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This paper is concerned with the direct and inverse scattering of elastic waves by biperiodic 
surfaces in three dimensions. The surface is assumed to be a small and smooth perturba-
tion of a rigid plane. Given a time-harmonic plane incident wave, the direct problem is to 
determine the displacement field of the elastic wave for a given surface; the inverse prob-
lem is to reconstruct the surface from the measured displacement field. The direct problem 
is shown to have a unique weak solution by studying its variational formulation. Moreover, 
an analytic solution is deduced by using the transformed field expansion method and the 
convergence is established for the power series solution. A local uniqueness is proved for 
the inverse problem. An explicit reconstruction formula is obtained and implemented by 
using the fast Fourier transform. The error estimate is derived for the reconstructed sur-
face function, and it provides an insight on the trade-off among resolution, accuracy, and 
stability of the solution for the inverse problem. Numerical results show that the method 
is effective to reconstruct biperiodic scattering surfaces with subwavelength resolution.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The scattering problems for acoustic and electromagnetic waves have been undergoing extensive studies over the 
years [18]. Recently, the elastic wave scattering problems have received much attention from both engineering and mathe-
matical communities due to their significant applications in diverse scientific areas [2–5,16,20–25,30]. The purpose of this 
paper is to study the inverse scattering problem for elastic wave scattering by biperiodic surfaces in three dimensions. It 
is indispensable to analyze the corresponding direct problem in order to serve this goal. Specifically, we consider a biperi-
odic scattering surface which is assumed to be a small and smooth perturbation of a plane. The space above the surface 
is filled with a linear, homogeneous, and isotropic elastic medium, while the space below the surface is elastically rigid. 
A time-harmonic elastic plane wave is incident on the surface from above. We consider the resonance regime where the 
wavelength of the incident wave is comparable with the period of the surface. Given the incident field, the direct scat-
tering problem is to determine the displacement field of the total wave for the known surface; the inverse problem is to 
reconstruct the surface from the measured displacement field of the total wave at a horizontal plane over the surface. The 
well-posedness was studied for the direct scattering problem in [2,4,5,20,23,24] for the two-dimensional case and in [22]
for the three-dimensional case. The inverse scattering problem was also investigated theoretically for its uniqueness in [1]
for the two-dimensional case, and numerically by using nonlinear optimization in [21] and the factorization method in [29]
for the two-dimensional problem.
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In this work, we propose an effective method for solving quantitatively the three-dimensional inverse elastic scattering 
problem and seek to achieve super resolved resolution. Compared with the acoustic or electromagnetic counterparts, the 
elastic scattering problems are more challenging due to the coexistence of compressional and shear waves that travel at 
different speeds. In view of this fact, we utilize the Helmholtz decomposition to split the displacement field of the elastic 
wave into a superposition of its compressional part and shear part by introducing two potential functions. Using the Rayleigh 
expansion, we derive the transparent boundary conditions for each potential function and recast the problem into a coupled 
boundary value problem. Based on the assumption that the surface is a small and smooth perturbation of a rigid plane, we 
apply the transformed field expansion to convert the three-dimensional boundary value problem into a successive sequence 
of two-point boundary value problems in the frequency domain. The method begins with the change of variable to flatten 
the curved surface into a planar surface; then it resorts to the power series expansion and the Fourier series expansion to 
find an analytic solution for the direct problem. Using the closed form of the analytic solution, we deduce simple expressions 
for the leading and linear terms of the power series solution. Dropping all higher order terms, we linearize the inverse 
problem and obtain an explicit and elegant identity which links the Fourier coefficients of the scattering surface and the 
measured displacement field. The scattering surface is then reconstructed from the truncated Fourier series expansion. 
The method requires only a single incident field and is efficiently implemented by the fast Fourier transform. Numerical 
examples show the method is effective and robust to reconstruct the scattering surfaces with subwavelength resolution. We 
refer to [17,31,38–40] for transformed field expansion and related boundary perturbation methods for solving various direct 
scattering problems.

Moreover, we provide theoretical analysis to validate the proposed method. Using a variational formulation, we establish 
the well-posedness and obtain an energy estimate of the solution for the direct scattering problem. Using a similar vari-
ational approach, we obtain the well-posedness of the solution for the recursive boundary value problems and prove the 
convergence of the power series solution. For the inverse problem, we show a local uniqueness result of the solution for a 
sufficiently small perturbation. We derive an error estimate for the reconstruction formula, which demonstrates a depen-
dence of the reconstructed surface on all the physical parameters of the model problem and provides an insight on the 
trade-off among resolution, accuracy, and stability of the solution for the inverse problem. This paper is a non-trivial ex-
tension of our previous work on the two-dimensional elastic scattering problems [36,37] due to the obvious difference and 
increased challenge of the model problem. This work adds a significant contribution to our recent development of designing 
novel computational methods for solving a class of acoustic and electromagnetic inverse scattering problems [6,10–12,19,
32–35]. We refer to [7–9,13–15,28] for other related inverse scattering problems for acoustic and electromagnetic waves.

The outline of the paper is as follows. In section 2 we introduce the model problem and the transparent boundary 
condition. Section 3 is devoted to the direct scattering problem where we prove the well-posedness of the solution by 
studying the variational formulation. In section 4 we present the transformed field expansion, derive the recursive boundary 
value problems, and prove the convergence of the power series expansion. The reconstruction formula, error estimate, and 
numerical examples are provided in section 5. We conclude the paper with comments and directions for future research in 
section 6.

2. Problem formulation

In this section we introduce a mathematical model for the elastic scattering by a biperiodic surface and derive a trans-
parent boundary condition for the truncated problem.

2.1. Elastic wave equation

Let ρ = (x, y) ∈ R
2 and x = (ρ, z) ∈ R

3. Let � = (�1, �2), where � j > 0 are constants. Denote a rectangular domain 
R = (0, �1) × (0, �2). Consider the part of a biperiodic surface in one periodic cell R:

� f = {x ∈R
3 : z = f (ρ), ρ ∈ R},

where f ∈ Ck(R), k ≥ 2 is a biperiodic function with period �. We assume that

f (ρ) = εg(ρ), (2.1)

where ε > 0 is a small constant and is called the surface deformation parameter, g ∈ Ck(R) is a biperiodic function with 
period � and represents the normalized profile of f . Let

K = max
|s|≤k

sup
ρ∈R

∣∣Ds g(ρ)
∣∣ , (2.2)

which indicates the smoothness of the scattering surface and plays an important role in the subsequent convergence and 
error analysis. Denote

� f = {x ∈R
3 : z > f (ρ), ρ ∈ R},

and
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�h = {x ∈R
3 : z = h, ρ ∈ R},

where h > supρ∈R f (ρ) is another key constant used as the measurement distance for the inverse problem. Denote by

� = {x ∈R
3 : f (ρ) < z < h, ρ ∈ R},

the bounded domain between � f and �h .
Suppose that the space above � f is filled with a homogeneous, linear, and isotropic elastic medium with unit mass 

density, while the substrate below � f is elastically rigid. Let a time-harmonic elastic plane wave uin be incident on � f
from above. For simplicity, we consider a compressional incident field with normal incidence:

uin(x) = −e−iκ1 ze3, (2.3)

where κ1 = ω/
√

λ + 2μ is the compressional wavenumber and e3 = (0, 0, 1). Here ω > 0 is the angular frequency, and λ, μ
are the Lamé constants satisfying μ > 0, λ + μ > 0.

The displacement field of the total wave u satisfies the Navier equation:

μ
u + (λ + μ)∇(∇ · u) + ω2u = 0 in � f . (2.4)

Due to the rigid substrate assumption, u satisfies the Dirichlet boundary condition:

u = 0 on � f . (2.5)

Given the scattering surface � f and the incident field uin, the direct scattering problem is to determine the total field u. 
Given the incident field uin and the measurement of the total field u at �h , the inverse scattering problem is to determine 
the scattering surface � f .

2.2. Transparent boundary condition

In order to reduce the problem from the unbounded domain � f into the bounded domain �, it is necessary to derive a 
suitable boundary condition on �h .

Denote by v the displacement field of the scattered wave. Consider the Helmholtz decomposition to split the wave field 
into its compressional part and shear part:

v = ∇ϕ + ∇ × ψ, ∇ · ψ = 0, (2.6)

where ϕ is a scalar potential function and ψ is a vector potential function. Substituting (2.6) into (2.4), we may obtain two 
Helmholtz equations:(


 + κ2
1

)
ϕ = 0,

(

 + κ2

2

)
ψ = 0 in � f , (2.7)

where κ2 = ω/
√

μ is the shear wavenumber. It is clear to note that κ1 < κ2.
Due to the special problem geometry, the solutions of (2.7) are periodic and admit the Fourier series expansions:

ϕ(ρ, z) =
∑

n∈Z2

ϕ(n)(z)eiαn·ρ, ψ(ρ, z) =
∑

n∈Z2

ψ (n)(z)eiαn·ρ, z ≥ h, (2.8)

where n = (n1, n2), αn = (α1,n, α2,n), α j,n = 2πn j/� j , ϕ(n) and ψ (n) are the n-th Fourier coefficients of ϕ and ψ , respec-
tively, i.e.,

ϕ(n)(z) = (�1�2)
−1

∫
R

ϕ(ρ, z)e−iαn·ρdρ, ψ (n)(z) = (�1�2)
−1

∫
R

ψ(ρ, z)e−iαn·ρdρ.

Substituting (2.8) into (2.7) and using the bounded outgoing wave condition, we obtain the Rayleigh expansions:

ϕ(ρ, z) =
∑

n∈Z2

ϕ(n)(h)ei
(
αn·ρ+β1,n(z−h)

)
, ψ(ρ, z) =

∑
n∈Z2

ψ (n)(h)ei
(
αn·ρ+β2,n(z−h)

)
, z > h, (2.9)

where

β j,n =

⎧⎪⎨
⎪⎩
(
κ2

j − |αn|2
)1/2

, |αn| < κ j,

i
(
|αn|2 − κ2

j

)1/2
, |αn| > κ j.

(2.10)

Here we assume that |αn| �= κ j for all n ∈ Z
2 to exclude the resonance. Substituting (2.9) into (2.6)–(2.7) and evaluating at 

z = h yields
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[
v(n)

0

]
= i

⎡
⎢⎢⎢⎢⎣

α1,n 0 −β2,n α2,n

α2,n β2,n 0 −α1,n

β1,n −α2,n α1,n 0

0 iα1,n α2,n β2,n

⎤
⎥⎥⎥⎥⎦
[

ϕ(n)

ψ (n)

]
, (2.11)

where v(n)(h) is the n-th Fourier coefficient of v(ρ, h).
Consider the boundary operator B defined by

Bv := μ∂z v + (λ + μ)(∇ · v)e3 on �h. (2.12)

Substituting the Helmholtz decomposition (2.6) into (2.12), and using (2.7), we get

Bv = μ∂z (∇ϕ + ∇ × ψ) − (λ + μ)κ2
1 ϕe3.

Plugging the Rayleigh expansion (2.9) into the above equation gives

(Bv)(n) =

⎡
⎢⎢⎣

−μα1,nβ1,n 0 μβ2
2,n −μα2,nβ2,n

−μα2,nβ1,n −μβ2
2,n 0 μα1,nβ2,n

μ|αn|2 − ω2 μα2,nβ2,n −μα1,nβ2,n 0

⎤
⎥⎥⎦
[

ϕ(n)

ψ (n)

]
. (2.13)

Solving (2.11) for ϕ(n) and ψ (n) , and substituting them into (2.13), we obtain the transparent boundary condition for the 
scattered field:

Bv = T v :=
∑

n∈Z2

Mn v(n)(h)eiαn ·ρ on �h, (2.14)

where

Mn = iμ

γn

⎡
⎢⎢⎣

α2
1,n

(
β1,n − β2,n

)+ β2,nγn α1,nα2,n
(
β1,n − β2,n

)
α1,nβ2,n

(
β1,n − β2,n

)
α1,nα2,n

(
β1,n − β2,n

)
α2

2,n

(
β1,n − β2,n

)+ β2,nγn α2,nβ2,n
(
β1,n − β2,n

)
−α1,nβ2,n

(
β1,n − β2,n

) −α2,nβ2,n
(
β1,n − β2,n

)
κ2

2 β2,n

⎤
⎥⎥⎦ . (2.15)

Here γn = |αn|2 + β1,nβ2,n �= 0 for all n ∈ Z
2.

A simple calculation yields

Buin = T uin + p on �h, (2.16)

where

p = 2i(λ + 2μ)κ1e−iκ1he3.

Adding (2.14) and (2.16), we obtain the transparent boundary condition for the total field u:

Bu = T u + p on �h, (2.17)

which helps to reduce the problem from the unbounded domain � f into the bounded domain �.

3. Direct scattering problem

In this section, we consider the direct scattering problem and establish the well-posedness by studying its variational 
formulation.

Define the periodic Sobolev space:

H1
� f ,p(�) = {u ∈ H1(�) : u = 0 on � f , u(ρ, z) = u(ρ + �, z)},

which is equipped with the usual H1-norm:

‖u‖1,� =
⎛
⎝∑

|s|≤1

∫
�

∣∣Dsu
∣∣2 dx

⎞
⎠

1/2

.

Let H1 (�)3 be the triple Cartesian product space of H1 (�) and is equipped with the norm
� f ,p � f ,p
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‖u‖1,� =
⎛
⎝ 3∑

j=1

‖u j‖2
1,�

⎞
⎠

1/2

.

Denote by H−1
� f ,p

(�)3 the dual space of H1
� f ,p

(�)3, which consists of bounded linear functionals on H1
� f ,p

(�)3, and is 
equipped with the norm

‖u‖−1,� = sup
v∈H1

� f ,p(�)3

|(u, v)�|
‖v‖1,�

,

where the inner product (·, ·)� is defined as

(u, v)� =
∫
�

u · v̄ dx.

For any s ∈R, denote by Hs(�h) the trace Sobolev space of periodic functions on �h , which is equipped with the norm

‖u‖s,�h =
⎡
⎣�1�2

∑
n∈Z2

(
1 + |αn|2

)s ∣∣∣u(n)(h)

∣∣∣2
⎤
⎦

1/2

.

Denote by Hs(�h)3 the triple Cartesian product space of H s(�h). It is equipped with the norm

‖u‖s,�h =
⎛
⎝ 3∑

j=1

‖u j‖2
s,�h

⎞
⎠

1/2

.

It is well known that H−s(�h)3 is the dual space of Hs(�h)3 for any s ∈R with respect to the inner product

〈u, v〉�h =
∫
�h

u · v̄ dρ.

The variational formulation of the direct scattering problem is to find u ∈ H1
� f ,p

(�)3 such that

a�(u, v) = 〈p, v〉�h
, ∀ v ∈ H1

� f ,p(�)3, (3.1)

where the sesquilinear form

a�(u, v) =
∫
�

μ( J u : J v̄)dx + (λ + μ)(∇ · u,∇ · v)� − ω2(u, v)� − 〈T u, v〉�h , (3.2)

and J u denotes the Jacobian matrix of u, and A : B = tr(AB∗) is the Frobenius inner product for matrices A and B . For any 
u ∈ H1

� f ,p
(�)3, denote the Frobenius norm by

‖ J u‖0,� =
⎛
⎝ 3∑

j=1

∫
�

∣∣∇u j
∣∣2 dx

⎞
⎠

1/2

.

Lemma 3.1. It holds the estimate

‖u‖0,� ≤ h‖ J u‖0,�, ∀ u ∈ H1
� f ,p(�)3.

Proof. Denote by

B = {x ∈ R
3 : ρ ∈ R, 0 < z < h}

the rectangular box which contains �. For any u ∈ H1
� f ,p

(�)3, consider the zero extension to B:

ũ(x) =
{

u(x), x ∈ �,

0, x ∈ B \ �̄.
(3.3)

It follows from the Cauchy–Schwarz inequality that
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∣∣ũ∣∣2 =
∣∣∣∣∣∣

z∫
0

∂z ũ dz

∣∣∣∣∣∣
2

≤ h

h∫
0

∣∣∂z ũ
∣∣2 dz.

Hence

‖ũ‖2
0,B =

h∫
0

∫
R

∣∣ũ∣∣2 dx ≤ h

h∫
0

∫
R

h∫
0

∣∣∂z ũ
∣∣2 dzdx ≤ h2‖ J ũ‖2

0,B ,

which completes the proof by noting that

‖u‖0,� = ‖ũ‖0,B and ‖ J u‖0,� = ‖ J ũ‖0,B . �
Lemma 3.2. It holds the estimate

‖u‖1/2,�h ≤ ‖u‖1,�, ∀ u ∈ H1
� f ,p(�)3.

Proof. Let ũ be the zero extension of u defined in (3.3). It follows from Young’s inequality that

∣∣∣ũ(n)
(h)

∣∣∣2 =
h∫

0

d

dz

∣∣∣ũ(n)
(z)

∣∣∣2 dz

≤
h∫

0

2
∣∣∣ũ(n)

(z)
∣∣∣ ∣∣∣∣ d

dz
ũ(n)

(z)

∣∣∣∣ dz

≤ (1 + |αn|2)1/2

h∫
0

∣∣∣ũ(n)
(z)

∣∣∣2 dz + (1 + |αn|2)−1/2

h∫
0

∣∣∣∣ d

dz
ũ(n)

(z)

∣∣∣∣
2

dz,

which gives

(1 + |αn|2)1/2
∣∣∣ũ(n)

(h)

∣∣∣2 ≤ (1 + |αn|2)
h∫

0

∣∣∣ũ(n)
(z)

∣∣∣2 dz +
h∫

0

∣∣∣∣ d

dz
ũ(n)

(z)

∣∣∣∣
2

dz.

Using the Fourier series expansion of ũ, we can verify that

∥∥ũ
∥∥2

1,B = �1�2

∑
n∈Z2

⎡
⎣(1 + |αn|2)

h∫
0

∣∣∣ũ(n)
(z)

∣∣∣2 dz +
h∫

0

∣∣∣∣ d

dz
ũ(n)

(z)

∣∣∣∣
2

dz

⎤
⎦ .

Hence∥∥ũ
∥∥2

1/2,�h
= �1�2

∑
n∈Z2

(1 + |αn|2)1/2|ũ(n)
(h)|2 ≤ ∥∥ũ

∥∥2
1,B ,

which completes the proof by noting that

‖u‖1/2,�h = ‖ũ‖1/2,�h , ‖u‖1,� = ‖ũ‖1,B . �
Lemma 3.3. For any η > 0, it holds the estimate

‖u‖2−1/2,�h
≤ η−1‖u‖2

0,� + η ‖∂zu‖2
0,� , ∀ u ∈ H1

� f ,p(�)3.

Proof. Let ũ be the zero extension of u defined in (3.3). It follows from Young’s inequality that

∣∣∣ũ(n)
(h)

∣∣∣2 =
h∫

0

d

dz
|ũ(n)

(z)|2 dz ≤
h∫

0

2|ũ(n)
(z)|

∣∣∣∣ d

dz
ũ(n)

(z)

∣∣∣∣ dz

≤ η−1(1 + |αn|2)1/2

h∫
0

|ũ(n)
(z)|2 dz + η(1 + |αn|2)−1/2

h∫
0

∣∣∣∣ d

dz
ũ(n)

(z)

∣∣∣∣
2

dz,
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which gives

(1 + |αn|2)−1/2
∣∣∣ũ(n)

(h)

∣∣∣2 ≤ η−1

h∫
0

∣∣∣ũ(n)
(z)

∣∣∣2 dz + η(1 + |αn|2)−1

h∫
0

∣∣∣∣ d

dz
ũ(n)

(z)

∣∣∣∣
2

dz.

Using the Fourier series expansion of ũ, we can verify that

‖ũ‖2
0,B = �1�2

∑
n∈Z2

h∫
0

∣∣∣ũ(n)
(z)

∣∣∣2 dz,

and

∥∥∂z ũ
∥∥2

0,B = �1�2

∑
n∈Z2

h∫
0

∣∣∣∣ d

dz
ũ(n)

(z)

∣∣∣∣
2

dz.

Hence we have∥∥ũ
∣∣2−1/2,�h

= �1�2

∑
n∈Z2

(1 + |αn|2)−1/2|ũ(n)
(h)|2

≤ �1�2

∑
n∈Z2

η−1

h∫
0

∣∣∣ũ(n)
(z)

∣∣∣2 dz + η(1 + |αn|2)−1

h∫
0

∣∣∣∣ d

dz
ũ(n)

(z)

∣∣∣∣
2

dz

≤ �1�2

∑
n∈Z2

η−1

h∫
0

∣∣∣ũ(n)
(z)

∣∣∣2 dz + η

h∫
0

∣∣∣∣ d

dz
ũ(n)

(z)

∣∣∣∣
2

dz

= η−1‖ũ‖2
0,B + η

∥∥∂z ũ
∥∥2

0,B ,

which completes the proof by noting that

‖u‖−1/2,�h = ∥∥ũ
∥∥−1/2,�h

, ‖u‖0,� = ∥∥ũ
∥∥

0,B , ‖∂zu‖0,� = ∥∥∂z ũ
∥∥

0,B . �
Lemma 3.4. The boundary operator T : H1/2(�h)3 → H−1/2(�h)3 is continuous, i.e.,

‖T u‖−1/2,�h � ‖u‖1/2,�h , ∀ u ∈ H1/2(�h)
3.

Proof. It follows from the definition of β j,n in (2.10) that we get

β j,n = i(|αn|2 − κ2
j )

1/2 ∼ |n|,

|αn|2 + β1,nβ2,n = |αn|2
⎡
⎣1 −

(
1 − κ2

1

|αn|2
)1/2 (

1 − κ2
s

|αn|2
)1/2

⎤
⎦ ∼ 1,

β1,n − β2,n = i(|αn|2 − κ2
1 )1/2 − i(|αn|2 − κ2

2 )1/2 ∼ |n|−1,

as |n| → ∞. Denote by ‖Mn‖2 the Euclidean norm of matrix Mn . It follows from (2.15) that

‖Mn‖2 ∼ |n| as |n| → ∞.

Hence we have

‖T u‖2−1/2,�h
=

∑
n∈Z2

(1 + |αn|2)−1/2
∣∣∣Mnu(n)(h)

∣∣∣2

�
∑

n∈Z2

(1 + |αn|2)1/2
∣∣∣u(n)(h)

∣∣∣2 = ‖u‖2
1/2,�h

,

which completes the proof. �
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Lemma 3.5. Let M̂n = −(Mn + M∗
n)/2. It holds that

(1) ‖M̂n‖2 � 1 if |αn| < κ2;
(2) M̂n is positive definite if |αn| > κ2 .

Proof. For any n ∈ Z
2, denote ζ j,n =

∣∣∣κ2
j − |αn|2

∣∣∣1/2
. If |αn| < κ2, then it is easy to verify ‖M̂n‖ � 1. If |αn| > κ2, then 

ζ j,n > 0, β j,n = iζ j,n , and γn = |αn|2 − ζ1,nζ2,n > 0. It follows from (2.15) that

M̂n = μ

γn

⎡
⎢⎢⎣

α2
1,n

(
ζ1,n − ζ2,n

)+ ζ2,nγn α1,nα2,n
(
ζ1,n − ζ2,n

)
iα1,nζ2,n

(
ζ1,n − ζ2,n

)
α1,nα2,n

(
ζ1,n − ζ2,n

)
α2

2,n

(
ζ1,n − ζ2,n

)+ ζ2,nγn iα2,nζ2,n
(
ζ1,n − ζ2,n

)
−iα1,nζ2,n

(
ζ1,n − ζ2,n

) −iα2,nζ2,n
(
ζ1,n − ζ1,n

)
κ2

2 ζ2,n

⎤
⎥⎥⎦ .

Since κ1 < κ2, we have ζ1,n > ζ2,n . The first leading principle minor of M̂n is

α2
1,n

(
ζ1,n − ζ2,n

)+ ζ2,nγn > 0.

The second leading principle minor of M̂n is

|αn|2(ζ1,n − ζ2,n)ζ2,nγn + ζ 2
2,nγ

2
n > 0.

Using the determinant for block matrices, we can compute

det(M̂n) = γnζ
2
2,n

[
|αn|2(ζ1,n − ζ2,n)

(
κ2

2 − ζ2,n(ζ1,n − ζ2,n)
)

+ κ2
2 γnζ2,n

]
= γnζ

2
2,n

[
|αn|2(ζ1,n − ζ2,n)

(
|αn|2 − ζ1,nζ2,n

)
+ κ2

2 γnζ2,n

]
> 0.

It follows from Sylvester’s rule that the matrix M̂n is positive definite. �
Theorem 3.6. The variational problem (3.1) has a unique solution u ∈ H1

� f ,p
(�)3 for sufficiently small h. The solution satisfies the 

estimate

‖u‖1,� � ‖p‖−1/2,�h .

Proof. Following the Cauchy–Schwarz inequality, we have

|a�(u, v)| ≤ μ‖ J u‖0,�‖ J v‖0,� + (λ + μ)‖∇ · u‖0,�‖∇ · v‖0,� + ω2‖u‖0,�‖v‖0,�

+ ‖T u‖−1/2,�h ‖v‖1/2,�h

� ‖u‖1,�‖v‖1,� + ‖T u‖−1/2,�h ‖v‖1/2,�h .

Applying Lemma 3.2 and Lemma 3.4 yields

|a�(u, v)| � ‖u‖1,�‖v‖1,�,

which shows the sesquilinear form is bounded.
It follows from the definition (2.14) that

−Re 〈T u, u〉�h = �1�2

∑
n∈Z2

M̂nu(n)(h)u(n)(h).

By Lemma 3.5, we have∑
|αn|<κ2

M̂nu(n)(h)u(n)(h) �
∑

|αn|<κ2

∣∣∣u(n)(h)

∣∣∣2

�
∑

|αn|<κ2

(1 + |αn|2)−1/2
∣∣∣u(n)(h)

∣∣∣2 � ‖u‖−1/2,�h ,

and ∑
|αn|>κ2

M̂nu(n)(h)u(n)(h) ≥ 0,
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which shows that

−Re〈T u, u〉�h ≥ −c‖u‖−1/2,�h ,

where c > 0 is a constant.
Using Lemma 3.1 and Lemma 3.3, we obtain

Rea�(u, u) = μ‖ J u‖2
0,� + (λ + μ)‖∇ · u‖2

0,� − ω2‖u‖2
0,� − Re 〈T u, u〉�h

≥ μ‖ J u‖2
0,� − ω2‖u‖2

0,� − c‖u‖−1/2,�h

≥ μ‖ J u‖2
0,� − ω2‖u‖2

0,� − cη−1‖u‖2
0,� − cη‖∂zu‖2

0,�

≥ (μ − cη)‖ J u‖2
0,� −

(
ω2 + cη−1

)
‖u‖2

0,�

≥
[
(μ − cη) −

(
ω2 + cη−1

)
h2

]
‖ J u‖2

0,�

≥
[
(μ − cη) − (ω2 + cη−1)h2

](
1 + h2

)−1 ‖u‖2
1,�,

where η > 0 is a constant. Taking η = μ/(2c), we have |a�(u, u)| � ‖u‖2
1,� for sufficiently small h. Hence the sesquilinear 

form is coercive and the proof is completed by using the Lax–Milgram lemma. �
4. Transformed field expansion

In this section, we introduce the transformed field expansion to obtain an analytic solution for the direct scattering 
problem.

4.1. Change of variables

Consider the change of variables:

x̃ = x, ỹ = y, z̃ = h

(
z − f

h − f

)
, (4.1)

which transforms the domain � into the rectangular box B . In particular, it maps � f to �0 = {x̃ ∈ R
3 : z̃ = 0, ρ̃ ∈ R} and 

maps �h still to �h . Using the chain rule, we have the differential rules:

∂x = ∂x̃ − f x̃

(
h − z̃

h − f

)
∂z̃,

∂y = ∂ ỹ − f ỹ

(
h − z̃

h − f

)
∂z̃,

∂z =
(

h

h − f

)
∂z̃.

Let ũ(x̃) = u(x). It can be verified that the new function ũ(x̃), after dropping the tilde for simplicity of notation, satisfies

3∑
j=1

Ci ju j = 0, (4.2)

where Ci j = C ji and

C11 = μ
{
(h − f )2(∂xx + ∂yy) +

[
h2 + (h − z)2|∇ f |2

]
∂zz

− 2(h − z)(h − f )( fx∂xz + f y∂yz) − (h − z)
[
(h − f )
 f + 2|∇ f |2

]
∂z

}
+ (λ + μ)

{
(h − f )2∂xx + (h − z)2 f 2

x ∂zz − 2(h − z)(h − f ) fx∂xz

− (h − z)
[
(h − f ) fxx + 2 f 2

x

]
∂z

}
+ ω2(h − f )2,

C12 = (λ + μ)
{
(h − f )2∂xy − (h − z)

[
(h − f )( f y∂xz + fx∂yz) − fx f y∂zz

+ ((h − f ) fxy + 2 fx f y)∂z
]}

,
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C13 = (λ + μ)
[
h(h − f )∂xz − h(h − z) fx∂zz + hfx∂z

]
,

C22 = μ
{
(h − f )2(∂xx + ∂yy) +

[
h2 + (h − z)2|∇ f |2

]
∂zz

− 2(h − z)(h − f )( fx∂xz + f y∂yz) − (h − z)
[
(h − f )
 f + 2|∇ f |2

]
∂z

}
+ (λ + μ)

{
(h − f )2∂yy + (h − z)2 f 2

y ∂zz − 2(h − z)(h − f ) f y∂yz

− (h − z)
[
(h − f ) f yy + 2 f 2

y

]
∂z

}
+ ω2(h − f )2,

C23 = (λ + μ)
[
h(h − f )∂yz − h(h − z) f y∂zz + hf y∂z

]
,

C33 = μ
{
(h − f )2(∂xx + ∂yy) +

[
h2 + (h − z)2|∇ f |2

]
∂zz

− 2(h − z)(h − f )( fx∂xz + f y∂yz) − (h − z)
[
(h − f )
 f + 2|∇ f |2

]
∂z

}
+ (λ + μ)h2∂zz + ω2(h − f )2.

In the new coordinates, the Dirichlet boundary condition (2.5) becomes

u = 0 on �0.

Note that T u = T ũ on �h . The transparent boundary condition (2.17) becomes

μh∂zu + (λ + μ)
[
(h − f )∂xu1 + (h − f )∂yu2 + h∂zu3

]
e3 = (h − f ) (T u + p) on �h. (4.3)

4.2. Power series expansion

Consider the power series expansion of ε:

u(r, ε) =
∞∑

m=0

εmum(r). (4.4)

Substituting (4.4) and (2.1) into (4.2)–(4.3) yields successive sequence of boundary value problems:⎧⎪⎪⎨
⎪⎪⎩

μ
um + (λ + μ)∇(∇ · um) + ω2um = qm in B,

um = 0 on �0,

Bum = T um + pm on �h,

(4.5)

where qm = (q1,m, q2,m, q3,m) with

qi,m = h−1
3∑

j=1

D
(1)
i j u j,m−1 + h−2

3∑
j=1

D
(2)
i j u j,m−2, i = 1,2,3, (4.6)

D (k)
i j = D (k)

ji for k = 1, 2 with

D
(1)
11 = μ

[
2g(∂xx + ∂yy) + 2(h − z)(gx∂xz + g y∂yz) + (h − z)
g∂z

]
+ (λ + μ)

[
2g∂xx + 2(h − z)gx∂xz + (h − z)gxx∂z

]+ 2ω2 g,

D
(1)
12 = (λ + μ)

[
2g∂xy + (h − z)(g y∂xz + gx∂yz + gxy∂z)

]
,

D
(1)
13 = (λ + μ)

[
g∂xz + (h − z)gx∂zz − gx∂z

]
,

D
(1)
22 = μ

[
2g(∂xx + ∂yy) + 2(h − z)(gx∂xz + g y∂yz) + (h − z)
g∂z

]
+ (λ + μ)

[
2g∂yy + 2(h − z)g y∂yz + (h − z)g yy∂z

]+ 2ω2 g,

D
(1)
23 = (λ + μ)

[
g∂yz + (h − z)g y∂zz − g y∂z

]
,

D
(1)
33 = μ

[
2g(∂xx + ∂yy) + 2(h − z)(gx∂xz + g y∂yz) + (h − z)
g∂z

]+ 2ω2 g,

and
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D
(2)
11 = − μ

[
g2(∂xx + ∂yy) + (h − z)2|∇g|2∂zz

+ 2(h − z)g(gx∂xz + g y∂yz) − (h − z)(2|∇g|2 − g
g)∂z

]
− (λ + μ)

[
g2∂xx + (h − z)2 g2

x ∂zz + 2(h − z)ggx∂xz − (h − z)(2g2
x − ggxx)∂z

]
− ω2 g2,

D
(2)
12 = − (λ + μ)

[
g2∂xy + (h − z)(gg y∂xz + ggx∂yz + gx g y∂zz + (ggxy − 2gx g y)∂z

]
,

D
(2)
13 = 0,

D
(2)
22 = − μ

[
g2(∂xx + ∂yy) + (h − z)2|∇g|2∂zz

+ 2(h − z)g(gx∂xz + g y∂yz) − (h − z)(2|∇g|2 − g
g)∂z

]
− (λ + μ)

[
g2∂yy + (h − z)2 g2

y∂zz + 2(h − z)gg y∂yz − (h − z)(2g2
y − gg yy)∂z

]
− ω2 g2,

D
(2)
23 = 0,

D
(2)
33 = − μ

[
g2(∂xx + ∂yy) + (h − z)2|∇g|2∂zz

+ 2(h − z)g(gx∂xz + g y∂yz) − (h − z)(2|∇g|2 − g
g)∂z

]
− ω2 g2,

and ⎧⎪⎨
⎪⎩

p0 = p = 2i(λ + 2μ)κ1e−iκ1he3,

p1 = h−1
[
(λ + μ)(∂xu1,0 + ∂yu2,0)e3 − (T u0 + p)

]
g,

pm = h−1
[
(λ + μ)(∂xu1,m−1 + ∂yu2,m−1)e3 − T um−1

]
g, m ≥ 2.

(4.7)

The variational problem of (4.5) is to find u ∈ H1
�0,p(�)3 such that

aB(um, v) = 〈
pm, v

〉
�h

− (
qm, v

)
B , ∀ v ∈ H1

�0,p(�)3, (4.8)

where the bilinear form aB(·, ·) is given in (3.2) except changing the domain � by the domain B .
Following the same proof in Theorem 3.6, we can show the well-posedness of the variational problem (4.8).

Theorem 4.1. The variational problem (4.8) has a unique solution um ∈ H1
�0,p(�)3 for sufficiently small h. The solution um satisfies 

the estimate

‖um‖1,B � ‖pm‖−1/2,�h + ‖qm‖−1,B .

Lemma 4.2. It holds the estimate

‖g v‖1/2,�h � K‖v‖1/2,�h , ∀ v ∈ H1/2(�h)
3.

Proof. Let v ∈ H1/2(�h). Using an equivalent norm of H1/2(�h), we have

‖gv‖2
1/2,�h

= ‖gv‖2
0,�h

+
∫
�h

∫
�h

|g(t)v(t) − g(s)v(s)|2
|t − s|2 dtds.

Applying the mean value theorem gives

‖gv‖2
0,�h

� K 2‖v‖2
0,�h

≤ K 2‖v‖2
1/2,�h

and ∫
�h

∫
�h

|g(t)v(t) − g(s)v(s)|2
|t − s|2 dtds

�
∫ ∫ |g(t) − g(s)|2

|t − s|2 |u(t)|2 dtds +
∫ ∫ |v(t) − v(s)|2

|t − s|2 |g(s)|2 dtds
�h �h �h �h
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� K 2
∫
�h

∫
�h

|v(t)|2 dtds + K 2
∫
�h

∫
�h

|v(t) − v(s)|2
|t − s|2 dtds

� K 2‖v‖2
0,�h

+ K 2‖v‖2
1/2,�h

� K 2‖v‖2
1/2,�h

.

The lemma follows from the above estimates and the definition of norm in H1/2(�h)3. �
Lemma 4.3. For any s ∈R, it holds the estimate

‖∂xu‖s,�h ≤ ‖u‖s+1,�h , ‖∂yu‖s,�h ≤ ‖u‖s+1,�h , ∀ u ∈ Hs+1(�h).

Proof. It is easy to note that

‖∂xu‖2
s,�h

= �1�2

∑
n∈Z2

(1 + |αn|2)s
∣∣∣(∂xu)(n)(h)

∣∣∣2

= �1�2

∑
n∈Z2

(1 + |αn|2)s|α1,n|2
∣∣∣u(n)(h)

∣∣∣2

≤ �1�2

∑
n∈Z2

(1 + |αn|2)s+1
∣∣∣u(n)(h)

∣∣∣2 = ‖u‖2
s+1,�h

.

The proof for ∂yu is similar and is omitted here. �
Lemma 4.4. It holds the estimate

‖pm‖−1/2,�h � Kh−1‖um−1‖1,B , m ≥ 2.

Proof. It follows from Lemma 3.2, 3.4, 4.2, and 4.3 that∣∣〈pm, v〉�h

∣∣� h−1
∣∣∣〈(∂xu1,m−1 + ∂yu2,m−1)e3, g v

〉
�h

∣∣∣+ h−1
∣∣〈T um−1, g v〉�h

∣∣
� h−1 (‖∂xu1,m−1 + ∂yu2,m−1‖−1/2,�h + ‖T um−1‖−1/2,�h

)‖g v‖1/2,�h

� Kh−1‖um−1‖1/2,�h ‖v‖1/2,�h ≤ Kh−1‖um−1‖1,B‖v‖1/2,�h .

Hence we have

‖pm‖−1/2,�h = sup
v∈H1/2(�h)3

∣∣〈pm, v〉�h

∣∣
‖v‖1/2,�h

� Kh−1‖um−1‖1,B ,

which completes the proof. �
Lemma 4.5. It holds the estimate

‖qm‖−1,B �
(

Kh−1
)

‖um−1‖1,B +
(

Kh−1
)2 ‖um−2‖1,B , m ≥ 2.

Proof. Using the integration by parts and the periodic boundary condition, we have for any u, v ∈ H1
�0,p(B) that(

D
(1)
11 u, v

)
B

= μ
[− 2 (∂xu, ∂x(gv))� − 2

(
∂yu, ∂y(gv)

)
B − 2

(
∂zu, (h − z)(∂x(gx v) + ∂y(g y v))

)
B

+ (∂zu, (h − z)
gv)B

]
+ (λ + μ)

[− 2 (∂xu, ∂x(gv))B − 2 (∂zu, (h − z)∂x(gx v))B + (∂zu, (h − z)gxx v)B

]
+ 2ω2(u, gv)B .

It is easy to verify that∣∣∣(D
(1)
11 u, v

)
B

∣∣∣� K‖u‖1,B‖v‖1,B .

Similarly we can show that∣∣∣(D
(1)
i j u, v

)
B

∣∣∣� K‖u‖1,B‖v‖1,B ,

∣∣∣(D
(2)
i j u, v

)
B

∣∣∣� K 2‖u‖1,B‖v‖1,B , i, j = 1,2,3.
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It follows from (4.6) and the above estimates that

|(qm, v)B |�
[(

Kh−1
)

‖um−1‖1,B +
(

Kh−1
)2 ‖um−2‖1,B

]
‖v‖1,B , ∀ v ∈ H1

�0,p(B)3.

The proof is completed by using the definition of the norm ‖ · ‖−1,B . �
Theorem 4.6. Let um be the solution of the variational problem (4.8). It satisfies

‖um‖1,B ≤
(

cKh−1
)m

, m ≥ 0.

Proof. It follows from Theorem 4.1, Lemma 4.4, and Lemma 4.5 that

‖um‖1,B ≤ c̃

[(
Kh−1

)
‖um−1‖1,B +

(
Kh−1

)2 ‖um−2‖1,B

]
,

where c̃ is a constant. Consider the recurrence relation

am ≤ c̃
(

tam−1 + t2am−2

)
, m ≥ 2,

where c̃, t , a0, and a1 are nonnegative numbers. It suffices to show that the above recurrence relation implies am ≤ (ct)m

for some constant c > 0 depending only on c̃. By mathematical induction, it requires to find c > 0 such that

c̃
[
t(ct)m−1 + t2(ct)m−2

]
≤ (ct)m, m ≥ 2,

which leads to the condition c̃(1 + c) ≤ c2. The proof is completed by taking any c such that

c ≥ 1

2
(c̃ + (c̃2 + 4c̃)1/2). �

Theorem 4.7. The power series expansion (4.4) converges strongly if cKεh−1 < 1.

Proof. It follows from Theorem 4.6 that we have∥∥εmum
∥∥

1,B ≤
(

cKεh−1
)m

, m ≥ 2.

The proof is completed by applying the dominated convergence theorem. �
5. Inverse problem

First we show a uniqueness result for the inverse problem if the deformation parameter ε is sufficiently small.

Lemma 5.1. Let G ⊂R
3 be a bounded domain with Lipschitz boundary ∂G. The boundary value problem⎧⎨

⎩
μ
u + (λ + μ)∇∇ · u + ω2u = 0 in G,

u = 0 on ∂G

has only the trivial solution if ω dep(G) < √
μ, where

dep(G) = sup{|z1 − z2| : r1, r2 ∈ G}
denotes the depth of G along the z-axis.

Proof. Let u �= 0 be a solution to the boundary value problem. Multiplying the equation by ū and applying integration by 
parts, we obtain

ω2‖u‖2
0,G = μ‖∇u‖2

0,G + (λ + μ)‖div u‖2
0,G ≥ μ‖∇u‖2

0,G .

Following the proof of Lemma 3.1, we can show

‖u‖0,G ≤ dep(G)‖∇u‖0,G .

Combining the above inequalities yields ωdep(G) ≥ √
μ, which is a contradiction. �
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Theorem 5.2. Let f j = εg j , g j ∈ Ck(R2), j = 1, 2 be two periodic functions with the same period � and � j = D × ( f j, h). Let u j be 
the unique solution of the variational problem (3.1) in � j . If ε is sufficiently small and u1 = u2 on �h, then f1 = f2 .

Proof. Let S j = {r ∈ R
3 : z = f j(ρ), ρ ∈ D}, j = 1, 2 and � = �1 ∩ �2. If f1 �= f2, then �1 \ � or �2 \ � is nonempty. 

Without loss of generality, let G = �1 \ � be nonempty and let ∂G = C1 ∪ C2 where C j ⊂ S j , j = 1, 2.
Let u = u1 − u2 and let ϕ1, ψ1, ϕ2, ψ2, ϕ , ψ be the scalar and vector potential functions for u1, u2, u respectively. Since 

u consists of bounded and outgoing waves and u = 0 on �h it follows from (2.11) that ϕ = ψ = 0 on �h . Using the Rayleigh 
expansions (2.9) yields ∂zϕ = ∂zψ = 0 on �h and ϕ = ψ = 0 in the domain above �h . It follows from unique continuation 
that ϕ = ψ = 0 in �̄. Hence u = 0 in �̄, and in particular u = 0 on C2. Since u2 = 0 on C2 we have u1 = u − u2 = 0 on C2. 
Since it also holds u1 = 0 on C1, we have u1 satisfy the boundary value problem in Lemma 5.1. If ε is sufficiently small, 
then we have dep(G) ≤ ε max{‖g1‖∞, ‖g2‖∞} < ω dep(G)

√
μ, which implies u1 = 0 in G by Lemma 5.1. It follows from the 

Helmholtz decomposition and unique continuation that u1 = 0 in �1, which is a contradiction with the non-homogeneous 
transparent boundary condition (2.17) for u1 on �h . �
5.1. Analytical solutions

In this section we derive analytical solutions for um in the power series solution (4.4), particularly for the leading term 
u0 and the linear term u1, which serve as the basis for the reconstruction formula.

Combining the Dirichlet boundary condition (2.5) and the Helmholtz decomposition (2.6) yields the coupled boundary 
condition

∂z

[
ϕ

ψ

]
=

⎡
⎢⎢⎢⎢⎣

0 ∂y −∂x 0

−∂y 0 0 ∂x

∂x 0 0 ∂y

0 −∂x −∂y 0

⎤
⎥⎥⎥⎥⎦
[

ϕ

ψ

]
on � f . (5.1)

Denote by ϕin, ψ in the potential functions for the incident field uin defined in (2.3). It is easy to verify from the 
Helmholtz decomposition (2.6) that

ϕin = (iκ1)
−1e−iκ1 z, ψ in = 0.

Using the Rayleigh expansions (2.9), we obtain the transparent boundary conditions

∂zϕ = T1ϕ + p, ∂zψ = T2ψ on �h, (5.2)

where p = −2e−iκ1h and

T j v =
∑

n∈Z2

iβ j,n v(n)eiαn·ρ.

Under the change of variables (4.1), the Helmholtz equations (2.7) become

C1ϕ = 0, C2ψ = 0 in B, (5.3)

where

C j = (h − f )2(∂xx + ∂yy) +
[

h2 + (h − z)2|∇ f |2
]
∂zz

− 2(h − z)(h − f )( fx∂xz + f y∂yz) − (h − z)
[
(h − f )
 f + 2|∇ f |2

]
∂z + κ2

j (h − f )2.

The boundary condition (5.1) becomes⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h∂zϕ = −[
(h − f )∂x − hfx∂z

]
ψ2 + [

(h − f )∂y − hf y∂z
]
ψ1,

h∂zψ1 = [
(h − f )∂x − hfx∂z

]
ψ3 − [

(h − f )∂y − hf y∂z
]
ϕ,

h∂zψ2 = [
(h − f )∂x − hfx∂z

]
ϕ + [

(h − f )∂y − hf y∂z
]
ψ3,

h∂zψ3 = −[
(h − f )∂x − hfx∂z

]
ψ1 − [

(h − f )∂y − hf y∂z
]
ψ2,

on �0. (5.4)

The boundary condition (5.2) becomes

h∂zϕ = (h − f ) (T1ϕ + p) , h∂zψ = (h − f )T2ψ on �h. (5.5)
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It can be verified that the power series expansion (4.4) is equivalent to the following two power series expansions:

ϕ(x, ε) =
∞∑

m=0

εmϕm(x), ψ(x, ε) =
∞∑

m=0

εmψm(x).

Substituting the above expansions and (2.1) into (5.3), we obtain the recurrence equations(

 + κ2

p

)
ϕm = vm,

(

 + κ2

s

)
ψm = wm, (5.6)

where⎧⎨
⎩

vm = h−1D
(1)
1 ϕm−1 + h−2D

(2)
1 ϕm−2,

wm = h−1D
(1)
2 ψm−1 + h−2D

(2)
2 ψm−2,

(5.7)

and

D
(1)
j = 2g(∂xx + ∂yy) + 2(h − z)(gx∂xz + g y∂yz) + (h − z)
g∂z + 2κ2

j g,

D
(2)
j = − g2(∂xx + ∂yy) − (h − z)2|∇g|2∂zz + 2(h − z)g(gx∂xz + g y∂yz)

− (h − z)
(

g
g − 2|∇g|2
)

∂z − κ2
j g2.

Similarly the boundary condition (5.4) yields

∂z

[
ϕm

ψm

]
=

⎡
⎢⎢⎢⎢⎣

0 ∂y −∂x 0

−∂y 0 0 ∂x

∂x 0 0 ∂y

0 −∂x −∂y 0

⎤
⎥⎥⎥⎥⎦
[

ϕm

ψm

]
+

[
rm

sm

]
on �0,

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

rm = (
h−1 g∂x + gx∂z

)
ψ2,m−1 − (

h−1 g∂y + g y∂z
)
ψ1,m−1,

s1,m = − (
h−1 g∂x + gx∂z

)
ψ3,m−1 + (

h−1 g∂y + g y∂z
)
ϕm−1,

s2,m = − (
h−1 g∂x + gx∂z

)
ϕm−1 − (

h−1 g∂y + g y∂z
)
ψ3,m−1,

s3,m = (
h−1 g∂x + gx∂z

)
ψ1,m−1 + (

h−1 g∂y + g y∂z
)
ψ2,m−1,

(5.8)

and the boundary condition (5.5) yields

∂zϕm = T1ϕm + pm, ∂zψm = T2ψm + qm, (5.9)

where⎧⎨
⎩

p0 = ρ, p1 = −h−1 g (T1ϕ0 + p) ,

pm = −h−1 gT1ϕm−1, m ≥ 2,
qm = −h−1 gT2ψm−1, m ≥ 0. (5.10)

Applying the Fourier series expansions to the boundary value problem (5.6)–(5.9) yields the two-point boundary value 
problem:

d2

dz2

[
ϕ

(n)
m

ψ
(n)
m

]
+ diag

(
β2

1,n, β
2
2,n, β

2
2,n, β

2
2,n

)[ϕ
(n)
m

ψ
(n)
m

]
=

[
v(n)

m

w(n)
m

]
, 0 < z < h,

d

dz

[
ϕ

(n)
m

ψ
(n)
m

]
= i

⎡
⎢⎢⎢⎢⎣

0 α2,n −α1,n 0

−α2,n 0 0 α1,n

α1,n 0 0 α2,n

0 −α1,n −α2,n 0

⎤
⎥⎥⎥⎥⎦
[

ϕ
(n)
m

ψ
(n)
m

]
+

[
r(n)

m

s(n)
m

]
, z = 0,

d

dz

[
ϕ

(n)
m

ψ
(n)

]
− diag

(
β1,n, β2,n, β2,n, β2,n

)[ϕ
(n)
m

ψ
(n)

]
=

[
p(n)

m

q(n)
m

]
, z = h.
m m
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Solving the above coupled system, we obtain the analytic solution

[
ϕ

(n)
m (z)

ψ
(n)
m (z)

]
=

h∫
0

diag (K1, K2, K2, K2) (z, z′)
[

v(n)
m (z′)

w(n)
m (z′)

]
dz′

+ diag (K1, K2, K2, K2) (z,0)

⎛
⎜⎜⎜⎜⎝i

⎡
⎢⎢⎢⎢⎣

0 α2,n −α1,n 0

−α2,n 0 0 α1,n

α1,n 0 0 α2,n

0 −α1,n −α2,n 0

⎤
⎥⎥⎥⎥⎦
[

ϕ
(n)
m (0)

ψ
(n)
m (0)

]
+

[
r(n)

m

s(n)
m

]⎞⎟⎟⎟⎟⎠

− diag (K1, K2, K2, K2) (z,h)

[
p(n)

m

q(n)
m

]
, (5.11)

where the integral kernel

K j(z, z′) = 1

2iβ j,n

⎧⎪⎨
⎪⎩

eiβ j,n z
(

eiβ j,n z′ + e−iβ j,n z′)
, z′ < z,

eiβ j,n z′ (
eiβ j,n z + e−iβ j,n z

)
, z′ > z,

.

Evaluating (5.11) at z = 0 yields the linear system of algebraic equations for ϕ(n)
m (0) and ψ (n)

m :⎡
⎢⎢⎢⎢⎣

1 −α2,n/β1,n α1,n/β1,n 0

α2,n/β2,n 1 0 −α1,n/β2,n

−α1,n/β2,n 0 1 −α2,n/β2,n

0 α1,n/β2,n α2,n/β2,n 1

⎤
⎥⎥⎥⎥⎦
[

ϕ
(n)
m (0)

ψ
(n)
m (0)

]
=

[
a(n)

m

b(n)
m ,

]
(5.12)

where⎧⎪⎨
⎪⎩

a(n)
m = (

iβ1,n
)−1

[∫ h
0 eiβ1,n z′

v(n)
m (z′)dz′ + r(n)

m − eiβ1,nh p(n)
m

]
,

b(n)
m = (

iβ2,n
)−1

[∫ h
0 eiβ2,n z′

w(n)
m (z′)dz′ + s(n)

m − eiβ2,nhq(n)
m

]
.

(5.13)

For the leading term, i.e., m = 0, it follows from (5.7), (5.8), and (5.10) that

v0 = w0 = r0 = s0 = q0 = 0, p0 = p = −2e−iκ1h,

and their Fourier coefficients

v(n)
0 = w(n)

0 = r(n)
0 = s(n)

0 = q(n)
0 = 0, p(n)

0 = −2e−iκ1hδ0n, (5.14)

where δ is the Kronecker delta. Substituting the above results into (5.13) yields

a(n)
0 = 2(iκ1)

−1δ0n, b(n)
0 = 0. (5.15)

Substituting (5.15) into (5.12) and solving for ϕ(n)
0 (0), ψ (n)

0 (0), we obtain

ϕ
(n)
0 (0) = 2(iκ1)

−1δ0n, ψ
(n)
0 (0) = 0. (5.16)

Substituting (5.14) and (5.16) into (5.11), we obtain

ϕ
(n)
0 (z) = 2(iκ1)

−1 cos(κ1z)δ0n, ψ
(n)
0 = 0.

Hence the leading terms are given by

ϕ0 = 2(iκ1)
−1 cos(κ1z), ψ0 = 0.

Using the Helmholtz decomposition (2.6), we obtain the leading term for the total field

u0 = 2i sin(κ1z)e3.
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For the linear terms, i.e., m = 1, it follows from (5.7), (5.8) and (5.10) that

v1 = h−1 [2i(h − z) sin(κ1z)(
g) − 4iκ1 cos(κ1z)g] ,

p1 = −h−12i sin(κ1h)g, w1 = r1 = s1 = q1 = 0,

and their Fourier coefficients⎧⎨
⎩

v(n)
1 = −2ih−1

[|αn|2(h − z) sin(κ1z) + 2κ1 cos(κ1z)
]

g(n),

p(n)
1 = −2ih−1 sin(κ1h)g(n), w(n)

1 = r(n)
1 = s(n)

1 = q(n)
1 = 0.

(5.17)

Substituting (5.17) into (5.13) yields

a(n)
1 = (

iβ1,n
)−1

⎡
⎣ h∫

0

eiβ1,n z′
v(n)

1 (z′)dz′ − eiβ1,nh p(n)
1

⎤
⎦ g(n), b(n)

1 = 0.

After a tedious but straightforward simplification, we find

a(n)
1 = −2κ1

β1,n
g(n), b(n)

1 = 0. (5.18)

Substituting (5.18) into (5.12) yields[
ϕ

(n)
1 (0)

ψ
(n)
1 (0)

]
= −2κ1γ

−1
n (β2,n,−α2,n,α1,n,0)�g(n). (5.19)

Substituting (5.17) and (5.19) into (5.11) yields

[
ϕ

(n)
1 (z)

ψ
(n)
1 (z)

]
=

⎡
⎣ h∫

0

K1(z, z′)v(n)
1 (z′)dz′

⎤
⎦ e1 − eiβ1,nh

2iβ1,n

(
eiβ1,n z + e−iβ1,n z

)
p(n)

1 e1

+ 2κ1

γn

( |αn|2
β1,n

eiβ1,n z,α2,neiβ2,n z,−α1,neiβ2,n z,0

)�
g(n) (5.20)

Evaluating (5.20) at z = h and simplifying, we obtain

[
ϕ

(n)
1 (h)

ψ
(n)
1 (h)

]
= eiβ1,nh

2iβ1,n

⎡
⎣ h∫

0

(
eiβ1,n z + e−iβ1,n z

)
v(n)

1 (z)dz −
(

eiβ1,nh + e−iβ1,nh
)

p(n)
1

⎤
⎦ e1

+ 2κ1

γn

( |αn|2
β1,n

eiβ1,nh,α2,neiβ2,nh,−α1,neiβ2,nh,0

)�
g(n).

Simplifying the integral yields[
ϕ

(n)
1 (h)

ψ
(n)
1 (h)

]
= 2κ1

γn
(−β2,neiβ1,nh,α2,neiβ2,nh,−α1,neiβ2,nh,0)�g(n).

Using (2.11), we obtain the linear term of the total field at �h :

u(n)
1 (h) = 2iκ1

γn

⎡
⎢⎢⎢⎣

α1,nβ2,n
(
eiβ2,nh − eiβ1,nh

)
α2,nβ2,n

(
eiβ2,nh − eiβ1,nh

)
−|αn|2eiβ2,nh − β1,nβ2,neiβ1,nh

⎤
⎥⎥⎥⎦ g(n). (5.21)

It is easy to note that each of the three equations in (5.21) may be used to solve for g(n) but they are not invertible for all 
n ∈ Z

2. A simple observation gives

(α1,n,α2,n, β2,n) · u(n)
1 (h) = −2iκ1β2,neiβ1,nh g(n), (5.22)

which is invertible for all n ∈ Z
2 and is the key result for our reconstruction formula.
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5.2. Reconstruction formula and error estimate

Recalling the power series (4.4), we have

u = u0 + εu1 + r, (5.23)

where the remainder

r =
∞∑

m=2

εmum.

Combining (5.22)–(5.23) and recalling (2.1), we obtain

f (n) = ie−iβ1,nh

2κ1β2,n
(α1,n,α2,n, β2,n) · (u − u0 − r). (5.24)

Dropping the remainder r linearizes the inverse problem and yields the reconstruction formula for the Fourier coefficient 
of f :

f (n)
ε = ie−iβ1,nh

2κ1β2,n
(α1,n,α2,n, β2,n) · (u(n)(h) − u(n)

0 (h)).

If the measured data contains noise with level δ > 0, then the reconstruction formula for the Fourier coefficients of f is 
given by

f (n)
ε,δ = ie−iβ1,nh

2κ1β2,n
(α1,n,α2,n, β2,n) · (u(n)

δ (h) − u(n)
0 (h)), (5.25)

where uδ denotes the noisy measured data such that

‖uδ − u‖0,�h ≤ δ. (5.26)

Finally the reconstruction formula for f is given by

fε,δ(ρ) =
∑

|αn|∞≤κc

f (n)
ε,δ eiαn·ρ, (5.27)

where κc > 0 is the spectral cut-off frequency and plays the role of the regularization parameter for the linearized inverse 
problem.

Lemma 5.3. If g ∈ Ck(R) is a periodic function with periodicity � and K > 0 is defined in (2.2), then

∑
|αn|∞>κc

∣∣∣g(n)
∣∣∣2 � K 2κ−2k+2

c .

Proof. It follows from integration by parts that we have for any k1 ∈ N0, k2 ∈ N0, k1 + k2 ≤ k and n �= 0

g(n) = (�1�2)
−1

∫
R

g(ρ)e−iαn ·ρ dρ

= (�1�2)
−1 (iα1,n

)−k1
(
iα2,n

)−k2

�2∫
0

�1∫
0

∂
k1
x ∂

k2
y g(x, y)e−i(α1,nx+α2,n y) dxdy.

Hence ∣∣∣g(n)
∣∣∣ ≤ K min{|α1,n|−k1 |α2,n|−k2 : k1 ∈N0,k2 ∈N0,k1 + k2 ≤ k}

= K

⎧⎨
⎩

|α1,n|−k if |α1,n| ≥ |α2,n|,
|α2,n|−k if |α2,n| ≥ |α1,n|.

Using the integral test, we get
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∑
|αn|∞>κc

∣∣∣g(n)
∣∣∣2 ≤

∑
|αn|>κc

∣∣∣g(n)
∣∣∣2 � K 2

⎛
⎜⎝∫

D1

|x|−2k dxdy +
∫
D2

|y|−2k dxdy

⎞
⎟⎠ ,

where

D1 = {(x, y) : (x2 + y2)1/2 ≥ κc, |x| ≥ |y|}, D2 = {(x, y) : (x2 + y2)1/2 ≥ κc, |y| ≥ |x|}.
A simple calculation gives

∫
D1

|x|−2k dxdy = 2

π/4∫
−π/4

∞∫
κc

r−2k+1(cos θ)−2k drdθ �
∞∫

κc

r−2k+1 dr � κ−2k+2
c .

Similarly we have∫
D2

|y|−2k dxdy � κ−2k+2
c ,

which completes the proof. �
Lemma 5.4. It holds the estimate∣∣∣∣ αn

β2,n

∣∣∣∣� 1, ∀ n ∈ Z
2.

Proof. It follows from (2.10) that∣∣∣∣ αn

β2,n

∣∣∣∣
2

= |αn|2∣∣κ2
2 − |αn|2

∣∣ ,
where κ2

s �= |αn| for all n ∈ Z
2 by assumption. Consider the function

ξ(t) = t∣∣κ2
2 − t

∣∣ , t ≥ 0, t �= κ2
2 .

It is easy to see ξ(t) is increasing for 0 < t < κ2
2 and decreasing for t > κ2

2 . Hence there exists an n∗ ∈ Z
2 such that∣∣∣∣ αn

β2,n

∣∣∣∣
2

≤ |αn∗ |2∣∣κ2
2 − |αn∗ |2∣∣ ,

which completes the proof. �
Theorem 5.5. Let f be the exact scattering surface function and fε,δ be the reconstructed scattering function using (5.27). It holds the 
error estimate∥∥ fε,δ − f

∥∥
0,�h

�
∣∣∣∣eh

(
κ2

c −κ2
1

)1/2
∣∣∣∣
[
δ +

(
Kεh−1

)2
]

+ Kεκ−k+1
c . (5.28)

Proof. It follows from (5.24), (5.25) and (5.27) that∥∥ fε,δ − f
∣∣2
0,�h

= �1�2(E1 + E2 + E3), (5.29)

where

E1 =
∑

|αn|∞≤κc

∣∣∣∣∣ ie−iβ1,nh

2κ1β2,n
(α1,n,α2,n, β2,n) · (u(n)

δ (h) − u(n)(h))

∣∣∣∣∣
2

,

E2 =
∑

|αn|∞≤κc

∣∣∣∣∣ ie−iβ1,nh

2κ1β2,n
(α1,n,α2,n, β2,n) · ·r(n)(h)

∣∣∣∣∣
2

,

E3 =
∑

|αn|∞>κc

∣∣∣ f (n)
∣∣∣2 .
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It is easy to verify∣∣∣e−iβ1,nh
∣∣∣ ≤

∣∣∣∣eh
(
κ2

c −κ2
1

)1/2
∣∣∣∣ for |αn|∞ ≤ κc. (5.30)

Combining (5.26), Lemma 5.4, and (5.30) yields

E1/2
1 �

∣∣∣∣eh
(
κ2

c −κ2
1

)1/2
∣∣∣∣ δ. (5.31)

It follows from Lemma 3.2 and Theorem 4.6 that

‖r‖0,�h =
∥∥∥∥∥

∞∑
m=2

εmum

∥∥∥∥∥
0,�h

≤
∞∑

m=2

εm‖um‖0,�h

≤
∞∑

m=2

εm‖um‖1/2,�h ≤
∞∑

m=2

εm‖um‖1,B �
(

Kεh−1
)2

. (5.32)

Combining Lemma 5.4, (5.30) and (5.32) yields

E1/2
2 �

∣∣∣∣eh
(
κ2

c −κ2
1

)1/2
∣∣∣∣ (Kεh−1

)2
. (5.33)

It follows from Lemma 5.3 that

E1/2
3 ≤ Kεκ−k+1

c . (5.34)

Combining (5.29), (5.31), (5.33), and (5.34) completes the proof. �
The error estimate (5.28) has an explicit dependence on h, ε, δ, κc, K and an implicit dependence on �1, �2, ω, λ, 

μ, k. Among these parameters, ε, δ, K , �1, �2, λ, μ, k are intrinsic and not controllable by the user, but h, κc are user 
specified parameters that can be tuned in practice. The error estimate consists of three parts: the measurement noise, the 
linearization error, and the regularization error due to the spectral cut-off. It provides an insight on the trade-off among 
resolution, accuracy, and stability of the solution for the inverse problem.

5.3. Numerical experiments

In this section, we show numerical examples to test the proposed method and investigate the effect of parameters on 
the reconstructed surface. For a given surface function f , the displacement field of the total wave u is obtained by solving 
the direct scattering problem using the finite element method with the perfectly matched layer (PML) technique, which 
is implemented by FreeFem++ [27]. The finite element solution is interpolated at a 513 × 513 uniform grid on �h and a 
random noise of relative magnitude δ is added to the data:

uδ(xi, y j,h) = u(xi, y j,h)(1 + δri j),

where ri j are independent random numbers drawn from the uniform distribution in [−1, 1]. The Fourier coefficients u(n)
δ (h)

are computed via the fast Fourier transform (FFT). In all of the following experiments, we take ω = π , λ = 2.0, μ = 1.0, 
�1 = �2 = 1.0. Hence the pressure wavelength is 4 and the shear wavelength is 2. The resonance does not occur for this 
set of parameters since β j,n �= 0 for j = 1, 2 and for all n ∈ Z

2.
In the first example, the profile function is given by f (x, y) = εg(x, y), where

g(x, y) = 2σ (5(x − 0.5),5(y − 0.5)) sin(πx) sin(π y),

σ (x, y) = 0.3(1 − x)2e−x2−(y+1)2 − (0.2x − x3 − y5)e−x2−y2 − 0.03e−(x+1)2−y2
.

The graph of g is shown in Fig. 1.
First we investigate the effect of the deformation parameter ε. Fig. 2 shows the reconstructed surface function with 

h = 0.1, δ = 0 and ε = 0.08, 0.04 respectively. The cut-off frequency is taken as κc = 2, 3 respectively. Observe that the 
subwavelength features of the surface are well reconstructed. A better reconstruction is obtained for a smaller value of ε, 
which is consistent with the error estimate. Fig. 3 shows the reconstructed surface function with h = 0.1, ε = 0.01 and 
δ = 0, 10% respectively. The cut-off frequency is taken as κc = 3. It is clear to note that our method is very robust with 
respect to the measurement noise. Fig. 4 shows the reconstructed profile function with ε = 0.01, δ = 10% and h = 0.1, 0.02
respectively. The cut-off frequency is taken as κc = 3, 5 respectively. Clearly, a smaller measurement distance yields a better 
resolution.



P. Li et al. / Journal of Computational Physics 324 (2016) 1–23 21
Fig. 1. (Color online.) Graph of the exact scattering surface.

Fig. 2. (Color online.) The reconstructed surface function. (a) ε = 0.08; (b) ε = 0.04.

Fig. 3. (Color online.) The reconstructed surface function. (a) δ = 0; (b) δ = 10%.

In the second example, we consider a non-smooth function f (x, y) = εg(x, y), where

g(x, y) = χ[0.6,0.8]×[0.2,0.4] + χ[0.2,0.4]×[0.6,0.8],
and the graph of g is shown in Fig. 5. This example shows that our method works well for non-smooth surface functions, 
although the mathematical justification requires smooth functions. Fig. 6 shows the reconstructed surface function with 
ε = 0.01, h = 0.02, δ = 10% and κc = 6, 7 respectively. It displays a subwavelength resolution and also the well-known Gibbs 
phenomenon which can be greatly reduced by applying a suitable low-pass filter [26] in practice.
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Fig. 4. (Color online.) The reconstructed surface function. (a) h = 0.1; (b) h = 0.02.

Fig. 5. (Color online.) Graph of the exact scattering surface.

Fig. 6. (Color online.) The reconstructed surface function. (a) κc = 6; (b) κc = 7.

6. Conclusion

We presented a novel method for solving the inverse elastic scattering problem for biperiodic surfaces in three di-
mensions. The scattering surface was assumed to be a small and smooth perturbation of a rigid planar surface. Using the 
Helmholtz decomposition and the transformed field expansion, we obtained power series expansions for both the scalar 
and vector potential functions. The terms of the power series were shown to satisfy a recursive system of boundary value 
problems and were solved in closed forms. By keeping only the leading and linear terms, which essentially linearized the 
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inverse problem, we deduced an explicit and simple relation between the Fourier coefficients of the surface function and 
the measured displacement field. The surface function was reconstructed by the truncated Fourier series expansion.

By deriving a transparent boundary condition and using the variational formulation, we showed the well-posedness of 
the solution for the direct problem. We also showed the well-posedness of the solution for the recursive boundary value 
problems and the convergence of the power series expansion. We proved the solution of the inverse scattering problem is 
unique for a sufficiently small deformation parameter. We derived an error estimate of the reconstructed surface scattering. 
The error estimate provided a clear dependence on all the physical parameters and shed a light on the trade-off among the 
accuracy, stability and resolution for the inverse problem. The method requires only a single incident field. It is simple and 
is efficiently implemented by using the fast Fourier transform. Numerical examples show that the method is effective and 
robust to reconstruct both smooth and non-smooth biperiodic surfaces with subwavelength resolution.

Although the method is derived for the Dirichlet boundary condition in this paper, it can be readily extended to solve 
the inverse elastic surface scattering problems for other boundary conditions. We may also consider extending the method 
to closed surfaces such as obstacles and cavities. More challenging problems in this direction include the cases where the 
scattering surface is random or contains multi-scale features, and when the measured data is phaseless or limited aperture. 
We hope to address some of those problems in future work.
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