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Convergence analysis in near-field imaging for elastic waves

Peijun Li, Yuliang Wang and Yue Zhao
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ABSTRACT
A significant method has recently been developed for solving the inverse
elastic surface scattering problem which arises from near-field imaging
applications. The method utilizes the transformed field expansion along
with the Fourier series expansion to deduce an analytic solution for the
direct problem. Implemented via the fast Fourier transform, an explicit
reconstruction formula is obtained to solve the linearized inverse problem.
Numerical examples show that the method is efficient and effective to
reconstruct scattering surfaces with subwavelength resolution. This paper
is devoted to the mathematical analysis of the proposed method. The
well-posedness is established for the solution of the direct problem. The
convergence of the power series solution is examined. A local uniqueness
result is proved for the inverse problem where a single incident field
with a fixed frequency is needed. The error estimate is derived for the
reconstruction formula. It provides a deep insight on the trade-off among
resolution, accuracy, and stability of the solution for the inverse problem.
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1. Introduction

The elastic wave scattering problems have received considerable attention in both the engineering
and mathematical communities for their important applications in diverse scientific areas, such
as geophysics, seismology, and nondestructive testing.(1,2,3,4,5) There are two types of scattering
problems. Given an incident field, the direct problems are to determine the wave field for such a
known scatterer as a scattering surface, an impenetrable obstacle, or an inhomogeneous medium.
The inverse problem is to reconstruct the properties of the scatterer, such as its geometry or material,
from the measured wave field. This paper is concerned with the mathematical analysis of the direct
and inverse elastic wave scattering by a periodic rough surface in two dimensions. In the context of
the surface scattering, the direct problem is to determine the displacement for the given surface; the
inverse problem is to reconstruct the shape of the surface from the measured displacement.

Periodic structures, also known as diffraction gratings in optics and electromagnetics, are of great
importance in engineering and industrial applications. The direct problems have been investigated
in (6,7,8,9,10) and in the references cited therein. The direct problems for general infinite rough
surfaces have been studied mathematically in (11,12,13,14). The inverse problem has also been
studied theoretically for its uniqueness (15) and solved numerically using the factorization method
(16) and an optimization approach.(9)

Recently, we proposed a novel method for solving the inverse surface scattering problem in
(17). The problem arises from near-field imaging applications. The periodic surface was considered
to be a small and smooth perturbation of a planar surface. The half-space above the surface was
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filled with a linear, isotropic, and homogeneous elastic medium, while the half-space below the
surface was elastically rigid. Given a time-harmonic plane incident wave, the inverse problem was
to reconstruct the shape of the surface from the measurement of the displacement at a horizontal
line above the surface. Compared with the wavelength of the incident wave, the distance was small
between the measurement line and the surface. Thus, the near-field data could be obtained to achieve
super resolution for the reconstruction. Due to the coupling of the displacement vector field in the
governing equation, we used the Helmholtz decomposition and formulated the direct scattering as a
boundary value problem with a transparent boundary condition imposed on the measurement line.
Utilizing the transformed field expansion and the Fourier series expansion, we reduced the boundary
value problem into a successive sequence of one-dimensional two-point boundary value problems
which were solved in a closed form of a power series solution. By keeping only the leading and linear
terms in the power series, we linearized the inverse problem and obtained an explicit reconstruction
formula relating the Fourier coefficients of the data to the solution. It is shown numerically that
the method is effective and efficient at reconstructing the surface with super resolution. The work
extends the interesting findings to the area of elastic waves from solving a class of inverse surface
scattering problems for acoustic and electromagnetic waves.(18,19,20,21,22,23,24) We refer to (25,
26,27,28,29) for related inverse surface scattering problems in near-field imaging applications. It
may be found in (30,31,32,33,34) for the transformed field expansion method and the boundary
perturbation technique to solve some direct surface scattering problems.

Motivated by the significant numerical results, we intend to carry out the theoretical analysis
of the solutions for the direct and inverse problems in (17). Using the variational approach and
the Lax–Milgram lemma, we establish the well-posedness and a regularity estimate for the solution
of the direct problem. We prove the convergence of the power series by estimating the solutions
for the successive sequence of boundary value problems. Applying the Helmholtz decomposition
and a unique continuation argument, we present a local uniqueness result for the inverse problem
by showing a Poincaré-type inequality. Finally, we show an error estimate which comes from three
aspects: themeasurement noise, the linearization, and the spectral cut-off regularization. The estimate
confirms the numerical observations and provides a deep insight into the trade-off among resolution,
accuracy, and stability of the solution for the inverse problem. A related convergence analysis can
be found in (22) for near-field imaging of periodic surfaces with acoustic waves. The analysis in this
work is more involved since the Navier equation for elastic waves has a richer structure than the
Helmholtz equation for acoustic waves.

The rest of the paper is organized as follows. Section 2 is devoted to the well-posedness, regularity
estimates, and convergence of the solution for the direct problem. The inverse problem is studied in
Section 3 for its uniqueness. The reconstruction formula is briefly discussed and the error estimate is
derived. The paper is concluded in Section 4 with remarks and directions for future research.

2. Direct scattering

In this section, we present a mathematical model for elastic scattering by periodic rigid surfaces and
analyze the solution for the corresponding boundary value problem.

2.1. Problem formulation

Consider a periodic scattering surface in two dimensions, as seen in Figure 1. The space above the
surface is filled with a linear, isotropic, and homogeneous elastic medium, which is characterized by
the Lamé constants λ andμ satisfyingμ > 0 and λ+μ > 0. Let the surface in one period be described
by

S = {
(x, y) ∈ R

2 : y = f (x), 0 < x < �
}
,

where f ≥ 0 is a periodic function with period�. We assume that f takes the form

f (x) = εg(x), g ∈ Ck(R),
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Figure 1. Schematic of the problem geometry for the elastic surface scattering.

where k ≥ 2 is an integer, ε > 0 is a small constant termed the deformation parameter, and g is a
normalized periodic function with period�. Denote an indicator of the surface smoothness:

K = max
0≤m≤k

sup
x∈R

∣∣∣∣ dmdxm
g(x)

∣∣∣∣ , (2.1)

which plays an important role in the convergence analysis and the error estimate. Let

� = {(x, y) ∈ R
2 : y = h, 0 < x < �}

be a planar surface, where h > maxx∈(0,�) f (x) is the measurement distance. Denote by

� = {(x, y) ∈ R
2 : f (x) < y < h, 0 < x < �}

the bounded domain between S and �.
Let the scattering surface be illuminated from above by a time-harmonic incident wave

uinc = [sin θ , − cos θ ]eiκp(x sin θ−y cos θ),

where θ ∈ ( − π/2,π/2) is the incident angle, κp = ω/(λ + 2μ)1/2 is the pressure wavenumber,
and ω is the angular frequency. For simplicity, we assume a normal incidence, i.e. the incident angle
θ = 0. The incident field reduces to

uinc = [0, −1]e−iκpy.

The elastic wave field satisfies the Navier equation:

μ�u + (λ+ μ)∇∇ · u + ω2u = 0 in�, (2.2)

where u = [u1, u2] is the total displacement vector field. Since the substrate below S is elastically
rigid, we have the Dirichlet boundary condition

u = 0 on S. (2.3)

Due to the periodicity of scattering surface and the normal incidence of the plane incident field, the
solution of (2.2) is periodic with period of�, i.e. u(x+�, y) = u(x, y), and admits the Fourier series
expansion:

u(x, y) =
∑
n∈Z

u(n)(y)eiαnx , u(n)(y) = 1
�

∫ �

0
u(x, y)e−iαnxdx,
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where αn = 2πn/�.
The total field u can be split into its pressure and shear parts via the Helmholtz decomposition:

u = ∇φ + curlψ , (2.4)

where φ and ψ are the scalar potentials, and the vector curl is curlψ = [∂yψ , −∂xψ]. Substituting
(2.4) into (2.2), we may obtain the Helmholtz equations:

(
�+ κ2p

)
φ = 0,

(
�+ κ2s

)
ψ = 0 in �,

where κs = ω/μ1/2 is the shear wavenumber.
Denote

β(n)p =

⎧⎪⎨
⎪⎩

(
κ2p − α2n

)1/2
, |αn| < κp,

i
(
α2n − κ2p

)1/2
, |αn| > κp,

(2.5)

and

β(n)s =
{(
κ2s − α2n

)1/2 , |αn| < κs,
i
(
α2n − κ2s

)1/2 , |αn| > κs.
(2.6)

We exclude the resonance by assuming that β(n)p �= 0 and β(n)s �= 0 for n ∈ Z, i.e. |αn| �= κp and
|αn| �= κs for n ∈ Z.

Using the Rayleigh expansions for φ and ψ , we deduce the transparent boundary conditions for
the scalar potentials φ and ψ on �:

∂yφ =
∑
n∈Z

iβ(n)p φ(n)eiαnx + ρ, ∂yψ =
∑
n∈Z

iβ(n)s ψ(n)eiαnx , (2.7)

where ρ = −2e−iκph. It is shown in (17) that a transparent boundary condition may be obtained for
the displacement u by using the Helmholtz decomposition (2.4) and the boundary condition (2.7):

μ∂yu + (λ+ μ)[0, 1]∇ · u = T u + ρ, (2.8)

where
T u =

∑
n∈Z

Mnu(n)eiαnx , ρ = [0, 1]2iκp(λ+ 2μ)e−iκph, (2.9)

and

Mn = i

⎡
⎢⎢⎢⎢⎢⎣

ω2β
(n)
p

α2n + β
(n)
p β

(n)
s

μαn − ω2αn

α2n + β
(n)
p β

(n)
s

ω2αn

α2n + β
(n)
p β

(n)
s

− μαn
ω2β

(n)
s

α2n + β
(n)
p β

(n)
s

⎤
⎥⎥⎥⎥⎥⎦ : (2.10)

Given the incident field uinc, the direct problem is to determine the total field u from the known
surface function f ; the inverse problem is to reconstruct the surface function f from the measured
displacement of u on �.
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We impose the following two hypotheses:

.H1/ h < c1; .H2/ Kεh−1 < c2,

where c1, c2 are sufficiently small positive constants independent of K , ε, h. The hypothesis (H1)
ensures the well-posedness of the solution for the direct problem and is a reasonable assumption in
near-field imaging applications. The hypothesis (H2) guarantees the convergence of the power series
solution for the direct problem, which makes it possible to derive the error estimate for the inverse
problem. It is clear to see that the hypothesis (H2) is satisfied if the surface deformation parameter
ε is sufficiently small. Throughout the paper, the parameters K , ε,ω, λ,μ are fixed constants. If not
otherwise specified, the expression a � bmeans a ≤ Cb for a constant C independent of n,K , ε, h.

2.2. Variational problem

Let us introduce some functional spaces for the variational formulation. Define a periodic Sobolev
space

H1
S,p(�) = {

u ∈ H1(�) : u = 0 on S, u(0, y) = u(�, y)
}
,

which is equipped with the usual H1-norm:

‖u‖1,� =
⎡
⎣∑

|s|≤1

∫
�

∣∣Dsu(x, y)
∣∣2 dxdy

⎤
⎦
1/2

.

Let H1
S,p(�)

2 = H1
S,p(�)× H1

S,p(�) be a Cartesian product space which is equipped with the norm:

‖u‖1,� = (‖u1‖21,� + ‖u2‖21,�
)1/2

.

Denote by H−1
S,p (�)

2 the dual space of H1
S,p(�)

2, which consists of all bounded linear functionals on
H1
S,p(�)

2 and is equipped with the norm:

‖u‖−1,� = sup
v∈H1

S,p(�)
2

|(u, v)�|
‖v‖1,� ,

where (·, ·)� is the inner product in �. Let Hs(�), s ∈ R be the trace Sobolev space of periodic
functions on � with the norm

‖u‖s,� =
[
�

∑
n∈Z

(
1 + α2n

)s ∣∣∣u(n)(h)∣∣∣2
]1/2

.

Define the product space Hs(�)2 = Hs(�)× Hs(�) with the norm

‖u‖s,� = (‖u1‖2s,� + ‖u2‖2s,�
)1/2

.

It is easy to verify thatH−s(�)2 is the dual space ofHs(�)2 for any s with respect to the inner product

〈u, v〉� =
∫
�

u · v̄ dx.

Multiply (2.2) by the complex conjugate of a test function v ∈ H1
S,p(�)

2, applying integration by
parts, and using the transparent boundary condition (2.9), we arrive at a variational problem: to find
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u ∈ H1
S,p(�)

2 such that

a�(u, v) = b(v) for all v ∈ H1
S,p(�)

2, (2.11)

where the sesquilinear form

a�(u, v) =
∫
�

a0(u, v) dxdy − ω2(u, v)� − 〈T u, v〉� (2.12)

with

a0(u, v) = (λ+ 2μ)(∂xu1∂xv̄1 + ∂yu2∂yv̄2)+ μ(∂yu1∂yv̄1 + ∂xu2∂xv̄2)
+ (λ+ μ)(∂xu1∂yv̄2 + ∂yu2∂xv̄1),

and the linear functional

b(v) = 〈ρ, v〉� .

Lemma 2.1: It holds the estimate

‖u‖0,� ≤ h ‖∇u‖0,� for any u ∈ H1
S,p(�)

2.

Proof: Let
D = {(x, y) ∈ R

2 : 0 < x < �, 0 < y < h}
be a rectangular domain containing�. For any u ∈ H1

S,p(�)
2, consider its zero extension to D:

ũ(x, y) =
{

u(x, y), (x, y) ∈ �,
0, (x, y) ∈ D\�̄. (2.13)

It follows from the Cauchy–Schwarz inequality that

|ũ|2 =
∣∣∣∣
∫ y

0
∂y ũ dy

∣∣∣∣
2

≤ h
∫ h

0

∣∣∂y ũ
∣∣2 dy.

Hence

‖ũ‖20,D =
∫ h

0

∫ �

0
|ũ|2 dxdy ≤ h

∫ h

0

∫ �

0

∫ h

0

∣∣∂y ũ
∣∣2 dydxdy ≤ h2‖∇ ũ‖20,D,

which completes the proof by noting that

‖u‖0,� = ‖ũ‖0,D and ‖∇u‖0,� = ‖∇ ũ‖0,D.

�
The following two trace regularity results are useful in our analysis.

Lemma 2.2: It holds the estimate

‖u‖1/2,� ≤ ‖u‖1,� for any u ∈ H1
S,p(�)

2.
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Proof: For any u ∈ H1
S,p(�)

2, let ũ be its zero extension to the domain D defined in (2.13). By the
basic arithmetic–geometric mean inequality, we have

|ũ(n)(h)|2 =
∫ h

0

d
dy

|ũ(n)(y)|2 dy

≤
∫ h

0
2
∣∣∣ũ(n)(y)∣∣∣ ∣∣∣∣ ddy ũ(n)(y)

∣∣∣∣ dy
≤ (

1 + α2n
)1/2 ∫ h

0

∣∣∣ũ(n)(y)∣∣∣2 dy + (
1 + α2n

)−1/2
∫ h

0

∣∣∣∣ ddy ũ(n)(y)
∣∣∣∣
2
dy,

which gives

(
1 + α2n

)1/2 ∣∣∣ũ(n)(h)∣∣∣2 ≤ (
1 + α2n

) ∫ h

0

∣∣∣ũ(n)(y)∣∣∣2 dy +
∫ h

0

∣∣∣∣ ddy ũ(n)(y)
∣∣∣∣
2
dy.

Using the Fourier series expansion of ũ, we can verify that

‖ũ‖21,D = �
∑
n∈Z

[
(1 + α2n)

∫ h

0

∣∣∣ũ(n)(y)∣∣∣2 dy +
∫ h

0

∣∣∣∣ ddy ũ(n)(y)
∣∣∣∣
2
dy

]
.

Hence
‖ũ‖21/2,� = �

∑
n∈Z

(
1 + α2n

)1/2 |ũ(n)(h)|2 ≤ ‖ũ‖21,D ,

which completes the proof by noting that

‖u‖1/2,� = ‖ũ‖1/2,� , ‖u‖1,� = ‖ũ‖1,D.
�

Lemma 2.3: It holds the estimate

‖u‖2−1/2,� ≤ η−1‖u‖20,� + η
∥∥∂yu

∥∥2
0,� for any u ∈ H1

S,p(�)
2,

where η > 0 is a constant.
Proof: For any u ∈ H1

S,p(�)
2, let ũ be its zero extension to the domainD defined in (2.13). It follows

from the basic arithmetic–geometric mean inequality that

|ũ(n)(h)|2 =
∫ h

0

d
dy

|ũ(n)(y)|2 dy ≤
∫ h

0
2|ũ(n)(y)|

∣∣∣∣ ddy ũ(n)(y)
∣∣∣∣ dy

≤ η−1 (1 + α2n
)1/2 ∫ h

0
|ũ(n)(y)|2 dy + η

(
1 + α2n

)−1/2
∫ h

0

∣∣∣∣ ddy ũ(n)(y)
∣∣∣∣
2
dy,

which gives

(
1 + α2n

)−1/2 |ũ(n)(h)|2 ≤ η−1
∫ h

0
|ũ(n)(y)|2dy + η(1 + α2n)

−1
∫ h

0

∣∣∣∣ ddy ũ(n)(y)
∣∣∣∣
2
dy.

Using the Fourier series expansion of ũ, we can verify that

‖ũ‖20,� = �
∑
n∈Z

∫ h

0

∣∣∣ũ(n)(y)∣∣∣2 dy
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and ∥∥∂y ũ
∥∥2
0,� = �

∑
n∈Z

∫ h

0

∣∣∣∣ ddy ũ(n)(y)
∣∣∣∣
2
dy.

Hence, we have

‖ũ|2−1/2,� = �
∑
n∈Z

(
1 + α2n

)−1/2 |ũ(n)(h)|2

≤ �
∑
n∈Z

η−1
∫ h

0
|ũ(n)(y)|2 dy + η

(
1 + α2n

)−1
∫ h

0

∣∣∣∣ ddy ũ(n)(y)
∣∣∣∣
2
dy

≤ �
∑
n∈Z

η−1
∫ h

0
|ũ(n)(y)|2dy + η

∫ h

0

∣∣∣∣ ddy ũ(n)(y)
∣∣∣∣
2
dy

= η−1‖ũ‖20,� + η
∥∥∂y ũ

∥∥2
0,� ,

which completes the proof by noting that

‖u‖−1/2,� = ‖ũ‖−1/2,� , ‖u‖0,� = ‖ũ‖0,D ,
∥∥∂yu

∥∥
0,� = ∥∥∂y ũ

∥∥
0,D .

Lemma 2.4: The boundary operator T : H1/2(�)2 → H−1/2(�)2 is continuous, i.e.

‖T u‖−1/2,� � ‖u‖1/2,� for any u ∈ H1/2(�)2.

Proof: Using the definitions of β(n)p and β(n)s , we have

β(n)p = i
(
α2n − κ2p

)1/2 ∼ i|n|, β(n)s = i
(
α2n − κ2s

)1/2 ∼ i|n|,

and

α2n + β(n)p β(n)s = α2n

⎡
⎣1 −

(
1 − κ2p

α2n

)1/2 (
1 − κ2s

α2n

)1/2
⎤
⎦ ∼ 1

2

(
κ2p + κ2s

)
as |n| → ∞.

It follows from (2.10) that
‖Mn‖2 ∼ |n| as |n| → ∞.

Hence, there exist an interger N and two positive constants C1 and C2 such that ‖Mn‖22 ≤ C1 for
|n| < N and ‖Mn‖22 ≤ C2|n|2 for |n| ≥ N . Here ‖ · ‖2 denotes the matrix norm induced by the
2-norm for vectors. A simple calculation yields

‖T u‖2−1/2,� =
∑
n∈Z

(
1 + α2n

)−1/2
∣∣∣Mnu(n)(h)

∣∣∣2 ≤
∑
n∈Z

(
1 + α2n

)−1/2 ‖Mn‖22
∣∣∣u(n)(h)∣∣∣2

≤ C1
∑
|n|<N

(
1 + α2n

)1/2 ∣∣∣u(n)(h)∣∣∣2 + C2
∑

|n|≥N

(1 + n2)
(
1 + α2n

)−1/2
∣∣∣u(n)(h)∣∣∣2

�
∑
n∈Z

(
1 + α2n

)1/2 ∣∣∣u(n)(h)∣∣∣2 = ‖u‖1/2,� ,

which completes the proof. �
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Let

M̂n = −1
2
(
Mn + M∗

n
)

= μ

⎡
⎢⎢⎢⎢⎢⎢⎣

Im

(
κ2s β

(n)
p

α2n + β
(n)
p β

(n)
s

)
−iαnRe

(
1 − κ2s

α2n + β
(n)
p β

(n)
s

)

iαnRe

(
1 − κ2s

α2n + β
(n)
p β

(n)
s

)
Im

(
κ2s β

(n)
s

α2n + β
(n)
p β

(n)
s

)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

It is crucial to study the properties of the matrix M̂n in order the show the well-posedness of the
solution for the direct problem.
Lemma 2.5: It holds:

(1) If |αn| > κs, then M̂n is a positive definite matrix.
(2) If |αn| < κs, then ‖M̂n‖2 ≤ c(μ, λ)ω, where c(λ,μ) is a constant depending only on μ and λ.

Proof: For any n ∈ Z, we denote γ (n)p =
∣∣∣κ2p − α2n

∣∣∣1/2 and γ (n)s = ∣∣κ2s − α2n
∣∣1/2.

(1) If |αn| > κs, then β(n)p = iγ (n)p and β(n)s = iγ (n)s . It follows that

M̂n = μ

ζn

[
κ2s γ

(n)
p −iαn

(
ζn − κ2s

)
iαn

(
ζn − κ2s

)
κ2s γ

(n)
s

]
,

where ζn = α2n − γ (n)p γ
(n)
s . It is easy to verify 0 < ζn < κ2s . Since M̂n is a Hermitian matrix and

κ2s γ
(n)
p > 0, it suffices to show det (M̂n) > 0 according to Sylvester’s rule. Direct calculation

yields

det (M̂n) = κ4s γ
(n)
p γ (n)s − α2n

(
ζn − κ2s

)2
= κ4s γ

(n)
p γ (n)s − α2n

(
ζ 2n − 2ζnκ2s + κ4s

)
= κ4s

(
γ (n)p γ (n)s − α2n

)
− ζnα

2
n
(
ζn − 2κ2s

)
= ζn

(
2α2nκ

2
s − α2nζn − κ4s

)
> ζn

(
α2nκ

2
s − κ4s

)
> 0.

(2) If |αn| < κp < κs, then β
(n)
p = γ

(n)
p and β(n)s = γ

(n)
s . It follows that

M̂n = iαnμ
ζn

[
0 κ2s − ζn

ζn − κ2s 0

]
,

where ζn = α2n + γ
(n)
p γ

(n)
s . It can be verified that κ2p < ζn ≤ κpκs. Hence, we have

‖M̂n‖2 = μ|αn|
ζn

∣∣κ2s − ζn
∣∣ < μ

κp

(
κ2s − κ2p

)
= ω

(
λ+ μ

) (
λ+ 2μ

)−1/2
. (2.14)

If κp < |αn| < κs, then β(n)p = iγ (n)p and β(n)s = γ
(n)
s . It follows that

M̂n = μ

ζn

⎡
⎢⎣ α2nκ

2
s γ

(n)
p iαnκ2p

(
γ
(n)
s

)2
−iαnκ2p

(
γ
(n)
s

)2 −κ2s γ (n)p

(
γ
(n)
s

)2
⎤
⎥⎦ ,
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where

ζn = ∣∣αn + iγpγs
∣∣2 = α2n

(
κ2p + κ2s

)
− κ2pκ

2
s .

It is easy to verify that κ4p < ζn < κ4s and

α2nκ
2
s γ

(n)
p < κ4s

(
κ2s − κ2p

)1/2
,

|αn| κ2p
(
γ (n)s

)2
< κsκ2p

(
κ2s − κ2p

)
< κ4s

(
κ2s − κ2p

)1/2
,

κ2s γ
(n)
p

(
γ (n)s

)2
< κ2s

(
κ2s − κ2p

) (
κ2s − κ2p

)1/2
< κ4s

(
κ2s − κ2p

)1/2
.

It follows that

‖M̂n‖2 ≤ 2‖M̂n‖max < μκ−4
p κ4s

(
κ2s − κ2p

)1/2 = ω

(
λ+ 2μ
μ

)3/2 (
λ+ μ

)1/2 , (2.15)

where ‖ · ‖max denotes the matrix max norm. The proof is completed combining (2.14) and
(2.15). �

Theorem 2.6: The variational problem (2.11) has a unique solution u ∈ H1
S,p(�)

2, which satisfies

‖u‖1,� � ‖ρ‖−1/2,�.

Proof: It follows from the Cauchy–Schwarz inequality, Lemmas 2.2, and 2.4 that

|a�(u, v)| � ‖u‖1,�‖v‖1,� + ‖T u‖−1/2,�‖v‖1/2,�
� ‖u‖1,�‖v‖1,� + ‖u‖1/2,�‖v‖1/2,�
� ‖u‖1,�‖v‖1,�,

which shows that the sesquilinear form is bounded.
Following (2.9) yields

−Re 〈T u, u〉� = �
∑
n∈Z

(
M̂nu(n)(h)

)
· ū(n)(h).

We have from Lemma 2.5 that

∑
|αn|>κs

(
M̂nu(n)(h)

)
· ū(n)(h) ≥ 0

and ∣∣∣∣∣∣
∑

|αn|<κs

(
M̂nu(n)(h)

)
· ū(n)(h)

∣∣∣∣∣∣ ≤ c(μ, λ)ω
∑

|αn|<κs

∣∣∣u(n)(h)∣∣∣2

� c(μ, λ)ω
∑

|αn|<κs

(
1 + α2n

)−1/2
∣∣∣u(n)(h)∣∣∣2 ≤ c(μ, λ)ω‖u‖2−1/2,�.
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Combining the above estimates, we get

−Re 〈T u, u〉� ≥ −c(λ,μ)ω‖u‖−1/2,� ,

which gives together with Lemmas 2.1, and 2.3 that

Re[a�(u, u)] = μ‖∇u‖20,� + (λ+ μ)‖div u‖20,� − ω2‖u‖20,� − Re 〈T u, u〉�
≥ μ‖∇u‖20,� − ω2‖u|20,� − c(μ, λ)ω‖u‖2−1/2,�

≥ μ‖∇u‖20,� − ω2‖u|20,� − c(μ, λ)ωη−1‖u‖20,� − c(λ,μ)ωη‖∂yu‖20,�
≥ (μ− c(μ, λ)ωη)‖∇u‖20,� − (

ω2 + c(μ, λ)η−1) ‖u‖20,�
≥ [

(μ− c(μ, λ)ωη)− (
ω2 + c(μ, λ)ωη−1) h2] ‖∇u‖20,�

≥ [
(μ− c(μ, λ)ωη)− (

ω2 + c(μ, λ)ωη−1) h2] (1 + h2
)−1 ‖u‖21,�,

where η > 0 is an arbitrary constant. Taking η = μ/(2c(μ, λ)ω) yields

Re[a�(u, u)] ≥
[
μ

2
−

(
1 + 2c(μ, λ)2

μ

)
ω2h2

] (
1 + h2

)−1 ‖u‖21,�.

Hence, the sesquilinear form a�(·, ·) is coercive if the hypothesis (H1) is satisfied. The proof is
completed by using the Lax–Milgram lemma. �

The well-posedness of the direct problem has been proved under more general conditions in (6)
for smooth surfaces and in (8) for Lipschitz surfaces. We provide a simpler proof due to the special
feature of the problem: the scattering surface is a small perturbation of a planar surface and thus the
measurement distance can be chosen to be small. Moreover, the proof gives an energy estimate that is
necessary to the subsequent analysis of the convergence for the direct problem and the error estimate
for the inverse problem.

2.3. Transformed field expansion

Consider the change of variables

x̃ = x, ỹ = h
(
y − f
h − f

)
,

which maps the domain� to the rectangle D = (0,�)× (0, h).
Let ũ(x̃, ỹ) = u(x, y). Under the change of variables, the Navier Equation (2.2), upon dropping

the tildes, reduces to the following equations in D:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
c1,1∂xx + c1,2∂yy + c1,3∂xy + c1,4∂y + c1,5

)
u1

+ (
c1,6∂xy + c1,7∂y + c1,8∂yy

)
u2 = 0,(

c2,1∂xx + c2,2∂yy + c2,3∂xy + c2,4∂y + c2,5
)
u2

+ (
c2,6∂xy + c2,7∂y + c2,8∂yy

)
u1 = 0,

(2.16)

where

c1,1 = (λ+ 2μ)(h − f )2, c1,2 = (λ+ 2μ)[f ′(h − y)]2 + μh2,
c1,3 = (λ+ 2μ)[−2f ′(h − y)(h − f )], c1,4 = −(λ+ 2μ)(h − y)[f ′′(h − f )+ 2(f ′)2],
c1,5 = ω2(h − f )2, c1,6 = (λ+ μ)h(h − f ),
c1,7 = (λ+ μ)f ′h, c1,8 = −(λ+ μ)f ′h(h − y),
c2,1 = μ(h − f )2, c2,2 = μ[f ′(h − y)]2 + (λ+ 2μ)h2,
c2,3 = μ[−2f ′(h − y)(h − f )], c2,4 = −μ(h − y)[f ′′(h − f )+ 2(f ′)2],
c2,5 = ω2(h − f )2, c2,6 = (λ+ μ)h(h − f ),
c2,7 = (λ+ μ)f ′h, c2,8 = −(λ+ μ)f ′h(h − y).

The Dirichlet boundary condition (2.3) can be written as

u = 0 on y = 0. (2.17)

The transparent boundary condition (2.8) becomes

μ∂yu + (λ+ μ)[0, 1]∇ · u

= (1 − h−1f )T u + (λ+ μ)h−1f [0, ∂xu1] on y = h. (2.18)

Recalling the small perturbation assumption f = εg , we consider a formal expansion of u as a
power series of ε:

u(x, y; ε) =
∞∑

m=0

um(x, y)εm. (2.19)

Substituting (2.19) into (2.16)–(2.18) and f = εg into the coefficients ci,j, we obtain a successive
sequence of boundary value problems:⎧⎪⎨

⎪⎩
μ�um + (λ+ μ)∇∇ · um + ω2um = rm in D,
um = 0 on y = 0,
μ∂yum + (λ+ μ)[0, 1]∇ · um = T um + ρm on y = h,

(2.20)

where ⎧⎪⎨
⎪⎩

ρ0 = ρ = 2iκp(λ+ 2μ)[0, 1]e−iκph,
ρ1 = −gh−1(T u0 + ρ)+ (λ+ μ)gh−1 [0, ∂xu1,0],
ρm = −gh−1T um−1 + (λ+ μ)gh−1[0, ∂xu1,m−1], m ≥ 2,

(2.21)

and rm = [r1,m, r2,m] with

r1,m = h−1 [2(λ+ 2μ)g∂xx + 2(λ+ 2μ)g ′(h − y)∂xy
+ (λ+ 2μ)g ′′(h − y)∂y + 2gω2] u1,m−1

+ h−1 [(λ+ μ)g∂xy − (λ+ μ)g ′∂y + (λ+ μ)g ′(h − y)∂yy
]
u2,m−1

+ h−2
{
−(λ+ 2μ)g2∂xx − (λ+ 2μ)

(
g ′)2 (h − y)2∂yy − 2(λ+ 2μ)gg ′(h − y)∂xy
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+ (λ+ 2μ)
[
2
(
g ′)2 − gg ′′] (h − y)∂y − ω2g2

}
u1,m−2, (2.22)

r2,m = h−1 [2μg∂xx + 2μg ′(h − y)∂xy + μg ′′(h − y)∂y + 2gω2] u2,m−1

+ h−1 [(λ+ μ)g∂xy − (λ+ μ)g ′∂y + (λ+ μ)g ′(h − y)∂yy
]
u1,m−1

+ h−2
{
−μg2∂xx − μ

(
g ′)2 (h − y)2∂yy − 2μgg ′(h − y)∂xy

+ μ(2
(
g ′)2 − gg ′′)(h − y)∂y − ω2g2

}
u2,m−2. (2.23)

It is understood that um = 0 if m < 0 in the above recurrence relations. Note that the boundary
value problem for um depends only on the solutions of um−1 and um−2. The recursive boundary
value problem (2.20) is mainly used for the mathematical analysis of the direct and inverse problems.
The derivation of the reconstruction formula is based on the transformed field expansion of the scalar
potential functions φ and ψ .

2.4. Convergence of power series expansion

In this section, we shall prove the well-posedness of the boundary value problem (2.20) and show the
convergence of the power series solution (2.19).

Define a periodic Sobolev space:

H1
0,p(D) = {u ∈ H1(D) : u(x, 0) = 0, u(0, y) = u(�, y)}.

Let H1
0,p(D)

2 = H1
0,p(D) × H1

0,p(D). Denote by H
−1
0,p (D)

2 the dual space of H1
0,p(D)

2. Similarly, we
can deduce the variational problem for (2.20): to find um ∈ H1

0,p(D)
2 such that

aD(um, v) = bm(v) for all v ∈ H1
0,p(D)

2, (2.24)

where the sesquilinear form aD is defined by (2.12) with� replaced by D and the linear functional

bm(v) = 〈
ρm, v

〉
�

− (rm, v)D.

Following the same proof of Theorem 2.6, we may show the well-posedness of the solution for the
variational problem (2.24).
Theorem 2.7: The variational problem (2.24) has a unique solution um ∈ H1

0,p(D)
2, which satisfies

‖um‖1,D � ‖ρm‖−1/2,� + ‖rm‖−1,D.

In order to show the convergence of the power series, it is necessary to estimate ‖ρm‖−1/2,� and
‖rm‖−1,D. The proof of the following lemma can be found in (17).
Lemma 2.8: It holds the estimate

‖gv‖1/2,� � K‖v‖1/2,� for any v ∈ H1/2(�)2.

Lemma 2.9: It holds the estimate

‖ρm‖−1/2,� � Kh−1‖um−1‖1,D, m ≥ 2.
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Proof: It follows from (2.2), Lemmas 2.4 and 2.8 that we have

∣∣〈ρm, v
〉
�

∣∣ ≤ h−1 ∣∣〈gT um−1, v
〉
�

∣∣ + h−1(λ+ μ)
∣∣〈g[0, ∂xu1,m−1], v

〉
�

∣∣
= h−1 ∣∣〈T um−1, gv

〉
�

∣∣ + h−1(λ+ μ)
∣∣〈[0, ∂xu1,m−1], gv

〉
�

∣∣
� h−1

(
‖T um−1‖−1/2,� ‖gv‖1/2,� + ∥∥[0, ∂xu1,m−1]

∥∥−1/2,� ‖gv‖1/2,�
)

� Kh−1 (‖um−1‖1/2,� ‖v‖1/2,� + ‖um−1‖1/2,� ‖v‖1/2,�
)

� Kh−1 ‖um−1‖1,D ‖v‖1/2,� for any v ∈ H1/2(�)2,

which completes the proof. �
Lemma 2.10: It holds the estimate

‖rm‖−1,D �
(
Kh−1) ‖um−1‖1,D + (

Kh−1)2 ‖um−2‖1,D.

Proof: It is easy to verify that

∥∥∥∥djgdxj
v
∥∥∥∥
0,D

≤ K‖v‖0,D,
∥∥∥∥djgdxj

v
∥∥∥∥
1,D

≤ K‖v‖1,D, j = 0, 1, 2,

for any v ∈ H1(D) and g ∈ Ck(R), k ≥ 2. It also holds that

‖(h − y)v‖0,D � ‖v‖0,D, ‖(h − y)v‖1,D � ‖v‖1,D,

for any v ∈ H1(D).
Combining the above estimates, Lemmas 2.8, and 2.2, we have from the integration by parts for

any u ∈ H1
0,p(D), v ∈ H1

0,p(D) that∣∣(g∂xxu, v)D∣∣ = ∣∣(∂xxu, gv)D∣∣ = ∣∣(∂xu, ∂x (
gv

))
D

∣∣ ≤ K‖u‖1,D‖v‖1,D,∣∣(g ′(h − y)∂xyu, v
)
D

∣∣ = ∣∣(∂xyu, g ′(h − y)v
)
D

∣∣ = ∣∣(∂yu, (h − y)∂x(g ′v)
)
D

∣∣
� K‖u‖1,D‖v‖1,D,∣∣(g ′′(h − y)∂yu, v

)
D

∣∣ ≤ ‖g ′′∂yu‖0,D‖v‖0,D � K‖u‖1,D‖v‖1,D,∣∣(gu, v)D∣∣ ≤ K‖u‖1,D‖v‖1,D,∣∣(g∂xyu, v)D∣∣ = ∣∣(∂yu, ∂x(gv))D∣∣ ≤ K‖u‖1,D‖v‖1,D,∣∣(g ′∂yu, v
)
D

∣∣ ≤ K‖u‖1,D‖v‖1,D,∣∣(g ′(h − y)∂yyu, v
)
D

∣∣ ≤ ∣∣(∂yu, g ′∂y
[
(h − y)v

])
D

∣∣ + ∣∣〈∂yu, g ′(h − y)v
〉
�

∣∣
= ∣∣(∂yu, g ′∂y

[
(h − y)v

])
D

∣∣ ≤ K‖u‖1,D‖v‖1,D.

Using the integration by parts, we have for any u ∈ H1
0,p(D), v ∈ H1

0,p(D) that

∣∣(g2∂xxu, v)D∣∣ � K2‖u‖1,D‖v‖1,D,∣∣∣((g ′)2 (h − y)2∂xxu, v
)
D

∣∣∣ � K2‖u‖1,D‖v‖1,D,∣∣(gg ′(h − y)∂xyu, v
)
D

∣∣ � K2‖u‖1,D‖v‖1,D,∣∣∣([2 (
g ′)2 − gg ′′] (h − y)∂yu, v

)
D

∣∣∣ � K2‖u‖1,D‖v‖1,D,∣∣(g2u, v)D∣∣ � K2‖u‖1,D‖v‖1,D.
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Combining the above estimates yields

∣∣(r1,m, v)D∣∣ �
[(
Kh−1) ‖um−1‖1,D + (

Kh−1)2 ‖um−2‖1,D
]
‖v‖1,D

for any v ∈ H1
0,p(D).

Similarly, we can show that

∣∣(r2,m, v)D∣∣ �
[(
Kh−1) ‖um−1‖1,D + (

Kh−1)2 ‖um−2‖1,D
]
‖v‖1,D

for any v ∈ H1
0,p(D). Hence, we obtain

∣∣(rm, v
)
D

∣∣ �
[(
Kh−1) ‖um−1‖1,D + (

Kh−1)2 ‖um−2‖1,D
]
‖v‖1,D

for any v ∈ H1
0,p(D)

2, which completes the proof. �
Theorem 2.11: Let um be the solution of the variational problem (2.20). It satisfies

‖um‖1,D ≤ (
cKh−1)m , m ≥ 0,

where c > 0 is a constant independent of K ,m, ε, h.
Proof: Combining Theorem 2.7, Lemmas 2.9, and 2.10 yields

‖um‖1,D �
[(
Kh−1) ‖um−1‖1,D + (

Kh−1)2 ‖um−2‖1,D
]
.

Hence there exists a constant c̃ which is independent of K ,m, ε, h such that

‖um‖1,D ≤ c̃
[(
Mh−1) ‖um−1‖1,D + (

Mh−1)2 ‖um−2‖1,D
]
.

Consider the following recurrence inequality:

xm ≤ c̃
(
axm−1 + a2xm−2

)
,

where c̃, a, x0, x1 are nonnegative. The goal is to show that there exists a constant c > 0 such that

xm ≤ (ca)m, m ≥ 0.

It suffices to prove that

c̃
[
a(ca)m−1 + a2(ca)m−2] ≤ (ca)m,

which leads to an inequality:
c̃(1 + c) ≤ c2.

The proof is completed by taking c ≥ 1
2

[
c̃ + (

c̃2 + 4c̃
)1/2]. �

The following convergence result follows immediately.
Theorem 2.12: The power series solution (2.19) converges strongly.
Proof: It follows from Theorem 2.11 that we have

∥∥umε
m∥∥

1,D ≤ (
cKεh−1)m .
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It follows from the dominated convergence theorem that the power series solution (2.19) converges
if the hypothesis (H2) is satisfied. �

3. Inverse Scattering

In this section, we give a local uniqueness result and establish an error estimate for the inverse
problem.

3.1. Uniqueness

Let G ⊂ R
2 be a bounded domain with Lipschitz boundary ∂G. Define the depth of G with respect

to the y variable:
dep(G) = sup{|y1 − y2| : (x1, y1), (x2, y2) ∈ G}.

Lemma 3.1: The boundary value problem{
μ�u + (λ+ μ)∇∇ · u + ω2u = 0 in G,
u = 0 on ∂G

has only the trivial solution if ω dep(G) < μ1/2.
Proof: Let u �= 0 be a solution to the boundary value problem. It is easy to verify that the solution
u satisfies

μ‖∇u‖20,D + (λ+ μ)‖div u‖20,D = ω2‖u‖20,D.

Following the proof of Lemma 2.1, we have

‖u‖0,G ≤ dep(G)‖∇u‖0,G.

Combining the above estimates yields ωdep(G) ≥ μ1/2, which contradicts with the assumption. �
Theorem 3.2: Let fj = εgj, gj ∈ Ck(R), j = 1, 2 be periodic functions with period �. Define
�j = {(x, y) ∈ R

2 : 0 < x < �, fj < y < h}. Let uj be the unique weak solution of (2.11) in�j. If ε is
sufficiently small and u1 = u2 on �, then f1 = f2.
Proof: Define Sj = {(x, y) ∈ R

2 : y = fj(x), 0 < x < �}. Let � = �1 ∩ �2. Suppose f1 �= f2, then
�1\� or�2\� is a nonempty set. Without loss of generality, letG = �1\� be a nonempty bounded
set. Let ∂G = C1 ∪ C2 with Cj ⊂ Sj. It is easy to see that

dep(G) ≤ εmax{‖g1‖∞, ‖g2‖∞},

which gives ωdep(G) < μ1/2 for sufficiently small ε.
Let u = u1 − u2, and let φ1,ψ1, φ2,ψ2, and φ,ψ be the scalar potential function for u1, u2, and

u, respectively, where φ = φ1 − φ2 andψ = ψ1 −ψ2. It follows from the Helmholtz decomposition
(2.4) and the transparent boundary conditions (2.7) that

u(n)(h) = i

[
αn β

(n)
s

β
(n)
p −αn

][
φ(n)(h)
ψ(n)(h)

]
.

Since u = 0 at� and α2n+β(n)p β
(n)
s �= 0 for all n ∈ Z, we have φ = ψ = 0 at�. Using the transparent

boundary conditions (2.7) again implies ∂yφ = ∂yψ = 0 on�. It follows from the Rayleigh expansion
or the Holmgren uniqueness theorem that φ = ψ = 0 above �. By unique continuation, we have
φ = ψ = 0 in �̄. It follows from the Helmholtz decomposition again that u = 0 in �̄, and in
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particular u = 0 on C2. It follows from u2 = 0 on C2 that we have u1 = 0 on C2 and the following
boundary value problem:

{
μ�u1 + (λ+ μ)∇∇ · u1 + ω2u1 = 0 in G,
u1 = 0 on ∂G.

According to Lemma 3.1, the above boundary value problem only has a trivial solution u1 = 0 in
G. An application of the Helmholtz decomposition and the unique continuation gives u1 = 0 in�1.
But this contradicts the nonhomogeneous transparent boundary condition (2.8). �

3.2. The reconstruction formula

Let us briefly present the explicit reconstruction formula for the inverse problem. We refer to (17)
for the details. In Section 2.3, we studied the power series expansion of u and derived a successive
sequence of boundary value problems for um. However, it is inconvenient to use the expansion of u
for the inverse problem due to the coupling in the equations. Instead, we study the scalar potential
functions φ,ψ via the Helmholtz decomposition (2.4).

Consider the power series expansion:

φ(x, y; ε) =
∞∑

m=0

φm(x, y)εm, ψ(x, y; ε) =
∞∑

m=0

ψm(x, y)εm.

Applying the transformed field expansion and the Fourier series expansion, we may obtain a succes-
sive sequence of coupled two-point boundary value problems:

⎧⎪⎪⎨
⎪⎪⎩
∂yyφ

(n)
k +

(
β
(n)
p

)2
φ
(n)
k = v(n)k , 0 < y < h,

∂yφ
(n)
k = p(n)k + iαnψ

(n)
k , y = 0,

∂yφ
(n)
k − iβ(n)p φ

(n)
k = r(n)k , y = h,

and ⎧⎪⎪⎨
⎪⎪⎩
∂yyψ

(n)
k +

(
β
(n)
s

)2
ψ
(n)
k = w(n)k , 0 < y < h,

∂yψ
(n)
k = q(n)k − iαnφ

(n)
k , y = 0,

∂yψ
(n)
k − iβ(n)s ψ

(n)
k = s(n)k , y = h,

where the inhomogeneous terms v(n)k , p(n)k , r(n)k and w(n)k , q(n)k , s(n)k can be computed from φk−1,φk−2
and ψk−1,ψk−2, respectively.

Using variation of parameters, we can solve the above recursive system and obtain its solution
analytically. In particular, the leading terms are given by

φ0(x, y) = 2(iκp)−1 cos (κpy), ψ0(x, y) = 0.

Using the Helmholtz decomposition, we may obtain the leading term

u0 = [
u1,0, u2,0

] = [
0, eiκpy − e−iκpy

]
.
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The Fourier coefficients of the linear terms are given by

φ
(n)
1 (h) =

(
−2κpβ

(n)
s

α2n + β
(n)
p β

(n)
s

)
eiβ

(n)
p hg (n), ψ

(n)
1 (h) =

(
2κpαn

α2n + β
(n)
p β

(n)
s

)
eiβ

(n)
s hg (n),

where g (n) is the Fourier coefficients of the surface profile function g . The following key identity is
also derived:

αn

(
β(n)s

)−1
u(n)1,1 (h)+ u(n)2,1 (h) = −2iκpeiβ

(n)
p hg (n),

where u1 = [u1,1, u2,1] is the linear term in the power series expansion of u. Substituting the above
equations into the power series expansion for u yields the representation of the Fourier coefficients
of the scattering surface function f :

f (n) = − (2iκp)−1
[
αn

(
β(n)s

)−1
u(n)1 (h)+ u(n)2 (h)− u(n)2,0 (h)

−αn(β(n)s )−1e(n)1 (h)− e(n)2 (h)
]
e−iβ(n)p h, (3.1)

where the remainder e = [e1, e2] has the expansion:

e(x, y) =
∞∑

m=2

um(x, y)εm.

Dropping the remainder in (3.1) yields the reconstruction of the Fourier coefficients

f (n)ε = −(2iκp)−1
[
αn

(
β(n)s

)−1
u(n)1 (h)+ u(n)2 (h)− u(n)2,0 (h)

]
e−iβ(n)p h.

The above formula assumes a noise-free data. In practice, the data contains a certain amount of noise.
Let uδ be the noisy data such that

‖uδ − u‖0,� ≤ δ, (3.2)

where δ > 0 represents the noise level. After incorporating the data noise, the Fourier coefficients
take the form

f (n)ε,δ = −(2iκp)−1
[
αn

(
β(n)s

)−1
uδ,(n)1 (h)+ uδ,(n)2 (h)− u(n)2,0 (h)

]
e−iβ(n)p h. (3.3)

The reconstructed surface profile function is finally obtained by

fε,δ(x) =
∑

|αn|≤κc
f (n)ε,δ e

iαnx , (3.4)

where κc > 0 is the cut-off wavenumber and plays the role of the regularization parameter.

3.3. Error estimate

In this section, we derive an error estimate for the explicit reconstruction formula (3.4). We need the
following standard result about the decaying rate of the Fourier coefficients of a smooth function.
The proof may be found in (22).
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Lemma 3.3: If g ∈ Ck(R) is periodic with period�, then

∣∣∣g (n)∣∣∣ ≤ K
|αn|k

.

Lemma 3.4: It holds the estimate ∣∣∣∣αn (
β(n)s

)−1
∣∣∣∣ � 1, n ∈ Z. (3.5)

Proof: It follows from (2.6) that

∣∣∣∣αn (
β(n)s

)−1
∣∣∣∣
2

= α2n∣∣κ2s − α2n
∣∣ .

Consider the function
z(t) = t

|κ2s − t| , t ≥ 0.

It is easy to verify that z(t) is increasing for t < κ2s and decreasing for t > κ2s . Let n− be the greatest
integer such that αn < κs and n+ be the smallest integer such that αn > κs. We have

∣∣∣∣αn (
β(n)s

)−1
∣∣∣∣
2

≤ max

(
α2n−

κ2s − α2n−
,

α2n+
α2n+ − κ2s

)
,

which completes the proof. �
Theorem 3.5: Let f be the exact surface function and fε,δ be the reconstructed surface function
using (3.4). It holds the error estimate

∥∥fε,δ − f
∥∥
0,� �

∣∣∣∣∣eh
(
κ2c −κ2p

)1/2 ∣∣∣∣∣
[
δ + (

Kεh−1)2] + Kεκ−(2k−1)/2
c . (3.6)

Proof: It follows from (3.1), (3.3), and (3.4) that

‖fε,δ − f ‖20,� � E1 + E2 + E3, (3.7)

where

E1 =
∑

|αn|≤κc

∣∣∣eiβ(n)p h
∣∣∣2 ∣∣∣∣αn (

β(n)s

)−1 (
uδ,(n)1 − u(n)1

)
+

(
uδ,(n)2 − u(n)2

)∣∣∣∣
2
,

E2 =
∑

|αn|≤κc

∣∣∣eiβ(n)p h
∣∣∣2 ∣∣∣∣αn (

β(n)s

)−1
e(n)1 + e(n)2

∣∣∣∣
2
,

E3 =
∑

|αn|>κc

∣∣∣f (n)∣∣∣2 .
A simple calculation yields

∣∣∣eiβ(n)p h
∣∣∣ ≤

∣∣∣∣∣eh
(
κ2c −κ2p

)1/2 ∣∣∣∣∣ for |αn| ≤ κc,
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which, combined with (3.5) implies

E1/21 �
∣∣∣∣∣eh

(
κ2c −κ2p

)1/2 ∣∣∣∣∣ ∥∥uδ − u
∥∥
0,� ≤

∣∣∣∣∣eh
(
κ2c −κ2p

)1/2 ∣∣∣∣∣ δ. (3.8)

By Theorem 2.11, we have

‖e‖0,� =
∥∥∥∥∥

∞∑
m=2

um ε
m

∥∥∥∥∥
0,�

≤
∞∑

m=2

‖um‖0,� εm ≤
∞∑

m=2

‖um‖1/2,� εm

≤
∞∑

m=2

‖um‖1,D εm ≤
∞∑

m=2

(
cKεh−1)m �

(
cKεh−1)2 �

(
Kεh−1)2 ,

which gives

E1/22 �
∣∣∣∣∣eh

(
κ2c −κ2p

)1/2 ∣∣∣∣∣ (Kεh−1)2 . (3.9)

Using Lemma 3.3 and the integral test for series, we deduce that

E3 = ε2
∑

|αn|>κc

∣∣∣g (n)∣∣∣2 ≤ (Kε)2
∑

|αn|>κc
|αn|−2k � (Kε)2κ−2k+1

c . (3.10)

The proof is completed combining (3.7)–(3.10). �
The parameters in the error estimate (3.6) can be divided into two groups:

(1) the intrinsic parameters K , ε, δ, κp, which are associated with the problem;
(2) the user-specified parameters h, κc, which can be chosen in practice.

The implicit constant in the estimate is independent on all the parameters except the pressure and
shear wavenumbers κp and κs. The estimate shows that the error arises from three parts: the data
noise, the linearization, and the regularization. Specifically, we have the following observations:

(1) all the three types of error decrease as functions of the intrinsic parameters K , ε, δ, which are
consistent with the physical intuition;

(2) as the measurement distance h decreases, the error due to the data noise stays at a constant
level if κc ≤ κp and decreases if κc > κp;

(3) if κc ≤ κp, then the linearization error increases as h decreases;
(4) if κc > κp, then the linearization error decreases at the beginning but increases later if h

becomes too small;
(5) as κc increases from 0 to κp, the error due to the data noise and linearization stays at a constant

level and the regularization error decreases. Thus, it is stable to reconstruct the Fourier modes
of the surface function within the diffraction limit;

(6) as κc increases from κp to ∞, the error due to the data noise and linearization increase at an
exponential rate and the regularization error decreases. Thus it is increasingly more unstable
to reconstruct the higher Fourier modes of the surface beyond the diffraction limit.

In view of the above observations, one should choose appropriate values for the tunable parameters
h and κc in order to obtain a stable reconstructions with super resolution. For example, if we take



APPLICABLE ANALYSIS 2359

h = ε1/2, then the estimate (3.6) reduces to

∥∥fε,δ − f
∥∥
0,� �

∣∣∣∣∣e
(
κ2c −κ2p

)1/2
ε1/2

∣∣∣∣∣ (δ + K2ε)+ Kεκ−(2k−1)/2
c . (3.11)

It is clear to note that the error estimate in (3.11) is completely characterized by the intrinsic
parameters. Moreover, we have

∥∥fε,δ − f
∥∥
0,� → 0 as ε, δ → 0,

while the other parameters are held fixed.
To find an appropriate value for the cut-off wavenumber κc, we note from (3.11) that

∥∥fε,δ − f
∥∥
0,� �

∣∣∣eκcε1/2 ∣∣∣ (δ + K2ε)+ Kεκ−(2k−1)/2
c . (3.12)

We may take κc such that

eκcε
1/2 = min

{
ε−p, δ−q} ,

where 0 < p, q < 1 are user-specified constants. Then, we have

(1) If ε−p ≤ δ−q, then eκcε1/2 = ε−p and κc ∼ | ln ε|/ε1/2. Substituting into (3.12) and noting
that δ ≤ εp/q yields a reduced error estimate:

∥∥fε,δ − f
∥∥
0,� � εp(1−q)/q + K2ε1−p + Kε(2k+3)/4| ln ε|−(2k−1)/2 → 0 as ε → 0.

(2) If δ−q ≤ ε−p, then eκcε
1/2 = δ−q and κc ∼ | ln δ|/ε1/2. Substituting it into (3.12) and noting

that ε ≤ δq/p yields a reduced error estimate:
∥∥fε,δ − f

∥∥
0,� � δ1−q + K2δq(1−p)/p + Kδ(2k+3)q/4p| ln δ|−(2k−1) → 0 as δ → 0.

These error estimates are completely characterized by the intrinsic parameters ε or δ.

4. Conclusion

We studied mathematically a significant numerical method for solving the inverse elastic surface
scattering problem. A simple proof was presented for the well-posedness of the solution for the
direct problem using the Lax–Milgram lemma. The condition was established for the convergence
of the power series solution. The inverse problem was shown to have a unique solution for a single
illumination. An error estimate was derived, which clearly displays the dependence of the error on
various parameters of the model problem and provides a deep insight into the trade-off among
accuracy, resolution, and stability of the solution for the inverse problem.

As for futureworks,wewould like to extend the analysis to the three-dimensional surface scattering
problems. A challenging and interesting problem is to study the convergence of the inverse obstacle
or cavity scattering problems for elastic waves. We hope to report the progress on these problems
elsewhere in the near future.
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