dependent electromagnetic scattering from a three-dimensional open cavity. Numerical solutions 
can be found in [18,27] for the time-dependent wave scattering by periodic structures/surfaces. 
The theoretical analysis is still lacking for the time-domain scattering by periodic structures.

The goal of this work is to analyze mathematically the time-domain scattering problem which 
arises from the electromagnetic wave propagation in a periodic structure. Specifically, we con-
sider an electromagnetic plane wave which is incident on a one-dimensional grating in R3. 
So the structure is assumed to be invariant in the y-direction and periodic in the x-direction. 
The three-dimensional Maxwell equations can be decomposed into two fundamental polariza-
tions: transverse electric (TE) polarization and transverse magnetic (TM) polarization, where 
Maxwell’s equations are reduced to the two-dimensional wave equation. We shall study the wave 
equation in two dimensions for both polarizations. The structure can also be characterized by the 
medium parameters: the electric permittivity and the magnetic permeability. They are periodic 
in x and assumed only to be bounded measurable functions. Hence our method works for very 
general gratings whose surfaces/interfaces are allowed to be Lipschitz profiles or even graphs of 
some Lipschitz continuous functions.

There are two challenges of the problem: time dependence and unbounded domain. In the 
frequency domain, various approaches have been developed to truncate unbounded domains into 
bounded ones, such as absorbing boundary conditions (ABCs), transparent boundary conditions 
(TBCs), and perfectly matched layer (PML) techniques. These effective boundary conditions are 
being extended to handle time-domain problems [1,13,20,21]. Utilizing the Laplace transform as 
a bridge between the time-domain and the frequency domain, we develop an exact time-domain 
TBC and reduce the problem equivalently into an initial boundary value problem in a bounded 
domain. Using the energy method with new energy functions, we show the well-posedness and 
stability of the time-dependent problem. The proofs are based on examining the well-posedness 
of the time-harmonic Helmholtz equations with complex wavenumbers and applying the abstract 
inversion theorem of the Laplace transform. Moreover, a priori estimates, featuring an explicit 
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dependence on time and a minimum regularity requirement of the data, are established for the 
wave field by studying directly the time-domain wave equation.

The paper is organized as follows. In section 2, we introduce the model problem and develop a 
TBC to reduce it into an initial boundary value problem. Section 3 is devoted to the analysis of the 
reduced problem, where the well-posedness and stability are addressed and a priori estimates are 
provided. We conclude the paper with some remarks and directions for future work in section 4.

2. Problem formulation

In this section, we introduce the mathematical model of interest and develop an exact TBC to 
reduce the scattering problem from an unbounded domain into a bounded domain.

2.1. A model problem

Consider the system of time-domain Maxwell equations in R3 for t > 0:

{
∇ × E(x, y, z, t) + μ∂tH (x, y, z, t) = 0,

∇ × H (x, y, z, t) − ε∂tE(x, y, z, t) = 0,
(2.1)

where E is the electric field, H is the magnetic field, ε and μ are the dielectric permittivity and 
magnetic permeability, respectively, and satisfy

0 < εmin ≤ ε ≤ εmax < ∞, 0 < μmin ≤ μ ≤ μmax < ∞.

Here εmin, εmax, μmin, μmax are constants. We assume that the structure is invariant in the 
y-direction and thus focus on the one-dimensional grating. The more complicated problem in 
biperiodic structures will be considered in a separate work. There are two fundamental polariza-
tions for the one-dimensional structure:

(i) TE polarization. The electric and magnetic fields are

E(x, y, z, t) = [0,E(x, z, t),0]�, H (x, z, t) = [H1(x, z, t),0,H3(x, z, t)]�.

Eliminating the magnetic field from (2.1), we get the wave equation for the electric field:

ε∂2
t E(x, z, t) = ∇ · (μ−1∇E(x, z, t)). (2.2)

(ii) TM polarization. The electric and magnetic fields are

E(x, y, z, t) = [E1(x, z, t),0,E3(x, z, t)]�, H (x, y, z, t) = [0,H(x, z, t),0]�.

We may eliminate the electric field from (2.1) and obtain the wave equation for the magnetic 
field:

μ∂2
t H(x, z, t) = ∇ · (ε−1∇H(x, z, t)). (2.3)

It is clear to note from (2.2) and (2.3) that the TE and TM polarizations can be handled in a 
unified way by formally exchanging the roles of ε and μ. We will just present the results by 
using (2.2) as the model equation in the rest of the paper.
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Fig. 1. Problem geometry of the time-domain scattering by a periodic structure.

Now let us specify the problem geometry, which is shown in Fig. 1. Since the structure and 
medium are assumed to be periodic in the x direction, there exists a period � > 0 such that

ε(x + n�,z) = ε(x, z), μ(x + n�,z) = μ(x, z), ∀(x, z) ∈ R
2, n ∈ Z.

We assume that ε and μ are constants away from the region � = {(x, z) : 0 ≤ x ≤ �, h2 ≤
z ≤ h1}, where hj are constants. Denote �1 := {(x, z) : 0 ≤ x ≤ �, z > h1} and �2 := {(x, z) :
0 ≤ x ≤ �, z < h2}. There exist constants εj and μj such that

ε(x, z) = εj , μ(x, z) = μj in �j .

Throughout we also assume that εμ ≥ ε1μ1, which is usually satisfied since ε1 and μ1 are the 
electric permittivity and magnetic permeability in the free space �1. Finally we define �1 =
{(x, z) : 0 ≤ x ≤ �, z = h1} and �2 := {(x, z) : 0 ≤ x ≤ �, z = h2}.

Consider an incoming plane wave Einc which is incident on the structure from above. Explic-
itly we have

Einc(x, z, t) = f (t − c1x − c2z),

where f is a smooth function and its regularity will be specified later, and c1 = cos θ/c, c2 =
sin θ/c. Here θ , satisfying 0 < θ < π , is the incident angle, and c = 1/

√
ε1μ1 > 0 is the light 

speed in the free space. Clearly, the incident field Einc(x, z, t) satisfies the wave equation (2.2)
when ε = ε1, μ = μ1.

Although the incident field Einc may not be a periodic function in the x-direction, we can 
verify that

Einc(x + �,z, t) = Einc(x, z, t − c1�), ∀(x, z) ∈ R
2, t > 0.

Motivated by the uniqueness of the solution, we assume that the total field satisfies the same 
translation property, i.e.,

E(x + �,z, t) = E(x, z, t − c1�), (x, z) ∈R
2, t > 0.
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We define

U(x, z, t) = E(x, z, t + c1(x − �)), U inc(x, z, t) = Einc(x, z, t + c1(x − �)). (2.4)

It follows from (2.4) that we get

U(x + �,z, t) = E(x + �,z, t + c1x) = E(x, z, t + c1x − c1�) = U(x, z, t),

which shows that U is a periodic function in the x-direction with period �. Similarly, we can 
verify that the incident field U inc is a trivially periodic function of x (independent of x) since

U inc(x, z, t) = Einc(x, z, t + c1(x − �)) = f (t − c2z − c1�).

Using the change of variables, we have

∂tE = ∂tU, ∂xE = ∂xU − c1∂tU.

The equation (2.2) becomes

(ε − c2
1μ

−1)∂2
t U = ∇ · (μ−1∇U) − c1(μ

−1∂txU + ∂x(μ
−1∂tU)). (2.5)

A simple calculation yields that

ε − c2
1μ

−1 = (εμ − ε1μ1 cos2 θ)μ−1 ≥ ε1μ1(1 − cos2 θ)μ−1

= ε1μ1μ
−1 sin2 θ > 0, ∀ θ ∈ (0,π),

which shows that the equation (2.5) is a well-defined wave equation.
It is easy to verify that the incident field U inc satisfies (2.5) with ε = ε1, μ = μ1. To impose 

the initial conditions, we assume that the total field and the incident field vanish for t < 0 so 
that the incident field U inc = 0 and the scattered field V = U − U inc = 0 for t < 0. The initial 
conditions are

U |t=0 = ∂tU |t=0 = 0. (2.6)

In addition U is �-periodic in the x-direction. This paper aims to study the well-posedness and 
stability of the scattering problem (2.5)–(2.6).

We introduce some notation. For any s = s1 + is2 with s1, s2 ∈ R, s1 > 0, define by ŭ(s) the 
Laplace transform of the function u(t), i.e.,

ŭ(s) = L (u)(s) =
∞∫

0

e−stu(t)dt.

Define a weighted periodic function space

H 1 (�) = {u ∈ H 1(�) : u(0, z) = u(�, z)},
s,p
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which is Sobolev space with the norm characterized by

‖u‖2
H 1

s,p(�)
=

∫
�

(|∇u|2 + |s|2|u|2)dxdz.

Given u ∈ H 1
s,p(�), it has a Fourier expansion with respect to x:

u(x, z) =
∑
n∈Z

un(z)e
iαnx, αn = 2nπ�−1.

A simple calculation yields an equivalent norm in H 1
s,p(�) via Fourier coefficients:

‖u‖2
H 1

s,p(�)
=

∑
n∈Z

(|s|2 + α2
n

) h1∫
h2

|un(z)|2dz +
∑
n∈Z

h1∫
h2

|u′
n(z)|2dz. (2.7)

For a periodic function u defined on �j with Fourier coefficients un, we define a weighted trace 
functional space

Hλ
s (�j ) = {u ∈ L2(�j ) : ‖u‖2

Hλ(�j )
=

∑
n∈Z

(|s|2 + α2
n

)λ|un|2 < ∞}, (2.8)

where λ ∈ R. It is clear to note that the dual space of H 1/2
s (�j ) is H−1/2

s (�j ) under the L2(�j )

inner product

〈u,v〉�j
=

∫
�j

uv̄dγj .

The weighted Sobolev spaces H 1
s,p(�) and Hν

s (�j ) are equivalent to the standard Sobolev 
spaces H 1

p (�) and Hλ(�j ) since |s| �= 0. Hereafter, the expression “a � b” stands for “a ≤ Cb”, 
where C is a positive constant and its specific value is not required but should be always clear 
from the context.

2.2. Transparent boundary condition

We introduce a TBC to reformulate the scattering problem into an equivalent initial-boundary 
value problem in a bounded domain. The idea is to design a Dirichlet-to-Neumann (DtN) operator 
which maps the Dirichlet data to the Neumann data of the wave field.

Subtracting the incident field U inc from the total field U in (2.5) and (2.6), we obtain the 
equation for the scattered field

(ε1 − c2μ−1)∂2V = ∇ · (μ−1∇V ) − c1(μ
−1∂txV + ∂x(μ

−1∂tV )) in �1, t > 0, (2.9)
1 1 t 1 1 1
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and the initial conditions

V |t=0 = ∂tV |t=0 = 0 in �1. (2.10)

Let V̆ (x, z, s) = L (V ) be the Laplace transforms of V (x, z, t) with respect to t . Recall that

L (∂tV ) = sV̆ (x, z, s) − V (x, z,0),

L (∂2
t V ) = s2V̆ (x, z, s) − sV (x, z,0) − ∂tV (x, z,0).

Taking the Laplace transform of (2.9) and using the initial conditions (2.10), we have

(ε1 − c2
1μ

−1
1 )s2V̆ = ∇ · (μ−1

1 ∇V̆ ) − c1(μ
−1
1 s∂xV̆ + s∂x(μ

−1
1 V̆ )),

which reduces to

(ε1μ1 − c2
1)s

2V̆ = V̆ − 2c1s∂xV̆ in �1. (2.11)

Since V̆ is a periodic function in x, it has the Fourier expansion

V̆ (x, z) =
∑
n∈Z

V̆n(z)e
iαnx, z > h1.

Substituting the Fourier expansion of V̆ into (2.11), we obtain an ordinary differential equation 
for the Fourier coefficients:{

∂2
z V̆n(z) − (β

(n)
1 )2V̆n(z) = 0, z > h1,

V̆n(z) = V̆n(h1)

where

β
(n)
1 = (ε1μ1s

2 + (αn + ic1s)
2)1/2, Reβ(n)

1 < 0.

Using the outgoing radiation condition, we have

V̆n(z) = V̆n(h1)e
β

(n)
1 (z−h1).

Thus we get the Rayleigh expansion for the scattered field in �1:

V̆ (x, z) =
∑
n∈Z

V̆n(h1)e
iαnxeβ

(n)
1 (z−h1).

Taking the normal derivative of the above equation on �1 yields

∂ν1 V̆ (x,h1) =
∑
n∈Z

β
(n)
1 V̆n(h1)e

iαnx,

where ν1 = [0, 1]� is the unit normal vector on �1.
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Similarly, we can obtain the Rayleigh expansion for the total field in �2:

Ŭ (x, z) =
∑
n∈Z

Ŭn(h2)e
iαnxe−β

(n)
2 (z−h2),

where

β
(n)
2 = (ε2μ2s

2 + (αn + ic1s)
2)1/2, Reβ(n)

2 < 0.

Taking the normal derivative of Ŭ on �2 gives

∂ν2Ŭ (x,h2) =
∑
n∈Z

β
(n)
2 Ŭn(h2)e

iαnx,

where ν2 = [0, −1]� is the normal vector on �2. For any function u(x, hj ) defined on �j , we 
define the DtN operators

(Bj u)(x,hj ) =
∑
n∈Z

β
(n)
j un(hj )e

iαnx, u(x,hj ) =
∑
n∈Z

un(hj )e
iαnx. (2.12)

Lemma 2.1. There exists a positive constant C1 such that

‖u‖
H

1/2
s (�j )

≤ C1‖u‖H 1
s,p(�), ∀ u ∈ H 1

s,p(�).

Proof. First we have

(h1 − h2)|ζ(hj )|2 =
h1∫

h2

|ζ(z)|2dz +
h1∫

h2

hj∫
z

d

dt
|ζ(t)|2dtdz

≤
h1∫

h2

|ζ(z)|2dz + (h1 − h2)

h1∫
h2

2|ζ(z)||ζ ′(z)|dz,

which gives

(|s|2 + α2
n

)1/2|ζ(hj )|2 ≤ (h1 − h2)
−1(|s|2 + α2

n

)1/2
h1∫

h2

|ζ(z)|2dz

+
h1∫

h2

2
(|s|2 + α2

n

)1/2|ζ(z)||ζ ′(z)|dz.

It follows from the Cauchy–Schwarz inequality that
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(|s|2 + α2
n

)1/2|ζ(hj )|2 ≤ (h1 − h2)
−1(|s| + |αn|

) h1∫
h2

|ζ(z)|2dz

+ (|s|2 + α2
n

) h1∫
h2

|ζ(z)|2dz +
h1∫

h2

|ζ ′(z)|2dz.

Using the fact that s = s1 + is2 with s1 > 0, we have

|s| ≤ s−1
1 |s|2, |αn| ≤ (2π)−1�α2

n.

Letting

C2
1 = max{1 + (h1 − h2)

−1s−1
1 , 1 + (2π)−1(h1 − h2)

−1�},
we can show that

(|s|2 + α2
n

)1/2|ζ(hj )|2 ≤ C2
1

((|s|2 + α2
n

) h1∫
h2

|ζ(z)|2dz +
h1∫

h2

|ζ ′(z)|2dz
)
.

The proof is completed by combing the above estimates and the definition (2.7). �
Lemma 2.2. The DtN operator Bj : H 1/2

s,p (�j ) → H
−1/2
s,p (�j ) is continuous, i.e.,

‖Bj u‖
H

−1/2
s,p (�j )

≤ C2‖u‖
H

1/2
s,p (�j )

,

where C2 > 0 is a constant.

Proof. For any u ∈ H
1/2
s,p (�j ), it follow form (2.8) that

‖Bj u‖2
H

−1/2
s,p (�j )

=
∑
n∈Z

(|s|2 + α2
n

)−1/2|β(n)
j |2|un(hj )|2

=
∑
n∈Z

(|s|2 + α2
n

)1/2(|s|2 + α2
n

)−1|β(n)
j |2|un(hj )|2

≤ C2
2‖u‖2

H
1/2
s,p (�j )

,

where we have used

|β(n)
j |2 = |εjμj s

2 + (αn + ic1s)
2| ≤ εjμj |s|2 + 2(α2

n + c2
1|s|2) ≤ C2

2

(|s|2 + α2
n

)
.

Here

C2
2 = max{2,2c2

1 + εmaxμmax},
which completes the proof. �
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Lemma 2.3. We have the estimate

Re〈(sμj )
−1Bj u,u〉�j

≤ 0, ∀ u ∈ H
1/2
s,p (�j ).

Proof. It follows from the definitions of (2.12) and (2.8) that we have

〈(sμj )
−1Bj u,u〉�j

=
∑
n∈Z

s̄β
(n)
j

|s|2μj

|un(hj )|2.

Let β(n)
j = aj + ibj , s = s1 + is2 with s1 > 0, aj < 0. Taking the real part of the above equation 

gives

Re〈(sμj )
−1Bj u,u〉�j

=
∑
n∈Z

(s1aj + s2bj )

|s|2μj

|un(hj )|2. (2.13)

Recalling (β(n)
j )2 = εjμj s

2 + (αn + ic1s)
2, we have

a2
j − b2

j = (εjμj − c2
1)(s

2
1 − s2

2) + α2
n − 2αnc1s2 (2.14)

and

ajbj = (εjμj − c2
1)s1s2 + αnc1s1. (2.15)

Using (2.15), we get

s1aj + s2bj = s1

aj

[
a2
j + (εjμj − c2

1)s
2
2 + αnc1s2

]
. (2.16)

Plugging (2.14) into (2.16) gives

s1aj + s2bj = s1

aj

[
b2
j + (εjμj − c2

1)s
2
1 + α2

n − αnc1s2
]
. (2.17)

Adding (2.16) and (2.17), we obtain

s1aj + s2bj = s1

2aj

[
a2
j + b2

j + (εjμj − c2
1)(s

2
1 + s2

2) + α2
n

]
. (2.18)

Substituting (2.18) into (2.13) yields

Re〈(sμj )
−1Bj u,u〉�j

=
∑
n∈Z

s1

2aj |s|2μj

[
a2
j + b2

j + (εjμj − c2
1)(s

2
1 + s2

2) + α2
n

]|un(hj )|2 ≤ 0,

which completes the proof. �
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Using the DtN operators (2.12), we obtain the following TBC in the s-domain:

{
∂ν1Ŭ = B1Ŭ + ρ̆ on �1,

∂ν2Ŭ = B2Ŭ on �2,
(2.19)

where ρ̆ = ∂zŬ
inc − B1Ŭ

inc. Taking the inverse Laplace transform of (2.19) yields the TBC in 
the time domain:

{
∂ν1U = T1U + ρ on �1,

∂ν2U = T2U on �2,
(2.20)

where ρ is the inverse Laplace transform of ρ̆, i.e., ρ = L −1(ρ̆), and Tj = L −1 ◦ Bj ◦ L .

3. The reduced problem

In this section, we present the main results of this work, which include the well-posedness 
and stability of the scattering problem and related a priori estimates.

3.1. Well-posedness in the s-domain

Taking the Laplace transform of (2.5) and using the TBC (2.19), we may consider the follow-
ing reduced boundary value problem:

⎧⎪⎨
⎪⎩

(ε − c2
1μ

−1)sŬ = ∇ · ((sμ)−1∇Ŭ ) − c1(μ
−1∂xŬ + ∂x(μ

−1Ŭ )) in �,

∂ν1Ŭ = B1Ŭ + ρ̆ on �1,

∂ν2Ŭ = B2Ŭ on �2.

(3.1)

Next we introduce a variational formulation of the boundary value problem (3.1) and give a proof 
of its well-posedness in the space H 1

s,p(�).

Multiplying (3.1) by the complex conjugate of a test function v ∈ H 1
s,p(�), using the integra-

tion by parts and TBCs, we arrive at the variational problem: To find Ŭ ∈ H 1
s,p(�) such that

a(Ŭ , v) = 〈(sμ1)
−1ρ̆, v〉�1, ∀ v ∈ H 1

s,p(�), (3.2)

where the sesquilinear form

a(Ŭ , v) =
∫
�

[
(sμ)−1∇Ŭ · ∇v̄ + (ε − c2

1μ
−1)sŬ v̄ + c1(μ

−1∂xŬ + ∂x(μ
−1Ŭ ))v̄

]
dxdz

−
2∑

j=1

〈(sμj )
−1Bj Ŭ , v〉�j

. (3.3)
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Theorem 3.1. The variational problem (3.2) has a unique solution Ŭ ∈ H 1
s,p(�), which satisfies

‖∇Ŭ‖L2(�)2 + ‖sŬ‖L2(�) � s−1
1 |s|‖ρ̆‖

H
−1/2
s (�1)

.

Proof. It suffices to show the coercivity of the sesquilinear form of a, since the continuity follows 
directly from the Cauchy–Schwarz inequality, Lemma 2.1, and Lemma 2.2.

Letting v = Ŭ in (3.3), we get

a(Ŭ , Ŭ ) =
∫
�

[
(sμ)−1|∇Ŭ |2 + (ε − c2

1μ
−1)s|Ŭ |2 + c1(μ

−1∂xŬ + ∂x(μ
−1Ŭ ))

¯̆
U

]
dxdz

−
2∑

j=1

〈(sμj )
−1Bj Ŭ , Ŭ〉�j

.

Taking the real part of the above equation yields

Rea(Ŭ , Ŭ ) =
∫
�

( s1

|s|2μ |∇Ŭ |2 + (ε − c2
1μ

−1)s1|Ŭ |2)dxdz − Re
2∑

j=1

〈(sμj )
−1Bj Ŭ , Ŭ〉�j

+ c1Re
∫
�

(
μ−1∂xŬ

¯̆
U + ∂x(μ

−1Ŭ)
¯̆
U

)
dxdz.

Since μ and Ŭ are periodic in x, we have from the integration by part that

∫
�

(
μ−1∂xŬ

¯̆
U + ∂x(μ

−1Ŭ )
¯̆
U

)
dxdz +

∫
�

(
Ŭ∂x(μ

−1 ¯̆
U) + μ−1Ŭ∂x

¯̆
U

)
dxdz = 0,

which gives

Re
∫
�

(
μ−1∂xŬ

¯̆
U + ∂x(μ

−1Ŭ )
¯̆
U

)
dxdz = 0.

Combining the above estimate and Lemma 2.3, we obtain

Rea(Ŭ , Ŭ ) ≥ C
s1

|s|2
∫
�

(|∇Ŭ |2 + |sŬ |2)dxdz, (3.4)

where C = μ−1
max min{1, ε1μ1 sin2 θ}.

It follows from the Lax–Milgram lemma that the variational problem (3.2) has a unique solu-
tion Ŭ ∈ H 1

s,p(�). Moreover, we have from (3.2) and Lemma 2.1 that

|a(Ŭ , Ŭ )| ≤ (|s|μ1)
−1‖ρ̆‖ −1/2 ‖Ŭ‖ 1/2 ≤ C1(|s|μ1)

−1‖ρ̆‖ −1/2 ‖Ŭ‖H 1 (�). (3.5)

Hs (�1) Hs (�1) Hs (�1) s,p
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Combing (3.4) and (3.5) leads to

‖∇Ŭ‖2
L2(�)2 + ‖sŬ‖2

L2(�)
� s−1

1 |s|‖ρ̆‖
H

−1/2
s (�1)

‖Ŭ‖H 1
s,p(�),

which completes the proof after applying the Cauchy–Schwarz inequality. �
3.2. Well-posedness in the time-domain

Using the time-domain TBC (2.20), we consider the reduced initial-boundary value problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ε − c2
1μ

−1)∂2
t U = ∇ · (μ−1∇U) − c1(μ

−1∂txU + ∂x(μ
−1∂tU)) in �, t > 0,

U |t=0 = ∂tU |t=0 = 0 in �,

∂ν1U = T1U + ρ on �1, t > 0,

∂ν2U = T2U on �2, t > 0.

(3.6)

The following lemma (cf. [26, Theorem 43.1]) is an analogue of Paley–Wiener–Schwarz the-
orem for Fourier transform of the distributions with compact support in the case of Laplace 
transform.

Lemma 3.2. Let h̆(s) denote a holomorphic function in the half-plane s1 > σ0, valued in the 
Banach space E. The two following conditions are equivalent:

(1) there is a distribution h ∈D′+(E) whose Laplace transform is equal to h̆(s);
(2) there is a real σ1 with σ0 ≤ σ1 < ∞ and an integer m ≥ 0 such that for all complex numbers 

s with Res = s1 > σ1, it holds that ‖h̆(s)‖E � (1 + |s|)m,

where D′+(E) is the space of distributions on the real line which vanish identically in the open 
negative half line.

Theorem 3.3. The initial-boundary value problem (3.6) has a unique solution U(x, z, t), which 
satisfies

U(x, z, t) ∈ L2(0, T ;H 1
p (�)) ∩ H 1(0, T ;L2(�))

and the stability estimate

max
t∈[t,T ]

(‖∂tU‖L2(�) + ‖∂t (∇U)‖L2(�)2

)
�

(‖ρ‖L1(0,T ;H−1/2(�1))
+ max

t∈[0,T ]
‖∂tρ‖H−1/2(�1)

+ ‖∂2
t ρ‖L1(0,T ;H−1/2(�1))

)
. (3.7)

Proof. First we have

T∫ (‖∇U‖2
L2(�)2 + ‖∂tU‖2

L2(�)

)
dt
0
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≤
T∫

0

e−2s1(t−T )
(‖∇U‖2

L2(�)2 + ‖∂tU‖2
L2(�)

)
dt

= e2s1T

T∫
0

e−2s1t
(‖∇U‖2

L2(�)2 + ‖∂tU‖2
L2(�)

)
dt

�
∞∫

0

e−2s1t
(‖∇U‖2

L2(�)2 + ‖∂tU‖2
L2(�)

)
dt.

Hence it suffices to estimate the integral

∞∫
0

e−2s1t
(‖∇U‖2

L2(�)2 + ‖∂tU‖2
L2(�)

)
dt.

Taking the Laplace transform of (3.6) yields

⎧⎪⎪⎨
⎪⎪⎩

(ε − c2
1μ

−1)sŬ = ∇ · ((sμ)−1∇Ŭ ) − c1(μ
−1∂xŬ + ∂x(μ

−1Ŭ)) in �,

∂ν1Ŭ = B1Ŭ + ρ̆ on �1,

∂ν2Ŭ = B2Ŭ on �2.

The well-posedness of Ŭ ∈ H 1
s,p(�) follows directly from Theorem 3.1. By the trace theorem in 

Lemma 2.1, we get

‖∇Ŭ‖2
L2(�)2 + ‖sŬ‖2

L2(�)
� s−2

1 |s|2‖ρ̆‖2
H−1/2(�1)

� s−2
1 |s|2‖Ŭ inc‖2

H 1
p (�)

.

It follows from [26, Lemma 44.1] that Ŭ is a holomorphic function of s on the half plane s1 >

γ̄ > 0, where γ̄ is any positive constant. Hence we have from Lemma 3.2 that the inverse Laplace 
transform of Ŭ exists and is supported in [0, ∞].

One may verify from the inverse Laplace transform that

Ŭ = L (U) = F (e−s1tU),

where F is the Fourier transform with respect to s2. Recall the Plancherel or Parseval identity 
for the Laplace transform (cf. [16, (2.46)])

1

2π

∞∫
−∞

ŭ(s)v̆(s)ds2 =
∞∫

0

e−2s1t u(t)v(t)dt, ∀ s1 > λ, (3.8)

where ŭ = L (u), v̆ = L (v) and λ is abscissa of convergence for the Laplace transform of u
and v.
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Using (3.8), we have

∞∫
0

e−2s1t
(‖∇U‖2

L2(�)2 + ‖∂tU‖2
L2(�)

)
dt = 1

2π

∞∫
−∞

(‖∇Ŭ‖2
L2(�)2 + ‖sŬ‖2

L2(�)

)
ds2

� s−2
1

∞∫
−∞

|s|2(‖Ŭ inc‖2
L2(�)

+ ‖∇Ŭ inc‖2
L2(�)2

)
ds2.

Since U inc|t=0 = ∂tU
inc|t=0 = 0 in �, we have L (∂tU

inc) = sŬ inc in �. It is easy to note that

|s|2Ŭ inc = (2s1 − s)sŬ inc = 2s1L (∂tU
inc) − L (∂2

t U inc),

|s|2∇Ŭ inc = (2s1 − s)s∇Ŭ inc = 2s1L (∂t∇U inc) − L (∂2
t ∇U inc).

Hence we have

∞∫
0

e−2s1t
(‖∇U‖2

L2(�)2 + ‖∂tU‖2
L2(�)

)
dt

�
∞∫

−∞
‖L (∂tU

inc)‖2
L2(�)

ds2 + s−2
1

∞∫
−∞

‖L (∂2
t U inc)‖2

L2(�)
ds2

+
∞∫

−∞
‖L (∂t∇U inc)‖2

L2(�)2 ds2 + s−2
1

∞∫
−∞

‖L (∂2
t ∇U inc)‖2

L2(�)2ds2.

Using the Parseval identity (3.8) again gives

∞∫
0

e−2s1t
(‖∇U‖2

L2(�)2 + ‖∂tU‖2
L2(�)

)
dt

�
∞∫

0

e−2s1t‖∂tU
inc‖2

H 1
p (�)

dt + s−2
1

∞∫
0

e−2s1t‖∂2
t U inc‖2

H 1
p (�)

dt,

which shows that

U(x, z, t) ∈ L2(0, T ;H 1
p (�) ∩ H 1(0, T ;L2(�)).

Next we prove the stability. Let Ũ(x, z, t) be the extension of U(x, z, t) with respect to t in R
such that Ũ(x, z, t) = 0 outside the interval [0, t]. By the Parseval identity (3.8), we follow the 
proof of Lemma 2.3 and get
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Re

t∫
0

e−2s1t 〈TjU, ∂tU〉�j
dt = Re

∫
�j

∞∫
0

e−2s1t 〈Tj Ũ , ∂t Ũ〉�j
dt

= 1

2π

∞∫
−∞

Re〈Bj
˘̃
U, s

˘̃
U〉�j

ds2 ≤ 0,

which yields after taking s1 → 0 that

Re

t∫
0

〈TjU, ∂tU〉�j
dt ≤ 0. (3.9)

For any 0 < t < T , consider the energy function

e1(t) = ‖(ε − c2
1μ

−1)1/2∂tU(·, t)‖2
L2(�)

+ ‖μ−1/2∇U(·, t)‖2
L2(�)2 .

It follows from (3.6) that we have

t∫
0

e′(t)dt =2Re

t∫
0

∫
�

(
(ε − c2

1μ
−1)∂2

t U∂t Ū + μ−1∂t (∇U) · ∇Ū
)
dxdzdt

=2Re

t∫
0

∫
�

(∇ · (μ−1∇U)∂t Ū + μ−1∂t (∇U) · ∇Ū
)
dxdzdt

− 2Re

t∫
0

∫
�

(
c1(μ

−1∂txU + ∂x(μ
−1∂tU))∂t Ū

)
dxdzdt.

Since μ and U are periodic functions in x, integrating by parts yields

t∫
0

∫
�

(
μ−1∂txU∂t Ū + μ−1∂txŪ∂tU + ∂x(μ

−1∂tU)∂t Ū + ∂x(μ
−1∂t Ū )∂tU

)
dxdzdt = 0,

which gives

Re

t∫
0

∫
�

(
c1(μ

−1∂txU + ∂x(μ
−1∂tU))∂t Ū

)
dxdzdt = 0.

Since e1(0) = 0, we obtain from (3.9) that

e1(t) =
t∫
e′(t)dt = 2Re

t∫ ∫ ( − μ−1∇U · ∂t (∇Ū ) + μ−1∂t (∇U) · ∇Ū
)
dxdzdt
0 0 �
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+ 2Re

t∫
0

2∑
j=1

∫
�j

μ−1
j ∂νU∂t Ūdγj dt

= 2Re

t∫
0

2∑
j=1

μ−1
j 〈TjU, ∂tU〉�j

dt + 2Re

t∫
0

〈ρ, ∂tU〉�1dt

≤ 2Re

t∫
0

(‖ρ‖H−1/2(�1)
‖∂tU‖H 1/2(�1)

)
dt

� 2Re

t∫
0

(‖ρ‖H−1/2(�1)
‖∂tU‖H 1

p (�)

)
dt

≤ 2
(

max
t∈[0,T ]

‖∂tU‖H 1
p (�)

)‖ρ‖L1(0,T ;H−1/2(�1))
.

Taking the derivative of (3.6) with respect to t , we know that ∂tU also satisfies the same equations 
with ρ replaced by ∂tρ. Hence, we may consider the similar energy function

e2(t) = ‖(ε − c2
1μ

−1)1/2∂2
t U(·, t)‖2

L2(�)
+ ‖μ−1/2∂t (∇U(·, t))‖2

L2(�)2

and get the estimate

e2(t) ≤ 2Re

t∫
0

∫
�1

∂tρ ∂2
t Ūdγ1dt

= 2Re
∫
�1

∂tρ ∂t Ū |t0 dγ1 − 2Re

t∫
0

∫
�1

∂2
t ρ ∂t Ūdγ1dt

≤ 2
(

max
t∈[0,T ]

‖∂tU‖H 1
p (�)

)(
max

t∈[0,T ]
‖∂tρ‖H−1/2(�1)

+ ‖∂2
t ρ‖L1(0,T ;H−1/2(�1))

)
.

Combing the above estimates, we can obtain

max
t∈[0,T ]

‖∂tU‖2
H 1

p (�)
� max

t∈[0,T ]
e1(t) + e2(t)

�
(‖ρ‖L1(0,T ;H−1/2(�1))

+ max
t∈[0,T ]

‖∂tρ‖H−1/2(�1)
+ ‖∂2

t ρ‖L1(0,T ;H−1/2(�1))

)‖∂tU‖H 1
p(�),

which give the estimate (3.7) after applying the Cauchy–Schwarz inequality. �
3.3. A priori estimates

In this section, we derive a priori estimates for the total field with a minimum regularity 
requirement for the data and an explicit dependence on the time.
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The variation problem of (3.6) in time domain is to find U ∈ H 1
p (�) for all t > 0 such that

∫
�

(ε − c2
1μ

−1)∂2
t Uw̄dxdz = −

∫
�

μ−1∇U · ∇w̄dxdz +
2∑

j=1

∫
�j

μ−1
j TjUw̄dγj

+
∫
�1

ρw̄dγ1 − c1

∫
�

(μ−1∂txU + ∂x(μ
−1∂tU))w̄dxdz, ∀ w ∈ H 1

p (�). (3.10)

To show the stability of its solution, we follow the argument in [26] but with a careful study of 
the TBC.

Theorem 3.4. Let U ∈ H 1
p (�) be the solution of (3.6). Given ρ ∈ L1(0, T ; H−1/2(�1)), we have 

for any T > 0 that

‖U‖L∞(0,T ;L2(�)) + ‖∇U‖L∞(0,T ;L2(�)) � T ‖ρ‖L1(0,T ;H−1/2(�1))
+ ‖∂tρ‖L1(0,T ;H−1/2(�1))

,

(3.11)

and

‖U‖L2(0,T ;L2(�)) + ‖∇U‖L2(0,T ;L2(�))

� T 3/2‖ρ‖L1(0,T ;H−1/2(�1))
+ T 1/2‖∂tρ‖L1(0,T ;H−1/2(�1))

. (3.12)

Proof. Let 0 < ξ < T and define an auxiliary function

ψ1(x, z, t) =
ξ∫

t

U(x, z, τ )dτ, (x, z) ∈ �, 0 ≤ t ≤ ξ.

It is clear that

ψ1(x, z, ξ) = 0, ∂tψ1(x, z, t) = −U(x, z, t). (3.13)

For any φ(x, z, t) ∈ L2(0, ξ ; L2(�)), we have

ξ∫
0

φ(x, z, t)ψ̄1(x, z, t)dt =
ξ∫

0

( t∫
0

φ(x, z, τ )dτ
)
Ū (x, z, t)dt. (3.14)

Indeed, using integration by parts and (3.13), we have

ξ∫
φ(x, z, t)ψ̄1(x, z, t)dt =

ξ∫ (
φ(x, z, t)

ξ∫
Ū(x, z, τ )dτ

)
dt
0 0 t
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=
ξ∫

0

ξ∫
t

Ū (x, z, τ )dτd
( t∫

0

φ(x, z, ς)dς
)

=
ξ∫

t

Ū (x, z, τ )dτ

t∫
0

φ(x, z, ς)dς |ξ0 +
ξ∫

0

( t∫
0

φ(x, z, ς)dς
)
Ū (x, z, t)dt

=
ξ∫

0

( t∫
0

φ(x, z, τ )dτ
)
Ū (x, z, t)dt.

Next, we take the test function w = ψ1 in (3.10) and get

∫
�

(ε − c2
1μ

−1)∂2
t Uψ̄1dxdz = −

∫
�

μ−1∇U · ∇ψ̄1dxdz +
2∑

j=1

∫
�j

μ−1
j TjUψ̄1dγj

+
∫
�1

ρψ̄1dγ1 − c1

∫
�

(μ−1∂txU + ∂x(μ
−1∂tU))ψ̄1dxdz.

(3.15)

It follows from (3.13) and the initial conditions in (3.6) that

Re

ξ∫
0

∫
�

(ε − c2
1μ

−1)∂2
t Uψ̄1dxdzdt

= Re
∫
�

ξ∫
0

(
∂t ((ε − c2

1μ
−1)∂tUψ̄1) + (ε − c2

1μ
−1)∂tUŪ

)
dtdxdz

= Re
∫
�

(
(ε − c2

1μ
−1)∂tUψ̄1) |ξ0 +1

2
(ε − c2

1μ
−1)|U |2 |ξ0

)
dxdz

= 1

2
‖(ε − c2

1μ
−1)1/2U(·, ξ)‖2

L2(�)
.

Integrating (3.15) from t = 0 to t = ξ and taking the real part yield

1

2
‖(ε − c2

1μ
−1)1/2U(·, ξ)‖2

L2(�)
+ Re

ξ∫
0

∫
�

μ−1∇U · ∇ψ̄1dxdzdt

= 1

2
‖(ε − c2

1μ
−1)1/2U(·, ξ)‖2

L2(�)
+ 1

2

∫
μ−1|

ξ∫
∇U(·, t)dt |2dxdz
� 0
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= Re

ξ∫
0

2∑
j=1

∫
�j

μ−1
j TjUψ̄1dγj dt + Re

ξ∫
0

∫
�1

ρψ̄1dγ1dt

− c1Re

ξ∫
0

∫
�

(μ−1∂txU + ∂x(μ
−1∂tU))ψ̄1dxdzdt. (3.16)

In what follows, we estimate the three terms of the right-hand side of (3.16) separately.
By the property (3.14), we have

Re

ξ∫
0

∫
�j

μ−1
j TjUψ̄1dγj dt = Re

ξ∫
0

t∫
0

(∫
�j

μ−1
j TjU(·, τ )dγj

)
dτ Ū(·, t)dt.

Let Ũ be the extension of U with respect to t in R such that Ũ = 0 outside the interval [0, ξ ]. 
We obtain from the Parseval identity and Lemma 2.3 that

Re

ξ∫
0

e−2s1t

t∫
0

(∫
�j

μ−1
j TjU(·, τ )dγj

)
dτ Ū(·, t)dt

= Re
∫
�j

∞∫
0

e−2s1t
( t∫

0

μ−1
j Tj Ũ (·, τ )dτ

) ¯̃
U(·, t)dtdγj

= Re
∫
�j

∞∫
0

e−2s1t
( t∫

0

L −1 ◦ μ−1
j Bj ◦ L Ũ (·, τ )dτ

) ¯̃
U(·, t)dγj dt

= Re
∫
�j

∞∫
0

e−2s1t
(
L −1 ◦ (sμj )

−1Bj ◦ L Ũ (·, t)) ¯̃
U(·, t)dγj dt

= 1

2π

∞∫
−∞

Re〈(sμj )
−1Bj

˘̃
U,

˘̃
U〉�j

ds2 ≤ 0,

where we have used the fact that

t∫
u(τ)dτ = L −1(s−1ŭ(s)).
0
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After taking s1 → 0, we obtain that

Re

ξ∫
0

2∑
j=1

∫
�j

μ−1
j TjUψ̄1dγj dt ≤ 0. (3.17)

For 0 ≤ t ≤ ξ ≤ T , we have from (3.14) that

Re

ξ∫
0

∫
�1

ρψ̄1dγ1dt =
ξ∫

0

( t∫
0

∫
�1

ρ(τ)dγ1dτ
)
Ūdt

≤
ξ∫

0

t∫
0

‖ρ(·, τ )‖H−1/2(�1)
‖U(·, t)‖H 1/2(�1)

dτdt

�
ξ∫

0

t∫
0

‖ρ(·, τ )‖H−1/2(�1)
‖U(·, t)‖H 1

p (�)dτdt

≤ ( ξ∫
0

‖ρ(·, t)‖H−1/2(�1)
dt

)( ξ∫
0

‖U(·, t)‖H 1
p (�)dt

)
. (3.18)

Using integration by parts and (3.13), we have

ξ∫
0

∫
�

μ−1∂t (∂xU)ψ̄1dxdzdt +
ξ∫

0

∫
�

∂x(μ
−1∂tU)ψ̄1dxdzdt

=
∫
�

(
μ−1∂xUψ̄1

) |ξ0 dxdz −
ξ∫

0

μ−1∂xU∂t ψ̄1dtdxdz

+
∫
�

∂x(μ
−1U) · ψ̄1 |ξ0 dxdz −

ξ∫
0

∂x(μ
−1U) · ∂t ψ̄1dxdzdt

=
ξ∫

0

∫
�

(
μ−1∂xU + ∂x(μ

−1U)
) · Ūdxdzdt.

By the periodicity of μ and U in x, it yields that

ξ∫ ∫ (
μ−1∂xU + ∂x(μ

−1U)
)
Ūdxdzdt +

ξ∫ ∫ (
μ−1∂xŪ + ∂x(μ

−1Ū)
)
Udxdzdt = 0.
0 � 0 �
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Thus

Re

ξ∫
0

∫
�

(μ−1∂txU + ∂x(μ
−1∂tU))ψ̄1dxdzdt = 0. (3.19)

Substituting (3.17)–(3.19) into (3.16), we have for any ξ ∈ [0, T ] that

1

2
‖(ε − c2

1μ
−1)1/2U(·, ξ)‖2

L2(�)
+ 1

2

∫
�

μ−1|
ξ∫

0

∇U(·, t)dt |2dxdz

≤ ( ξ∫
0

‖ρ(·, t)‖H−1/2(�1)
dt

)( ξ∫
0

‖U(·, t)‖H 1
p (�)

)
dt. (3.20)

Taking the derivative of (3.6) with respect to t , we know that ∂tU satisfies the same equation 
with ρ replaced by ∂tρ. Define

ψ2(x, z, t) =
ξ∫

t

∂tU(x, z, τ )dτ, (x, z) ∈ �, 0 ≤ t ≤ ξ.

We may follow the same steps as those for ψ1 to obtain

1

2
‖(ε − c2

1μ
−1)1/2∂tU(·, ξ)‖2

L2(�)
+ 1

2

∫
�

μ−1|
ξ∫

0

∂t (∇U(·, t))dt |2dxdz

= Re

ξ∫
0

2∑
j=1

∫
�j

μ−1
j Tj ∂tUψ̄2dγj dt + Re

ξ∫
0

∫
�1

∂tρψ̄2dγ1dt

− c1Re

ξ∫
0

∫
�

(μ−1∂ttxU + ∂x(μ
−1∂2

t U))ψ̄2dxdzdt. (3.21)

Integrating by parts yields that

1

2

∫
�

μ−1|
ξ∫

0

∂t (∇U(·, t))dt |2dxdz = 1

2
‖μ−1/2∇U(·, ξ)‖2

L2(�)
. (3.22)

The first and the third terms on the right-hand side of (3.21) are discussed as above. We only 
have to consider the second term. By (3.13), Lemma 2.1, and Lemma 2.2, we get
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ξ∫
0

∫
�1

∂tρψ̄2dγ1dt =
ξ∫

0

t∫
0

(

∫
�1

∂τ ρ(·, τ )dγ1)dτ∂t Ū (·, t)dt

=
∫
�1

( t∫
0

∂τ ρ(·, τ )dτ
)
Ū (·, t) |ξ0 dγ1 −

ξ∫
0

∫
�1

∂tρ(·, t)U(·, t)dγ1dt

�
ξ∫

0

‖∂tρ(·, t)‖H−1/2(�1)
‖U(·, t)‖H 1/2(�1)

dt

�
ξ∫

0

‖∂tρ(·, t)‖H−1/2(�1)
‖U(·, t)‖H 1

p (�)dt. (3.23)

Substituting (3.22) and (3.23) into (3.21), we have for any ξ ∈ [0, T ] that

1

2
‖(ε − c2

1μ
−1)1/2∂tU(·, ξ)‖2

L2(�)
+ 1

2
‖μ−1/2∇U(·, ξ)‖2

L2(�)

�
ξ∫

0

‖∂tρ(·, t)‖H−1/2(�1)
‖U(·, t)‖H 1

p (�)dt. (3.24)

Combing the estimates (3.20) and (3.24), we obtain

‖U(·, ξ)‖2
L2(�)

+ ‖∇U(·, ξ)‖2
L2(�)2 �

( ξ∫
0

‖ρ(·, t)‖H−1/2(�1)
dt

)( ξ∫
0

‖U(·, t)‖H 1
p (�)dt

)

+
ξ∫

0

‖∂tρ(·, t)‖H−1/2(�1)
‖U(·, t)‖H 1

p (�)dt. (3.25)

Taking the L∞-norm with respect to ξ on both side of (3.25) yields

‖U‖2
L∞(0,T ; L2(�))

+ ‖∇U‖2
L∞(0,T ;L2(�)2)

� T ‖ρ‖L1(0,T ;H−1/2(�1))
‖U‖L∞(0,T ;H 1

p (�))

+ ‖∂tρ‖L1(0,T ;H−1/2(�1))
‖U‖L∞(0,T ;H 1

p (�)),

which gives the estimate (3.11) after applying the Young inequality.
Integrating (3.25) with respect to ξ from 0 to T and using the Cauchy–Schwarz inequality, 

we obtain

‖U‖2
L2(0,T ; L2(�))

+ ‖∇U‖2
L2(0,T ; L2(�)2)

� T 3/2‖ρ‖L1(0,T ;H−1/2(�1))
‖U‖L2(0,T ;H 1

p (�))

+ T 1/2‖∂tρ‖L1(0,T ;H−1/2(�1))
‖U‖L2(0,T ;H 1

p (�)),

which implies the estimate (3.12) by using the Young inequality again. �
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4. Conclusion

In this paper, we studied the time-domain scattering problem in a one-dimensional grating. 
The TE and TM cases were considered in a unified approach. The scattering problem was reduced 
equivalently into an initial-boundary value problem in a bounded domain by using the exact 
time-domain DtN map. The reduced problem was shown to have a unique solution by using the 
energy method. The stability was also presented. The main ingredients of the proofs were the 
Laplace transform, the Lax–Milgram lemma, and the Parseval identity. Moreover, by directly 
considering the variational problem of the time-domain wave equation, we obtained a priori 
estimates with explicit dependence on time. In the future, we plan to investigate the time-domain 
scattering by biperiodic structures where the full three-dimensional Maxwell’s equations should 
be considered. The progress will be reported elsewhere.
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