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Maxwell’s equations in an unbounded
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This paper is concerned with the mathematical analysis of the electromagnetic wave scattering by an unbounded dielec-
tric medium, which is mounted on a perfectly conducting infinite plane. By introducing a transparent boundary condition
on a plane surface confining the medium, the scattering problem is modeled as a boundary value problem of Maxwell’s
equations. Based on a variational formulation, the problem is shown to have a unique weak solution for a wide class of
dielectric permittivity and magnetic permeability by using the generalized Lax–Milgram theorem. Copyright © 2016 John
Wiley & Sons, Ltd.
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1. Introduction

Consider the electromagnetic wave scattering by an unbounded dielectric medium, which is mounted on a perfectly conducting infi-
nite plane. The free space above the medium is filled with a homogeneous material; while the medium itself may be inhomogeneous
with variable dielectric permittivity and magnetic permeability. The interface, which separates the free space and the inhomogeneous
medium, may be represented by an infinite rough surface. It is referred to as a surface which is a nonlocal perturbation of an infinite
plane surface such that the whole surface lies within a finite distance of the original plane. By introducing a transparent boundary
condition on a planar surface confining the medium, the scattering problem is formulated as a boundary value problem of Maxwell’s
equations. This paper is concerned with the mathematical analysis of the solution for its variational problem. The main theorem
indicates that there is a unique weak solution in a suitable functional space for a wide class of dielectric permittivity and magnetic
permeability. The proof is based on a Hodge decomposition and the generalized Lax–Milgram theorem. A crucial step is to establish a
priori estimate of the solution.

The scattering by unbounded structures has significant applications such as modeling acoustic and electromagnetic wave propaga-
tion over outdoor ground and sea surfaces or, at a very different scale, optical scattering from the surface of materials in near-field optics
or nano-optics, detection of underwater mines, especially those buried in soft sediments. These problems are extensively studied and
a considerable amount of information is available concerning their solutions [1–9].

These scattering problems are quite challenging because of the unbounded nature of the domains. The usual Silver–Müler radiation
condition is no longer valid, and the Fredholm alternative argument does not apply either because of the lack of compactness result.
In particular, rigorous mathematical analysis for the three-dimensional Maxwell equations is very rare. In [10], the electromagnetic
scattering by unbounded rough surfaces was considered under the assumption that the medium was lossy in the entire space. The
well posedness of the solution was established by a direct application of the Lax–Milgram theorem after showing that the sesquilinear
form was coercive. In [11], the authors considered the electromagnetic wave scattering from rough penetrable layers. The problem
was shown to have a unique weak solution from a priori estimates and the limiting absorption principle. As mentioned in the paper,
the source term was assumed to be divergence free, and the magnetic permeability was assumed to be a constant. Moreover, the
assumptions were quite restrictive for the dielectric permittivity and might be hard to be satisfied in practice.

In this work, we adopt the generalized Lax–Milgram theorem to establish the well-posedness of the solution for the electromagnetic
scattering problem. Our method is optimal in the sense that the generalized Lax–Milgram theorem gives the sufficient and necessary
condition on the existence and uniqueness of the solution. The divergence free condition is removed for the source term and the
magnetic permeability can be a variable function. A larger class of dielectric permittivity is allowed because the assumptions are much
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less restrictive. Related work can be found in [12–14] for the electromagnetic scattering problems by open cavities and diffractive
gratings. We refer to [15] for the electromagnetic scattering in unbounded domains and [16–18] for an account of electromagnetic
wave scattering problem in bounded domains.

The outline of this paper is as follows. In Section 2, the model problem and some functional spaces are introduced. A Hodge decom-
position is discussed in Section 3. Section 4 is devoted to the study of the variational formulation of the scattering problem. In Section 5,
an a priori estimate is derived for the solution, and the well-posedness of the problem is established. The paper is concluded with some
general remarks and directions for future research in Section 6.

2. A model problem

In this section, we introduce a mathematical model and define some notation for the electromagnetic scattering by an unbounded
structure. Let us first specify the problem geometry, which is shown in Figure 1. Let S be a Lipschitz continuous surface embedded in
the strip

� D f.�, z/ 2 R3 : 0 < z < hg D R2 � .0, h/,

where � D .x, y/ 2 R2 and h > 0 is a constant. The free space is filled with some homogeneous material above S; while the medium
may be inhomogeneous in the region below S. The unbounded medium is assumed to be deposited on a perfectly conducting infinite
.x, y/-plane. Define two boundaries �0 D f.�, z/ 2 R3 : z D 0g and � D f.�, z/ 2 R3 : z D hg.

Specifically, we assume that the space R3
C
D f.�, z/ 2 R3 : z > 0g is filled with a material with the dielectric permittivity " and

the magnetic permeability �. The electromagnetic wave propagation is governed by the time-harmonic Maxwell equations with time
dependence e�i!t :

r � E � i!�H D 0, r � HC i!"E D J in R3
C, (2.1)

where E and H denote the electric field and the magnetic field, ! is the angular frequency, and J is the electric current density. We
assume that " 2 W1,1.R3

C
/ and � 2 W2,1.R3

C
/ and they satisfy

0 < "0 � Re" � "1, Im" � 0, 0 < �1 � � � �0,

where "0, "1,�0,�1 are constants, and "0,�0 are known as the dielectric permittivity and the magnetic permeability in the free space,
respectively. The regularity of " and �will be used in the a prior estimate for the electric field.

Eliminating H from (2.1), we obtain a decoupled equation for E:

r � .��1r � E/ � !2"E D f in�, (2.2)

where � D !."�/1=2 with Im� � 0 is the wavenumber and f D i!J. Because the unbounded medium is mounted on the perfectly
electrical conducting plane �0, the electric field E satisfies

E � n D 0 on �0, (2.3)

where n D .0, 0, 1/>.
To describe the boundary value problem and derive its variational formulation, we introduce some Sobolev spaces. For u 2 L2.R2/,

we denote Ou the Fourier transform of u by

Ou.�/ D
1

2�

Z
R2

u.�/e�i���d�,

Figure 1. Problem geometry.
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where � D .�1, �2/ 2 R2. Denote by L2.�/ the space of complex square integrable functions on�with the norm

kukL2.�/ D

"Z h

0

Z
R2
ju.�, z/j2d�dz

#1=2

D

"Z h

0

Z
R2
j Ou.� , z/j2d�dz

#1=2

.

We define the Sobolev space as follows: Hs.�/ D fD˛u 2 L2.�/ for all j˛j � sg, which is a Banach space for the norm:

kukHs.�/ D

2
4Z h

0

X
nCm�s

�Z
R2

�
1C j�j2

�n
jDm

z Ou.� , z/j2d�

�
dz

3
5

1=2

,

where n, m 2 N and Dm
z is the m-th derivative with respect to z. These norms, given in the spatial-frequency domain, are equivalent to

the usual Sobolev norms in the entire spatial domain because of the Parseval identity.
Introduce the following space:

H.curl, �/ D fu 2 L2.�/3, r � u 2 L2.�/3g,

which is a Hilbert space for the norm:

kukH.curl,�/ D
�
kuk2

L2.�/3 C kr � uk2
L2.�/3

�1=2
.

For any vector field u D .u1, u2, u3/
>, denote the tangential component on � by

u� D �n � .n � u/ D .u1.�, h/, u2.�, h/, 0/>.

For any smooth vector u D .u1, u2, u3/
> defined on � , denote by div�u D @x u1 C @yu2 and curl�u D @x u2 � @yu1, the surface

divergence and the surface scalar curl of the field u, respectively. For a smooth function u, denote by r�u D .@x u, @yu, 0/> the surface
gradient. The subscript T denotes the first two components of a vector.

To describe the Calderón operator and the transparent boundary condition in formulation of the boundary value problem, we
introduce some trace functional spaces. Denote by Hs.�/ the standard Sobolev space, the completion of L2.R2/ in the norm
characterized by

kukHs.�/ D

�Z
R2

�
1C j�j2

�s
j Ouj2d�

	1=2

.

Let S .R2/ and Sw.R2/ be the Schwartz space and the weighted Schwartz space, that is,

S .R2/ D

(
u 2 C1.R2/ : sup

�2R2
j.1C j�j˛/

@jˇj

@�ˇ
u.�/j <1 for all ˛ 2 N0,ˇ 2 N2

0

)

and

Sw.R
2/ D

n
u 2 S .R2/ : j�2

0 � j�j
2j�1=2 Ou 2 S .R2/

o
,

where �0 D !."0�0/
1=2 > 0 is the wavenumber in the free space. Denote by S �w .R

2/ the dual space of Sw.R2/. Define

Hs
˛.R

2/ D

(
u 2 S �w .R

2/ :
�
1C j�j2

�s=2
ˇ̌̌
ˇ 1C j�j2

�2
0 � j�j

2

ˇ̌̌
ˇ
˛=2

Ou 2 L2.R2/

)

and

Hs
˛.curl;�/ D

˚
u 2 Hs.R2/3 : curl�u 2 Hs

˛.R
2/, div�u 2 Hs�1

˛C1.R
2/



.

In this paper, we only need to choose ˛ D s D �1=2. Denote W D H�1=2
�1=2.curl;�/ and its norm is characterized by

kuk2
W D

Z
R2

�
1C j�j2

��1=2 �
j Ou1j

2 C jOu2j
2
�

d� C

Z
R2

�
1C j�j2

��1

j�2
0 � j�j

2j�1=2
j�1 Ou2 � �2 Ou1j

2d�

C

Z
R2

�
1C j�j2

��1

j�2
0 � j�j

2j1=2
j�1 Ou1 C �2 Ou2j

2d� .

Define a subspace of H.curl,�/:

X D fu 2 H.curl,�/ : u � n D 0 on �0, u� 2 Wg.
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The norm is given by

kukX D
�
kuk2

L2.�/3 C kr � uk2
L2.�/3 C ku�k

2
W

�1=2
.

To reduce the problem into the bounded domain �, we introduce a transparent boundary condition by using a Calerón operator,
which maps the value of the tangential component of the electric field to the value of the tangential trace of the magnetic field.

For any tangential vector u D .u1, u2, 0/> on � , define the boundary operator

Tu D .v1, v2, 0/>, (2.4)

where "
Ov1

Ov2

#
D

1

!�0.�
2
0 � j�j

2/1=2

"
�2

0 � �
2
2 �1�2

�1�2 �2
0 � �

2
1

#"
Ou1

Ou2

#
.

It follows from [10] that the following transparent boundary condition can be imposed:

.r � E/ � n D i!�0TE� on � .

It is shown in [15, Lemma 5.4.7] that T is a bounded linear operator, i.e., there exists a positive constant C such that

jhTu, vij � CkukWkvkW for any u, v 2 W . (2.5)

We mention that C and Cj are positive constants throughout the paper, whose precise values are not required and may change line
by line but should be always clear from the context.

3. Hodge decomposition

We present a version of Hodge decomposition, which is important in the proof of our theorems on the existence and uniqueness of
the scattering problem.

Introduce a subspace of H1.�/:

H1
�.�/ D fu 2 H1.�/ : u D 0 on �0,r�u 2 Wg,

which is a Hilbert space for the norm

kukH1
�.�/

D
�
kuk2

H1.�/
C kr�uk2

W

�1=2
.

Lemma 3.1
Given f 2 L2.�/ and g 2 H�1=2.�/, the boundary value problem8̂<

:̂
r � ."ru/ D f in�,

u D 0 on �0,

"0@zu D i!�1div�Tr�uC g on � ,

has a unique solution in H1
�
.�/.

Proof
We examine the variational formulation of the problem: find u 2 H1

�
.�/ such that

b.u, v/ D

Z
�

gNv �

Z
�

f Nv for all v 2 H1
� .�/,

where the sesquilinear form

b.u, v/ D

Z
�

"ru � r Nv C i!�1

Z
�

Tr�u � r� Nv.

It follows directly from the Cauchy–Schwarz inequality that b is a continuous on H1
�
.�/ � H1

�
.�/. Hence, it suffices to show that b is

coercive on H1
�
.�/.

Taking the real and imaginary parts of b yields

Reb.u, u/ D

Z
�

Re."/jruj2 � !�1Im

Z
�

Tr�u � r� Nu,

Imb.u, u/ D

Z
�

Im."/jruj2 C !�1Re

Z
�

Tr�u � r� Nu.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 573–588

5
7

6



P. LI, G. ZHENG AND W. ZHENG

Letr�u D w D .w1, w2, 0/>. Noting curl�.r�u/ D 0, we have �2 Ow1� �1 Ow2 D 0. It follows from j�j2j Owj2 D j�1 Ow2� �2 Ow1j
2Cj�1 Ow1C

�2 Ow2j
2 that we have Z

�

Tr�u � r� Nu D
1

!�0

Z
R2

1�
�2

0 � j�j
2
�1=2

.�2
0 j Owj

2 � j�1 Ow2 � �2 Ow1j
2/d�

D
1

!�0

"Z
j�j2<�2

0

�2
0 j Owj

2�
�2

0 � j�j
2
�1=2

d� � i

Z
j�j2>�2

0

�2
0 j Owj

2�
j�j2 � �2

0

�1=2
d�

#
.

Simple calculation gives

Reb.u, u/ D

Z
�

Re."/jruj2 C "0

Z
j�j2>�2

0

j Owj2�
j�j2 � �2

0

�1=2
d� ,

Imb.u, u/ D

Z
�

Im."/jruj2 C "0

Z
j�j2<�2

0

j Owj2�
�2

0 � j�j
2
�1=2

d� ,

which yield

2jb.u, u/j � Reb.u, u/C Imb.u, u/

�

Z
�

jruj2 C "0

Z
R2

j Owj2

jj�j2 � �2
0 j

1=2
d� .

(3.1)

Using the fact that �2 Ow1 � �1 Ow2 D 0 again, we have

kr�uk2
W D

Z
R2

j Owj2

.1C j�j2/1=2
d� C

Z
R2

j�1 Ow1 C �2 Ow2j
2

.1C j�j2/ j�2
0 � j�j

2j1=2
d�

�

Z
R2

j Owj2

.1C j�j2/1=2
d� C

Z
R2

j Owj2

jj�j2 � �2
0 j

1=2
d�

� C

Z
R2

j Owj2

jj�j2 � �2
0 j

1=2
d� ,

(3.2)

where C depends only on �0. Because u D 0 on �0, it follows from the Poincaré inequality and (3.1)–(3.2) that we obtain

jb.u, u/j � C
�
kuk2

H1.�/
C kr�uk2

W

�
D Ckuk2

H1
�.�/

.

The lemma is proved by a direct application of the Lax–Milgram theorem.

Define two subspaces of X :

Y D
˚

u 2 X : r � ."u/ D 0 in�, "0u � n D i!�1div�Tu� on �



,

and

Y? D fu : u D ru, u 2 H1
�.�/g.

Lemma 3.2
The spaces Y and Y? are closed subspaces of X , which is the direct sum of Y and Y?, i.e.,

X D Y ˚ Y?.

Proof
Take un D run 2 Y?, and it follows from un ! u in X that

kun � uk2
X D kun � uk2

L2.�/3 C kr � un � r � uk2
L2.�/3 C kun � uk2

W

D krun � uk2
L2.�/3 C kr � uk2

L2.�/3 C kun � uk2
W ! 0

as n!1, which shows that kr � ukL2.�/3 D 0 and then Y? is closed.
Equivalently, the subspace Y can be represented as

Y D

�
u 2 X :

Z
�

"u � r Nv � i!�1

Z
�

div�Tu� Nv D 0 for all v 2 H1
�.�/

�
.
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For fixed v 2 H1
�
.�/, define a linear functional on Y :

l.u/ D
Z
�

"u � r Nv � i!�1

Z
�

div�Tu� Nv

D

Z
�

"u � r Nv C i!�1

Z
�

Tu� � r� Nv for all u 2 Y .

Applying the Cauchy–Schwarz inequality and (2.5), we get

jl.u/j � C
�
kvkH1.�/kukL2.�/3 C kukWkr�vkW

�
� C

�
kvkH1.�/ C kr�vkW

�
kukX D C.v/kukX .

Let un 2 Y and un ! u in X . We have

jl.u/j D jl.u � un/C l.un/j D jl.u � un/j � C.v/kun � ukX ! 0

as n!1, which implies that u 2 Y and thus the closedness of the space Y .
For any u 2 X , define u 2 H1

�
.�/ by the solution to the variational problem

a.ru,rv/ D a.u,rv/ for all v 2 H1
� .�/,

which has an equivalent differential form: 8̂<
:̂
r � ."ru/ D r � ."u/ in�,

u D 0 on �0,

"0@zu D i!�1div�Tr�uC g on � ,

where g D "0u � n � i!�1div�Tu� . It follows from Lemma 3.1 that there exists a unique solution u in H1
�
.�/.

Denote v D u � ru. Then a.v,rv/ D 0 for all v 2 H1
�
.�/, that is,Z

�

r � ."v/Nv �
Z
�

�
"0v � n � i!�1div�v�

�
Nv D 0 for all v 2 H1

�.�/,

which shows that v 2 Y .
Finally, we show that Y \ Y? consists of the trivial function only. In fact, if u D ru 2 Y \ Y?, then8̂<

:̂
r � ."ru/ D 0 in�,

u D 0 on �0,

"0@zu D i!�1div�Tr�u on � ,

which implies that u D ru D 0 from Lemma 3.1.

4. Reduced variational problem

Multiplying the complex conjugate of a test function  2 X on (2.2), integrating over �, and using the integration by parts, we arrive
at the variational form for the scattering problem: Find E 2 X such that

a.E, / D .f, v/ for all  2 X , (4.1)

where the sesquilinear form

a.E, / D

Z
�

��1r � E � r � N � !2

Z
�

"E � N � i!

Z
�

Tu� � N � , (4.2)

and the linear functional

.f, / D

Z
�

f � N .

Using the Hodge decomposition in Lemma 3.2, we take E D uCru and  D vCrv for any v 2 Y and v 2 H1
�
.�/. Observing that

for u 2 Y and v 2 H1
�
.�/, we have

a.u,rv/ D �!2

Z
�

"u � r Nv � i!

Z
�

Tu� � r� Nv

D !2

Z
�

Nvr � ."u/ � !2"0

Z
�

Nv.u � n/C i!

Z
�

Nvdiv�Tu�

D !2

Z
�

Nvr � ."u/ � !2

Z
�

Nv
�
"0u � n � i!�1div�Tu�

�
D 0.

(4.3)
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By Lemma 3.1, there exists a unique solution u 2 H1
�
.�/ to the problem

a.ru,rv/ D .f,rv/ for any v 2 H1
�.�/. (4.4)

It follows from (4.3) to (4.4) that the variational problem (4.1) can be equivalently reformulated into the following problem: find u 2 Y
such that

a.u, v/ D .f, v/ � a.ru, v/ for all v 2 Y . (4.5)

Notice that u is determined by f from (4.4). Hence, there exists a functional F 2 Y�, the dual space of Y , such that

F.v/ D .f, v/ � a.ru, v/ for all v 2 Y .

The variational problem (4.5) can be further reduced to the problem: find u 2 Y such that

a.u, v/ D F.v/ for any v 2 Y . (4.6)

In the rest of the paper, we shall apply the generalized Lax–Milgram theorem to prove that the variational problem (4.6) has a unique
solution.

First, we show that Y has an equivalent norm defined by

kukY D kukH.curl,�/ for any u 2 Y .

The following two trace regularity results in H�1=2.�/ and W are useful in subsequent analysis. The first lemma is proved in [10] (cf.
Lemma 2.5).

Lemma 4.1
For any 	 > 0, there exists a positive constant C.	/ depending on 	 and h such that

ku�k
2
H�1=2.�/

� 	kr � uk2
L2.�/3 C C.	/kuk2

L2.�/3 for any u 2 H.curl,�/.

Lemma 4.2
We have the estimate

ku�kW � CkukH.curl,�/ for any u 2 Y ,

where C depends on ", �0, and h.

Proof
For any u 2 Y , we have r � ."u/ D 0, which gives

r � u D �

�
r"

"

�
� u. (4.7)

Denote u D .u1, u2, u3/
>. Because "0u � n D i!�1div�Tu� on � , we take the Fourier transform with respect to � and obtain

Ou3 D
i

!"0

3div�Tu� D �
1

!"0
Œ�1 �2


"
Ov1

Ov2

#

D
�1

�2
0

�
�2

0 � j�j
2
�1=2

Œ�1 �2


"
�2

0 � �
2
2 �1�2

�1�2 �2
0 � �

2
1

#"
Ou1

Ou2

#
D

�� � Ou��
�2

0 � j�j
2
�1=2

.

(4.8)

Using (4.8) and Lemma 4.1, we have

ku�k
2
W D

Z
R2

j Ou� j2

.1C j�j2/1=2
d� C

Z
R2

j�2
0 � j�j

2j1=2

1C j�j2
j�1 Ou2 � �2 Ou1j

2d�

C

Z
R2

j�1 Ou1 C �2 Ou2j
2

.1C j�j2/ j�2
0 � j�j

2j1=2
d�

� ku�k
2
H�1=2.�/

C

Z
R2

�
j�2

0 � j�j
2j1=2j Ou� j

2 C
j� � Ou� j2

j�2
0 � j�j

2j1=2

�
d�

D ku�k
2
H�1=2.�/

C

Z
R2

�
j�2

0 � j�j
2j1=2j Ou� j

2 C j�2
0 � j�j

2j1=2j Ou3j
2
�

d�

� Ckuk2
Y C

Z
R2
j�2

0 � j�j
2j1=2j Ouj2d�

� Ckuk2
Y Cmaxf1, �0g

Z
R2

�
1C j�j2

�1=2
j Ouj2d� .

(4.9)

For any u 2 H1.�/, we have

j Ou.� , h/j2 6 j Ou.� , z/j2 C 2

Z h

0
j Ou.� , z/Ou0.� , z/jdz, z 2 .0, h/.
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Multiplying
�
1C j�j2

�1=2
on both sides of the aforementioned inequality and integrating with z on .0, h/, we obtain

h
�
1C j�j2

�1=2
j Ou.� , h/j2 6

�
1C j�j2

�1=2
Z h

0
j Ou.� , z/j2dz

C 2h

Z h

0

�
1C j�j2

�1=2
j Ou.� , z/jj Ou0.� , z/jdz

6
�
1C j�j2

�1=2
Z h

0
j Ou.� , z/j2dzC h

Z h

0

�
1C j�j2

�
j Ou.� , z/j2dz

C h

Z h

0
j Ou0.� , z/j2dz,

which yields Z
R2

�
1C j�j2

�1=2
j Ou.� , h/j2d� �

1C h

h

Z
R2

Z h

0

�
1C j�j2

�
j Ou.� , z/j2d�dz

C

Z
R2

Z h

0
j Ou0.� , z/j2d�dz.

(4.10)

Using (4.10) and

j�j2j Ou.� , z/j2 C jOu0.� , z/j2 D j�1 Ou2 � �2 Ou1j
2 C ji�1 Ou3 � Ou

0
1j

2

Cji�2 Ou3 � Ou
0
2j

2 C jOu03 C i.�1 Ou1 C �2 Ou2/j
2,

we have Z
R2

�
1C j�j2

�1=2
j Ouj2d� � C

"Z
�

juj2 C
Z
R2

Z h

0

�
j�j2j Ou.� , z/j2 C jOu0.� , z/j2

�
d�dz

#

D C

�Z
�

juj2 C
Z
�

jr � uj2 C
Z
�

jr � uj2
�
� Ckuk2

H.curl,�/,

(4.11)

where (4.7) is used in the last inequality. The proof is completed by combining (4.9) and (4.11).

The following corollary is a direct consequence of Lemma 4.2.

Corollary 4.3
In the subspace Y of X , the norm k � kX is equivalent to the norm k � kY .

Therefore, for the sake of simplicity, we will use k � kY instead of k � kX to equip the function space Y .
Next, we examine the conditions in the generalized Lax–Milgram theorem. It follows from Lemma 4.2 and the Cauchy–Schwarz

inequality that

ja.u, v/j � C1

Z
�

jr � u � r � Nvj C C2

Z
�

ju � Nvj C C3

Z
�

jTu� � Nv� j

� C1kr � ukL2.�/3kr � vkL2.�/3 C C2kukL2.�/3kvkL2.�/3 C C3kukWkvkW

� CkukYkvkY ,

which shows that the sesquilinear form a is bounded. It is easy to show that

a.v, u/ D a. Nu, Nv/ for all u, v 2 Y . (4.12)

In order to apply the generalized Lax–Milgram theorem, we need to show the inf-sup condition:

� D inf
0¤u2Y

sup
0¤v2Y

ja.u, v/j

kukYkvkY
> 0 (4.13)

and the “transposed" inf-sup condition, which follows from (4.12) if (4.13) holds.

Lemma 4.4
If (4.13) holds, then the variational problem (4.6) has exactly one solution u 2 Y for F 2 Y�. Furthermore, it satisfies

kukY � �
�1kFkY� . (4.14)

In order to get (4.13), we need to establish an a priori estimate for any solution to (4.6), from which the inf-sup condition will be
satisfied by the following lemma.
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Lemma 4.5
If there exists a C such that

kukY � CkFkY� (4.15)

for all u 2 Y ,F 2 Y� satisfying (4.6), then (4.13) holds with C � ��1.

Proof
Fix u 2 Y and define F.v/ D a.u, v/ for all v 2 Y , then F 2 Y� and u is the solution to (4.6). We have

kukY � CkFkY� D C sup
0¤v2Y

jF.v/j
kvkY

D C sup
0¤v2Y

ja.u, v/j

kvkY
.

Hence, we have

� D inf
0¤u2Y

sup
0¤v2Y

ja.u, v/j

kukYkvkY
� C�1,

which completes the proof.

Lemma 4.6
If there exists a constant C1 such that

kukY � C1kfkL2.�/3 (4.16)

for all u 2 Y , f 2 L2.�/ that satisfies

a.u, v/ D .f, v/ for all v 2 Y , (4.17)

then for all u 2 Y ,F 2 Y� that satisfies (4.6), there exists a constant C2 such that

kukY � C2kFkY� .

Proof
Suppose u 2 Y is a solution to the problem

a.u, v/ D F.v/ for all v 2 Y . (4.18)

Let a0 : Y � Y ! C be defined by

a0.u, v/ D
Z
�

��1r � u � r � NvCM!2

Z
�

"u � Nv � i!

Z
�

Tu� � Nv� ,

where M > 0 is a constant which will be determined later to ensure that a0 is coercive in Y . It is easy to show that a0 is a bounded
sesquilinear form. For any u 2 Y ,

Rea0.u, u/ D
Z
�

��1jr � uj2 CM!2

Z
�

Re."/juj2

C ��1
0

Z
j�j2>�2

0

"�
j�j2 � �2

0

�1=2
j Ou� j

2 �
j� � Ou� j2�
j�j2 � �2

0

�1=2

#
d�

> ��1
0

Z
�

jr � uj2 CM!2"0

Z
�

juj2 C ��1
0

Z
j�j2>�2

0C�

j�1 Ou2 � �2 Ou1j
2 � �2

0 j Ou� j
2�

j�j2 � �2
0

�1=2
d�

C ��1
0

Z
�2

0<j�j
2<�2

0C�

"�
j�j2 � �2

0

�1=2
j Ou� j

2 �
j� � Ou� j2�
j�j2 � �2

0

�1=2

#
d�

> ��1
0

Z
�

jr � uj2 CM!2"0

Z
�

juj2 � �2
0�
�1
0

Z
j�j2>�2

0C�

j Ou� j2�
j�j2 � �2

0

�1=2
d�

� ��1
0

Z
�2

0<j�j
2<�2

0C�

j� � Ou� j2�
j�j2 � �2

0

�1=2
d� ,

(4.19)

where � > 0 is a constant, and we have used j�j2j Ou� j2 D j�1 Ou2 � �2 Ou1j
2 C j� � Ou� j2.

Because u 2 Y , it follows from (4.8), (4.10), and (4.11) that we haveZ
�2

0<j�j
2<�2

0C�

j� � Ou� j2�
j�j2 � �2

0

�1=2
d� D

Z
�2

0<j�j
2<�2

0C�

�
j�j2 � �2

0

�1=2
j Ou3j

2d�

6 �1=2

Z
�2

0<j�j
2<�2

0C�

j Ou3j
2d� 6 �1=2

Z
R2

�
1C j�j2

�1=2
j Ou3j

2d� � C�1=2kuk2
Y .
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We choose � to be small enough such that

Z
�2

0<j�j
2<�2

0C�

j� � Ou� j2�
j�j2 � �2

0

�1=2
d� �

1

10
kuk2

Y . (4.20)

Fix such a � > 0, we have from Lemma 4.1 that

�2
0

Z
j�j2>�2

0C�

j Ou� j2�
j�j2 � �2

0

�1=2
d� 6 �2

0 max
j�j2>�2

0C�

�
j�j2 C 1

�1=2

�
j�j2 � �2

0

�1=2

Z
j�j2>�2

0C�

j Ou� j2

.1C j�j2/1=2
d�

6 �2
0

�
1C

1C �0

�

�1=2 Z
R2

j Ou� j2

.1C j�j2/1=2
d�

6 �2
0

�
1C

1C �0

�

�1=2 �
	

Z
�

jr � uj2 C C.	/

Z
�

juj2
�

6 1

10

Z
�

jr � uj2 C C1

Z
�

juj2,

(4.21)

if we choose 	 > 0 to be small enough such that

	�2
0

�
1C

1C �2
0

�

�1=2

<
1

10
.

Combining (4.19), (4.20) and (4.21), we obtain that

Rea0.u, u/ > 4��1
0

5

Z
�

jr � uj2 C

�
M!2"0 �

��1
0

10
� C1

�Z
�

juj2

> 4��1
0

5

�Z
�

jr � uj2 C
Z
�

juj2
�
D

4��1
0

5
kuk2

Y ,

if we choose M > 0 to be large enough such that

M!2"0 � C1 �
9��1

0

10
.

This implies that a0 is coercive by Corollary 4.3. Thus, the problem of finding u0 2 Y such that

a0.u0, v/ D F.v/ for all v 2 Y (4.22)

has a unique solution u0 that satisfies

4��1
0

5
ku0kY 6 kFkY� . (4.23)

Now, defining w D u � u0 and using (4.18) and (4.22), we have

a.w, v/ D a.u, v/ � a.u0, v/ D F.v/ � .F.v/C a.u0, v/ � a0.u0, v//

D ..MC 1/!2"u0, v/.

Therefore, w satisfies (4.17) with f D .MC 1/!2"u0 2 L2.�/3. By the assumption, we have

kwkY 6 C1.MC 1/!2k"kL1.�/ku0kL2.�/3

6 C1.MC 1/!2k"kL1.�/ku0kY

6 5�0

4
C1.MC 1/!2k"kL1.�/kFkY� ,

where we have used (4.23) in the last inequality. Finally,

kukY 6 kwkY C ku0kY 6
5�0

4



1C C1.MC 1/!2k"kL1.�/

�
kFkY� D C2kFkY� ,

which proves the Lemma.

Combining Lemma 4.4, Lemma 4.5, and Lemma 4.6, we obtain the main theorem in this section.
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Theorem 4.7
If it holds (4.16) for all u 2 Y , f 2 L2.�/3 satisfying (4.17), then the variational problem (4.1) has a unique solution in X .

5. A priori estimate

In the section, we show that the assumption of Theorem 4.7 is valid for a certain class of dielectric permittivity " and magnetic per-
meability, and thus the existence and uniqueness of our original scattering problem. We shall show (4.16) holds for the solution u of
problem (4.17) for some f 2 L2.�/3. Because in Y , we haver � ."u/ D 0, it follows from the equation satisfied by the solution u to (4.17)
that r � f D 0. First, we give some assumptions on " and �.

Let 0 < ı < h=2 be small. We denote a “tubular domain of thickness ı" of� any open domain

Dı D

�
.�, z/ 2 � : r.�/ �

ı

2
< z < r.�/C

ı

2

�

where r : R2 ! R is a piecewise Lipschitz continuous function that satisfies ı < r.�/ < h � ı.
We assume

(a) " 2 W1,1.�/, 0 < "0 � Re."/ � "1, Im" � 0;
(b) � 2 W2,1.�/, 0 < �1 � � � �0, @z� � 0;
(c) There exist 
 > 0 and Dı � � of thickness of ı > 0 such that

Dı � f.�, z/ 2 � : Im" > 
g; (5.1)

(d) For some

	 :D

 
ı1=2

8h3=2

!
�min

(�
5�2

0

�1"
2
0

C
2

�0"0
C 10C

1

�2
0

��1=2

,

 
ı1=2�0

4h3=2

!
.2C !2�2

0h/�1

)
> 0,

there exists a constant C.	/ > 0 depending only on 	 such that for all .�, z/ 2 � satisfying Im".�, z/ < C.	/, we have

jr".�, z/j C jr�.�, z/j C jrT@z�.�, z/j < 	.

Remark 5.1
The assumption (d) implies that on the set f.x, y, z/ 2 � : Im" < C.	/g,

b.",�/ :D
10�2

0

�2
1

ˇ̌
"�1r"

ˇ̌2
C 2�0

ˇ̌
r.��1/

ˇ̌ ˇ̌
"�1r"

ˇ̌
C 20�2

0

ˇ̌
r.��1/

ˇ̌2
C 2�0

ˇ̌
rT@z.�

�1/
ˇ̌
C !2�0hjr"j

�
10�2

0

�2
1"

2
0

jr"j2 C
2

�0"0
jr�jjr"j C 20jr�j2

C 2�0

�
1

�2
0

jrT@z�j C
1

�3
0

jr�j2
	
C !2�0hjr"j

�

�
10�2

0

�2
1"

2
0

C
2

�0"0
C 20C

2

�2
0

�
	2 C

�
2

�0
C !2�0h

�
	

�
ı

16h3
.

(5.2)

This inequality plays an important role in the energy estimates.

Remark 5.2
There exists nontrivial examples for the dielectric permittivity " and the magnetic permeability �. For instance, let

" D

(
"0 C i

�
h
2 � z

�3
, 0 � z � h

2 ,
"0, z > h

2 ;
� D

8<
: �0

�
1 � .

h
2�z/

3

2. h
2 /

3

	
, 0 � z � h

2 ,

�0, z > h
2 ,

then they satisfy all the assumptions earlier.

To obtain an a priori estimate for the solutions to problem (4.17), we need the technique that was adopted in [11] to derive Rellich
identity. General speaking, we choose z@zu and u as the test functions in (4.17) and use the integration by parts, we can obtain some
identities, which are called Rellich type identity.
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Lemma 5.3
Let u 2 Y be a solution to (4.17). We haveZ

�

�
2j@zuj2 C !2�0z.@zRe"/juj2

�
C �0A.u/C

Z
R2

Im
�
�2

0 � j�j
2
�1=2
j Ouj2d�

� �0

�
2hk@zukL2.�/3 C kukL2.�/3

�
kgkL2.�/3 ,

(5.3)

where g D fC !2Im."/u and

A.u/ D2Re

Z
�

"�1.r" � u/@z Nu3 C 2Re

Z
�

@z.�
�1/."�1r" � uC @zu3/Nu3

� 2Re

Z
�

.uT � rT@z.�
�1//Nu3 � 2Re

Z
�

.rT.�
�1/ � uT/@z Nu3.

Moreover, we have Z
�

!2Im."/juj2 6 kfkL2.�/3kukL2.�/3 . (5.4)

Proof

The proof consists of six steps.

Step 1. We seek a distributional solution u 2 H1.�/3 to the following problem in L2.�/3:

8<
:
r �

�
��1r � u

�
� !2"u D f in�,

.r � u/ � n D i!�0Tu� on � ,
u � n D 0 on �0,

(5.5)

where the boundary condition .r � u/ � n D i!�0Tu� holds in H�1=2.�/3. Notice that in [11]

bTC
�2
˛
.u/ D i.�2

˛ � j�j
2/1=2 Ou, bNC

�2
˛
.u/ D

i�.� � Ou/

.�2
˛ � j�j

2/1=2
.

A simple calculation yields

2TC
�2
˛
.u/C2NC

�2
˛
.u/

D i

�
.�2
˛ � j�j

2/1=2 Ou1 C
�1.� � Ou/

.�2
˛ � j�j

2/1=2
, .�2

˛ � j�j
2/1=2 Ou2 C

�2.� � Ou/

.�2
˛ � j�j

2/1=2

�>

D
i

.�2
˛ � j�j

2/1=2

�
.�2
˛ � j�j

2/Ou1 C �
2
1 Ou1 C �1�2 Ou2, .�2

˛ � j�j
2/Ou2 C �1�2 Ou1 C �

2
2 Ou2

�>
D

i

.�2
˛ � j�j

2/1=2

�
.�2
˛ � �

2
2 /Ou1 C �1�2 Ou2, .�2

˛ � �
2
1 /Ou2 C �1�2 Ou1

�>
.

In our setting,

i!�0 bTu� D
i

.�2
0 � j�j

2/1=2

�
�2

0 � �
2
2 �1�2

�1�2 �2
0 � �

2
1

��
Ou1

Ou2

�

D
i

.�2
0 � j�j

2/1=2

�
.�2

0 � �
2
2 /Ou1 C �1�2 Ou2, .�2

0 � �
2
1 /Ou2 C �1�2 Ou1

�>
.

Taking ˛ D 0 gives

TC
�2

0
.u/C NC

�2
0
.u/ D i!�0Tu� .

It follows from [11, Lemma 3.2], [11, Lemma 3.5], and (4.11) that we have u 2 H1.�/3.
Step 2. The following identity holds

2Re

Z
�

z@zu �
�
r � .��1r � Nu/

�
D !2

Z
�

@z.zRe."//juj2 C �2
0 h��1

0

Z
�

juj2

C 2Re

Z
�

z@zu � Ng.
(5.6)
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Indeed, because u satisfies Maxwell’s Eq. 5.5 in the L2 -sense, we can show (5.6) by multiplying the conjugate of (5.5) with z@zu and
then integrating by parts.

Step 3. The following identity holds

�

Z
�

�
��1 C @z.�

�1/
�
jr � uj2 C 2

Z
�

��1j@zuj2 C 2Re

Z
�

"�1.r" � u/@z Nu3

C 2Re

Z
�

@z.�
�1/."�1r" � uC @zu3/Nu3 � 2Re

Z
�

�
uT � rT@z.�

�1/
�
Nu3

� 2Re

Z
�

�
rT.�

�1/ � uT

�
@z Nu3 � 2Re

Z
�

��1
0 @zu3 Nu3 C h��1

0

Z
�

jr � uj2 � 2h��1
0

Z
�

j@zr�u3j
2

C 2h��1
0 Re

Z
�

@zu� � r� Nu3 C

Z
�

!2@z.zRe."//juj2 � 2h�2
0

Z
�

ju� j
2

D 2Re

Z
�

z@zu � Ng.

(5.7)

In fact, using [11, Lemma 4.4] and

divTu D "�1div."u/ � "�1.r" � u/ � @zu3,

we can obtain the following two identities by integrating by parts:

2Re

Z
�

z@zu �
�
r � .��1r � Nu/

�
D�

Z
�

�
��1 C @z.�

�1/
�
jr � uj2 C 2Re

Z
�

��1.e3 � @zu/ � .r � Nu/

C 2h��1
0 Re

Z
�

@zu� � .n � .r � Nu//C h��1
0

Z
�

jr � uj2
(5.8)

and

2Re

Z
�

��1.e3 � @zu/ � .r � Nu/

D 2Re

Z
�

��1j@zuj2 C 2Re

Z
�

"�1.r" � u/@z Nu3 C 2Re

Z
�

@z.�
�1/."�1r" � uC @zu3/Nu3

� 2Re

Z
�

�
uT � rT@z.�

�1/
�
Nu3 � 2Re

Z
�

�
rT.�

�1/ � uT

�
@z Nu3 � 2��1

0 Re

Z
�

@zu3 Nu3.

(5.9)

It follows from (5.8), (5.9), and (5.6) that we obtain (5.7).
Step 4. Substituting v D u into (4.17), we obtainZ

�

�
��1jr � uj2 � !2Re."/juj2

�
� Re

�
i!

Z
�

Tu� � Nu�

�
D Re

Z
�

g � Nu (5.10)

and Z
�

!2Im."/juj2 � Im

�
i!

Z
�

Tu� � Nu�

�
D Im

Z
�

f � Nu. (5.11)

Step 5. It is easy to verify the following three identities:

Im

�
i!

Z
�

Tu� � Nu�

�
D ��1

0

Z
R2

Re.�2
0 � j�j

2/1=2j Ouj2d� , (5.12)

� Re

�
i!

Z
�

Tu� � Nu�

�
� 2��1

0 Re

Z
�

@zu3 Nu3 D �
�1
0

Z
R2

Im.�2
0 � j�j

2/1=2j Ouj2d� , (5.13)

Z
�

�
jr � uj2 � 2j@zu� j

2 � �2
0 juj

2 � 2Re .@zu� � r� Nu3/
�
D �

Z
j�j<�0

.�2
0 � j�j

2/j Ouj2d� . (5.14)

Step 6. Now, we are ready to show (5.3) and (5.4). Using (5.7), (5.10), (5.13), (5.14), and the assumption @z.�
�1/ � 0, we haveZ

�

�
2��1j@zuj2 C !2z.@zRe"/juj2

�
C A.u/

C ��1
0

Z
R2

Im
�
�2

0 � j�j
2
�1=2
j Ouj2d� C h��1

0

Z
j�j<�0

.�2
0 � j�j

2/j Nuj2d�

�2Re

Z
�

z@zu � NgC Re

Z
�

f � Nu.

(5.15)
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Using (5.11) and (5.12) yields

Z 2

�

Im."/juj2 C ��1
0

Z
R2

Re.�2
0 � j�j

2/1=2j Ouj2d� � kfkL2.�/3kukL2.�/3 . (5.16)

Therefore, we obtain

h��1
0

Z
j�j<�0

.�2
0 � j�j

2/j Nuj2d� � �0h��1
0

Z
j�j<�0

.�2
0 � j�j

2/1=2j Nuj2d�

D �0h��1
0

Z
R2

Re.�2
0 � j�j

2/1=2j Nuj2d�

� �0h��1
0 kfkL2.�/3kukL2.�/3 .

(5.17)

Using the Hölder inequality and (5.15)–(5.17), we obtain (5.3). The estimate (5.4) follows immediately from (5.16).

Using this lemma, we can obtain the following theorem.

Theorem 5.4
Let u 2 Y be a solution to (4.17). If assumptions (a)–(d) hold, then there exists a positive constant C such that

kukY 6 CkfkL2.�/3 .

Proof
Applying Young’s inequality to each term in A.u/ and the second term in (5.3), we obtain

j�0A.u/j C

ˇ̌̌
ˇ!2�0

Z
�

z.@zRe"/juj2
ˇ̌̌
ˇ � 1

2

Z
�

j@zuj2 C
Z
�

b.",�/juj2. (5.18)

It follows from (5.3) and (5.18) that

3

2

Z
�

j@zuj2 C
Z
R2

Im.�2
0 � j�j

2/1=2j Ouj2d�

6
�

2hk@zukL2.�/3 C .1C 2
p

2�0h/kukL2.�/3

�
kgkL2.�/3 C

Z
�

b.",�/juj2.
(5.19)

By assumption (d), for any 	 > 0, there exists a C.	/ > 0 such that jb.",�/j < ı
16h3 for all .�, z/ 2 � satisfying Im".�, z/ < C.	/. So,

we have Z
�

b.",�/juj2 D

�Z
fIm"<C.�/g

C

Z
fIm">C.�/g

�
b.",�/juj2

6 ı

16h3

Z
fIm"<C.�/g

juj2 C C

Z
fIm">C.�/g

juj2

6 ı

16h3

Z
�

juj2 C
C

!2�1C.	/

Z
fIm">C.�/g

!2�Im."/juj2

6 ı

16h3

Z
�

juj2 C
C

!2�1C.	/
kfkL2.�/3kukL2.�/3 ,

(5.20)

where (5.4) is used in the last inequality. Applying Lemma 6.4 in [11], we obtain

ıkuk2
L2.�/3 6 4hkuk2

L2.Dı/3 C 8h3k@zuk2
L2.�/3 .

It follows from assumption (c) that we have

ıkuk2
L2.�/3 6 4h

Z
fIm">	g

juj2 C 8h3k@zuk2
L2.�/3

6 4h

!2�1


Z
�

!2�Im"juj2 C 8h3k@zuk2
L2.�/3

6 4h

!2�1

kfkL2.�/3kukL2.�/3 C 8h3k@zuk2

L2.�/3 .

(5.21)

Combining (5.20) with (5.21), we obtainZ
�

b.",�/juj2 6 1

2

Z
�

j@zuj2 C
1

!2�1

�
4h


ı
C

C

C.	/

�
kfkL2.�/3kukL2.�/3 .

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 573–588

5
8

6



P. LI, G. ZHENG AND W. ZHENG

Choosing small enough 	, we derive from (5.4)–(5.19) and the aforementioned inequality that

Z
�

j@zuj2 C
Z
R2

Im
�
�2

0 � j�j
2
�1=2
j Ouj2d�

6
�

2hk@zukL2.�/3 C .1C 2
p

2�0h/kukL2.�/3

�
kgkL2.�/3

C CkfkL2.�/3kukL2.�/3

6 C
�
k@zukL2.�/3 C kukL2.�/3

� h
kfkL2.�/3 C

�
kfkL2.�/3kukL2.�/3

�1=2
i

.

(5.22)

Using (5.21) and (5.22), we also obtain

Z
�

juj2 6 C
�
k@zukL2.�/3 C kukL2.�/3

�
�
h
kfkL2.�/3 C

�
kfkL2.�/3kukL2.�/3

�1=2
i

.
(5.23)

Adding (5.22) and (5.23), we obtain

k@zukL2.�/3 C kukL2.�/3 C

�Z
R2

Im
�
�2

0 � j�j
2
�1=2
j Ouj2d�

�1=2

6 C
h
kfkL2.�/3 C

�
kfkL2.�/3kukL2.�/3

�1=2
i

.

Applying Young’s inequality again, we have

k@zukL2.�/3 C kukL2.�/3 C

�Z
R2

Im.�2
0 � j�j

2/1=2j Ouj2d�

�1=2

6 CkfkL2.�/3 . (5.24)

Because u 2 Y is a solution to (4.17), taking v D u in (4.17), we have

Z
�

��1jr � uj2 �
Z
�

!2Re"juj2 C ��1
0

Z
j�j2>�2

0

"�
j�j2 � �2

0

�1=2
j Ou� j

2 �
j� � Ou� j2�
j�j2 � �2

0

�1=2

#
d�

D Re

Z
�

f � Nu.

By (4.8), we have Z
�

jr � uj2 6 C1

Z
�

juj2 C C2

Z
j�j2>�2

0

�
j�j2 � �2

0

�1=2
j Ou3j

2d� C C3kfkL2.�/3kukL2.�/3

D C1

Z
�

juj2 C C2

Z
R2

Im
�
j�j2 � �2

0

�1=2
j Ou3j

2d� C C3kfkL2.�/3kukL2.�/3

6 C1kuk
2
L2.�/3 C C2

Z
R2

Im
�
j�j2 � �2

0

�1=2
j Ouj2d� C C3kfk

2
L2.�/3 .

It follows from (5.24) that we obtain Z
�

jr � uj2 6 Ckfk2
L2.�/3 . (5.25)

Finally, combining (5.24) and (5.25), we derive that

kukY 6 CkfkL2.�/3 ,

which completes the proof.

The conclusion still holds if " satisfies the assumptions in [11]. Here, we give different assumptions on ", which are valid for a larger
class of functions.

Our main result in this paper is the following theorem.

Theorem 5.5
If assumptions (a)–(d) hold, then the variational problem (4.1) has a unique solution in X .

Proof
The proof follows directly by combining Theorem 5.4 with Theorem 4.7.
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6. Conclusions

In this paper, we studied the solution for the electromagnetic wave scattering by an unbounded structure, which was mounted on
a perfectly conducting infinite plane. A variational formulation was introduced by using a transparent boundary condition. Based on
a Hodge decomposition and an a priori estimate, the problem was shown to have a unique weak solution for a wide class of the
dielectric permittivity by using the generalized Lax–Milgram theorem. An open question is what the best condition is for the dielectric
permittivity to assure the well-posedness of the problem, which remains the topic of a future work.
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