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Abstract. Consider the scattering of the two- or three-dimensional Helmholtz

equation where the source of the electric current density is assumed to be com-

pactly supported in a ball. This paper concerns the stability analysis of the
inverse source scattering problem which is to reconstruct the source function.

Our results show that increasing stability can be obtained for the inverse prob-

lem by using only the Dirichlet boundary data with multi-frequencies.

1. Introduction and problem statement. In this paper, we consider the fol-
lowing Helmholtz equation:

(1) ∆u(x) + κ2u(x) = f(x), x ∈ Rd,

where d = 2 or 3, the wavenumber κ > 0 is a constant, u is the radiated wave
field, and f is the source of the electric current density which is assumed to have a
compact support contained in Br = {x ∈ Rd : |x| < r}, where r > 0 is a constant.
Let R > r be a constant such that suppf ⊂ Br ⊂ BR. Let ∂BR be the boundary of
BR. The problem geometry is shown in Figure 1. The usual Sommerfeld radiation
condition is imposed to ensure the uniqueness of the wave field:

(2) lim
r→∞

r
d−1
2 (∂ru− iκu) = 0, r = |x|,

uniformly in all directions x̂ = x/|x|.
It is known that the scattering problem (1)–(2) has a unique solution which is

given by

(3) u(x) =

∫
Rd
G(x, y)f(y)dy, x ∈ Rd,
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where G(x, y) is the Green function of the Helmholtz equation. Explicitly, we have

G(x, y) =

{
− i

4H
(1)
0 (κ|x− y|), d = 2,

− 1
4π

eiκ|x−y|

|x−y| , d = 3,

where H
(1)
0 is the Hankel function of the first kind with order 0.

For a given function u on ∂BR in two dimensions, it has the Fourier series
expansion:

u(R, θ) =
∑
n∈Z

ûn(R)einθ, ûn(R) =
1

2π

∫ 2π

0

u(R, θ)e−inθdθ.

We introduce the Dirichlet-to-Neumann (DtN) operator T : H
1
2 (∂BR)→ H−

1
2 (∂BR)

given by

(Tu)(R, θ) = κ
∑
n∈Z

H
(1)′

n (κR)

H
(1)
n (κR)

ûn(R)einθ.

For a given function u on ∂BR in three dimensions, it has the Fourier series expan-
sion:

u(R, θ, ϕ) =

∞∑
n=0

n∑
m=−n

ûmn (R)Y mn (θ, ϕ), ûmn (R) =

∫
∂BR

u(R, θ, ϕ)Ȳ mn (θ, ϕ)dγ.

Similarly, we introduce the DtN operator T : H
1
2 (∂BR)→ H−

1
2 (∂BR) as follows:

(Tu)(R, θ, ϕ) = κ

∞∑
n=0

n∑
m=−n

h
(1)′

n (κR)

h
(1)
n (κR)

ûmn (R)Y mn (θ, ϕ).

Here H
(1)
n is the Hankel function of the first kind with order n, h

(1)
n is the spherical

Hankel function of the first kind with order n, Y mn is the spherical harmonics of
order n, and the bar denotes the complex conjugate. Using the DtN operator, we
can reformulate the Sommerfeld radiation condition into a transparent boundary
condition (TBC):

∂νu = Tu on ∂BR,

where ν is the unit outward normal vector on ∂BR. Hence the the Neumann data
∂νu on ∂BR can be obtained once the Dirichlet date u is available on ∂BR.

Remark 1. Consider the following well-posed exterior problem:
∆u+ κ2u = 0 in Rd \ B̄R,
u = u on ∂BR,

∂ru− iκu = o(r−
d−1
2 ) as r →∞.

The DtN operator is based on solving analytically the above problem in the polar
(d = 2) or spherical (d = 3) coordinates and then taking the normal derivative of
the solution.

Now we are in the position to discuss our inverse source problem:
IP. Let f be a complex function with a compact support contained in BR. The

inverse problem is to determine f by using the boundary data u(x, κ)|∂BR with
κ ∈ (0,K) where K > 1 is a positive constant.

The inverse source problem has significant applications in many aspects of scien-
tific areas, such as antenna synthesis [2], medical and biomedical imaging [11], and
various tomography problems [1, 16]. Another important example of the inverse
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f

Br

∂BR

Figure 1. Problem geometry of the inverse source scattering problem.

problem is the recovery of acoustic sources from boundary measurements of the
pressure. In this paper, we study the stability of the above inverse problem. As
is known, the inverse source problem does not have a unique solution at a single
frequency [8, 10, 12]. Our goal is to establish increasing stability of the inverse
problem with multi-frequencies. We refer to [4, 7, 15] for increasing stability analy-
sis of the inverse source scattering problem. In [7], the authors discussed increasing
stability of the inverse source problem for the three-dimensional Helmholtz equa-
tion in a general domain Ω by using the Huygens principle. The observation data
were u(x, κ)|∂Ω and ∇u(x, κ)|∂Ω, κ ∈ (0,K). In [4], the authors studied the stability
of the two- and three-dimensional Helmholtz equations via Green’s functions. We
point out that the stabilities in [4] are different from the stability in this paper where
only the Dirichlet data is required. An initial attempt was made in [15] to study
the stablity of an inverse random source scattering problem for the one-dimensional
Helmholtz equation. Related results can be found in [13, 14] on increasing stability
of determining potentials and in the continuation for the Helmholtz equation. We
refer to [9, 5, 6] for a uniqueness result and numerical study for the inverse source
scattering problem. A topic review can be found in [3] for some general inverse
scattering problems with multi-frequencies.

We point out that the approach can be used to deal with other geometries than
the circular domain. For example, a DtN map can also be obtained via the boundary
integral equation relating the Neumann data to the Dirichlet data on any smooth
curve which encloses the compact support of the source. The rest of the paper is
organized as follows. The main result is presented in section 2. Section 3 is devoted
to the proof of the result. The paper is concluded in section 4 with general remarks
and possible future work.

2. Main result. Define a complex-valued functional space:

CM = {f ∈ Hn+1(BR) : ‖f‖Hn+1(BR) ≤M, suppf ⊂ Br ⊂ BR, f : BR → C},

where n ≥ d is an integer and M > 1 is a constant. For any v ∈ H 1
2 (∂BR), we set

‖u(x, κ)‖2∂BR =

∫
∂BR

(
|Tu(x, κ)|2 + κ2|u(x, κ)|2

)
dγ.

Throughout the paper, a . b stands for a ≤ Cb, where C > 0 is a constant
independent of n, κ,K,M . Now we introduce the main stability result of this paper.

Theorem 2.1. Let f ∈ CM and u be the solution of the scattering problem (1)–(2)
corresponding to f . Then
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‖f‖2L2(BR) . ε2 +
M2(

K
2
3 | ln ε|

1
4

(R+1)(6n−6d+3)3

)2n−2d+1
,(4)

where

ε =

(∫ K

0

κd−1‖u(x, κ)‖2∂BRdκ

) 1
2

.(5)

Remark 2. First, it is clear to note that the stability estimate (4) implies the
uniqueness of the inverse problem, i.e., f = 0 if ε = 0. Second, there are two parts
in the stability estimate: the first part is the data discrepancy and the second part
is the high frequency tail of the source function. Obviously, the stability increases as
K increases, i.e., the problem is more stable as the data with more frequencies are

used. We can also see that when n <

[
K

2
9 | ln ε|

1
12

(R+1)
1
3

+ d− 1
2

]
, the stability increases

as n increases, i.e., the problem is more stable as the source function has suitably
higher regularity.

Remark 3. The idea was firstly proposed in [7] by separating the stability into
the data discrepancy and high frequency tail where the latter was estimated by the
unique continuation for the three-dimensional inverse source scattering problem.
Our stability result in this work is consistent with the one in [7] for both the two-
and three-dimensional inverse scattering problems.

3. Proof of Theorem 2.1. First we present several useful lemmas.

Lemma 3.1. Let f ∈ L2(BR), suppf ⊂ BR. Then

‖f‖2L2(BR) .
∫ ∞

0

κd−1

∫
∂BR

(
|∂νu(x, κ)|2 + κ2|u(x, κ)|2

)
dγdκ.

Proof. Let ξ ∈ Rd with |ξ| = κ ∈ (0,∞). Multiplying e−iξ·x on both sides of (1)
and integrating over BR, we obtain∫

BR

e−iξ·xf(x)dx =

∫
∂BR

e−iξ·x(∂νu(x, κ) + i(ν · ξ)u(x, κ))dγ.

Since suppf ⊂ BR, we have∫
Rd
e−iξ·xf(x)dx =

∫
∂BR

e−iξ·x(∂νu(x, κ) + i(ν · ξ)u(x, κ))dγ,

which gives ∣∣∣∣∫
Rd
e−iξ·xf(x)dx

∣∣∣∣2 ≤ ∣∣∣∣∫
∂BR

(|∂νu(x, κ)|+ κ|u(x, κ)|)dγ
∣∣∣∣2 .

Hence,∫
Rd

∣∣∣∣∫
Rd
e−iξ·xf(x)dx

∣∣∣∣2 dξ ≤
∫
Rd

∣∣∣∣∫
∂BR

(|∂νu(x, κ)|+ κ|u(x, κ)|)dγ
∣∣∣∣2 dξ.

When d = 2, we obtain by using the polar coordinates that

Inverse Problems and Imaging Volume 11, No. 4 (2017), 745–759



increasing stability 749∫
R2

∣∣∣∣∫
R2

e−iξ·xf(x)dx

∣∣∣∣2 dξ

≤
∫ 2π

0

dθ

∫ ∞
0

κ

∣∣∣∣∫
∂BR

(|∂νu(x, κ)|+ κ|u(x, κ)|)dγ
∣∣∣∣2 dκ

.
∫ ∞

0

κ

∣∣∣∣∫
∂BR

(|∂νu(x, κ)|+ κ|u(x, κ)|)dγ
∣∣∣∣2 dκ

.
∫ ∞

0

κ

∫
∂BR

(
|∂νu(x, κ)|2 + κ2|u(x, κ)|2

)
dγdκ.

It follows from the Plancherel theorem that

‖f‖2L2(BR) = ‖f‖2L2(R2) =
1

(2π)2

∫
R2

|f̂(ξ)|2dξ

.
∫ ∞

0

κ

∫
∂BR

(
|∂νu(x, κ)|2 + κ2|u(x, κ)|2

)
dγdξ.

When d = 3, we obtain by using the spherical coordinates that∫
R3

∣∣∣∣∫
R3

e−iξ·xf(x)dx

∣∣∣∣2 dξ

≤
∫ 2π

0

dθ

∫ π

0

sinϕdϕ

∫ ∞
0

κ2

∣∣∣∣∫
∂BR

(|∂νu(x, κ)|+ κ|u(x, κ)|)dγ
∣∣∣∣2 dκ

.
∫ ∞

0

κ2

∣∣∣∣∫
∂BR

(|∂νu(x, κ)|+ κ|u(x, κ)|)dγ
∣∣∣∣2 dκ

.
∫ ∞

0

κ2

∫
∂BR

(
|∂νu(x, κ)|2 + κ2|u(x, κ)|2

)
dγdκ.

It follows from the Plancherel theorem again that

‖f‖2L2(BR) = ‖f‖2L2(R3) =
1

(2π)3

∫
R3

|f̂(ξ)|2dξ

.
∫ ∞

0

κ2

∫
∂BR

(
|∂νu(x, κ)|2 + κ2|u(x, κ)|2

)
dγdξ,

which completes the proof.

For d = 2, let

I1(s) =

∫ s

0

κ3

∫
∂BR

∣∣∣∣∫
BR

i

4
H

(1)
0 (κ|x− y|)f(y)dy

∣∣∣∣2 dγ(x)dκ,(6)

I2(s) =

∫ s

0

κ

∫
∂BR

∣∣∣∣∫
BR

i

4
∂νxH

(1)
0 (κ|x− y|)f(y)dy

∣∣∣∣2 dγ(x)dκ.(7)

For d = 3, let

I1(s) =

∫ s

0

κ4

∫
∂BR

∣∣∣∣∫
BR

eiκ|x−y|

4π|x− y|
f(y)dy

∣∣∣∣2 dγ(x)dκ,(8)

I2(s) =

∫ s

0

κ2

∫
∂BR

∣∣∣∣∫
BR

∂νx
eiκ|x−y|

4π|x− y|
f(y)dy

∣∣∣∣2 dγ(x)dκ.(9)

Denote
S = {z = x+ iy ∈ C : −π

4
< argz <

π

4
}.
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The integrands in (6)–(9) are analytic functions of κ in S. The integrals with respect
to κ can be taken over any path joining points 0 and s in S. Thus I1(s) and I2(s)
are analytic functions of s = s1 + is2 ∈ S, s1, s2 ∈ R.

Lemma 3.2. Let f ∈ H1(BR), suppf ⊂ BR. For any s = s1 + is2 ∈ S, we have:

1. for d = 2,

|I1(s)| . |s|3e4R|s2|‖f‖2L2(BR),(10)

|I2(s)| . |s|e4R|s2|‖f‖2H1(BR);(11)

2. for d = 3,

|I1(s)| . |s|5e4R|s2|‖f‖2L2(BR),(12)

|I2(s)| . |s|3e4R|s2|‖f‖2H1(BR).(13)

Proof. First we consider d = 3. Let κ = st, t ∈ (0, 1). It follows from the change of
variables that

I1(s) =

∫ 1

0

s5t4
∫
∂BR

∣∣∣∣∫
BR

eist|x−y|

4π|x− y|
f(y)dy

∣∣∣∣2 dγ(x)dt.

Noting

|eist|x−y|| ≤ e2R|s2| for allx ∈ ∂BR, y ∈ BR,

we have from the Cauchy–Schwarz inequality that

|I1(s)| ≤
∫ 1

0

|s|5t4
∫
∂BR

∣∣∣∣∫
BR

e2R|s2|

4π|x− y|
|f(y)|dy

∣∣∣∣2 dγ(x)dt

.
∫ 1

0

|s|5t4
∫
∂BR

(∫
BR

|f(y)|2dy

)(∫
BR

e4R|s2|

|x− y|2
dy

)
dγ(x)dt

.
∫ 1

0

|s|5t4
∫
∂BR

(∫
BR

|f(y)|2dy

)(∫
B2R(x)

e4R|s2|

|x− y|2
dy

)
dγ(x)dt,

where B2R(x) is the ball with a radius 2R and center at x. Using the spherical
coordinates (ρ, θ, ϕ) with respect to y where ρ = |x− y|, we get

|I1(s)|

.
∫ 1

0

|s|5t4
(∫

BR

|f(y)|2dy

)∫
∂BR

(∫ 2π

0

dθ

∫ π

0

sin(ϕ)dϕ

∫ 2R

0

e4R|s2|dρ

)
dγ(x)dt

.
∫ 1

0

|s|5
(∫

BR

|f(y)|2dy

)∫
∂BR

(∫ 2R

0

e4R|s2|dρ

)
dγ(x)dt

. |s|5e4R|s2|‖f‖2L2(BR),

which shows (12).
Next we prove (13). Let κ = st, t ∈ (0, 1). It follows from the change of variables

again that

I2(s) =

∫ 1

0

s3t2
∫
∂BR

∣∣∣∣∫
BR

∂νx
eist|x−y|

4π|x− y|
f(y)dy

∣∣∣∣2 dγ(x)dt,

Inverse Problems and Imaging Volume 11, No. 4 (2017), 745–759
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which gives

|I2(s)| .
∫ 1

0

|s|3t2
∫
∂BR

∣∣∣∣∫
BR

νx · ∇x
(
eist|x−y|

|x− y|

)
f(y)dy

∣∣∣∣2 dγ(x)dt.

Noting

∇x
(
eist|x−y|

|x− y|

)
= −∇y

(
eist|x−y|

|x− y|

)
,

we have from the integration by parts that

|I2(s)| .
∫ 1

0

|s|3t2
∫
∂BR

∣∣∣∣∫
BR

eist|x−y|

|x− y|
ν · ∇f(y)dy

∣∣∣∣2 dγ(x)dt

.
∫ 1

0

|s|3t2
∫
∂BR

(∫
BR

|∇f |2dy

)(∫
BR

e4R|s2|

|x− y|2
dy

)
dγ(x)dt

. |s|3e4R|s2|‖f‖2H1(BR),

where we have used the Cauchy–Schwarz inequality, the fact that eist|x−y| ≤ e2R|s2|

for all x ∈ ∂BR, y ∈ BR, and the change of the Cartesian coordinates to the spherical
coordinates.

Second we consider d = 2. Letting κ = st, t ∈ (0, 1), we have from the change of
variables that

I1(s) =

∫ 1

0

s4t3
∫
∂BR

∣∣∣∣∫
BR

i

4
H

(1)
0 (st|x− y|)f(y)dy

∣∣∣∣2 dγ(x)dt.

The Hankel function can be expressed by the following integral when Rez > 0
(e.g.,[17], Chapter VI):

H
(1)
0 (z) =

1

iπ

∫ 1

1+∞i

eizτ (τ2 − 1)−
1
2 dτ.

Consequently,

|H(1)
0 (z)| =

∣∣∣∣ 1π
∫ 0

+∞
ei(Rez+iImz)(1+ti)((1 + ti)2 − 1)−

1
2 dt

∣∣∣∣
≤
∣∣∣∣ 1π eiRez−Imz

∫ 0

+∞
e−tRez−itImz(2ti− t2)−

1
2 dt

∣∣∣∣
≤ 1

π
e|Imz|

∫ +∞

0

e−tRez∣∣∣t 1
2 (2i− t 1

2 )
∣∣∣dt

≤ 1

π
e|Imz|

∫ +∞

0

e−tRez

t
1
2 (t2 + 4)

1
4

dt

≤ 1

π
e|Imz|

∫ +∞

0

e−tRez

t
1
2 2

1
2

dt

=
1

π
e|Imz|

(∫ 1
Rez

0

e−tRez

t
1
2 2

1
2

dt+

∫ +∞

1
Rez

e−tRez

t
1
2 2

1
2

dt

)

Inverse Problems and Imaging Volume 11, No. 4 (2017), 745–759
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≤ 1

π
e|Imz|

(∫ 1
Rez

0

1

t
1
2

dt+
(Rez)

1
2

2
1
2

∫ +∞

1
Rez

e−tRezdt

)

≤ 3

π

e|Imz|

(Rez)
1
2

.

Hence we have from the Cauchy–Schwarz inequality that

|I1(s)| .
∫ 1

0

|s|4t3
∫
∂BR

(∫
BR

|f(y)|2dy

)(∫
B2R(x)

e4R|s2|

s1t|x− y|
dy

)
dγ(x)dt.

Using the polar coordinates (ρ, θ) with respect to y with ρ = |x − y| and the fact
that

|s|
s1
≤ 2

1
2 for all s ∈ S,

we obtain

|I1(s)| .
∫ 1

0

|s|3t2
(∫

BR

|f(y)|2dy

)∫
∂BR

(∫ 2π

0

dθ

∫ 2R

0

e4R|s2|dρ

)
dγ(x)dt

. |s|3e4R|s2|‖f‖2L2(BR),

which shows (10).

Noting that ∂νxH
(1)
0 (κ|x − y|) = νx · ∇xH(1)

0 (κ|x − y|) and ∇xH(1)
0 (κ|x − y|) =

−∇yH(1)
0 (κ|x− y|), we can prove (11) in a similar way by taking the integration by

parts, which completes the proof.

Lemma 3.3. Let f ∈ CM . For any s ≥ 1, we have
(14)∫ +∞

s

∫
∂BR

κd−1
(
|∂νu(x, κ)|2 + κ2|u(x, κ)|2

)
dγdκ . s−(2n−2d+1)‖f‖2Hn+1(BR).

Proof. It is easy to note that∫ +∞

s

∫
∂BR

κd−1
(
|∂νu(x, κ)|2 + κ2|u(x, κ)|2

)
dγdκ

=

∫ +∞

s

∫
∂BR

κd+1|u(x, κ)|2dγdκ+

∫ +∞

s

∫
∂BR

κd−1|∂νu(x, κ)|2dγdκ

=L1 + L2.

We estimate L1 and L2, respectively.
First we consider d = 3. Using (3) yields

L1 =

∫ +∞

s

∫
∂BR

κ4|u(x, κ)|2dγdκ

=

∫ +∞

s

∫
∂BR

κ4

∣∣∣∣∫
R3

eiκ|x−y|

4π|x− y|
f(y)dy

∣∣∣∣2 dγ(x)dκ.

Using the spherical coordinates ρ = |x − y| originated at x with respect to y, we
have

L1 =
1

4π

∫ +∞

s

∫
∂BR

κ4

∣∣∣∣∫ 2π

0

dθ

∫ π

0

sinϕdϕ

∫ +∞

0

eiκρfρdρ

∣∣∣∣2 dγ(x)dκ.

Inverse Problems and Imaging Volume 11, No. 4 (2017), 745–759
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Using the integration by parts and noting suppf ⊂ Br ⊂ BR, we obtain

L1 =
1

4π

∫ +∞

s

∫
∂BR

κ4

∣∣∣∣∣
∫ 2π

0

dθ

∫ π

0

sinϕdϕ

∫ 2R

(R−r)

eiκρ

(iκ)n
∂n(fρ)

∂ρn
dρ

∣∣∣∣∣
2

dγ(x)dκ.

Consequently,

L1 .
∫ +∞

s

∫
∂BR

κ4

∣∣∣∣∣
∫ 2π

0

dθ

∫ π

0

sinϕdϕ

∫ 2R

(R−r)

1

κn∣∣∣∣∣∣
∑
|α|=n

∂αy f

∣∣∣∣∣∣ ρ +n

∣∣∣∣∣∣
∑

|α|=n−1

∂αy f

∣∣∣∣∣∣
 dρ

∣∣∣∣∣∣
2

dγ(x)dκ

=

∫ +∞

s

∫
∂BR

κ4

∣∣∣∣∣
∫ 2π

0

dθ

∫ π

0

sinϕdϕ

∫ 2R

(R−r)

1

κn∣∣∣∣∣∣
∑
|α|=n

∂αy f

∣∣∣∣∣∣ 1

ρ
+

∣∣∣∣∣∣
∑

|α|=n−1

∂αy f

∣∣∣∣∣∣ nρ2

 ρ2dρ

∣∣∣∣∣∣
2

dγ(x)dκ

≤
∫ +∞

s

∫
∂BR

κ4

∣∣∣∣∣
∫ 2π

0

dθ

∫ π

0

sinϕdϕ

∫ 2R

(R−r)

1

κn∣∣∣∣∣∣
∑
|α|=n

∂αy f

∣∣∣∣∣∣ 1

(R− r)
+

∣∣∣∣∣∣
∑

|α|=n−1

∂αy f

∣∣∣∣∣∣ n

(R− r)2

 ρ2dρ

∣∣∣∣∣∣
2

dγ(x)dκ

≤
∫ +∞

s

∫
∂BR

κ4

∣∣∣∣∫ 2π

0

dθ

∫ π

0

sinϕdϕ

∫ +∞

0

1

κn∣∣∣∣∣∣
∑
|α|=n

∂αy f

∣∣∣∣∣∣ 1

(R− r)
+

∣∣∣∣∣∣
∑

|α|=n−1

∂αy f

∣∣∣∣∣∣ n

(R− r)2

 ρ2dρ

∣∣∣∣∣∣
2

dγdκ.

Changing back to the Cartesian coordinates with respect to y, we have

L1 .
∫ +∞

s

∫
∂BR

κ4

∣∣∣∣∫
R3

1

κn∣∣∣∣∣∣
∑
|α|=n

∂αy f

∣∣∣∣∣∣ 1

(R− r)
+

∣∣∣∣∣∣
∑

|α|=n−1

∂αy f

∣∣∣∣∣∣ n

(R− r)2

 dy

∣∣∣∣∣∣
2

dγ(x)dκ

. n‖f‖Hn(BR)

∫ +∞

s

κ4−2ndκ

.

(
n

2n− 5

)
1

s2n−5
‖f‖Hn(BR)

.
1

s2n−5
‖f‖2Hn(BR),(15)

where we have used the fact that n ≥ d = 3.
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Next we estimate L2 for d = 3. It follows from (3) again that

L2 =

∫ +∞

s

∫
∂BR

κ2|∂νu(x, κ)|2dγdκ

=

∫ +∞

s

∫
∂BR

κ4

∣∣∣∣∫
R3

(
νx · ∇x

eiκ|x−y|

4π|x− y|

)
f(y)dy

∣∣∣∣2 dγ(x)dκ.

Noting that ∇y
(
eiκ|x−y|

|x−y|

)
= −∇x

(
eiκ|x−y|

|x−y|

)
and suppf ⊂ BR, we have

L2 =

∫ +∞

s

∫
∂BR

κ2|∂νu(x, κ)|2dγ(x)dκ

=

∫ +∞

s

∫
∂BR

κ2

∣∣∣∣∫
R3

(
νx · ∇y

eiκ|x−y|

4π|x− y|

)
f(y)dy

∣∣∣∣2 dγ(x)dκ

=

∫ +∞

s

∫
∂BR

κ2

∣∣∣∣∫
R3

eiκ|x−y|

4π|x− y|
(νx · ∇yf(y)) dy

∣∣∣∣2 dγ(x)dκ.

Following a similar argument as that for the proof of (15), we obtain

L2 . n‖f‖Hn+1(BR)

∫ +∞

s

κ2−2ndκ =

(
n

2n− 3

)
‖f‖Hn+1(BR)

1

s2n−3

.
1

s2n−3
‖f‖2Hn+1(BR).(16)

Combining (15)–(16) and noting s > 1, we obtain (14) for d = 3.
Second we consider d = 2. Similarly we have

L1 =

∫ +∞

s

∫
∂BR

κ3|u(x, κ)|2dγdκ

=

∫ +∞

s

∫
∂BR

κ3

∣∣∣∣∫
R2

i

4
H

(1)
0 (κ|x− y|)f(y)dy

∣∣∣∣2 dγ(x)dκ.

The Hankel function can also be expressed by the following integral when t > 0
(e.g., [17], Chapter VI):

H
(1)
0 (t) =

2

iπ

∫ +∞

1

eitτ (τ2 − 1)−
1
2 dτ.

Using the polar coordinates ρ = |y − x| originated at x with respect to y, we have

L1 =

∫ +∞

s

∫
∂BR

κ3

∣∣∣∣∫ 2π

0

dθ

∫ +∞

0

1

4
H

(1)
0 (κρ)fρdρ

∣∣∣∣2 dγ(x)dκ.

Let

Hk(t) =
2

iπ

∫ +∞

1

eitτ

(iτ)k(τ2 − 1)1/2
dτ, k = 1, 2, · · · .(17)

It is clear to note that

H0(t) = H
(1)
0 (t) and

dHk(t)

dt
= Hk−1(t), t > 0, k ∈ N.

Inverse Problems and Imaging Volume 11, No. 4 (2017), 745–759



increasing stability 755

Using the integration by parts and noting suppf ⊂ Br ⊂ BR, we obtain

L1 =
1

4

∫ +∞

s

∫
∂BR

κ3

∣∣∣∣∣
∫ 2π

0

dθ

∫ 2R

R−r

H1(κρ)

κ2

∂(fρ)

∂ρ
dρ

∣∣∣∣∣
2

dγ(x)dκ

=
1

4

∫ +∞

s

∫
∂BR

κ3

∣∣∣∣∣
∫ 2π

0

dθ

∫ 2R

(R−r)

Hn(κρ)

κn+1

∂n(fρ)

∂ρn
dρ

∣∣∣∣∣
2

dγ(x)dκ.

Consequently, we have

L1 .
∫ +∞

s

∫
∂BR

κ3

∣∣∣∣∣
∫ 2π

0

dθ

∫ 2R

(R−r)

∣∣∣∣Hn(κρ)

κn+1

∣∣∣∣ ∣∣∣∣∂n(fρ)

∂ρn

∣∣∣∣ dρ
∣∣∣∣∣
2

dγ(x)dκ

≤
∫ +∞

s

∫
∂BR

κ3

∣∣∣∣∣
∫ 2π

0

dθ

∫ 2R

(R−r)

∣∣∣∣Hn(κρ)

κn+1

∣∣∣∣∣∣∣∣∣∣
∑
|α|=n

∂αy f

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑

|α|=n−1

∂αy f

∣∣∣∣∣∣ nρ
 ρdρ

∣∣∣∣∣∣
2

dγ(x)dκ

≤
∫ +∞

s

∫
∂BR

κ3

∣∣∣∣∣
∫ 2π

0

dθ

∫ 2R

(R−r)

∣∣∣∣Hn(κρ)

κn+1

∣∣∣∣∣∣∣∣∣∣
∑
|α|=n

∂αy f

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑

|α|=n−1

∂αy f

∣∣∣∣∣∣ n

(R− r)

 ρdρ

∣∣∣∣∣∣
2

dγ(x)dκ.

Noting (17), we see that there exists a constant C > 0 such that |Hn(κρ)| ≤ C for
n ≥ 1. Hence,

L1 .
∫ +∞

s

∫
∂BR

κ3

∣∣∣∣∣
∫ 2π

0

dθ

∫ 2R

R−r

1

κn+1∣∣∣∣∣∣
∑
|α|=n

∂αy f

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑

|α|=n−1

∂αy f

∣∣∣∣∣∣ n

(R− r)

 ρdρ

∣∣∣∣∣∣
2

dγ(x)dκ.

Changing back to the Cartesian coordinates with respect to y, we have

L1 .
∫ +∞

s

∫
∂BR

κ3

∣∣∣∣∫
BR

1

κn+1∣∣∣∣∣∣
∑
|α|=n

∂αy f

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑

|α|=n−1

∂αy f

∣∣∣∣∣∣ n

(R− r)

 dx

∣∣∣∣∣∣
2

dγdκ

. n‖f‖Hn(BR)

∫ +∞

s

κ1−2ndκ

=

(
n

2n− 2

)
1

s2n−2
‖f‖2Hn(BR) .

1

s2n−2
‖f‖2Hn(BR).(18)
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Next we estimate L2 for d = 2. A simple calculation yields

L2 =
1

4

∫ +∞

s

∫
∂BR

κ2|∂νu(x, κ)|2dγdκ

=

∫ +∞

s

∫
∂BR

κ4

∣∣∣∣∫
R2

(
νx · ∇xH(1)

0 (κ|x− y|)
)
f(y)dy

∣∣∣∣2 dγ(x)dκ.

Noting that ∇yH(1)
0 (κ|x−y|) = −∇xH(1)

0 (k|x−y|) and suppf ⊂ Br ⊂ BR, we have
from the integration by parts that

L2 =

∫ +∞

s

∫
∂BR

κ2|∂νu(x, κ)|2dγdκ

=
1

4

∫ +∞

s

∫
∂BR

κ2

∣∣∣∣∫
R3

(
νx · ∇yH(1)

0 (κ|x− y|)
)
f(y)dy

∣∣∣∣2 dγ(x)dκ

=
1

4

∫ +∞

s

∫
∂BR

κ2

∣∣∣∣∫
R2

H
(1)
0 (κ|x− y|) (νx · ∇yf(y)) dy

∣∣∣∣2 dγ(x)dκ.

Following a similar argument as the proof of (18), we can obtain

L2 . n‖f‖2Hn+1(BR)

∫ +∞

s

κ−2ndκ =

(
n

2n− 1

)
‖f‖2Hn+1(BR)

1

s2n−1

.
1

s2n−1
‖f‖2Hn+1(BR).(19)

Combining (18) and (19) completes the proof of (14) for d = 2.

The following lemma is proved in [7].

Lemma 3.4. Let J(z) be an analytic function in S = {z = x + iy ∈ C : −π4 <

argz < π
4 } and continuous in S̄ satisfying

|J(z)| ≤ ε, z ∈ (0, L],

|J(z)| ≤ V, z ∈ S,
|J(0)| = 0.

Then there exits a function µ(z) satisfying{
µ(z) ≥ 1

2 , z ∈ (L, 2
1
4L),

µ(z) ≥ 1
π (( zL )4 − 1)−

1
2 , z ∈ (2

1
4L, ∞)

such that

|J(z)| ≤ V εµ(z), ∀ z ∈ (L, ∞).

Lemma 3.5. Let f ∈ CM . Then there exists a function µ(z) satisfying

(20)

{
µ(s) ≥ 1

2 , s ∈ (K, 2
1
4K),

µ(s) ≥ 1
π (( sK )4 − 1)−

1
2 , s ∈ (2

1
4K, ∞),

such that

|I1(s) + I2(s)| .M2e(4R+1)sε2µ(s), ∀s ∈ (K, ∞).

Proof. It follows from Lemma 3.2 that

| (I1(s) + I2(s)) e−(4R+1)s| .M2, ∀s ∈ S.
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Recalling (5), (6)–(9), we have

| (I1(s) + I2(s)) e−(4R+1)s| ≤ ε2, s ∈ [0, K].

A direct application of Lemma 3.5 shows that there exists a function µ(s) satisfying
(20) such that

| (I1(s) + I2(s)) e−(4R+1)s| .M2ε2µ, ∀s ∈ (K, ∞),

which completes the proof.

Now we show the proof of Theorem 2.1.

Proof. We can assume that ε < e−1, otherwise the estimate is obvious. Let

s =

{
1

((4R+3)π)
1
3
K

2
3 | ln ε| 14 if 2

1
4 ((4R+ 3)π)

1
3K

1
3 < | ln ε| 14 ,

K if | ln ε| ≤ 2
1
4 ((4R+ 3)π)

1
3K

1
3 .

If 2
1
4 (((4R+ 3)π)

1
3K

1
3 < | ln ε| 14 , then we have

|I1(s) + I2(s)| .M2e(4R+3)se−
2| ln ε|
π (( sK )4−1)−

1
2

.M2e

(4R+3)

((4R+3)π)
1
3

K
2
3 | ln ε|

1
4− 2| ln ε|

π (Ks )2

.M2e
−2

(
(4R+3)2

π

) 1
3
K

2
3 | ln ε|

1
2

(
1− 1

2 | ln ε|
− 1

4

)
.

Noting that

1

2
| ln ε|− 1

4 <
1

2
,

(
(4R+ 3)2

π

) 1
3

> 1,

we have

|I1(s) + I2(s)| .M2e−K
2
3 | ln ε|

1
2 .

Using the elementary inequality

e−x ≤ (6n− 6d+ 3)!

x3(2n−2d+1)
, x > 0,

we get

|I1(s) + I2(s)| . M2(
K2| ln ε|

3
2

(6n−6d+3)3

)2n−2d+1
.(21)

If | ln ε| ≤ 2
1
4 (((4R+ 3)π)

1
3K

1
3 , then s = K. We have from (5), (6)-(9) that

|I1(s) + I2(s)| ≤ ε2,

Here we have noted that

I1(s) + I2(s) =

∫ s

0

∫
∂BR

κd−1
(
|∂νu(x, κ)|2 + κ2|u(x, κ)|2

)
dγdκ, s > 0.
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Hence we obtain from Lemma 3.3 and (21) that∫ ∞
0

∫
∂BR

κd−1
(
|∂νu(x, κ)|2 + κ2|u(x, κ)|2

)
dγdκ

≤ I1(s) + I2(s) +

∫ ∞
s

∫
∂BR

κd−1
(
|∂νu(x, κ)|2 + κ2|u(x, κ)|2

)
dγdκ

. ε2 +
M2(

K2| ln ε|
3
2

(6n−6d+3)3

)2n−2d+1
+

‖f‖2Hn+1(BR)(
2−

1
4 ((4R+ 3)π)−

1
3K

2
3 | ln ε| 14

)2n−2d+1
.

By Lemma 3.1, we have

‖f‖2L2(BR) . ε2 +
M2(

K2| ln ε|
3
2

(6n−6d+3)3

)2n−2d+1
+

M2(
K

2
3 | ln ε|

1
4

(R+1)(6n−6d+3)3

)2n−2d+1
.

Since K
2
3 | ln ε| 14 ≤ K2| ln ε| 32 when K > 1 and | ln ε| > 1, we obtain the stability

estimate.

4. Conclusion. In this work, we have shown that the increasing stability can be
achieved for the inverse source scattering problem by using multi-frequency Dirichlet
data on a sphere which encloses the compact support of the source. The stability
estimate consists of the data discrepancy and the high frequency tail of the source
function. Future work are to investigate the stability with partial data, and to
extend the method for solving the inverse source scattering problems for elastic and
electromagnetic waves.
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