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Abstract
Consider the incidence of a time-harmonic electromagnetic plane wave onto 
a biperiodic dielectric grating, where the surface is assumed to be a small and 
smooth perturbation of a plane. The diffraction is modeled as a transmission 
problem for Maxwell’s equations in three dimensions. This paper concerns the 
inverse diffraction problem which is to reconstruct the grating surface from 
either the diffracted field or the transmitted field. A novel approach is developed 
to solve the challenging nonlinear and ill-posed inverse problem. The method 
requires only a single incident field and is realized via the fast Fourier transform. 
Numerical results show that it is simple, fast, and stable to reconstruct biperiodic 
dielectric grating surfaces with super-resolved resolution.

Keywords: Maxwell’s equations, inverse diffraction, near-field imaging, 
biperiodic gratings

(Some figures may appear in colour only in the online journal)

1.  Introduction

Consider the diffraction of a time-harmonic electromagnetic plane incident wave by a bipe-
riodic structure, which is called a crossed or two-dimensional grating in optical community. 
Given the structure and the incident field, the direct problem is to determine the diffracted 
field. The inverse problem is to reconstruct the grating surface from measured field. This 
paper concerns the latter. Diffractive gratings have been widely used in micro-optics including 
the design and fabrication of optical elements such as corrective lenses, anti-reflective inter-
faces, beam splitters, and sensors. Driven by the industrial applications, the diffraction grating 
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problems have received ever-lasting attention in the engineering and applied mathematical 
communities [14, 48]. An introduction to this topic can be found in the monograph [50]. We 
refer to [12] for a comprehensive review on the mathematical modeling and computational 
methods for these problems.

The inverse diffraction problems have been studied extensively for one-dimensional grat-
ings, where the structures are invariant in one direction and the model of Maxwell’s equa-
tions can be simplified into the Helmholtz equation. Mathematical results, such as uniqueness 
and stability, are established by many researchers [10, 15, 25, 39, 43]. Computationally, a 
number of methods are developed [9, 21, 22, 26, 36, 38, 42]. Numerical solutions can be found 
in [8, 31, 34, 44] for solving general inverse surface scattering problems. There are also many 
work done for two-dimensional gratings, where Maxwell’s equations  must be considered. 
We refer to [3, 11, 20, 35, 45] for the existence, uniqueness, and numerical approximations 
of solutions for the direct problems. Mathematical studies on uniqueness can be found in  
[2, 23, 24, 40, 41, 52] for the inverse problems. Numerical results are very rare for the inverse 
problems due to the nonlinearity, ill-posedness, and large scale computation [46]. Despite a 
great number of work done for the inverse diffraction problems, they addressed the classical 
inverse scattering problems. The reconstructed resolution was limited by Rayleigh’s criterion, 
approximately half of the incident wavelength, also known as the diffraction limit [32].

When a light beam illuminates a sample characterized by a fine structure (with details 
smaller than one half the wavelength), it will be converted into propagating components, 
which are able to propagate towards the remote (far-field) detector, and evanescent comp
onents, which are confined on the surface. The first ones are associated to the low spatial fre-
quencies of the object whereas the second ones are connected to their high frequencies, which 
do not obey the Rayleigh criterion and contribute to the subwavelength (a small fraction of 
the wavelength) resolution. Near-field imaging deals with phenomena involving evanescent 
waves which become significant when the sizes of the samples are of the order of the wave-
length or smaller. By bringing a scanner into the near-field (subwavelength) of the sample, the 
high frequency evanescent field can be measured and thus images with subwavelength (super-
resolved) resolution may be obtained [33, 37].

Recently, a novel approach has been developed to solve inverse surface scattering problems 
in various near-field imaging modalities [16–18, 30] including the inverse electromagnetic dif-
fraction by a perfectly electrically conducting grating [13]. The work in [13] presents the first 
quantitative method for solving the inverse diffraction problem of Maxwell’s equations with 
super-resolved resolution. As is known, the perfect electric conductor is an idealized material 
exhibiting infinite electrical conductivity and may not exist in nature. In this paper, we con-
sider a realistic dielectric grating and the result is closer to practical applications. The more 
elaborate techniques differ from the existing work because a complicated transmission prob-
lem of Maxwell’s equations needs to be studied. Related work on near-field imaging can be 
found in [19, 28, 29, 46]. We refer to [4, 5] for a related interface reconstruction problem and 
its stability and resolution estimates. As is known, it is impossible to achieve super-resolved 
imaging in the far field unless resonant or high contrast structures are used. The mathematical 
theory of super-resolution can be found in [6, 7] on these aspects.

Specifically, we consider the incidence of an electromagnetic plane wave on a dielectric 
crossed grating, where the surface is assumed to be a small and smooth deformation of a 
plane. The diffraction is modeled as a transmission problem for Maxwell’s equations  in 
three dimensions. The method begins with the transformed field expansion and reduces the 
boundary value problem into a successive sequence of two-point boundary value problems. 
Dropping higher order terms in the expansion, we linearize the nonlinear inverse problem and 
obtain explicit reconstruction formulas for both the reflection and transmission configurations.  
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A spectral cut-off regularization is adopted to suppress the exponential growth of the noise in 
the evanescent wave components, which carry high spatial frequency of the surface and con-
tribute to the super resolution. The method requires only a single illumination with one polari-
zation, one frequency, and one incident direction, and is realized via the fast Fourier transform. 
The numerical results are computed by using synthetic scattering data provided by an adaptive 
edge element method with a perfectly matched absorbing layer [20]. Three numerical exam-
ples, one smooth surface and two non-smooth surfaces, are presented to demonstrate the effec-
tiveness of the proposed method. Careful numerical studies are carried for the influence of all 
the parameters on the reconstructions. The results show that the method is simple, fast, and 
stable to reconstruct dielectric crossed grating surfaces with subwavelength resolution.

The paper is organized as follows. In section 2, the model problem is introduced. Section 3 
presents the transformed field expansion to obtain the analytic solution of the direct problem. 
Explicit reconstruction formulas are derived for the inverse problem in section 4. Numerical 
examples are reported in section 5. The paper is concluded with some general remarks and 
direction for future work in section 6.

2.  Model problem

In this section, we define some notation and introduce a boundary value problem for the dif-
fraction by a biperiodic dielectric grating.

2.1.  Maxwell’s equations

Let us first specify the problem geometry. Denote (ρ, z) ∈ R3, where ρ = (x, y) ∈ R2.  
As seen in figure  1, the problem may be restricted to a single period of Λ = (Λ1,Λ2) 
in ρ due to the periodicity of the structure. Let the surface in one period be described by 
S = {(ρ, z) ∈ R3 : z = φ(ρ), 0 < x < Λ1, 0 < y < Λ2}, where φ ∈ C2(R2) is a biperiodic 
grating surface function. We assume that

φ(ρ) = δψ(ρ),� (2.1)

where δ > 0 is a small surface deformation parameter, ψ ∈ C2(R2) is also a biperiodic func-
tion and describes the shape of the grating surface.

We let S be embedded in the rectangular slab:

Ω = {(ρ, z) ∈ R3 : z− < z < z+} = R2 × (z−, z+),

where z+   >  0 and z−  <  0 are two constants. Hence the domain Ω is bounded by two plane surfaces 
Γ± = {(ρ, z) ∈ R3 : z = z±}. Let Ω+

S = {(ρ, z) : z > φ(ρ)} and Ω−
S = {(ρ, z) : z < φ(ρ)} be 

filled with homogeneous materials which are characterized by the electric permittivity ε+ and 
ε−, respectively.

Let (Einc, Hinc) be the incoming electromagnetc plane waves, where

Einc = peiκ+(α·ρ−βz), Hinc =

(
ε+
µ

)1/2

qeiκ+(α·ρ−βz).� (2.2)

Here κ+ = ω(µε+)
1/2 is the wavenumber in Ω+

S , ω > 0 is the angular frequency, μ is the 
magnetic permeability and is assumed to be a positive constant everywhere, α = (α1,α2), 
α1 = sin θ1 cos θ2, α2 = sin θ1 sin θ2, and β = cos θ1, where θ1 and θ2  are the latitudinal and 
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longitudinal incident angles, respectively, which satisfy 0 � θ1 < π/2, 0 � θ2 < 2π. Denote 
by d = (α1,α2,−β) the unit propagation direction vector. The unit polarization vectors 
p = ( p1, p2, p3) and q = (q1, q2, q3) satisfy

p · d = 0, q = d× p,

which gives explicitly that

q1 = α2p3 + βp2, q2 = −(α1p3 + βp1), q3 = α1p2 − α2p1.

For normal incident, i.e. θ1 = 0, we have

α1 = 0, α2 = 0, β = 1, q1 = p2, q2 = −p1, q3 = 0.

Hence we get from |p| = |q| = 1 that

p2
1 + p2

2 = 1, p3 = 0.

For simplicity, we focus on the normal incidence from now on since our method requires only 
a single incidence. In fact, this is the most convenient way to illuminate the grating structure. 
The method also works for non-normal incidence with obvious modifications.

Let Einc = (Einc
1 , Einc

2 , Einc
3 ) and Hinc = (Hinc

1 , Hinc
2 , Hinc

3 ). Under the normal incidence, the 
incoming plane waves (2.2) reduce to

Einc
j = pje−iκ+z, Hinc

j =

(
ε+
µ

)1/2

qje−iκ+z,� (2.3)

which satisfy the time-harmonic Maxwell equation:

∇×Einc − iωµHinc = 0, ∇×Hinc + iωε+Einc = 0 in Ω+
S .

The time-harmonic electromagnetic waves satisfy Maxwell’s equations:

∇×E− iωµH = 0, ∇×H+ iωεE = 0 in R3,� (2.4)

where (E,H) are the total electric and magnetic fields, and the dielectric permittivity

ε =

{
ε+ in Ω+

S ,
ε− in Ω−

S .

Figure 1.  The problem geometry of a biperiodic dielectric grating.
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Motivated by uniqueness, we are interested in periodic solutions of (E,H) in ρ with period 
Λ, i.e. (E,H) satisfy

E(ρ+ Λ, z) = E(ρ, z), H(ρ+ Λ, z) = H(ρ, z).

The total fields can be decomposed into

(E, H) =

{
(Einc, Hinc) + (Ed, Hd) in Ω+

S ,
(Et, Ht) in Ω−

S ,

where (Ed, Hd) are the diffracted fields and (Et, Ht) are the transmitted fields. They are 
required to satisfy the bounded outgoing wave condition.

2.2. Transparent boundary condition

In this section, we introduce transparent boundary conditions on Γ± which are equivalent to 
the bounded outgoing wave condition. The detailed derivation can be found in [21].

Let n = (n1, n2) ∈ Z2 and denote αn = (α1n, α2n), where α1n = 2πn1/Λ1 and 
α2n = 2πn2/Λ2. For any vector field u = (u1, u2, u3), denote its tangential components on 
Γ± by

uΓ± = nΓ± × (u× nΓ±) = (u1(ρ, z±), u2(ρ, z±), 0),

and its tangential traces on Γ± by

u× nΓ+
= (u2(ρ, z+), −u1(ρ, z+), 0),

u× nΓ− = (−u2(ρ, z−), u1(ρ, z−), 0),

where nΓ± = (0, 0, ±1) are the unit normal vectors on Γ±.
For any tangential vector u(ρ, z+) = (u1(ρ, z+), u2(ρ, z+), 0) on Γ+, where uj are biperi-

odic functions in ρ with period Λ, we define the capacity operator T+ :

T+u = (v1(ρ, z+), v2(ρ, z+), 0),� (2.5)

where vj are also biperiodic functions in ρ with the same period Λ. Here uj and vj have the fol-
lowing Fourier series expansions

uj(ρ, z+) =
∑
n∈Z2

ujn(z+)eiαn·ρ, vj(ρ, z+) =
∑
n∈Z2

vjn(z+)eiαn·ρ,

and the Fourier coefficients ujn and vjn satisfy



v1n(z+) = 1
ωµβ+

n

[
(κ2

+ − α2
2n)u1n(z+) + α1nα2nu2n(z+)

]
,

v2n(z+) = 1
ωµβ+

n

[
(κ2

+ − α2
1n)u2n(z+) + α1nα2nu1n(z+)

]
,

where

(β+
n )2 = κ2

+ − |αn|2 with Imβ+
n > 0.� (2.6)

We exclude possible resonance by assuming that β+
n �= 0 for all n ∈ Z2.

Using the capacity operator (2.5), we impose a transparent boundary condition on Γ+:

T+(EΓ+
−Einc

Γ+
) = (H−Hinc)× nΓ+

,

X Jiang and P Li﻿Inverse Problems 33 (2017) 085004
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which maps the tangential component of the scattered electric field to the tangential trace of 
the scattered magnetic field. Equivalently, the above boundary condition can be written as

(∇×E)× nΓ+
= iωµT+EΓ+

+ f ,� (2.7)

where

f = iωµ(Hinc × nΓ+
− T+E

inc
Γ+

) = ( f1, f2, f3).

Recalling the incident fields (2.3) and using the boundary operator (2.5), we have explicitly 
that

fj = −2iκ+pje−iκ+z+ .

Similarly, for any given tangential vector u(ρ, z−) = (u1(ρ, z−), u2(ρ, z−), 0) on Γ−, 
where uj(ρ, z−) is a biperiodic function in ρ with period Λ, we define the capacity operator T−:

T−u = (v1(ρ, z−), v2(ρ, z−), 0),� (2.8)

where vj is also a biperiodic function in ρ with the same period Λ. Here uj and vj have the fol-
lowing Fourier series expansions

uj(ρ, z−) =
∑
n∈Z2

ujn(z−)eiαn·ρ, vj(ρ, z−) =
∑
n∈Z2

vjn(z−)eiαn·ρ,

and the Fourier coefficients ujn and vjn satisfy



v1n(z−) = 1
ωµβ−

n

[
(κ2

− − α2
2n)u1n(z−) + α1nα2nu2n(z−)

]
,

v2n(z−) = 1
ωµβ−

n

[
(κ2

− − α2
1n)u2n(z−) + α1nα2nu1n(z−)

]
,

where κ− = ω(µε−)
1/2 is the wavenumber in Ω−

S  and

(β−
n )2 = κ2

− − |αn|2 with Imβ−
n > 0.� (2.9)

Here we also assume that β−
n �= 0 for all n ∈ Z2.

Based on (2.8), a transparent boundary condition may be proposed on Γ−:

T−EΓ− = H× nΓ− ,

which is equivalent to

(∇×E)× nΓ− = iωµT−EΓ− .� (2.10)

2.3. Transmission problem

Taking curl on both sides of (2.4), we may eliminate the magnetic field and obtain a decoupled 
equation for the electric field:

∇× (∇×E)− κ2E = 0 in Ω,� (2.11)

where the wavenumber

κ =

{
κ+ in Ω+

S ,
κ− in Ω−

S .

Denote Ω+ = Ω+
S ∩ Ω = {(ρ, z) : φ(ρ) < z < z+} and Ω− = Ω−

S ∩ Ω = {(ρ, z) : 
z− < z < φ(ρ)}. Let E+ and E− be the restriction of E in Ω+ and Ω−, respectively, i.e. 
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E± = E|Ω±. It is useful to have an equivalent scalar form of (2.11) when applying the trans-
formed field expansion. Denote E± = (E±

1 , E±
2 , E±

3 ). We may reformulate (2.11) into the 
Helmholtz equation:

∆E±
j + κ2

±E±
j = 0 in Ω±.� (2.12)

The transparent boundary conditions (2.7) and (2.10) can be written as
{
∂zE+

1 − ∂xE+
3 = iωµH+

1 + f1,
∂zE+

2 − ∂yE+
3 = iωµH+

2 + f2,
� (2.13)

and
{
∂zE−

1 − ∂xE−
3 = −iωµH−

1 ,
∂zE−

2 − ∂yE−
3 = −iωµH−

2 ,� (2.14)

where the Fourier coefficients of the periodic functions H±
1  and H±

2  are given by



H±
1n(z±) =

1
ωµβ±

n

[
(κ2

± − α2
2n)E

±
1n(z±) + α1nα2nE±

2n(z±)
]

,

H±
2n(z±) =

1
ωµβ±

n

[
(κ2

± − α2
1n)E

±
2n(z±) + α1nα2nE±

1n(z±)
]

.

Here E±
1n(z±) and E±

2n(z±) are the Fourier coefficients of the periodic electric field E±
1 (ρ, z±) 

and E±
2 (ρ, z±), respectively.

The continuity conditions are needed to reformulate the boundary value problem into a 
transmission problem. It is known that the tangential traces of the electric and magnetic fields 
are continuous across the grating surface, i.e.

E+ × nS = E− × nS, H+ × nS = H− × nS, z = φ(ρ),

where nS = (φx,φy,−1) is the normal vector on S pointing from Ω+
S  to Ω−

S . Explicitly, we 
have the continuity conditions

{
E+

2 + φyE+
3 = E−

2 + φyE−
3 ,

E+
1 + φxE+

3 = E−
1 + φxE−

3 ,
� (2.15)

and



(
∂zE+

1 − ∂xE+
3

)
+ φy

(
∂xE+

2 − ∂yE+
1

)
= (∂zE−

1 − ∂xE−
3 ) + φy(∂xE−

2 − ∂yE−
1 ),

(
∂yE+

3 − ∂zE+
2

)
+ φx

(
∂xE+

2 − ∂yE+
1

)
=

(
∂yE−

3 − ∂zE−
2

)
+ φx

(
∂xE−

2 − ∂yE−
1

)
.

�

(2.16)

The transparent boundary conditions (2.13) and (2.14) and the continuity conditions (2.15) 

and (2.16) are not enough to determine the fields E±
j . Additional information can be obtained 

from the divergence free conditions

∂xE±
1 + ∂yE±

2 + ∂zE±
3 = 0 in Ω±.� (2.17)

Given the grating surface function φ(ρ), the direct problem is to determine the fields 

E±
j . This work is focused on the inverse problem, which is to reconstruct the grating sur-

face function φ(ρ) from the tangential traces of the total field measured at either Γ+, i.e. 
E(ρ, z+)× nΓ+ = (E1(ρ, z+), E2(ρ, z+), 0) called the reflection configuration, or Γ−, i.e. 
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E(ρ, z−)× nΓ− = (−E1(ρ, z−), E2(ρ, z−), 0) called the transmission configuration. In par
ticular, we are interested in the inverse problem in near-field regime where the measurement 
distance |z±| is much smaller than the wavelength λ = 2π/κ+ of the incident field.

3. Transformed field expansion

In this section, we introduce the transformed field expansion to analytically derive the solution 
for the direct problem. We refer to [27, 47, 49] for solving the direct and inverse surface scat-
tering problems by using the transformed field expansion and related boundary perturbation 
method.

3.1.  Change of variables

Consider the change of variables:

x̃ = x, ỹ = y, z̃ = z+

(
z − φ

z+ − φ

)
, φ < z < z+,

and

x̃ = x, ỹ = y, z̃ = z−

(
z − φ

z− − φ

)
, z− < z < φ,

which maps the domain Ω+ and Ω− into rectangular slabs D+ = {(ρ̃, z̃) ∈ R3 : 0 < z̃ < z+} 
and D− = {(ρ̃, z̃) ∈ R3 : z− < z < 0}, respectively.

We seek to restate the diffractive grating problem in the new coordinate. Introduce a new 

function Ẽ
±
= (Ẽ±

1 , Ẽ±
2 , Ẽ±

3 ) and let Ẽ±
j (x̃, ỹ, z̃) = E±

j (x, y, z) under the transformation. 
After tedious but straightforward calculations, it can be verified from (2.12) that the total 
electric field, upon dropping the tilde, satisfies the equation

c±1
∂2E±

j

∂x2 + c±1
∂2E±

j

∂y2 + c±2
∂2E±

j

∂z2 − c±3
∂2E±

j

∂x∂z

− c±4
∂2E±

j

∂y∂z
− c±5

∂E±
j

∂z
+ κ2

±c±1 E±
j = 0 in D±,

�

(3.1)

where

c±1 = (z± − φ)2,

c±2 = (φ2
x + φ2

y)(z± − z)2 + z2
±,

c±3 = 2φx(z± − z)(z± − φ),

c±4 = 2φy(z± − z)(z± − φ),

c±5 = (z± − z)
[
(φxx + φyy)(z± − φ) + 2(φ2

x + φ2
y)
]
.

The transparent boundary conditions (2.13) and (2.14) reduce to



(
z+

z+−φ

)
∂zE+

1 − ∂xE+
3 = iωµH+

1 + f1,

(
z+

z+−φ

)
∂zE+

2 − ∂yE+
3 = iωµH+

2 + f2,
�

(3.2)
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and




(
z−

z−−φ

)
∂zE−

1 − ∂xE−
3 = −iωµH−

1 ,

(
z−

z−−φ

)
∂zE−

2 − ∂yE−
3 = −iωµH−

2 .
� (3.3)

The continuity conditions (2.15) and (2.16) are changed to
{

E+
2 + φyE+

3 = E−
2 + φyE−

3 ,
E+

1 + φxE+
3 = E−

1 + φxE−
3 ,

� (3.4)

and




(
z+

z+−φ

) [
φx∂zE+

3 − φxφy∂zE+
2 + (1 + φ2

y)∂zE+
1

]

−
(
∂xE+

3 − φy∂xE+
2 + φy∂yE+

1

)

=
(

z−
z−−φ

) [
φx∂zE−

3 − φxφy∂zE−
2 + (1 + φ2

y)∂zE−
1

]

−
(
∂xE−

3 − φy∂xE−
2 + φy∂yE−

1

)
,

(
z+

z+−φ

) [
φy∂zE+

3 + (1 + φ2
x)∂zE+

2 − φxφy∂zE+
1

]

−
(
∂yE+

3 + φx∂xE+
2 − φx∂yE+

1

)

=
(

z−
z−−φ

) [
φy∂zE−

3 + (1 + φ2
x)∂zE−

2 − φxφy∂zE−
1

]

−
(
∂yE−

3 + φx∂xE−
2 − φx∂yE−

1

)
.

� (3.5)

The divergence free condition (2.17) becomes

∂xE±
1 + ∂yE±

2 −
(

z± − z
z± − φ

)
(φx∂zE±

1 + φy∂zE±
2 )

+

(
z±

z± − φ

)
∂zE±

3 = 0 in D±.
�

(3.6)

3.2.  Power series

Recalling φ = δψ in (2.1), we use a classical boundary perturbation argument and consider a 

formal expansion of E±
j  in a power series of δ:

E±
j (ρ, z; δ) =

∞∑
k=0

E±(k)
j (ρ, z) δk.� (3.7)

Substituting φ = δψ and the power series expansion (3.7) into c±j  and (3.1), we may derive 

a recursion equation for E±(k)
j :

∆E±(k)
j + κ2

±E±(k)
j = F±(k)

j in D±,� (3.8)

where the nonhomogeneous term
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F±(k)
j =

2ψ
z±

∂2E±(k−1)
j

∂x2 +
2ψ
z±

∂2E±(k−1)
j

∂y2 +
2(z± − z)ψx

z±

∂2E±(k−1)
j

∂x∂z

+
2(z± − z)ψy

z±

∂2E±(k−1)
j

∂y∂z
+

(z± − z)(ψxx + ψyy)

z±

∂E±(k−1)
j

∂z
+

2κ2
±ψ

z±
E±(k−1)

j

− ψ2

z2
±

∂2E±(k−2)
j

∂x2 − ψ2

z2
±

∂2E±(k−2)
j

∂y2 −
(z± − z)2(ψ2

x + ψ2
y )

z2
±

∂2E±(k−2)
j

∂z2

− 2ψψx(z± − z)
z2
±

∂2E±(k−2)
j

∂x∂z
−

2ψψy(z± − z)
z2
±

∂2E±(k−2)
j

∂y∂z

+
(z± − z)

[
2(ψ2

x + ψ2
y )− ψ(ψxx + ψyy)

]

z2
±

∂E±(k−2)
j

∂z
−

κ2
±ψ

2

z2
±

E±(k−2)
j .

Here ψx = ∂xψ(x, y) and ψy = ∂yψ(x, y) are the partial derivatives.
Substituting (3.7) into the transparent boundary conditions (3.2) and (3.3), we obtain

{
∂zE

+(k)
1 − ∂xE+(k)

3 = iωµH+(k)
1 − f+(k)

1 ,

∂zE
+(k)
2 − ∂yE+(k)

3 = iωµH+(k)
2 − f+(k)

2 ,
� (3.9)

and
{
∂zE

−(k)
1 − ∂xE−(k)

3 = −iωµH−(k)
1 − f−(k)

1 ,

∂zE
−(k)
2 − ∂yE−(k)

3 = −iωµH−(k)
2 − f−(k)

2 ,
� (3.10)

where

f+(0)
1 = −f1, f+(1)

1 =
ψ

z+
∂zE

+(0)
1 , f+(k)

1 =
ψ

z+

(
∂xE+(k−1)

3 + iωµH+(k−1)
1

)
,

f+(0)
2 = −f2, f+(1)

2 =
ψ

z+
∂zE

+(1)
2 , f+(k)

2 =
ψ

z+

(
∂yE+(k−1)

3 + iωµH+(k−1)
2

)
,

and

f−(0)
1 = 0, f−(1)

1 =
ψ

z−
∂zE

−(0)
1 , f−(k)

1 =
ψ

z−

(
∂xE−(k−1)

3 − iωµH−(k−1)
1

)
,

f−(0)
2 = 0, f−(1)

2 =
ψ

z−
∂zE

−(0)
2 , f−(k)

2 =
ψ

z−

(
∂yE−(k−1)

3 − iωµH−(k−1)
2

)
.

Here the Fourier coefficients of H±(k)
1 (ρ, z±) and H±(k)

2 (ρ, z±) are



H±(k)
1n (z±) = 1

ωµβ±
n

[
(κ2

± − α2
2n)E

±(k)
1n (z±) + α1nα2nE±(k)

2n (z±)
]

,

H±(k)
2n (z±) = 1

ωµβ±
n

[
(κ2

± − α2
1n)E

±(k)
2n (z±) + α1nα2nE±(k)

1n (z±)
]

.

Here E±(k)
1n (z±) and E±(k)

2n (z±) are the Fourier coefficients of E±(k)
1 (ρ, z±) and E±(k)

1 (ρ, z±), 
respectively.
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Plugging (3.7) into the jump conditions (3.4) and (3.5) yields
{

E+(k)
2 + ψyE+(k−1)

3 = E−(k)
2 + ψyE−(k−1)

3 ,

E+(k)
1 + ψxE+(k−1)

3 = E−(k)
1 + ψxE−(k−1)

3 ,
� (3.11)

and




(
∂zE

+(k)
1 + ψx∂zE

+(k−1)
3 + ψ2

y∂zE
+(k−2)
1 − ψxψy∂zE

+(k−2)
2

)

−z−1
−

(
∂zE

+(k−1)
1 + ψx∂zE

+(k−2)
3 + ψ2

y∂zE
+(k−3)
1 − ψxψy∂zE

+(k−3)
2

)
ψ

−
(
∂xE+(k)

3 + ψy∂yE+(k−1)
1 − ψy∂xE+(k−1)

2

)

+
(
z−1
+ + z−1

−
) (

∂xE+(k−1)
3 + ψy∂yE+(k−2)

1 − ψy∂xE+(k−2)
2

)
ψ

−(z+z−)−1
(
∂xE+(k−2)

3 + ψy∂yE+(k−3)
1 − ψy∂xE+(k−3)

2

)
ψ2

=
(
∂zE

−(k)
1 + ψx∂zE

−(k−1)
3 + ψ2

y∂zE
−(k−2)
1 − ψxψy∂zE

−(k−2)
2

)

−z−1
+

(
∂zE

−(k−1)
1 + ψx∂zE

−(k−2)
3 + ψ2

y∂zE
−(k−3)
1 − ψxψy∂zE

−(k−3)
2

)
ψ

−
(
∂xE−(k)

3 + ψy∂yE−(k−1)
1 − ψy∂xE−(k−1)

2

)

+(z−1
+ + z−1

− )
(
∂xE−(k−1)

3 + ψy∂yE−(k−2)
1 − ψy∂xE−(k−2)

2

)
ψ

−(z+z−)−1
(
∂xE−(k−2)

3 + ψy∂yE−(k−3)
1 − ψy∂xE−(k−3)

2

)
ψ2

(
∂zE

+(k)
2 + ψy∂zE

+(k−1)
3 + ψ2

x∂zE
+(k−2)
2 − ψxψy∂zE

+(k−2)
1

)

−z−1
−

(
∂zE

+(k−1)
2 + ψy∂zE

+(k−2)
3 + ψ2

x∂zE
+(k−3)
2 − ψxψy∂zE

+(k−3)
1

)
ψ

−
(
∂yE+(k)

3 + ψx(∂xE+(k−1)
2 − ∂yE+(k−1)

1 )
)

+(z−1
+ + z−1

− )
(
∂yE+(k−1)

3 + ψx∂xE+(k−2)
2 − ψx∂yE+(k−2)

1

)
ψ

−(z+z−)−1
(
∂yE+(k−2)

3 + ψx∂xE+(k−3)
2 − ψx∂yE+(k−3)

1

)
ψ2

=
(
∂zE

−(k)
2 + ψy∂zE

−(k−1)
3 + ψ2

x∂zE
−(k−2)
2 − ψxψy∂zE

−(k−2)
1

)

−z−1
+

(
∂zE

−(k−1)
2 + ψy∂zE

−(k−2)
3 + ψ2

x∂zE
−(k−3)
2 − ψxψy∂zE

−(k−3)
1

)
ψ

−
(
∂yE−(k)

3 + ψx∂xE−(k−1)
2 − ψx∂yE−(k−1)

1

)

+(z−1
+ + z−1

− )
(
∂yE−(k−1)

3 + ψx∂xE−(k−2)
2 − ψx∂yE−(k−2)

1

)
ψ

−(z+z−)−1
(
∂yE−(k−2)

3 + ψx∂xE−(k−3)
2 − ψx∂yE−(k−3)

1

)
ψ2.

�

(3.12)

Substituting (3.7) into the divergence free condition (3.6) yields

∂xE±(k)
1 + ∂yE±(k)

2 + ∂zE
±(k)
3 = g±(k) in D±,� (3.13)

where

w±(k) =
ψ

z±

(
∂xE±(k−1)

1 + ∂yE±(k−1)
2

)

+

(
z± − z

z±

)(
ψx∂zE

±(k−1)
1 + ψy∂zE

±(k−1)
2

)
.
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3.3.  Zeroth order

Recalling the recurrence relation (3.8) and letting k  =  0, we have

∆E±(0)
j + κ2

±E±(0)
j = 0 in D±.� (3.14)

The transparent boundary conditions (3.9) and (3.10) becomes
{
∂zE

+(0)
1 (ρ, z+)− ∂xE+(0)

3 (ρ, z+) = iωµH+(0)
1 (ρ, z+) + f1(ρ),

∂zE
+(0)
2 (ρ, z+)− ∂yE+(0)

3 (ρ, z+) = iωµH+(0)
2 (ρ, z+) + f2(ρ),

� (3.15)

and
{
∂zE

−(0)
1 (ρ, z−)− ∂xE−(0)

3 (ρ, z−) = −iωµH−(0)
1 (ρ, z−),

∂zE
−(0)
2 (ρ, z−)− ∂yE−(0)

3 (ρ, z−) = −iωµH−(0)
2 (ρ, z−).

� (3.16)

The jump conditions (3.11) and (3.12) reduce to

E+(0)
2 (ρ, 0) = E−(0)

2 (ρ, 0), E+(0)
1 (ρ, 0) = E−(0)

1 (ρ, 0),� (3.17)

and
{
∂zE

+(0)
1 (ρ, 0)− ∂xE+(0)

3 (ρ, 0) = ∂zE
−(0)
1 (ρ, 0)− ∂xE−(0)

3 (ρ, 0),

∂zE
+(0)
2 (ρ, 0)− ∂yE+(0)

3 (ρ, 0) = ∂zE
−(0)
2 (ρ, 0)− ∂yE−(0)

3 (ρ, 0).
� (3.18)

The divergence free condition (3.13) reduces to

∂xE±(0)
1 + ∂yE±(0)

2 + ∂zE
±(0)
3 = 0 in D±.� (3.19)

Since E±(0)
j (ρ, z) and fj are periodic functions of ρ with period Λ, they have the following 

Fourier expansion

E±(0)
j (ρ, z) =

∑
n∈Z2

E±(0)
jn (z)eiαn·ρ, fj(ρ) =

∑
n∈Z2

fjneiαn·ρ,� (3.20)

where

fjn =

{
−2iκ+pje−iκ+z+ for n = 0,

0 for n �= 0.

Plugging (3.20) into (3.14)–(3.19), we obtain an ordinary differential equation

d2E±(0)
jn (z)

dz2 + (β±
n )2E±(0)

jn (z) = 0,� (3.21)

together with the boundary conditions at z  =  z+ :



E+(0)
1n

′
− iα1nE+(0)

3n = i
β+

n

[
(κ2

+ − α2
2n)E

+(0)
1n + α1nα2nE+(0)

2n

]
+ f1n,

E+(0)
2n

′
− iα2nE+(0)

3n = i
β+

n

[
(κ2

+ − α2
1n)E

+(0)
2n + α1nα2nE+(0)

1n

]
+ f2n,

E+(0)
3n

′
+ iα1nE+(0)

1n + iα2nE+(0)
2n = 0.

� (3.22)

and the boundary conditions at z  =  z−:
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


E−(0)
1n

′
− iα1nE−(0)

3n = − i
β−

n

[
(κ2

− − α2
2n)E

−(0)
1n + α1nα2nE−(0)

2n

]
,

E−(0)
2n

′
− iα2nE−(0)

3n = − i
β−

n

[
(κ2

− − α2
1n)E

−(0)
2n + α1nα2nE−(0)

1n

]
,

E−(0)
3n

′
+ iα1nE−(0)

1n + iα2nE−(0)
2n = 0,

� (3.23)

and the jump conditions at z  =  0:

E+(0)
2n = E−(0)

2n , E+(0)
1n = E−(0)

1n ,� (3.24)

and
{

E+(0)
1n

′
− iα1nE+(0)

3n = E−(0)
1n

′
− iα1nE−(0)

3n ,

E+(0)
2n

′
− iα2nE+(0)

3n = E−(0)
2n

′
− iα2nE−(0)

3n .
� (3.25)

It can be verified that the general solutions of the homogeneous second order equa-
tions (3.21) are

E±(0)
jn (z) = A±

jn eiβ±
n z + B±

jn e−iβ±
n z,� (3.26)

where A±
jn , B±

jn ∈ C are to be determined. Substituting (3.26) into the boundary conditions 
(3.22) and (3.23), and the jump conditions (3.24) and (3.25), we may deduce that

A+(0)
j0 = rpj, B+(0)

j0 = pj, A−(0)
j0 = 0, B−(0)

j0 = tpj,

and A±
jn = B±

jn = A±
jn = B±

jn = 0 for n �= 0, where

r =
κ+ − κ−

κ+ + κ−
and t =

2κ+

κ+ + κ−

are known as the reflection coefficient and the transmission coefficient, respectively. Hence 
we find the analytic expressions for the zeroth order terms:




E+(0)
j (ρ, z) = pj(e−iκ+z + reiκ+z),

E−(0)
j (ρ, z) = pjte−iκ−z.

� (3.27)

Clearly, the zeroth order terms consist of the incident wave, the reflected wave, and the trans-
mitted wave, which come from the diffraction of an electromagnetic plane wave by a planar 
surface.

3.4.  First order

In this section, we derive analytic expressions of the first order terms, and particularly a con-
nection between their Fourier coefficients and the Fourier coefficient of the grating profile.

Taking k  =  1 in (3.8) yields

∆E±(1)
j + κ2E±(1)

j = F±(1)
j in D±,� (3.28)
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where

F±(1)
j =

2ψ
z±

∂2E±(0)
j

∂x2 +
2ψ
z±

∂2E±(0)
j

∂y2 +
2(z± − z)ψx

z±

∂2E±(0)
j

∂x∂z
+

2(z± − z)ψy

z±

∂2E±(0)
j

∂y∂z

+
(z± − z)(ψxx + ψyy)

z±

∂E±(0)
j

∂z
+

2κ2
±ψ

z±
E±(0)

j .

It follows from the explicit expression of the zeroth order term (3.27) that we have

F+(1)
j (ρ, z) =

2κ2
+pj

z+

(
e−iκ+z + reiκ+z)ψ

−
iκ+pj(z+ − z)

z+

(
e−iκ+z − reiκ+z) (ψxx + ψyy)

and

F−(1)
j (ρ, z) =

2κ2
−pj

z−
te−iκ−zψ −

iκ−pj(z− − z)
z−

te−iκ−z(ψxx + ψyy).

The transparent boundary conditions (3.9) and (3.10) become


∂zE

+(1)
1 (ρ, z+)− ∂xE+(1)

3 (ρ, z+) = iωµH+(1)
1 (ρ, z+)− f+(1)

1 (ρ),

∂zE
+(1)
2 (ρ, z+)− ∂yE+(1)

3 (ρ, z+) = iωµH+(1)
2 (ρ, z+)− f+(1)

2 (ρ),
� (3.29)

and


∂zE

−(1)
1 (ρ, z−)− ∂xE−(1)

3 (ρ, z−) = −iωµH−(1)
1 (ρ, z−)− f−(1)

1 (ρ),

∂zE
−(1)
2 (ρ, z−)− ∂yE−(1)

3 (ρ, z−) = −iωµH−(1)
2 (ρ, z−)− f−(1)

2 (ρ),
� (3.30)

where we have from (3.27) that

f+(1)
j (ρ) =

ψ

z+
∂zE

+(0)
j (ρ, z+) = −

iκ+pj

z+

(
e−iκ+z+ − reiκ+z+

)
ψ,

f−(1)
j (ρ) =

ψ

z−
∂zE

−(0)
j (ρ, z−) = −

iκ−pj

z−
te−iκ−z−ψ.

The jump conditions (3.11) and (3.12) reduce to
{

E+(1)
2 + ψyE+(0)

3 = E−(1)
2 + ψyE−(0)

3 ,

E+(1)
1 + ψxE+(0)

3 = E−(1)
1 + ψxE−(0)

3 ,

and


∂zE

+(1)
1 − ψ

z−
∂zE

+(0)
1 − ∂xE+(1)

3 = ∂zE
−(1)
1 − ψ

z+
∂zE

−(0)
1 − ∂xE−(1)

3 ,

∂zE
+(1)
2 − ψ

z−
∂zE

+(0)
2 − ∂yE+(1)

3 = ∂zE
−(1)
2 − ψ

z+
∂zE

−(0)
2 − ∂yE−(1)

3 ,

which gives after substitution of (3.27) that

E+(1)
2 = E−(1)

2 , E+(1)
1 = E−(1)

1 ,� (3.31)
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and



∂zE

+(1)
1 − ∂xE+(1)

3 + iκ+p1
z−

(1 − r)ψ = ∂zE
−(1)
1 − ∂xE−(1)

3 + iκ−p1
z+

tψ,

∂zE
+(1)
2 − ∂yE+(1)

3 + iκ+p2
z−

(1 − r)ψ = ∂zE
−(1)
2 − ∂yE−(1)

3 + iκ−p2
z+

tψ.
� (3.32)

The divergence free condition (3.13) reduces to

∂xE±(1)
1 + ∂yE±(1)

2 + ∂zE
±(1)
3 = g±(1) in D±,� (3.33)

where

g±(1)(ρ, z) =
ψ

z±

(
∂xE±(0)

1 + ∂yE±(0)
2

)
+

(
z± − z

z±

)(
ψx∂zE

±(0)
1 + ψy∂zE

±(0)
2

)
.

Using (3.27), we get

g+(1)(ρ, z) = − iκ+(z+ − z)
z+

(
e−iκ+z − reiκ+z) ( p1ψx + p2ψy)

and

g−(1)(ρ, z) = − iκ−(z− − z)
z−

te−iκ−z( p1ψx + p2ψy).

Since ψ(ρ), E±(1)
j (ρ, z), and F±(1)

j (ρ, z) are periodic functions of ρ with period Λ, they have 

the following Fourier expansions

ψ(ρ) =
∑
n∈Z2

ψneiαn·ρ,

E±(1)
j (ρ, z) =

∑
n∈Z2

E±(1)
jn (z)eiαn·ρ,

F±(1)
j (ρ, z) =

∑
n∈Z2

F±(1)
jn (z)eiαn·ρ

where

F+(1)
jn (z) =

[2κ2
+pj

z+

(
e−iκ+z + reiκ+z)

+
iκ+pj(z+ − z)

z+
(α2

1n + α2
2n)

(
e−iκ+z − reiκ+z)]ψn

and

F−(1)
jn (z) =

[2κ2
−pj

z−
te−iκ−z +

iκ−pj(z− − z)
z−

(α2
1n + α2

2n)te
−iκ−z

]
ψn.

Plugging the above Fourier expansions into (3.28) and using (3.29)–(3.33), we derive an 
ordinary differential equation

d2E±(1)
jn (z)

dz2 + (β±
n )2E±(1)

jn (z) = F±(1)
jn (z),� (3.34)

together with the boundary conditions at z  =  z+ :
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



E+(1)
1n

′
− iα1nE+(1)

3n = i
β+

n

[
(κ2

+ − α2
2n)E

+(1)
1n + α1nα2nE+(1)

2n

]
− f+(1)

1n ,

E+(1)
2n

′
− iα2nE+(1)

3n = i
β+

n

[
(κ2

+ − α2
1n)E

+(1)
2n + α1nα2nE+(1)

1n

]
− f+(1)

2n

E+(1)
3n

′
+ iα1nE+(1)

1n + iα2nE+(1)
2n = 0,

� (3.35)

and the boundary conditions at z  =  z−:




E−(1)
1n

′
− iα1nE−(1)

3n = − i
β−

n

[
(κ2

− − α2
2n)E

−(1)
1n + α1nα2nE−(1)

2n

]
− f−(1)

1n ,

E−(1)
2n

′
− iα2nE−(1)

3n = − i
β−

n

[
(κ2

− − α2
1n)E

−(1)
2n + α1nα2nE−(1)

1n

]
− f−(1)

2n

E−(1)
3n

′
+ iα1nE−(1)

1n + iα2nE−(1)
2n = 0,

�

(3.36)

where f±(1)
jn  are the Fourier coefficients of f±(1)

j (ρ). Explicitly, we have

f+(1)
jn = −

iκ+pj

z+

(
e−iκ+z+ − reiκ+z+

)
ψn,

f−(1)
jn = −

iκ−pj

z−
te−iκ−z−ψn.

Using the identity κ+(1 − r) = κ−t , we may reduce the jump conditions (3.31) and (3.32) 
to

E+(1)
2n = E−(1)

2n , E+(1)
1n = E−(1)

1n ,� (3.37)

and
{

E+(1)
1n

′
− iα1nE+(1)

3n = E−(1)
1n

′
− iα1nE−(1)

3n + iκ−tp1
(
z−1
+ − z−1

−
)
ψn,

E+(1)
2n

′
− iα2nE+(1)

3n = E−(1)
2n

′
− iα2nE−(1)

3n + iκ−tp2
(
z−1
+ − z−1

−
)
ψn.

� (3.38)

Based on the same identity κ+(1 − r) = κ−t , we may obtain two more conditions at z  =  0 
from (3.33):

{
E+(1)

3n

′
+ iα1nE+(1)

1n + iα2nE+(1)
2n = κ−t(α1np1 + α2np2)ψn,

E−(1)
3n

′
+ iα1nE−(1)

1n + iα2nE−(1)
2n = κ−t(α1np1 + α2np2)ψn.

� (3.39)

It follows from (3.34) that the general solutions of E±(1)
jn  consist of the general solution for 

the corresponding homogeneous equation and a particular solution for the non-homogeneous 
equation:

E+(1)
jn (z) = A+

jn eiβ+
n z + B+

jn e−iβ+
n z −

iκ+pj

z+
(z+ − z)

(
e−iκ+z − reiκ+z)ψn

�

(3.40)

and

E−(1)
jn (z) = A−

jn eiβ−
n z + B−

jn e−iβ−
n z −

iκ−pj

z−
(z− − z)te−iκ−zψn.� (3.41)
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Plugging (3.40) and (3.41) into (3.35) and (3.36), and using the identity 
κ2
± = (β±

n )2 + α2
1n + α2

2n, we obtain




α2
1nA+

1n + [2(β+
n )2 + α2

1n]e
−2iβ+

n z+B+
1n + α1nα2nA+

2n

+α1nα2ne−2iβ+
n z+B+

2n = −α1nβ
+
n A+

3n − α1nβ
+
n e−2iβ+

n z+B+
3n,

α2
2nA+

2n + [2(β+
n )2 + α2

2n]e
−2iβ+

n z+B+
2n + α1nα2nA+

1n

+α1nα2ne−2iβ+
n z+B+

1n = −α2nβnA+
3n − α2nβ

+
n e−2iβ+

n z+B+
3n,

α1nA+
1n + α1ne−2iβ+

n z+B+
1n + α2nA+

2n + α2ne−2iβ+
n z+B+

2n

= −β+
n A+

3n + β+
n e−2iβ+

n z+B+
3n

� (3.42)

and




[2(β−
n )2 + α2

1n]A
−
1n + α2

1ne−2iβ−
n z−B−

1n + α1nα2nA−
2n

+α1nα2ne−2iβ−
n z−B−

2n = α1nβ
−
n A−

3n + α1nβ
−
n e−2iβ−

n z−B−
3n,

[2(β−
n )2 + α2

2n]A
−
2n + α2

2ne−2iβ−
n z−B−

2n + α1nα2nA−
1n

+α1nα2ne−2iβ−
n z−B−

1n = α2nβ
−
n A−

3n + α2nβ
−
n e−2iβ−

n z−B−
3n,

α1nA−
1n + α1ne−2iβ−

n z−B−
1n + α2nA−

2n + α2ne−2iβ−
n z−B−

2n

= −β−
n A−

3n + β−
n e−2iβ−

n z−B−
3n.

� (3.43)

Multiplying individually α1n and α2n on both sides of the third equation in (3.42) and (3.43), 
and subtracting them from the first and second equation, respectively, we get

B+
1n = −α1n

β+
n

B+
3n, B+

2n = −α2n

β+
n

B+
3n, A−

1n =
α1n

β−
n

A−
3n, A−

2n =
α2n

β−
n

A−
3n.� (3.44)

Substituting (3.44) into the third equations in (3.42) and (3.43) yields


α1nA+

1n + α2nA+
2n =

κ2
+

β+
n

e−2iβ+
n z+B+

3n − β+
n A+

3n,

α1nB−
1n + α2nB−

2n = β−
n B−

3n −
κ2
−

β−
n

e2iβ−
n z−A−

3n.
� (3.45)

Substituting (3.44), (3.40), and (3.41) into (3.39), we get


α1nA+

1n + α2nA+
2n =

κ2
+

β+
n

B+
3n − β+

n A+
3n,

α1nB−
1n + α2nB−

2n = β−
n B−

3n −
κ2
−

β−
n

A−
3n.

� (3.46)

Combining (3.44)–(3.46) gives

B+
1n = B+

2n = B+
3n = 0 and A−

1n = A−
2n = A−

3n = 0.� (3.47)

Plugging (3.47), (3.40), and (3.41) into (3.37) and (3.38), we obtain
{

A+
1n − B−

1n = 0,
β+

n A+
1n + β−

n B−
1n = α1n(A+

3n − B−
3n)− 2iκ+(κ+ − κ−) p1ψn,

� (3.48)
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and
{

A+
2n − B−

2n = 0,
β+

n A+
2n + β−

n B−
2n = α2n(A+

3n − B−
3n)− 2iκ+(κ+ − κ−) p2ψn.

� (3.49)

Upon solving (3.48) and (3.49), we have




A+
1n = B−

1n = (β+
n + β−

n )−1
[
α1n(A+

3n − B−
3n)− 2iκ+(κ+ − κ−) p1ψn

]
,

A+
2n = B−

2n = (β+
n + β−

n )−1
[
α2n(A+

3n − B−
3n)− 2iκ+(κ+ − κ−) p2ψn

]
.

�

(3.50)

Substituting (3.50) into (3.46) and noting (3.47), we may derive after tedious calculations that




A+
3n =

2iβ−
n κ+(κ+−κ−)( p1α1n+p2α2n)

(β+
n +β−

n )(α2
1n+α2

2n+β+
n β−

n )
ψn,

B−
3n = − 2iβ+

n κ+(κ+−κ−)( p1α1n+p2α2n)

(β+
n +β−

n )(α2
1n+α2

2n+β+
n β−

n )
ψn.

� (3.51)

Plugging (3.51) into (3.50) yields

A+
1n = B−

1n = C1nψn, A+
2n = B−

2n = C2nψn,� (3.52)

where



C1n = 2iκ+(κ+−κ−)

(β+
n +β−

n )

[
α1n( p1α1n+p2α2n)

(α2
1n+α2

2n+β+
n β−

n )
− p1

]
,

C2n = 2iκ+(κ+−κ−)

(β+
n +β−

n )

[
α2n( p1α1n+p2α2n)

(α2
1n+α2

2n+β+
n β−

n )
− p2

]
.

Substituting (3.47) and (3.52) into (3.40) and (3.41), and evaluating at z+ and z−, respectively, 
we obtain

E+(1)
jn (z+) = Cjneiβ+

n z+ψn, E−(1)
jn (z−) = Cjne−iβ−

n z−ψn.� (3.53)

4.  Reconstruction formula

In this section, we present an explicit reconstruction formula for the inverse grating surface 
problem by using the scattering data.

Assume that the noisy data takes the form

E±γ
j (ρ, z±) = E±

j (ρ, z±) +O(γ),

where E±
j (ρ, z±), j = 1, 2 are the exact data and γ  is the noise level.

Evaluating the power series (3.7) at z = z± and replacing E±
j (ρ, z±) with the noisy data 

E±γ
j (ρ, z±), we have

E±γ
j (ρ, z±) = E±(0)

j (ρ, z±) + δE±(1)
j (ρ, z±) +O(δ2) +O(γ).� (4.1)

Rearranging (4.1), and dropping O(δ2) and O(γ) yield

δE±(1)
j (ρ, z±) = E±γ

j (ρ, z±)− E±(0)
j (ρ, z±)� (4.2)

which is the linearization of the nonlinear inverse problem and enables us to find an explicit 
reconstruction formula for the linearized inverse problem.
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Noting φ = δψ and thus φn = δψn, where φn is the Fourier coefficient of φ. Plugging (3.53) 
into (4.2), we may deduce that

φn = C−1
jn

[
E±γ

jn (z±)− E±(0)
jn (z±)

]
e∓iβ±

n z± ,� (4.3)

where E±γ
jn (z±) is the Fourier coefficient of the noisy data E±γ

j (ρ, z±) and E±(0)
jn (z±) is the 

Fourier coefficient of E±(0)
j (ρ, z±) given as

E+(0)
jn (z+) = pj(e−iκ+z+ + reiκ+z+)δ0n and E−(0)

jn (z−) = pjte−iκ−z−δ0n.
�

(4.4)

Here δ0n the Kronecker’s delta function.
It follows from (4.3) and the definitions of β±

n  in (2.6) and (2.9) that it is well-posed to 
reconstruct those Fourier coefficients φn with |αn| < κ±, since the small variations of the 
measured data will not be amplified and lead to large errors in the reconstruction, but the reso-
lution of the reconstructed function f is restricted by the given wavenumber κ±. In contrast, 
it is severely ill-posed to reconstruct those Fourier coefficients φn with |αn| > κ±, since the 
small variations in the data will be exponentially enlarged and lead to huge errors in the recon-
struction, but they contribute to the super resolution of the reconstructed function φ.

To obtain a stable and super-resolved reconstruction, we adopt a regularization to suppress 
the exponential growth of the reconstruction errors. Besides, we may use as small |z±| as pos-
sible, i.e. measure the data at the distance which is as close as possible to the grating surface 
which is exactly the idea of near-field optics.

We consider the spectral cut-off regularization. Define the signal-to-noise ratio (SNR) by

SNR = min{δ−2, γ−1}.

For fixed z±, the cut-off frequency ω± is chosen in such a way that

e|z±|(ω2
±−κ2

±)1/2
= SNR,

which implies that the spatial frequency will be cut-off for those below the noise level. More 
explicitly, we have

ω±

κ±
=

[
1 +

(
log SNR
κ±|z±|

)2
]1/2

,� (4.5)

which indicates ω± > κ± as long as SNR > 0. The cut-off frequency ω± determines the high-
est Fourier mode which can be recovered from the reconstruction. As is shown in (4.5), the 
cut-off frequency ω± is an increasing function of SNR and a decreasing function of the mea-
surement distance |z±|; larger SNR or smaller |z±| may help to achieve better resolution of the 
reconstruction.

Taking into account the frequency cut-off, we may have a regularized reconstruction form
ulation for (4.3):

φn = C−1
jn

[
E±γ

jn (z±)− E±(0)
jn (z±)

]
e∓iβ±

n z± χ±
n ,

where the characteristic function

χ±
n =

{
1 for |αn| � ω±,
0 for |αn| > ω±.

Once φn are computed, the grating surface function can be approximated by
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φ(ρ) ≈
∑
n∈Z

φneiαn·ρ =
∑

|αn|�ω±

C−1
jn

[
E±γ

jn (z±)− E±(0)
jn (z±)

]
ei(αn·ρ∓β±

n z±)

=
∑

|αn|�ω±

C−1
jn E±γ

jn (z±)ei(αn·ρ∓β±
n z±) −

∑
|αn|�ω±

C−1
jn E±(0)

jn (z±)ei(αn·ρ∓β±
n z±).

�

(4.6)

Substituting (4.4) into (4.6), we obtain an reconstructed grating surface function

φ(ρ) ≈
∑

|αn|�ω±

C−1
jn E±γ

jn (z±)ei(αn·ρ∓β±
n z±) − C−1

j0

(
r + e−2iκ+z+

)
pj

from the reflection configuration or

φ(ρ) ≈
∑

|αn|�ω±

C−1
jn E±γ

jn (z±)ei(αn·ρ∓β±
n z±) − C−1

j0 tpj

from the transmission configuration.
Hence, only two fast Fourier transforms are needed to reconstruct the grating surface func-

tion: one is done for the data to obtain E±γ
jn (z±) and another is done to obtain the approxi-

mated function φ.

5.  Numerical experiment

In this section, we discuss the algorithmic implementation for the direct and inverse problems 
and present three numerical examples to illustrate the effectiveness of the proposed method. 
As is shown in figure 2, three types of grating profiles are considered. The first one is a smooth 
function with finitely many Fourier modes; the second one is a continuous but non-differen-
tiable function; the third one is a discontinuous function with infinitely many Fourier modes. 
We comment that the proposed method is applicable to non-smooth functions numerically, 
although it requires smooth profiles ψ ∈ C2(R2) theoretically.

The second-order Nédélec edge element is adopted to solve the direct problem and obtain 
the synthetic scattering data. Uniaxial perfect matched layer (PML) boundary condition is 
imposed on the z direction to truncated the domain. An adaptive mesh refinement technique 
[20] is used to achieve the solution with a specified accuracy in an optimal fashion. Our imple-
mentation is based on parallel hierarchical grid (PHG) [51], which is a toolbox for develop-
ing parallel adaptive finite element programs on unstructured tetrahedral meshes. To have a 
tetrahedral mesh with biperiodic boundary points, we generate an uniform hexahedral mesh 
and then divide each hexahedron into six tetrahedrons. The linear system resulted from finite 
element discretization is solve by the multifrontal massively parallel sparse direct solver [1].

In the following three examples, the incident wave is taken as Einc = (1, 0, 0)e−iκ+z, i.e. 
p1  =  1 and p2 = p3 = 0, and only the first component of the electric field, E+

1 (ρ, h), needs 
to be measured. The wavenumber in Ω−

S  is κ− = 1.6π. The wavenumber in Ω+
S  is κ+ = π, 

which corresponds to the wavelength λ = 2. Define by R the unit rectangular domain, i.e. 
R = [0, 0.5λ]× [0, 0.5λ]. The computational domain is R × [−0.3λ, 0.3λ] with the PML 
region (R × [−0.3λ,−0.15λ]) ∪ (R × [0.15λ, 0.3λ]). The scattering data E+

1 (ρ, h) is obtained 
by interpolation into the uniform 256 × 256 grid points on the measurement plane z  =  h. In all 
the figures, the plots are rescaled with respect to the wavelength λ to clearly show the relative 
size. The results are plotted on 64 × 64 grid points instead of 256 × 256 grid points in order 
to reduce the display sizes. To test the stability of the method, a random noise is added to the 
scattering data, i.e. the scattering data takes the form
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E+γ
1 (ρ, h) = E+

1 (ρ, h)(1 + γ rand),

where rand stands for uniformly distributed random numbers in [−1,1] and γ  is the noise level 
parameter. The relative L2(R) error is defined by

e =
‖φ− φγ,δ‖0,R

‖φ‖0,R
,

where φ is the exact surface function and φγ,δ is the reconstructed surface function.

Example 1.  This example illustrates the reconstruction results of a smooth grating profile 
with finitely many Fourier modes, as seen in figure 2(a). The exact grating surface function is 
given by φ(ρ) = δψ(ρ), where the grating profile function

ψ(x, y) = 0.5 sin(3πx)(cos(2πy)− cos(4πy)).

First, consider the surface deviation parameter δ. The measurement is taken at h = 0.1λ 
and no additional random noise is added to the scattering data, i.e. γ = 0. This test is to inves-
tigate the influence of surface deformation parameter on the reconstructions. In (4.2), higher 
order terms of δ are dropped in the power series to linearize the inverse problem and to obtain 
the explicit reconstruction formulas. As expected, the smaller the surface deformation δ is, the 
more accurate is the approximation of the linearized model to the original nonlinear model 
problem. Table 1 shows the relative L2(R) error of the reconstructions with three different 

Figure 2.  The exact grating profile ψ. (a) Example 1: a smooth grating profile with 
finitely many Fourier modes; (b) example 2: a continuous but non-differentiable grating 
profile; (c) example 3: a discontinuous grating profile.
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surface deformation parameters δ = 0.05λ, 0.025λ, 0.0125λ for a fixed measurement distance 
h = 0.1λ. It is clear to note that the error decreases from 45.3% to 15.6% as δ decreases from 
0.05λ to 0.0125λ.

Next is to consider the noise level γ  and the measurement distance h. In practice, the scat-
tering data always contains a certain amount of noise. To test the stability and super resolving 
capability of the method, we add 1% and 5% random noises to the scattering data. Tables 2 and 
3 report the relative L2(R) error of the reconstructions with four different measurement dis-
tances h = 0.1λ, 0.075λ, 0.05λ, 0.025λ for a fixed δ = 0.0125λ. Comparing the results for the 
same δ = 0.0125λ and h = 0.1λ in tables 1 and 3, we can see that the relative error increases 
dramatically from 15.6% by using noise free data to 83.8% by using 5% noise data. The rea-
son is that a smaller cut-off should be chosen to suppress the exponentially increasing noise in 
the data and thus the Fourier modes of the exact grating surface function can not be recovered 
for those higher than the cut-off frequency, which leads to a large error and poor resolution 
in the reconstruction. A smaller measurement distance is desirable in order to have a large 
cut-off frequency, which enhances the resolution and reduces the error. As can be seen in 
table 2, the reconstruction error decreases from 56.7% by using h = 0.1λ to as low as 16.7% 
by using h = 0.025λ for 1% noise data. Similarly, in table 3, the reconstruction error decreases 
from 83.8% by using h = 0.1λ to as low as 29.5% by using h = 0.025λ even for 5% noise 
data. Figure  3 plots the reconstructed surfaces by using h = 0.1λ, 0.075λ, 0.05λ, 0.025λ. 
Comparing the exact surface profile in figure 2(a) and the reconstructed surface in figure 3(d), 
we can see that the reconstruction is almost perfect and the difference is little by carefully 
checking the contour plots.

Example 2.  This example illustrates the reconstruction results of a continuous but non-
differentiable grating profile with infinitely many Fourier modes, as seen in figure 2(b). The 
exact grating surface function is given by φ(ρ) = δψ(ρ), where the grating profile function

ψ(x, y) = | cos(2πx) cos(2πy)| − | sin(πx) sin(2πy)|.

First is to consider the influence of δ by using noise-free data. The measurement is taken at 
h = 0.1λ. Table 4 presents the relative L2(R) error of the reconstructions with three different 
surface deformation parameters δ = 0.05λ, 0.025λ, 0.0125λ. The error decreases from 35.8% 

Table 1.  Example 1: relative error of the reconstructions by using different δ with 
h = 0.1λ and γ = 0.0.

δ 0.05λ 0.025λ 0.0125λ

e 4.53 × 10−1 2.49 × 10−1 1.56 × 10−1

Table 2.  Example 1: relative error of the reconstructions by using different h with 
δ = 0.0125λ and γ = 1%.

h 0.1λ 0.075λ 0.05λ 0.025λ

e 5.67 × 10−1 2.95 × 10−1 2.08 × 10−1 1.67 × 10−1

Table 3.  Example 1: relative error of the reconstructions by using different h with 
δ = 0.0125λ and γ = 5%.

h 0.1λ 0.075λ 0.05λ 0.025λ

e 8.38 × 10−1 8.06 × 10−1 5.56 × 10−1 2.95 × 10−1
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to 16.0% as δ decreases from 0.05λ to 0.0125λ. Based on these results, the following observa-
tion can be made: a smaller deformation parameter δ yields a better reconstruction.

Next is to consider the influence of the noise level γ  and the measurement distance h. We add 
1% and 5% random noises to the scattering data. Tables 5 and 6 report the relative L2(R) error of 
the reconstructions with four different measurement distances h = 0.1λ, 0.075λ, 0.05λ, 0.025λ 
for a fixed δ = 0.0125λ. Comparing the results for the same δ = 0.0125λ and h = 0.1λ in 
tables 4 and 6, we can see that the relative error is more than doubled from 16.0% by using 
noise-free data to 34.3% by using 5% noise data. Again, the reason is that a smaller cut-off 
is chosen to suppress the exponentially increasing noise in the data and thus higher Fourier 
modes of the exact grating surface function can not be recovered. A smaller measurement 
distance helps to enhance the resolution and reduce the error. In table 5, the reconstruction 
error decreases from 27.3% by using h = 0.1λ to as low as 17.3% by using h = 0.025λ for 
1% noise data. In table 6, the reconstruction error decreases from 34.3% by using h = 0.1λ 
to as low as 24.4% by using h = 0.025λ for 5% noise data. Figure 4 shows the reconstructed 
surfaces by using h = 0.1λ, 0.075λ, 0.05λ, 0.025λ. Comparing the exact surface profile in 
figure 2(b) and the reconstructed surface in figure 4(d), we can see that a good reconstruction 
can still be obtained when using a small measurement distance.

Example 3.  This example illustrates the reconstruction results of a discontinuous grating 
profile of infinitely many Fourier modes with slower decay rate, as seen in figure 2(c). The 
exact grating surface function is given by φ(ρ) = δψ(ρ), where the grating profile function

Figure 3.  Example 1: reconstructed grating surfaces by using different h with 
δ = 0.0125λ and γ = 1%. (a) h = 0.1λ; (b) h = 0.075λ; (c) h = 0.05λ; (d) h = 0.025λ.
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Table 4.  Example 2: relative error of the reconstructions by using different δ with 
h = 0.1λ and γ = 0.0.

δ 0.05λ 0.025λ 0.0125λ

e 3.58 × 10−1 2.72 × 10−1 1.60 × 10−1

Table 5.  Example 2: relative error of the reconstructions by using different h with 
δ = 0.0125λ and γ = 1%.

h 0.1λ 0.075λ 0.05λ 0.025λ

e 2.73 × 10−1 2.44 × 10−1 1.88 × 10−1 1.73 × 10−1

Table 6.  Example 2: relative error of the reconstructions by using different h with 
δ = 0.0125λ and γ = 5%.

h 0.1λ 0.075λ 0.05λ 0.025λ

e 3.43 × 10−1 2.99 × 10−1 2.81 × 10−1 2.44 × 10−1

Figure 4.  Example 2: reconstructed grating surfaces by using different h with 
δ = 0.0125λ and γ = 1%. (a) h = 0.1λ; (b) h = 0.075λ; (c) h = 0.05λ; (d) h = 0.025λ.
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Table 7.  Example 3: relative error of the reconstructions by using different δ with 
h = 0.1λ and γ = 0.0.

δ 0.05λ 0.025λ 0.0125λ

e 9.52 ×10−1 7.80 × 10−1 5.97 × 10−1

Table 8.  Example 3: relative error of the reconstructions by using different h with 
δ = 0.0125λ and γ = 1%.

h 0.1λ 0.075λ 0.05λ 0.025λ

e 7.57 × 10−1 7.25 × 10−1 6.57 × 10−1 5.94 × 10−1

Table 9.  Example 3: relative error of the reconstructions by using different h with 
δ = 0.0125λ and γ = 5%.

h 0.1λ 0.075λ 0.05λ 0.025λ

e 8.51 × 10−1 8.20 × 10−1 7.90 × 10−1 7.22 × 10−1

Figure 5.  Example 3: reconstructed grating surfaces by using different h with 
δ = 0.0125λ and γ = 1%. (a) h = 0.1λ; (b) h = 0.075λ; (c) h = 0.05λ; (d) h = 0.025λ.
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ψ(x, y) = χ[0.2,0.4]×[0.6,0.8] + χ[0.6,0.8]×[0.2,0.4].

Here χ is the characteristic function. This example reports the results for the binary grating.
First is to consider the influence of δ by using noise-free data. The measurement is taken at 

h = 0.1λ. Table 7 presents the relative L2(R) error of the reconstructions with three different 
surface deformation parameters δ = 0.05λ, 0.025λ, 0.0125λ. The error decreases from 95.2% 
to 59.7% as δ decreases from 0.05λ to 0.0125λ. clearly, it shows that a smaller deformation 
parameter δ can yield a better reconstruction.

Next is to consider the influence of the noise level γ  and the measurement distance h in 
order to investigate the stability and resolution. Again, we add 1% and 5% random noises to the 
scattering data. Tables 8 and 9 report the relative L2(R) error of the reconstructions with four 
different measurement distances h = 0.1λ, 0.075λ, 0.05λ, 0.025λ for a fixed δ = 0.0125λ. 
Comparing the results for the same δ = 0.0125λ and h = 0.1λ in tables 7 and 9, we can see 
that the relative error is increased from 59.7% by using noise-free data to 85.1% by using 5% 
noise data. Again, the reason is that a smaller cut-off is chosen to suppress the exponentially 
increasing noise in the data and thus higher Fourier modes of the exact grating surface func-
tion can not be recovered. A smaller measurement distance helps to enhance the resolution and 
reduce the error. In table 8, the reconstruction error decreases from 75.7% by using h = 0.1λ 
to as low as 59.4% by using h = 0.025λ for 1% noise data. In table 9, the reconstruction error 
decreases from 85.1% by using h = 0.1λ to as low as 72.2% by using h = 0.025λ for 5% noise 
data. Figure  5 shows the reconstructed surfaces by using h = 0.1λ, 0.075λ, 0.05λ, 0.025λ. 

Figure 6.  Example 3: reconstructed grating surfaces by using different h with 
δ = 0.0125λ and γ = 5%. (a) h = 0.1λ; (b) h = 0.075λ; (c) h = 0.05λ; (d) h = 0.025λ.
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Comparing the exact surface profile in figure 2(c) and the reconstructed surface in figure 5(d), 
we can see that a good reconstruction can still be obtained when using a small measurement 
distance even for such a binary grating.

6.  Conclusion

We have presented an effective computational method to reconstruct surfaces of biperiodic 
dielectric gratings. Subwavelength resolution is achieved stably. Based on the transformed 
field expansion, an analytic solution is deduced for the direct problem. The nonlinear inverse 
problem is linearized by dropping higher order terms in power series. Explicit reconstruction 
formulas are obtained and are implemented by using the FFT. Three representative numerical 
examples are considered: one smooth function with finitely many Fourier modes and two 
non-smooth functions with infinitely many Fourier modes. We have carefully investigated the 
influence of the parameters on the reconstructions. The results show that super resolution may 
be achieved by using small measurement distance. There are many interesting and challenging 
mathematical problems, such as uniqueness, stability, resolution, and error estimates, which 
are remaining and left for future work. We will report the results elsewhere.
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