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The goal of this work is to study the electromagnetic scattering problem of time-domain
Maxwell’s equations in an unbounded structure. An exact transparent boundary condi-
tion is developed to reformulate the scattering problem into an initial-boundary value
problem in an infinite rectangular slab. The well-posedness and stability are established
for the reduced problem. Our proof is based on the method of energy, the Lax–Milgram

lemma, and the inversion theorem of the Laplace transform. Moreover, a priori esti-
mates with explicit dependence on the time are achieved for the electric field by directly
studying the time-domain Maxwell equations.
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1. Introduction

Consider the propagation of an electromagnetic wave which is excited by electric
current density and is scattered by infinite rough surfaces. An infinite rough surface
is a non-local perturbation of an infinite plane surface such that the whole surface
lies within a finite distance of the original plane. The goal of this paper is to examine
the electromagnetic scattering problem of time-domain Maxwell’s equation in such

∗Corresponding author

1843

http://dx.doi.org/10.1142/S0218202517500336


July 31, 2017 13:46 WSPC/103-M3AS 1750033

1844 Y. Gao & P. Li

an unbounded structure. The problem studied in this work falls into the class of
rough surface scattering problems, which arise from various applications such as
modeling acoustic and electromagnetic wave propagation over outdoor ground and
sea surfaces, optical scattering from the surface of materials in near-field optics
or nano-optics, detection of underwater mines, especially those buried in soft sed-
iments. These problems are widely studied in the literature and various methods
have been investigated.22,24,27,30,10,11

The infinite rough surfaces scattering problems are quite challenging due to
unbounded domains. The usual Sommerfeld (for acoustic waves) or Silver–Müller
(for electromagnetic waves) radiation condition is not valid anymore.31,3 The Fred-
holm alternative theorem is not applicable due to the lack of compactness result.
We refer to Refs. 4, 5, 6, 18 and 16 for some mathematical studies on the two-
dimensional Helmholtz equation. The rigorous mathematical analysis is very rare
for the three-dimensional Maxwell equations. In Ref. 20, the electromagnetic scat-
tering by unbounded rough surfaces was considered by assuming that the medium
was lossy in the entire space. The well-posedness was established by a direct appli-
cation of the Lax–Milgram theorem after showing that the sesquilinear form was
coercive. In Ref. 14, the authors considered the electromagnetic scattering by an
unbounded dielectric medium which was deposited on a perfectly electrically con-
ducting plate. Based on the limiting absorption principle, the problem was shown to
have a unique weak solution from a prior estimates. The magnetic permeability was
assumed to be a constant and the electric current was assumed to be divergence-
free. The assumption was also restrictive for the dielectric permittivity. In Ref. 21,
the generalized Lax–Milgram theorem was adopted to establish the well-posedness
for the same problem as that in Ref. 14. Although all the assumptions were relaxed,
such as the magnetic permeability was allowed to be a variable function and the
divergence-free condition was removed for the electric current, the assumption was
still quite restrictive for the dielectric permittivity. Despite the tremendous effort
made so far, it is still unclear what the least restrictive conditions are for the dielec-
tric permittivity and the magnetic permeability to assure the well-posedness of the
time-harmonic Maxwell equations in unbounded structures. Ultimately, one wishes
to answer the following question: Is the scattering problem in unbounded structures
well-posed for the real and dielectric permittivity and magnetic permeability?

In this work, an initial attempt is made to study the time-domain electromag-
netic scattering by infinite rough surfaces for the most difficult case of the time-
harmonic counterpart: the dielectric permittivity and the magnetic permeability are
assumed to be real and bounded measurable functions. An exact time-domain trans-
parent boundary condition (TBC) is developed to reduce the scattering problem
into an initial-boundary value problem in an infinite rectangular slab. To show
the well-posedness, we split the reduced problem into two sub-problems: one has
homogeneous initial conditions and another has a homogeneous boundary condi-
tion. Hence two auxiliary scattering problems need to be considered: one is the
time-harmonic Maxwell equations with a complex wavenumber and another is
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the time-domain Maxwell equations with perfectly electrically conducting (PEC)
boundary condition. Based on the stability results for the auxiliary problems, the
reduced problem is shown to have a unique solution. Our proofs rely on the Laplace
transform, the Lax–Milgram theorem, and the Parseval identity between the fre-
quency domain and the time-domain. Moreover, a priori estimates, featuring an
explicit dependence on the time and a minimum regularity requirement of the ini-
tial conditions and the source term, are established for the electric field by studying
directly the time-domain Maxwell equations.

The time-domain scattering problems have recently attracted considerable
attention due to their capability of capturing wide-band signals and modeling more
general material and nonlinearity,7,15,17,23,29 which motivates us to tune our focus
from seeking the best possible conditions for those physical parameters to the time-
domain problem. Comparing with the time-harmonic problems, the time-domain
problems are less studied due to the additional challenge of the temporal depen-
dence. The analysis can be found in Refs. 28 and 8 for the time-domain acoustic and
electromagnetic obstacle scattering problems. We refer to Ref. 19 for the analysis
of the time-dependent electromagnetic scattering from a three-dimensional open
cavity. Numerical solutions can be found in Refs. 12 and 26 for the time-dependent
wave scattering by periodic structures.

The paper is organized as follows. In Sec. 2, the model problem is introduced and
reduced equivalently into an initial-boundary value problem by using a TBC. Some
regularity properties of the trace operator are presented. In Sec. 3, two auxiliary
problems of Maxwell’s equations are discussed to pave the way for the analysis of
the main result in Sec. 4. Section 4 is devoted to the well-posedness and stability of
the reduced time-domain Maxwell equations and a priori estimates of the solution.
The paper is concluded with some general remarks in Sec. 5.

2. Problem Formulation

In this section, we introduce the model problem and present an exact time-domain
transparent boundary condition to reduce the scattering problem into an initial-
boundary value problem in an infinite rectangular slab.

2.1. A model problem

Let us first introduce the problem geometry which is shown in Fig. 1. Let Sj , j = 1, 2
be Lipschitz-continuous surfaces which are embedded in the infinite rectangular
slab

Ω = {x = (x, y, z)� ∈ R
3 : h2 < z < h1},

where hj are constants. Denote by Γj = {x : z = hj} the two plane surfaces which
enclose Ω. Let Ω1 = {x : z > h1} and Ω2 = {x : z < h2}. The medium is assumed
to be homogeneous in Ωj , but it is allowed to be inhomogeneous in Ω.
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Fig. 1. Problem geometry of the electromagnetic scattering by an unbounded structure.

The electromagnetic field is governed by the time-domain Maxwell equations in
R

3 for t > 0:

∇× E(x, t) + µ∂tH(x, t) = 0, ∇× H(x, t) − ε∂tE(x, t) = J(x, t), (2.1)

where E is the electric field, H is the magnetic field, J is the electric current density
which is assumed to be compactly supported in Ω, the material parameters ε and
µ are the dielectric permittivity and the magnetic permeability, respectively. We
assume that ε ∈ L∞(R3) and µ ∈ L∞(R3) satisfy

0 < εmin ≤ ε ≤ εmax < ∞, 0 < µmin ≤ µ ≤ µmax < ∞,

where εmin, εmax, µmin, µmax are constants. Since the medium is homogeneous in
Ωj , there exist constants εj and µj such that

ε(x) = εj, µ(x) = µj in Ωj .

The system is constrained by the initial conditions:

E|t=0 = E0, H|t=0 = H0 in R
3, (2.2)

where E0 and H0 are also assumed to be compactly supported in Ω. Due to the
unbounded structure of the medium, it is no longer valid to impose the usual
Silver–Müller radiation condition. We employ the following radiation condition:
the electromagnetic fields (E,H) consist of bounded outgoing waves in Ωj .

2.2. Functional spaces

We introduce some Sobolev space notation. For u ∈ L2(Γj), we denote by û the
Fourier transform of u, i.e.

û(ξ, hj) =
1
2π

∫
R2

u(ρ, hj)e−iρ·ξdρ,

where ξ = (ξ1, ξ2)� ∈ R
2 and ρ = (x, y)� ∈ R

2. Denote by C∞
ρ the linear space of

infinitely differentiable functions with compact support with respect to the variable
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ρ on Ω. Let L2(Ω) be the space of complex square integrable functions on Ω. It
follows from the Parseval identity that we have

‖u‖2
L2(Ω) =

∫ h1

h2

∫
R2
|u(ρ, z)|2dρdz =

∫ h1

h2

∫
R2
|û(ξ, z)|2dξdz.

Introduce the functional spaces:

H(curl, Ω) = {u ∈ L2(Ω),∇× u ∈ L2(Ω)},
H0(curl, Ω) = {u ∈ H(curl, Ω),u× nj = 0 on Γj},

which are Sobolev spaces with the norm

‖u‖H(curl,Ω) =
(
‖u‖2

L2(Ω) + ‖∇× u‖2
L2(Ω)

)1/2

.

Given u = (u1(ρ, z), u2(ρ, z), u3(ρ, z))� ∈ H(curl, Ω), it has the inverse Fourier
transform:

u(ρ, z) =
1
2π

∫
R2

(
û1(ξ, z), û2(ξ, z), û3(ξ, z)

)�
eiρ·ξdξ.

The norm in H(curl, Ω) can be defined via Fourier coefficients:

‖u‖2
H(curl,Ω) =

∫ h1

h2

∫
R2

[|û1(ξ, z)|2 + |û2(ξ, z)|2 + |û3(ξ, z)|2

+ |iξ2û3(ξ, z) − û′
2(ξ, z)|2 + |û′

1(ξ, z) − iξ1û3(ξ, z)|2

+ |ξ1û2(ξ, z) − ξ2û1(ξ, z)|2]dξdz,

where û′
j(ξ, z) = ∂zûj(ξ, z).

Lemma 2.1. C∞
ρ (Ω)3 is dense in H(curl, Ω).

Proof. Noting that C∞
0 (R3)3 is dense in H(curl, R3), we have C∞

0 (R3)3|Ω is dense
in H(curl, R3)|Ω. From the Sobolev extension theorem, H(curl, R3)|Ω = H(curl, Ω).
Therefore, C∞

ρ (Ω)3 ⊇ C∞
0 (R3)3|Ω is dense in H(curl, Ω).

This density lemma is useful to deal with the infinite domain Ω. We may prove
the results only on C∞

ρ (Ω)3 and then extend them by limiting argument to more
general functions such as those in H(curl, Ω). Consequently, the boundary integrals
only on Γj need to be considered when formulating the variational problems in Ω.

For any vector field u = (u1, u2, u3)�, denote by

uΓj = nj × (u × nj) = (u1(x, y, hj), u2(x, y, hj), 0)�,

the tangential component on Γj , where n1 = (0, 0, 1)� and n2 = (0, 0,−1)� are
the unit outward normal vectors on Γ1 and Γ2, respectively. For any smooth vector
u = (u1, u2, u3)� defined on Γj , let divΓju = ∂xu1+∂yu2 and curlΓj u = ∂xu2−∂yu1

be the surface divergence and surface scalar curl of the field u. For a smooth scalar
function u, denote by ∇Γj u = (∂xu, ∂yu, 0)� the surface gradient on Γj .
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Let H−1/2(Γj) be the completion of L2(Γj) in the norm

‖u‖H−1/2(Γj) =
(∫

R2
(1 + |ξ|2)−1/2|û|2dξ

)1/2

.

Introduce two tangential functional spaces:

H−1/2(curl, Γj) = {u ∈ H−1/2(Γj)3 : u3 = 0, curlΓju ∈ H−1/2(Γj)},
H−1/2(div, Γj) = {u ∈ H−1/2(Γj)3 : u3 = 0, divΓju ∈ H−1/2(Γj)},

which are equipped with the norms:

‖u‖H−1/2(curl,Γj) =
(∫

R2
(1 + |ξ|2)[|û1|2 + |û2|2 + |ξ1û2 − ξ2û1|2

]
dξ
)1/2

,

‖u‖H−1/2(div,Γj) =
(∫

R2
(1 + |ξ|2)[|û1|2 + |û2|2 + |ξ1û1 + ξ2û2|2

]
dξ
)1/2

.

The following two lemmas are concerned with the duality between the spaces
H−1/2(div, Γj) and H1/2(curl, Γj) and the trace regularity in H(curl, Ω). The proofs
can be found in Lemmas 2.3 and 2.4 of Ref. 20.

Lemma 2.2. The spaces H−1/2(div, Γj) and H1/2(curl, Γj) are mutually adjoint
with respect to the scalar product in L2(Γj)3 defined by

〈u,v〉Γj =
∫

Γj

u · v̄dγj =
∫

R2
(û1

¯̂v1 + û2
¯̂v2)dξ. (2.3)

Lemma 2.3. Let C = max{√1 + (h1 − h2)−1,
√

2}. We have the estimate

‖u‖H−1/2(curl,Γj) ≤ C‖u‖H(curl,Ω), ∀u ∈ H(curl, Ω).

Next we introduce some properties of the Laplace transform. Let s = s1 + is2

with s1 > 0, s2 ∈ R. Define by ŭ(s) the Laplace transform of u(t), i.e.

ŭ(s) = L (u)(s) =
∫ ∞

0

e−stu(t)dt.

Using the integration by parts yields∫ t

0

u(τ)dτ = L −1(s−1ŭ(s)), (2.4)

where L −1 is the inverse Laplace transform. It is also easy to verify that

u(t) = F−1
(
es1tL (u)(s1 + s2)

)
, (2.5)

where F−1 denotes the inverse Fourier transform with respect to s2. Recall the
Plancherel or the Parseval identity for the Laplace transform (cf. (2.46) of Ref. 9):

1
2π

∫ ∞

−∞
ŭ(s)v̆(s)ds2 =

∫ ∞

0

e−2s1tu(t)v(t)dt, ∀ s1 > λ, (2.6)

where ŭ = L (u), v̆ = L (v) and λ is abscissa of convergence for the Laplace
transform of u and v.
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The following lemma (Theorem 43.1 from Ref. 25) is an analogue of the Paley–
Wiener–Schwarz theorem for the Fourier transform of distributions with compact
support in the case of the Laplace transform.

Lemma 2.4. Let h̆(s) be a holomorphic function in the half-plane s1 > σ0 and be
valued in the Banach space E. The following two statements are equivalent :

(1) There is a distribution h̆ ∈ D′
+(E) whose Laplace transform is equal to h̆(s);

(2) There is a real σ1 with σ0 ≤ σ1 < ∞ and an integer m ≥ 0 such that for all
complex numbers s with Re s = s1 > σ1, it holds that ‖h̆(s)‖E � (1 + |s|)m,

where D′
+(E) is the space of distributions on the real line which vanishes identically

in the open negative half-line.

2.3. Transparent boundary condition

We introduce an exact time-domain TBC to formulate the scattering problem into
the following initial-boundary value problem:


∇× E + µ∂tH = 0, ∇× H− ε∂tE = J in Ω, t > 0,

E|t=0 = E0, H|t=0 = H0 in Ω,

Tj [EΓj ] = H × nj on Γj, t > 0,

(2.7)

where EΓj is the tangential component of E on Γj and Tj is the time-domain
electric-to-magnetic capacity operator.

In what follows, we shall derive the formulation of the operators Tj and show
some of their properties. Since the derivation of T1 and T2 is analogous, we will
only show the details for T1 and state the corresponding result on T2 without
derivation.

Notice that J is supported in Ω and ε = ε1, µ = µ1 in Ω1, the system of Maxwell
equations (2.1) reduce to

∇× E + µ1∂tH = 0, ∇× H − ε1∂tE = 0 in Ω1, t > 0. (2.8)

Let Ĕ(x, s) and H̆(x, s) be the Laplace transform of E(x, t) and H(x, t). Recall
that

L (∂tE) = sĔ− E0, L (∂tH) = sH̆− H0.

Taking the Laplace transform of (2.8), and noting that E0 and H0 are supported
in Ω, we obtain the Maxwell equations in the s-domain:

∇× Ĕ + µ1sH̆ = 0, ∇× H̆− ε1sĔ = 0 in Ω1, s1 > 0, s2 ∈ R. (2.9)

Let Ĕ = (Ĕ1, Ĕ2, Ĕ3)� and H̆ = (H̆1, H̆2, H̆3)�. Denote by ĔΓ1 = (Ĕ1(ρ, h1),
Ĕ2(ρ, h1), 0)� the tangential component of the electric field on Γ1. Let H̆ × n1 =
(H̆2(ρ, h1),−H̆1(ρ, h1), 0)� be the tangential trace of the magnetic field on Γ1. It
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follows from (2.9) that:

H̆2(ρ, h1) =
1

µ1s
[∂xĔ3(ρ, h1) − ∂zĔ1(ρ, h1)],

−H̆1(ρ, h1) =
1

µ1s
[∂yĔ3(ρ, h1) − ∂zĔ2(ρ, h1)].

Taking the Fourier transform of the above equations with respect to ρ gives:

ˆ̆
H2(ξ, h1) =

1
µ1s

[
iξ1

ˆ̆
E3(ξ, h1) − ∂z

ˆ̆
E1(ξ, h1)

]
, (2.10a)

− ˆ̆
H1(ξ, h1) =

1
µ1s

[
iξ2

ˆ̆
E3(ξ, h1) − ∂z

ˆ̆
E2(ξ, h1)

]
. (2.10b)

Observe that the medium is homogeneous in Ω1, which gives ∇ · Ĕ = 0 in Ω1.

Eliminating the magnetic field from (2.9) and using the divergence-free condition
in Ω1, we obtain the Helmholtz equation for the components of the electric field:{

∆Ĕj(ρ, z) − ε1µ1s
2Ĕj(ρ, z) = 0 in Ω1,

Ĕj(ρ, z) = Ĕj(ρ, h1) on Γ1.

Taking the Fourier transform with respect to ρ of the above equations yields


∂2
z
ˆ̆
Ej − (ε1µ1s

2 + |ξ|2) ˆ̆
Ej = 0 z > h1,

ˆ̆
Ej = ˆ̆

Ej(ξ, h1) z = h1.

Solving the above equations and using the bounded outgoing condition, we obtain
the solution:

ˆ̆
Ej(ξ, z) = ˆ̆

Ej(ξ, h1)e−β1(ξ)(z−h1), z > h1, (2.11)

where

β1(ξ) = (ε1µ1s
2 + |ξ|2)1/2, Re β1(ξ) > 0.

Taking the derivative of (2.11) with respect to z and evaluating it at z = h1,
we get

∂z
ˆ̆
Ej(ξ, h1) = −β1(ξ)

ˆ̆
Ej(ξ, h1).

Noting that ∇ · Ĕ = ∂xĔ1 + ∂yĔ2 + ∂zĔ3 = 0 in Ω1 and β1(ξ) �= 0 for all ξ, we
deduce that

ˆ̆
E3(ξ, h1) =

−1
β1(ξ)

∂z
ˆ̆
E3(ξ, h1) =

i
β1(ξ)

[
ξ1

ˆ̆
E1(ξ, h1) + ξ2

ˆ̆
E2(ξ, h1)

]
.

Therefore, we have from (2.10) that:

ˆ̆
H2(ξ, h1) =

1
µ1s

[ −ξ1

β1(ξ)
(
ξ1

ˆ̆
E1(ξ, h1) + ξ2

ˆ̆
E2(ξ, h1)

)
+ β1(ξ)

ˆ̆
E1(ξ, h1)

]
,

− ˆ̆
H1(ξ, h1) =

1
µ1s

[ −ξ2

β1(ξ)
(
ξ1

ˆ̆
E1(ξ, h1) + ξ2

ˆ̆
E2(ξ, h1)

)
+ β1(ξ)

ˆ̆
E2(ξ, h1)

]
,
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or equivalently,

ˆ̆
H2(ξ, h1) =

1
µ1sβ1(ξ)

[
ε1µ1s

2 ˆ̆
E1(ξ, h1) + ξ2

(
ξ2

ˆ̆
E1(ξ, h1) − ξ1

ˆ̆
E2(ξ, h1)

)]
,

− ˆ̆
H1(ξ, h1) =

1
µ1sβ1(ξ)

[
ε1µ1s

2 ˆ̆
E2(ξ, h1) + ξ1

(
ξ1

ˆ̆
E2(ξ, h1) − ξ2

ˆ̆
E1(ξ, h1)

)]
.

For any tangential vector u = (u1, u2, 0)� on Γ1, define the capacity operator
B1:

B1[u] = (v1, v2, 0)�,

where

v̂1 =
1

µ1s

[
− ξ1

β1
(ξ1û1 + ξ2û2) + β1û1

]
, (2.12a)

v̂2 =
1

µ1s

[
− ξ2

β1
(ξ1û1 + ξ2û2) + β1û2

]
, (2.12b)

or equivalently,

v̂1 =
1

µ1sβ1

[
ε1µ1s

2û1 + ξ2(ξ2û1 − ξ1û2)
]
, (2.13a)

v̂2 =
1

µ1sβ1

[
ε1µ1s

2û2 + ξ1(ξ1û2 − ξ2û1)
]
. (2.13b)

Similarly, for any tangential vector u = (u1, u2, 0) on Γ2, define the capacity oper-
ator B2:

B2[u] = (v1, v2, 0)�,

where

v̂1 =
1

µ2s

[
β2û1 − ξ1

β2
(ξ1û1 + ξ2û2)

]
, (2.14a)

v̂2 =
1

µ2s

[
β2û2 − ξ2

β2
(ξ1û1 + ξ2û2)

]
, (2.14b)

or equivalently,

v̂1 =
1

µ2sβ2

[
ε2µ2s

2û1 + ξ2(ξ2û1 − ξ1û2)
]
, (2.15a)

v̂2 =
1

µ2sβ2

[
ε2µ2s

2û2 + ξ1(ξ1û2 − ξ2û1)
]
, (2.15b)

where

β2(ξ) = (ε2µ2s
2 + |ξ|2)1/2, Re β2(ξ) > 0.

For any vector field Ĕ ∈ H(curl, Ω), it follows from Lemma 2.3 that its tangential
component ĔΓj ∈ H−1/2(curl, Γj). Using the capacity operators, we may propose
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the following TBC in the s-domain:

Bj [ĔΓj ] = H̆ × nj on Γj , (2.16)

where the capacity operator Bj maps the tangential component of the electric field
to the tangential trace of the magnetic field. Taking the inverse Laplace transform
of (2.16) yields the TBC in the time-domain:

Tj [EΓj ] = H × nj ,

where Tj = L −1 ◦Bj ◦L . Equivalently, we may eliminate the magnetic field and
obtain an alternative TBC for the electric field in the s-domain:

µ−1
j s−1(∇× Ĕ) × nj + Bj [ĔΓj ] = 0 on Γj. (2.17)

Correspondingly, by taking the inverse Laplace transform of (2.17), we may
derive an alternative TBC for the electric field in the time-domain:

µ−1
j (∇× E) × nj + Cj [EΓj ] = 0 on Γj , (2.18)

where Cj = L −1 ◦ sBj ◦ L .

Lemma 2.5. The capacity operator Bj : H−1/2(curl, Γj) → H−1/2(div, Γj) is
continuous.

Proof. For any u = (u1, u2, 0)�, w = (w1, w2, 0)� ∈ H−1/2(curl, Ω), let Bju =
(v1, v2, 0)�. It follows from the definitions (2.3), (2.13) and (2.15) that

〈Bju,w〉Γj =
∫

R2
(v̂1

¯̂w1 + v̂2
¯̂w2)dξ

=
∫

R2

1
µjsβj

[
εjµjs

2(û1
¯̂w1 + û2

¯̂w2) + (ξ1û2 − ξ2û1)(ξ1
¯̂w2 − ξ2

¯̂w1)
]
dξ

=
∫

R2

(1 + |ξ|2)1/2

µjsβj
(1 + |ξ|2)−1/2

[
εjµjs

2(û1
¯̂w1 + û2

¯̂w2)

+ (ξ1û2 − ξ2û1)(ξ1
¯̂w2 − ξ2

¯̂w1)
]
dξ.

To prove the lemma, it is required to estimate

(1 + |ξ|2)1/2

|βj | .

Let

εjµjs
2 = aj + ibj ,

where

aj = εjµj(s2
1 − s2

2), bj = 2εjµjs1s2.

Denote

β2
j = εjµjs

2 + |ξ|2 = φj + ibj ,
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where

φj = Re(εjµjs
2) + |ξ|2 = aj + |ξ|2.

A simple calculation gives

(1 + |ξ|2)1/2

|βj | =

[
(1 + φj − aj)2

φ2
j + b2

j

]1/4

.

Let

Fj(t) =
(1 + t − aj)2

t2 + b2
j

,

which gives

F ′
j(t) =

2(1 + t − aj)(b2
j − t(1 − aj))

(t2 + b2
j)2

.

We consider three cases:

(i) 1 − aj > 0. It can be verified that the function Fj(t) increases for aj ≤ t ≤
Kj = b2

j/(1 − aj) and decreases for t > Kj. Hence Fj(t) reaches its maximum
at t = Kj , i.e.

(1 + φj − aj)2

φ2
j + b2

j

= Fj(φj) ≤ Fj(Kj) =
(1 − aj)2 + b2

j

b2
j

.

(ii) 1 − aj = 0. It is easy to verify

Fj(t) =
t2

t2 + b2
j

≤ 1,

which yields that

Fj(φj) ≤ 1 ≤ (1 − aj)2 + b2
j

b2
j

.

(iii) 1 − aj < 0. It follows from Kj ≤ aj that Fj(t) increases for t ≤ Kj and
decreases for Kj < t. Since φj = aj + |ξ|2 ≥ aj , we have

Fj(φj) ≤ Fj(aj) =
1

a2
j + b2

j

≤ Fj(Kj) =
(1 − aj)2 + b2

j

b2
j

.

Combining the above estimates yields

|〈Bju,w〉Γj | ≤ Cj‖u‖H−1/2(curl,Γj)‖w‖H−1/2(curl,Γj),

where

Cj =
1

µjs1

[
(1 − aj)2 + b2

j

b2
j

]1/4

× max{(a2
j + b2

j)
1/2, 1}.
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Following from Lemma 2.2, we have

‖Bju‖H−1/2(div,Γj) ≤ C sup
w∈H−1/2(curl,Γj)

|〈Bju,w〉Γj |
‖w‖H−1/2(curl,Γj)

≤ CCj‖u‖H−1/2(curl,Γj),

which completes the proof.

Lemma 2.6. We have

Re〈Bju,u〉Γj ≥ 0, ∀u ∈ H−1/2(curl, Γj).

Proof. By definitions (2.3), (2.12) and (2.14), we obtain

〈Bju,u〉Γj =
1

µjs

∫
R2

[
βj(|û1|2 + |û2|2) − 1

βj
|ξ1û1 + ξ2û2|2

]
dξ

=
1

µj |s|2
∫

R2

[
s̄βj(|û1|2 + |û2|2) − s̄β̄j

|βj |2 |ξ1û1 + ξ2û2|2
]
dξ.

Let βj = mj + inj with mj > 0. Taking the real part of the above equation gives

Re〈Bju,u〉Γj =
1

µj |s|2
∫

R2

[
(mjs1 + njs2)(|û1|2 + |û2|2)

− (mjs1 − njs2)
m2

j + n2
j

|ξ1û1 + ξ2û2|2
]
dξ.

Recalling β2
j = εjµjs

2 + |ξ|2, we have:

m2
j − n2

j = εjµj(s2
1 − s2

2) + |ξ|2, (2.19)

mjnj = εjµjs1s2. (2.20)

Using (2.20), we get

mjs1 + njs2 =
s1

mj
[m2

j + εjµjs
2
2], mjs1 − njs2 =

s1

mj
[m2

j − εjµjs
2
2].

If m2
j − εjµjs

2
2 ≤ 0, we obtain

Re〈Bju,u〉Γj =
1

µj |s|2
∫

R2

s1

mj

[
(m2

j + εjµjs
2
2)(|û1|2 + |û2|2)

− (m2
j − εjµjs

2
2)

m2
j + n2

j

|ξ1û1 + ξ2û2|2
]
dξ ≥ 0.

If m2
j − εjµjs

2
2 > 0, we have from the Cauchy–Schwarz inequality that

(m2
j − εjµjs

2
2)

m2
j + n2

j

|ξ1û1 + ξ2û2|2 ≤ (m2
j − εjµjs

2
2)

m2
j + n2

j

|ξ|2(|û1|2 + |û2|2),
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which gives

Re〈Bju,u〉Γj ≥ 1
µj |s|2

∫
R2

s1

mj

[
(m2

j + εjµjs
2
2) −

(m2
j − εjµjs

2
2)

m2
j + n2

j

|ξ|2
]

× (|û1|2 + |û2|2)dξ. (2.21)

Substituting (2.19) into (2.21) yields

Re〈Bju,u〉Γj ≥ 1
µj |s|2

∫
R2

s1

mj(m2
j + n2

j)
[
(m2

j + εjµjs
2
2)(n

2
j + εjµjs

2
2)

+ (m2
j − εjµjs

2
2)(n

2
j + εjµjs

2
1)
]
(|û1|2 + |û2|2)dξ ≥ 0,

which completes the proof.

In the forthcoming sections, we shall use the method of energy to prove the well-
posedness and stability of the reduced problem (2.7). We point out that the method
has also been adopted in Ref. 19 for solving the time-dependent electromagnetic
scattering problem from an open cavity.

3. Two Auxiliary Problems

In this section, we present the energy estimates for two auxiliary problems, one is
the time-harmonic Maxwell equations with a complex wavenumber and another is
the time-domain Maxwell equations with a perfectly electrically conducting (PEC)
boundary condition. These estimates will be used for the proof of the main results
for the time-domain Maxwell equations (2.7).

3.1. Time-harmonic Maxwell’s equations with a

complex wavenumber

We shall study the variational formulation for a time-harmonic Maxwell equations
with a complex wavenumber, which is a frequency version of the initial-boundary
value problem of the Maxwell equations under the Laplace transform.

Consider the auxiliary boundary value problem:{∇× ((sµ)−1∇× u
)

+ sεu = j in Ω,

µ−1
j s−1(∇× u) × nj + Bj [uΓj ] = 0 on Γj ,

(3.1)

where s = s1 + is2 with s1 > 0, s2 ∈ R and j is assumed to be compactly supported
in Ω.

Multiplying the complex conjugate of a test function v ∈ H(curl, Ω), integrating
over Ω, and using integration by parts, we arrive at the variational formulation
of (3.1): find u ∈ H(curl, Ω) such that

aTH(u,v) =
∫

Ω

j · v̄dx, ∀v ∈ H(curl, Ω), (3.2)
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where the sesquilinear form

aTH(u,v) =
∫

Ω

(sµ)−1(∇× u) · (∇× v̄)dx +
∫

Ω

sεu · v̄dx +
2∑

j=1

〈Bj [uΓj ],vΓj 〉Γj .

(3.3)

Theorem 3.1. The variational problem (3.2) has a unique solution u ∈ H(curl, Ω)
which satisfies

‖∇ × u‖L2(Ω) + ‖su‖L2(Ω) � s−1
1 ‖sj‖L2(Ω).

Proof. It suffices to show the coercivity of the sesquilinear form of aTH since
the continuity follows directly from the Cauchy–Schwarz inequality, Lemmas 2.5
and 2.3.

Letting v = u, we have from (3.3) that

aTH(u,u) =
∫

Ω

(sµ)−1|∇ × u|2dx +
∫

Ω

sε|u|2dx +
2∑

j=1

〈Bj [uΓj ],uΓj 〉Γj . (3.4)

Taking the real part of (3.4) and using Lemma 2.6, we get

Re aTH(u,u) ≥ s1

|s|2
(‖∇× u‖2

L2(Ω) + ‖su‖2
L2(Ω)

)
. (3.5)

It follows from the Lax–Milgram lemma that the variational problem (3.2) has
a unique solution u ∈ H(curl, Ω). Moreover, we have from (3.2) that

|aTH(u,u)| ≤ |s|−1‖j‖L2(Ω)‖su‖L2(Ω). (3.6)

Combining (3.5)–(3.6) leads to

‖∇× u‖2
L2(Ω) + ‖su‖2

L2(Ω) � s−1
1 ‖sj‖L2(Ω)‖su‖L2(Ω),

which completes the proof after applying the Cauchy–Schwarz inequality.

3.2. Time-domain Maxwell’s equations with PEC condition

Consider the initial-boundary value problem for the time-domain Maxwell equations
with the PEC boundary condition:


∇× U + µ∂tV = 0, ∇× V − ε∂tU = 0 in Ω, t > 0,

U × nj = 0 on Γj , t > 0,

U|t=0 = E0, V|t=0 = H0 in Ω,

(3.7)

where E0,H0 are assumed to be compactly supported in Ω.
Let Ŭ = L (U) and V̆ = L (V). Taking the Laplace transform of (3.7) and

eliminating V̆, we obtain the boundary value problem:{∇× ((sµ)−1∇× Ŭ
)

+ sεŬ = j̆ in Ω,

Ŭ × nj = 0 on Γj ,
(3.8)
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where j̆ = εE0 + s−1∇× H0. The variational formulation for (3.8) is to find Ŭ ∈
H0(curl, Ω) such that

aTD(Ŭ,v) =
∫

Ω

j̆ · v̄dx, ∀v ∈ H0(curl, Ω), (3.9)

where the sesquilinear form is

aTD(Ŭ,v) =
∫

Ω

(sµ)−1(∇× Ŭ) · (∇× v̄)dx +
∫

Ω

sεŬ · v̄dx.

Following the same proof as that in Theorem 3.1, we may obtain the well-
posedness of the variation problem (3.9) and its stability estimate.

Lemma 3.1. The variational problem (3.8) has a unique solution Ŭ ∈ H0(curl, Ω)
which satisfies

‖∇× Ŭ‖L2(Ω) + ‖sŬ‖L2(Ω) � s−1
1 ‖sE0‖L2(Ω) + s−1

1 ‖∇× H0‖L2(Ω).

Theorem 3.2. The auxiliary problem (3.7) has a unique solution (U,V), which
satisfies the stability estimates:

‖U‖L2(Ω) + ‖V‖L2(Ω) � ‖E0‖L2(Ω) + ‖H0‖L2(Ω),

‖∂tU‖L2(Ω) + ‖∂tV‖L2(Ω) � ‖∇× E0‖L2(Ω) + ‖∇× H0‖L2(Ω),

‖∂2
t U‖L2(Ω) + ‖∂2

t V‖L2(Ω) � ‖∇× (∇× E0)‖L2(Ω) + ‖∇× (∇× H0)‖L2(Ω).

Proof. Let Ŭ = L (U) and V̆ = L (V). Taking the Laplace transform of (3.7) and
using the initial condition lead to{∇× Ŭ + sµV̆ = µH0, ∇× V̆ − sεŬ = −εE0 in Ω,

Ŭ × nj = 0 on Γj .
(3.10)

It follows from Lemma 3.1 that

‖∇× Ŭ‖L2(Ω) + ‖sŬ‖L2(Ω) � s−1
1 ‖sE0‖L2(Ω) + s−1

1 ‖∇× H0‖L2(Ω).

Combining the above inequality and (3.10) gives

‖−sµV̆ + µH0‖L2(Ω) + ‖ε−1∇× V̆ + E0‖
� s−1

1 ‖sE0‖L2(Ω) + s−1
1 ‖∇× H0‖L2(Ω),

which shows that

‖∇× V̆‖L2(Ω) + ‖sV̆‖L2(Ω) � (1 + s−1
1 |s|)‖E0‖L2(Ω) + ‖H0‖L2(Ω)

+ s−1
1 ‖∇ × H0‖L2(Ω).

It follows from Lemma 44.1 of Ref. 25 that Ŭ and V̆ are holomorphic functions
of s on the half-plane s1 > γ̄ > 0, where γ̄ is any positive constant. Hence we have
from Lemma 2.4 that the inverse Laplace transform of Ŭ and V̆ exist and they are
supported in [0,∞).
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Next we prove the stability by the energy function method. Define the energy
function

e1(t) = ‖ε1/2U(·, t)‖2
L2(Ω) + ‖µ1/2V(·, t)‖2

L2(Ω).

Using (3.7) and integration by parts, we obtain

e1(t) − e1(0) =
∫ t

0

e′1(τ)dτ = 2 Re
∫ t

0

∫
Ω

(
ε∂tU · Ū + µ∂tV · V̄)dxdτ

= 2 Re
∫ t

0

∫
Ω

(∇× V) · Ū − (∇× U) · V̄dxdτ

= 2 Re
∫ t

0

∫
Ω

[
(∇× V) · Ū− (∇× V̄) ·U]dxdτ

− 2 Re
∫ t

0

2∑
j=1

〈U × nj ,V〉Γj dτ

= 0.

Hence we have

‖ε1/2U(·, t)‖2
L2 + ‖µ1/2V(·, t)‖2

L2(Ω) = ‖ε1/2E0‖2
L2 + ‖µ1/2H0‖2

L2(Ω),

which implies

‖U‖L2(Ω) + ‖V‖L2(Ω) � ‖E0‖L2(Ω) + ‖H0‖L2(Ω).

Taking the first and second partial derivatives of (3.7) with respect to t yields

∇× ∂tU + µ∂2

t V = 0, ∇× ∂tV − ε∂2
t U = 0 in Ω, t > 0,

∂tU × nj = 0 on Γj , t > 0,

∂tU|t=0 = ε−1(∇× H0), ∂tV|t=0 = −µ−1∇× E0 in Ω

and 


∇× ∂2
t U + µ∂3

t V = 0, ∇× ∂2
t V − ε∂3

t U = 0 in Ω, t > 0,

∂2
t U× nj = 0 on Γj , t > 0,

∂2
t U|t=0 = −(εµ)−1(∇× (∇× E0)), in Ω,

∂2
t V|t=0 = −(εµ)−1(∇× (∇× H0)) in Ω.

Consider the energy functions

e2(t) = ‖ε1/2∂tU(·, t)‖2
L2(Ω) + ‖µ1/2∂tV(·, t)‖2

L2(Ω)

and

e3(t) = ‖ε1/2∂2
t U(·, t)‖2

L2(Ω) + ‖µ1/2∂2
t V(·, t)‖2

L2(Ω)
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for the above two problems, respectively. Using the same steps for the first inequa-
lity, we can derive the other two inequalities. The details are omitted.

4. The Reduced Problem

In this section, we present the main results of this work, which include the well-
posedness, stability, and a priori estimates for the scattering problem (3.7).

4.1. Well-posedness

Let e = E − U and h = H − V. Noting U × nj = 0, we have UΓj = 0 and
Tj [UΓj ] = 0. It follows from (2.7) and (3.7) that e and h satisfy the following
initial-boundary value problem:


∇× e + µ∂th = 0, ∇× h − ε∂te = J in Ω, t > 0,

e|t=0 = 0, h|t=0 = 0 in Ω,

Tj [eΓj ] = h × nj + V × nj on Γj , t > 0.

(4.1)

Let ĕ = L (e) and h̆ = L (h). Taking the Laplace transform of (4.1) and eliminating
h̆, we obtain {∇× ((µs)−1∇× ĕ

)
+ εsĕ = −J̆ in Ω,

(µjs)−1(∇× ĕ) × nj + Bj [ĕΓj ] = V̆ × nj on Γj .
(4.2)

Our strategy is to show the well-posedness and stability of (4.2) in the s-domain.
The well-posedness of (4.1) follows from Lemma 2.4 and the inverse Laplace trans-
form.

Lemma 4.1. The problem (4.2) has a unique weak solution ĕ ∈ H(curl, Ω) which
satisfies

‖∇× ĕ‖L2(Ω) + ‖sĕ‖L2(Ω) � s−1
1


‖sJ̆‖L2(Ω) +

2∑
j=1

(‖sV̆ × nj‖H−1/2(div,Γj)

+ ‖|s|2V̆ × nj‖H−1/2(div,Γj))


. (4.3)

Proof. By Theorem 3.1, it is easy to show the well-posedness of the solution ĕ ∈
H(curl, Ω). Moreover, we have from the definition of (3.3) that

aTH(ĕ, ĕ) =
∫

Ω

(sµ)−1(∇× ĕ) · (∇× ¯̆e)dx +
∫

Ω

sεĕ · ¯̆edx +
2∑

j=1

〈Bj [ĕΓj ], ĕΓj〉Γj

= −
∫

Ω

J̆ · ¯̆edx +
2∑

j=1

〈V̆ × nj , ĕΓj 〉Γj .
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It follows from the coercivity of aTH in (3.5) and the trace theorem in Lemma 2.3
that

s1

|s|2
(‖∇× ĕ‖2

L2(Ω) + ‖sĕ‖2
L2(Ω)

)

� ‖s−1J̆‖L2(Ω)‖sĕ‖L2(Ω) +
2∑

j=1

‖V̆ × nj‖H−1/2(div,Γj)‖ĕΓj‖H−1/2(curl,Γj)

� ‖s−1J̆‖L2(Ω)‖sĕ‖L2(Ω) +
2∑

j=1

‖V̆ × nj‖H−1/2(div,Γj)‖ĕ‖H(curl,Ω)

� ‖s−1J̆‖L2(Ω)‖sĕ‖L2(Ω) +
2∑

j=1

‖V̆ × nj‖H−1/2(div,Γj)‖∇× ĕ‖L2(Ω)

+
2∑

j=1

‖s−1V̆ × nj‖H−1/2(div,Γj)‖sĕ‖L2(Ω),

which give the estimate (4.3) after applying the Cauchy–Schwarz inequality.

To show the well-posedness of the reduced problem (2.7), we assume that

E0,H0 ∈ H(curl, Ω), J ∈ H1(0, T ;L2(Ω)), J|t=0 = 0. (4.4)

Theorem 4.1. The problem (2.7) has a unique solution (E,H), which satisfies :

E ∈ L2(0, T ;H(curl, Ω)) ∩ H1(0, T ;L2(Ω)),

H ∈ L2(0, T ;H(curl, Ω)) ∩ H1(0, T ;L2(Ω)),

and

∫ T

0


∫

Ω

(
H · (∇×φ̄) − ε∂tE · φ̄)dx −

2∑
j=1

〈TjEΓj ,φΓj
〉Γj


dt

=
∫ T

0

∫
Ω

J · φ̄dxdt, ∀φ ∈ H(curl, Ω), (4.5)

∫ T

0

∫
Ω

(∇× E) ·ψ̄ + µ∂tH · ψ̄dxdt = 0, ∀ψ ∈ L2(Ω). (4.6)

Moreover, (E,H) satisfy the stability estimate

max
[0,T ]

(‖∂tE‖L2(Ω) + ‖∇× E‖L2(Ω) + ‖∂tH‖L2(Ω) + ‖∇× H‖L2(Ω)

)
� ‖E0‖H(curl,Ω) + ‖H0‖H(curl,Ω) + ‖J‖H1(0,T ;L2(Ω)). (4.7)
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Proof. Let E = U + e and H = V + h, where (U,V) satisfy (3.7) and (e,h)
satisfy (4.1). Noting∫ T

0

(‖∇ × e‖2
L2(Ω)2 + ‖∂te‖2

L2(Ω)

)
dt

≤
∫ T

0

e−2s1(t−T )
(‖∇× e‖2

L2(Ω)2 + ‖∂te‖2
L2(Ω)

)
dt

= e2s1T

∫ T

0

e−2s1t
(‖∇× e‖2

L2(Ω)2 + ‖∂te‖2
L2(Ω)

)
dt

�
∫ ∞

0

e−2s1t
(‖∇× e‖2

L2(Ω)2 + ‖∂te‖2
L2(Ω)

)
dt,

we need to estimate∫ ∞

0

e−2s1t
(‖∇ × e‖2

L2(Ω)2 + ‖∂te‖2
L2(Ω)

)
dt.

Taking the Laplace transform of (4.1) yields{∇× ĕ + µsh̆ = 0, ∇× h̆ − εsĕ = J̆ in Ω,

Bj [ĕΓj ] = h̆× nj + V̆ × nj on Γj .
(4.8)

We have from Lemma 4.1 that

‖∇× ĕ‖L2(Ω) + ‖sĕ‖L2(Ω) � s−1
1


‖sJ̆‖L2(Ω) +

2∑
j=1

(‖sV̆ × nj‖H−1/2(div,Γj)

+ ‖|s|2V̆ × nj‖H−1/2(div,Γj))


, (4.9)

which gives after using (4.8) that

‖∇× h̆‖L2(Ω) + ‖sh̆‖L2(Ω)

� s−1
1


‖J‖L2(Ω) + ‖sJ̆‖L2(Ω) +

2∑
j=1

(‖sV̆ × nj‖H−1/2(div,Γj)

+ ‖|s|2V̆ × nj‖H−1/2(div,Γj))


. (4.10)

It follows from Lemma 44.1 of Ref. 25 that ĕ and h̆ are holomorphic functions of s

on the half-plane s1 > γ̄ > 0, where γ̄ is any positive constant. Hence we have from
Lemma 2.4 that the inverse Laplace transform of ĕ and h̆ exist and are supported
in [0,∞].
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Let e = L −1(ĕ) and h = L −1(h̆). One may verify from the inverse Laplace
transform and (2.5) that ĕ = L (e) = F (e−s1te), where F is the Fourier transform
with respect to s2. It follows from the Parseval identity (2.6) and (4.9) that we have∫ ∞

0

e−2s1t
(‖∇× e‖2

L2(Ω)2 + ‖∂te‖2
L2(Ω)

)
dt

=
1
2π

∫ ∞

−∞

(‖∇× ĕ‖2
L2(Ω)2 + ‖sĕ‖2

L2(Ω)

)
ds2

� s−2
1

∫ ∞

−∞
‖sJ̆‖L2(Ω)ds2 + s−2

1

∫ ∞

−∞

2∑
j=1

(‖sV̆ × nj‖2
H−1/2(div,Γj)

+ ‖|s|2V̆ × nj‖2
H−1/2(div,Γj)

)
ds2.

By the assumption (4.4), we have J|t=0 = 0 in Ω, V×nj |t=0 = ∂t(V×nj)|t=0 = 0
on Γj , which give that L (∂tJ) = sJ̆ in Ω and L (∂t(V × nj)) = sV̆ × nj on Γj .

Noting

|s|2V̆ × nj = (2s1 − s)sV̆ × nj = 2s1L (∂t(V × nj)) − L (∂2
t (V × nj)) on Γj ,

we have ∫ ∞

0

e−2s1t
(‖∇× e‖2

L2(Ω)2 + ‖∂te‖2
L2(Ω)

)
dt

� s−2
1

∫ ∞

−∞
‖L (∂tJ)‖2

L2(Ω)ds2

+ s−2
1

∫ ∞

−∞

2∑
j=1

‖L (∂2
t (V × nj))‖2

H−1/2(div,Γj)
ds2

+ (1 + s2
1)
∫ ∞

−∞

2∑
j=1

‖L (∂t(V × nj))‖2
H−1/2(div,Γj)

ds2.

Using the Parseval identity (2.6) again gives∫ ∞

0

e−2s1t
(‖∇× e‖2

L2(Ω)2 + ‖∂te‖2
L2(Ω)

)
dt

� s−2
1

∫ ∞

0

e−2s1t‖∂tJ‖2
L2(Ω)dt

+ s−2
1

∫ ∞

0

e−2s1t
2∑

j=1

‖∂2
t (V × nj)‖2

H−1/2(div,Γj)
dt

+ (1 + s2
1)
∫ ∞

0

e−2s1t
2∑

j=1

‖∂t(V × nj)‖2
H−1/2(div,Γj)

dt,
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which shows that

e ∈ L2(0, T ;H(curl, Ω)) ∩ H1(0, T ;L2(Ω)).

Similarly, we can show from (4.10) that

h ∈ L2(0, T ;H(curl, Ω)) ∩ H1(0, T ;L2(Ω)).

Multiplying the test functions ψ ∈ L2(Ω) and φ ∈ H(curl, Ω) to the first and
second equalities in (2.7), respectively, using the boundary capacity operators Tj

and integration by parts, we can get (4.5)–(4.6).
Next we show the stability estimate (4.7). Let Ẽ be the extension of E with

respect to t in R such that Ẽ = 0 outside the interval [0, t]. By the Parseval iden-
tity (2.6) and Lemma 2.6, we get

Re
∫ t

0

∫
Γj

e−2s1tTj [EΓj ] · ĒΓjdγjdt = Re
∫

Γj

∫ ∞

0

e−2s1tTj [ẼΓj ] · ¯̃EΓj dγjdt

=
1
2π

∫ ∞

−∞
Re〈Bj [

˘̃EΓj ],
˘̃EΓj 〉Γj ds2 ≥ 0,

which yields after taking s1 → 0 that

Re
∫ t

0

∫
Γj

Tj [EΓj ] · ĒΓj dγjdt ≥ 0. (4.11)

For any 0 < t < T, consider the energy function

e(t) = ‖ε1/2E(·, t)‖2
L2(Ω) + ‖µ1/2H‖2

L2(Ω).

It is easy to note that∫ t

0

e′(τ)dτ =
(‖ε1/2E(·, t)‖2

L2(Ω) + ‖µ1/2H(·, t)‖2
L2(Ω)

)
− (‖ε1/2E0‖2

L2(Ω) + ‖µ1/2H0‖2
L2(Ω)

)
.

On the other hand, it follows from (2.7), (4.11), and the integration by parts that∫ t

0

e′(τ)dτ = 2 Re
∫ t

0

∫
Ω

(ε∂tE · Ē + µ∂tH · H̄)dxdτ

= 2 Re
∫ t

0

∫
Ω

(
(∇× H) · Ē− (∇× E) · H̄)dxdτ − 2Re

∫ t

0

∫
Ω

J · Ēdxdτ

= 2 Re
∫ t

0

∫
Ω

(
(∇× Ē) ·H− (∇× E) · H̄)dxdτ

− 2 Re
2∑

j=1

∫ t

0

∫
Γj

Tj [EΓj ] · ĒΓj dγjdτ − 2 Re
∫ t

0

∫
Ω

J · Ēdxdτ

≤ −2 Re
∫ t

0

∫
Ω

J · Ēdxdτ ≤ 2 max
t∈[0,T ]

‖E‖L2(Ω)‖J‖L1(0,T ;L2(Ω)). (4.12)
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Taking the derivative of (2.7) with respect to t, we know that (∂tE, ∂tH) satisfy the
same set of equations with the source J replaced by ∂tJ, and the initial conditions
replaced by ∂tE|t=0 = ε−1∇× H0, ∂tH|t=0 = −µ−1∇× E0. Hence we may follow
the same steps as above to obtain (4.12) for (∂tE, ∂tH), which completes the proof
of (4.7) after combining the above estimates.

4.2. A priori estimates

Now we intend to derive a priori stability estimates for the electric field. Eliminating
the magnetic field in (2.1)–(2.2) and using the TBC in (2.18), we consider the
following initial-boundary value problem:


ε∂2

t E = −∇× (µ−1∇× E
)− F in Ω, t > 0,

E|t=0 = E0, ∂tE|t=0 = E1 in Ω,

µ−1
j (∇× E) × nj + Cj [EΓj ] = 0 on Γj , t > 0,

(4.13)

where

F = ∂tJ, E1 = ε−1(∇× H0 − J0), Cj = L −1 ◦ sBj ◦ L .

The variational problem (4.13) is to find E ∈ H(curl, Ω) for all t > 0 such that∫
Ω

ε∂2
t E · w̄dx = −

∫
Ω

µ−1(∇× E) · (∇× w̄)dx

−
∫

Ω

F · w̄dx −
2∑

j=1

〈Cj [EΓj ],wΓj 〉Γj , ∀w ∈ H(curl, Ω). (4.14)

Lemma 4.2. Given ξ ≥ 0 and E ∈ L2(0, ξ,H−1/2(curl, Γj)), we have

Re
∫ ξ

0

∫
Γj

(∫ t

0

Cj [EΓj ](τ)dτ

)
· ĒΓj (t)dγjdt ≥ 0.

Proof. Let Ẽ be the extension of E with respect to t in R such that Ẽ = 0 outside
the interval [0, ξ]. It follows from the Parseval identity (2.6), Lemma 2.4, Lemma 2.6,
and (2.4) that

Re
∫

Γj

∫ ξ

0

e−2s1t

(∫ t

0

Cj [EΓj ](τ)dτ

)
· ĒΓj (t)dtdγj

= Re
∫

Γj

∫ ∞

0

e−2s1t

(∫ t

0

Cj [ẼΓj ](τ)dτ

)
· ¯̃EΓj (t)dtdγj

= Re
∫

Γj

∫ ∞

0

e−2s1t

(∫ t

0

L −1 ◦ sBj ◦ L ẼΓj(τ)dτ

)
· ¯̃EΓj dtdγj
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=
1
2π

Re
∫ ∞

−∞

∫
Γj

Bj ◦ L ẼΓj (s) · L (¯̆E)(s)dγjds2

=
1
2π

∫ ∞

−∞
Re〈Bj [

˘̃EΓj ],
˘̃EΓj 〉Γj ds2 ≥ 0.

The proof is complete by taking s1 → 0 in the above inequality.

Theorem 4.2. Let E ∈ H(curl, Ω) be the solution of (4.14). If E0,E1 ∈ L2(Ω)
and F ∈ L1(0, T ;L2(Ω)), then E ∈ L∞(0, T ;L2(Ω)). Moreover, we have for any
T > 0 that

‖E‖L∞(0,T ;L2(Ω)) � ‖E0‖L2(Ω) + T ‖E1‖L2(Ω) + T ‖F‖L1(0,T ;L2(Ω)), (4.15)

and

‖E‖L2(0,T ;L2(Ω)) � T 1/2
(‖E0‖L2(Ω) + T ‖E1‖L2(Ω) + T ‖F‖L1(0,T ;L2(Ω))

)
. (4.16)

Proof. Let 0 < ξ < T and consider the function

ψ(x, t) =
∫ ξ

t

E(x, τ)dτ, x ∈ Ω, 0 ≤ t ≤ ξ. (4.17)

It is easy to verify that

ψ(x, ξ) = 0, ∂tψ(x, t) = −E(x, t), (4.18)

and ∫ ξ

0

φ(x, t)ψ̄(x, t)dt =
∫ ξ

0

(∫ t

0

φ(x, τ)dτ

)
· Ē(x, t)dt,

∀φ(x, t) ∈ L2(0, ξ;L2(Ω)). (4.19)

We show the last identity below. Using integration by parts and (4.18) give

∫ ξ

0

φ(x, t) · ψ̄(x, t)dt =
∫ ξ

0

(
φ(x, t) ·

∫ ξ

t

Ē(x, τ)dτ

)
dt

=
∫ ξ

0

∫ ξ

t

Ē(x, τ)dτ · d
(∫ t

0

φ(x, ς)dς

)

=
∫ ξ

t

Ē(x, τ)dτ ·
∫ t

0

φ(x, ς)dς|ξ0 +
∫ ξ

0

(∫ t

0

φ(x, ς)dς

)
· Ē(x, t)dt

=
∫ ξ

0

(∫ t

0

φ(x, τ)dτ

)
Ē(x, t)dt.
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Taking the test function w = ψ in (4.14) leads to∫
Ω

ε∂2
t E · ψ̄dx = −

∫
Ω

µ−1(∇× E) · (∇× ψ̄)dx

−
∫

Ω

F · ψ̄dx −
2∑

j=1

〈Cj [EΓj ],ψΓj
〉Γj

. (4.20)

It follows from (4.18) and the initial conditions in (4.13) that

Re
∫ ξ

0

∫
Ω

∂2
t E · ψ̄dxdt = Re

∫
Ω

∫ ξ

0

(
∂t(∂tE · ψ̄) + ∂tE · Ē) dtdx

= Re
∫

Ω

(
(∂tE · ψ̄)|ξ0 +

1
2
|E|2∣∣ξ

0

)
dx

=
1
2
‖E(·, ξ)‖2

L2(Ω) −
1
2
‖E0‖2

L2(Ω) − Re
∫

Ω

E1(x) · ψ̄(x, 0)dx.

Thus, integrating (4.20) from t = 0 to t = ξ and taking the real parts yield

ε

2
‖E(·, ξ)‖2

L2(Ω) −
ε

2
‖E0‖2

L2(Ω) +
1
2

∫
Ω

µ−1

∣∣∣∣∣
∫ ξ

0

∇× E(x, t)dt

∣∣∣∣∣
2

dx

= ε Re
∫

Ω

E1(x) · ψ̄(x, 0)dx − Re
∫ ξ

0

∫
Ω

F · ψ̄dxdt

−Re
2∑

j=1

∫ ξ

0

〈Cj [EΓj ],ψΓj
〉Γj

dt, (4.21)

where we have used the fact that

Re
∫ ξ

0

∫
Ω

µ−1(∇× E) · (∇× ψ̄)dxdt =
1
2

∫
Ω

µ−1

∣∣∣∣∣
∫ ξ

0

(∇× E)dt

∣∣∣∣∣
2

dx.

Next we estimate the three terms on the right-hand side of (4.21) separately.
We derive from (4.17) and Cauchy–Schwarz inequality that

Re
∫

Ω

E1(x) · ψ̄(x, 0)dx = Re
∫

Ω

E1(x) ·
(∫ ξ

0

Ē(x, t)dt

)
dx

= Re
∫ ξ

0

∫
Ω

E1(x) · Ē(x, t)dxdt

≤ ‖E1‖L2(Ω)

∫ ξ

0

‖E(·, t)‖L2(Ω)dt. (4.22)
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Similarly, for 0 ≤ t ≤ ξ ≤ T , we have from (4.19) that

Re
∫ ξ

0

∫
Ω

F · ψ̄dxdt = Re
∫

Ω

∫ ξ

0

(∫ t

0

F(x, τ)dτ

)
· Ē(x, t)dtdx

= Re
∫ ξ

0

∫ t

0

∫
Ω

F(x, τ) · Ē(x, t)dxdτdt

≤
∫ ξ

0

(∫ t

0

‖F(·, τ)‖L2(Ω)dτ

)
‖E(·, t)‖L2(Ω)dt

≤
∫ ξ

0

(∫ ξ

0

‖F(·, τ)‖L2(Ω)dτ

)
‖E(·, t)‖L2(Ω)dt

≤
(∫ ξ

0

‖F(·, t)‖L2(Ω)dt

)(∫ ξ

0

‖E(·, t)‖L2(Ω)dt

)
.

Using Lemma 4.2 and (4.19), we obtain

Re
∫ ξ

0

〈Cj [EΓj ],ψΓj
〉Γj

dt = Re
∫ ξ

0

∫
Γj

(∫ t

0

Cj [EΓj ](τ)dτ

)
· ĒΓj (t)dγjdt ≥ 0.

(4.23)

Substituting (4.22)–(4.23) into (4.21), we have for any ξ ∈ [0, T ] that

ε

2
‖E(·, ξ)‖2

L2(Ω) +
1
2

∫
Ω

µ−1

∣∣∣∣∣
∫ ξ

0

∇× E(x, t)dt

∣∣∣∣∣
2

dx

≤ ε

2
‖E0‖2

L2(Ω)

(
ε‖E1‖L2(Ω) +

∫ ξ

0

‖F(·, t)‖L2(Ω)dt

)(∫ ξ

0

‖E(·, t)‖L2(Ω)dt

)
.

(4.24)

Taking the L∞-norm with respect to ξ on both sides of (4.24) yields

‖E‖2
L∞(0,T ;L2(Ω)) � ‖E0‖2

L2(Ω) + T (‖F‖L1(0,T ;L2(Ω)) + ‖E1‖L2(Ω))‖E‖L∞(0,T ;L2(Ω)).

Therefore, the estimate (4.15) follows directly from the Young inequality.
Integrating (4.24) with respect to ξ over (0, T ) and using the Cauchy–Schwarz

inequality, we obtain

‖E‖2
L2(0,T ;L2(Ω)) � T ‖E0‖2

L2(Ω) + T 3/2(‖F‖L1(0,T ;L2(Ω))

+ ‖E1‖L2(Ω))‖E‖L2(0,T ;L2(Ω)).

Using Young’s inequality again, we derive the L2-estimate (4.16), which completes
the proof.

In Theorem 4.2, it is required that E0,E1 ∈ L2(Ω), and F ∈ L1(0, T ;L2(Ω)),
which can be satisfied if the data satisfy:

E0 ∈ L2(Ω), H0 ∈ H(curl, Ω), J ∈ H1(0, T ;L2(Ω)).
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5. Conclusion

The scattering problems by unbounded structures have attracted much attention
due to their wide applications and ample mathematical interests. Although exten-
sive study have been done for the time-harmonic problems, it is still not clear what
the best conditions are for those material parameters such as the dielectric permit-
tivity and magnetic permeability to assure the well-posedness of the problems. In
particular, it remains an open problem whether it is well-posed for the real dielectric
permittivity and magnetic permeability.

In this paper, we have studied the time-domain scattering problem in an
unbounded structure for the real dielectric permittivity and magnetic permeabi-
lity. The scattering problem is reduced to an initial-boundary value problem by
using an exact time-domain TBC. The reduced problem is shown to have a unique
solution by using the energy method. The main ingredients of the proofs are the
Laplace transform, the Lax–Milgram lemma, and the Parseval identity. Moreover,
by directly considering the variational problem of the time-domain wave equation,
we obtain a priori estimates with explicit dependence on time.

Recently, the time-domain scattering by one-dimensional periodic structures
was studied in Ref. 13. The authors considered the transverse magnetic and electric
polarizations, where the time-domain Maxwell equations were reduced to the two-
dimensional acoustic wave equation. The work was left undone for the time-domain
scattering by two-dimensional periodic structures, where the time-domain Maxwell
equations must be considered. We will extend the current approach to deal with
the biperiodic structures and even more complicated chiral structures.1,2
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