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Abstract
We investigate the inverse diffraction grating problem which is to reconstruct 
the periodic surface from the diffracted field. The surface is assumed to 
be a sufficiently smooth and small perturbation of the flat surface. A novel 
computational method is developed to solve the inverse problem with super-
resolution by using phase or phaseless near-field data. The method utilizes 
Rayleigh’s coefficients of the near field data and updates iteratively the 
approximated surface function by solving a truncated linearized system. 
Monotonicity of the error estimate is proved under the small perturbation 
assumption of the surface. Numerical examples are shown to verify the 
theoretical findings and illustrate the effectiveness of the proposed method.

Keywords: inverse diffraction grating problem, the Helmholtz equation, 
near-field imaging

(Some figures may appear in colour only in the online journal)

1.  Introduction

Scattering theory in periodic structures has many significant applications in micro-optics, 
which includes the design and fabrication of optical elements such as corrective lenses, elec-
tronic displays, microsensors, optical storage systems, optical communication components, 
and integrated opto-electronic semiconductor devices [4, 5, 7, 22, 24, 39–41]. Surface identi-
fication of periodic structures is one of the fundamental problems in diffractive optics and is 
known as the inverse diffraction grating problem. The mathematical questions on uniqueness 
and stability for the inverse problem have been studied by many researchers [1, 3, 8, 15–17, 
28, 33, 35]. Various numerical methods have also been developed for the reconstruction of 
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periodic surfaces [2, 14, 18, 23, 27, 29, 30, 36, 38, 42, 43, 46]. These works were intended 
to address the classical inverse scattering problems and the resolution of reconstructions was 
limited by Rayleigh’s criterion, approximately half of the incident wavelength.

The resolution limit, referring to how fine the details can be captured, is an essential aspect to be 
considered in imaging and inverse scattering. It imposes an upper bound for the smallest resolvable 
features that can be seen for conventional far-field optics. To circumvent this difficulty, the near-
field optics provides an effective approach to improve the resolution. By bringing the scanning 
device close to the samples, the non-radiative components, which does not propagate to the far-
field detector, are captured, and sub-wavelength features can be obtained by exploiting these eva-
nescent waves. This super-resolving capability makes near-field optics particularly attractive [19].

Recently, a novel approach has been developed to solve the inverse surface scattering prob-
lems in various near-field imaging modalities [6, 9–11, 13, 21, 31]. Under the small perturba-
tion assumption of the surfaces, the method combined the transformed field expansion and 
Fourier analysis to find analytical solutions for the direct problems. Based on the analytical 
solutions and spectral cut-off regularization, explicit reconstruction formulas were derived for 
the linearized inverse problems. Subwavelength resolution was achieved stably by using the 
near-field data. The method requires both the phase and amplitude information for the data.

In practice, it might be cumbersome, if not impossible, to get the phase information when 
measuring the scattering data. It raises an interesting and challenging question on how to solve 
the inverse scattering problems by using the phaseless data only. An attempt was made to 
solve the inverse diffraction grating problem with phaseless data [12]. It has recently received 
much attention to solve various inverse scattering problems by using the data without phase 
information [20, 34, 37, 44, 45].

In this paper, we propose a novel computational method to solve the inverse diffraction 
grating problem. The goal is to achieve stably the super-resolution with phase or phaseless 
near-field data. According to Rayleigh’s expansion, the total field is a combination of propagat-
ing and evanescent wave components with different spatial frequencies. In the Rayleigh series, 
each term is induced by different details or spatial frequencies of the scattering surface. More 
precisely, the kth Fourier coefficient of the scattering surface is related to the kth Rayleigh 
coefficient of the total field. Motivated by this observation, we use the Rayleigh expansion to 
extract the surface information from the scattering data. We emphasize that the conversion of 
the Rayleigh series is independent of each frequency, and higher order terms in Rayleigh series 
are more sensitive to the noise than lower order terms. Given a fixed measurement height, we 
may determine the highest cut-off index in the Rayleigh series such that the finest details of the 
surface are fully recovered even when the data contains a certain amount of noise.

In near-field optics, many applications are related to the so-called subsurface imaging, where it 
is reasonable to assume small amplitude of the surfaces. Our algorithm seeks to update the surface 
with small amplitudes iteratively. Based on Green’s identity and eigenfunctions of the Helmholtz 
equation, an efficient direct solver is presented to determine the Rayleigh series with respect to 
the surface function. Our method also works for the phaseless data. Usually, it is impossible to 
recover the surface by using phaseless data with a single measure since the uniqueness is not guar-
anteed. But the situation is different for the near-field optics due to the assumption that the surface 
is a small perturbation of a flat plane. Based on this feature, we propose an energy assumption on 
the Rayleigh series, where a unique solution of the Rayleigh expansion can be obtained by a sin-
gle phaseless measurement. In addition, we show the monotonicity of the error estimate between 
the exact surface and the reconstructed surface. Numerical examples are presented for both phase 
and phaseless data to illustrate the effectiveness of the proposed method.

The rest of the paper is organized as follows. In section 2, we introduce the model for the 
diffraction grating problem. Section 3 is devoted to the inverse problem and the reconstruction 
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algorithm. The error estimate is presented in section 4. Numerical experiments are shown in 
section 5. The paper is concluded with some general remarks in section 6.

2.  Forward problem

In this section, we introduce the forward model for the underlying diffraction problem and 
present a formula to compute the coefficients in Rayleigh’s expansion.

2.1.  Problem formulation

Let us first introduce the problem geometry which is shown in figure 1. We assume that the 
structure is invariant in the z direction and is periodic in the x direction with period Λ. Denote 
the scattering surface in one period by

Γf = {(x, y) ∈ R2 : y = f (x), x ∈ [0,Λ]},

where f ∈ C2
p([0,Λ]) is a periodic function with period Λ. Here C2

p([0,Λ]) is the space of 
periodic functions with period Λ which are defined on the real axis and have second order 
continuous derivatives. Without loss of generality, we may assume that

max
x∈[0,Λ]

f (x) � 0.

To specify a boundary condition on Γf , we assume that the surface is a perfect electric con-
ductor, i.e. a homogeneous Dirichlet boundary condition is imposed for the total wave field:

u = 0 on Γf .� (2.1)

Denote the open space above the scattering surface by

Ωf = {(x, y) ∈ R2 : y > f (x), x ∈ [0,Λ]}.

The open space is filled with a homogeneous medium which may be characterized by a posi-
tive constant wavenumber κ. The wavelength is defined by λ = 2π/κ. Let

Γh = {(x, y) ∈ R2 : y = h, x ∈ [0,Λ]},

where h > 0 is a positive constant. In particular, Γh is the line of measurement, where h > 0 
is called the measurement height. Denote the bounded domain

Ω[ f ,h] = {(x, y) ∈ R2 : f (x) < y < h, x ∈ [0,Λ]}.

Γh

Γf

Ω(f,h)

x

y

Figure 1.  A schematic of the problem geometry.
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As an application in near-field optics, the scattering surface is assumed to be small compared 
with the wavelength, i.e.

max
x∈[0,Λ]

| f (x)|/λ = O(ε),

where 0 < ε � 1 is called the surface deformation parameter.
Let a plane wave uinc(x, y) = ei(αx−βy) be incident on Γf from above, where 

α = κ sin θ,β = κ cos θ and θ ∈ (−π/2,π/2) is the incident angle. Since our method requires 
a single illumination, we take the most convenient experimental configuration and let the inci-
dence to be normal, i.e. θ = 0. The incident wave reduces to uinc(x, y) = e−iκy.

In the transverse electric polarization, the total wave field u satisfies the two-dimensional 
Helmholtz equation:

∆u + κ2u = 0 in Ωf .� (2.2)

The following radiation condition is imposed: the total field consists of the incident field and 
bounded outgoing waves in Ωf . It follows from the outgoing radiation condition that the total 
field admits the Rayleigh expansion:

u(x, y) = e−iκy +
∑
n∈Z

Anei(αnx+βny), y > 0,� (2.3)

where

An ∈ C, αn = n
(

2π
Λ

)
, βn =

{
(κ2 − α2

n)
1/2, |αn| < κ,

i(α2
n − κ2)1/2, |αn| > κ.

� (2.4)

Here, we assume that |αn| �= κ, n ∈ Z to exclude possible resonance. Physically, the Rayleigh 
expansion (2.3) shows that the wave field is a superposition of plane waves which include 
finitely many propagating wave modes and infinitely many evanescent wave modes. The eva-
nescent waves are also called the surface waves which propagate along the x-axis and decay 
exponentially along the y-axis.

Taking the partial derivative of (2.3) with respect to y and evaluating at y = h, we may 
obtain the transparent boundary condition:

∂yu = Tu − 2iκe−iκh on Γh,

where the Dirichlet-to-Neumann (DtN) operator T is defined by

(Tu)(x, h) =
∑
n∈Z

iβnu(n)eiαnx, u(x, h) =
∑
n∈Z

u(n)eiαnx.

In summary, the diffractive grating model can be formulated into the following boundary 
value problem:



∆u + κ2u = 0 in Ω[ f ,h]

u = 0 on Γf

∂yu = Tu − 2iκe−iκh on Γh.
� (2.5)

It is known in [32] that the boundary value problem (2.5) admits a unique periodic solution 
u ∈ C2

p(Ω[ f ,h]) ∩ C1
p(Ω̄[ f ,h]) if f ∈ C2

p([0,Λ]). Clearly, we have the following regularity for the 
solution: u ∈ H2

p(Ω[ f ,h]), u ∈ H3/2(Γf ), ∂νu ∈ H1/2(Γf ), where ν is the unit outward normal 
on Γf.
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2.2.  Rayleigh’s coefficients

Recall Green’s second identity for any two smooth functions u and v in a bounded Lipschitz 
domain Ω:

∫

Ω

(∆u v −∆v u)dxdy =

∫

∂Ω

(∂νu v − ∂νv u)dγ,� (2.6)

where ν is the unit outward normal on ∂Ω. Consider the following two test functions:

G+
n (x, y) = e−i(αnx−βny), G−

n (x, y) = e−i(αnx+βny),

where αn,βn are defined in (2.4). It can be verified that the above two test functions satisfy the 
Helmholtz equation (2.2). Substituting G±

n  and the solution u of the boundary value problem 
(2.5) into (2.6) over the domain Ω[ f ,h] yields

∫

∂Ω[ f ,h]

(∂νuG±
n − ∂νG±

n u)dγ = 0.

As seen in figure 2, the boundary ∂Ω[ f ,h] = Γf ∪ Γh ∪ γ1 ∪ γ2. Since both G±
n (x, y) and 

u(x, y) are periodic in x, it is easy to show that
(∫

γ1

+

∫

γ2

)
(∂νuG±

n − ∂νG±
n u)dγ = 0.

Following from Rayleigh’s expansion (2.3), we have for all n ∈ N that
∫

Γh

(∂yuG+
n − ∂yG+

n u)dx = −2iκΛδ0n,� (2.7)

∫

Γh

(∂yuG−
n − ∂yG−

n u)dx = 2iβnΛAn,� (2.8)

where δ0n is the Kronecker delta. Noting that ∂νu ∈ H1/2(Γf ) is periodic in x with period Λ, 
we can expand (1 + ( f ′)2)1/2∂νu into the Fourier series:

(1 + ( f ′(x))2)1/2∂νu(x, f (x)) =
∑
m∈Z

Bmeiαmx, Bm ∈ C.� (2.9)

Substituting (2.9) into the integral along Γf , we get for all n ∈ N that
∫

Γf

∂νuG+
n dγ =

∑
m∈Z

Bm

∫ Λ

0
ei(αm−nx+βnf (x))dx,� (2.10)

∫

Γf

∂νuG−
n dγ =

∑
m∈Z

Bm

∫ Λ

0
ei(αm−nx−βnf (x))dx.� (2.11)

Combining (2.7), (2.8) and (2.10), (2.11), and the boundary condition (2.1), we obtain a linear 
system of equations for An and Bm:

∑
m∈Z

Bm

∫ Λ

0
ei(αm−nx+βnf (x))dx = 2iκΛδ0n,� (2.12)

∑
m∈Z

Bm

∫ Λ

0
ei(αm−nx−βnf (x))dx = −2iβnΛAn.� (2.13)

J Zheng et alInverse Problems 33 (2017) 115004
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As can be observed in (2.9), the surface function f (x) is implicitly represented in a form 
of the Fourier coefficients Bm. Our goal is to retrieve the surface information from the Fourier 
coefficients. The algorithm proposed in the next section is to linearize the above system (2.12) 
and (2.13) and update iteratively the approximated surface function f (x).

3.  Inverse problem

In this section, we discuss how to compute Rayleigh’s coefficients An from either the phase 
or phaseless data, and then present an iterative reconstruction algorithm to solve the inverse 
problem.

3.1.  Phase data

First we consider how to retrieve the Rayleigh coefficients from the phase data. Evaluating 
(2.3) at y = h, we have

∑
n∈Z

Anei(αnx+βnh) = u(x, h)− e−iκh.

Using the orthogonality of the functions eiαnx on [0,Λ], we may compute the coefficients An by

An =
e−iβnh

Λ

∫ Λ

0
u(x, h)e−iαnxdx − e−i(κ+βn)hδ0n.� (3.1)

It follows from the definition of βn in (2.4) and the conversion formula (3.1) that the measure-
ment noise will be amplified exponentially for |αn| > κ. Therefore it is exponentially unstable 
to recover high frequency coefficients of An. Taking account of the stability, we take the mea-
surement height h and the highest frequency mode n to satisfy |e−iβnh| = O(1).

3.2.  Phaseless data

To retrieve the unique Rayleigh expansion coefficients from phaseless data, we impose the 
following extra energy conditions:

|A0| = 1 and |Am| = |A−m|.� (3.2)

The real and imaginary parts of the Rayleigh coefficient A0 can be solved from the following 
quadratic equation if we seek the solution around −1 for ReA0 such that

Γh

Γf

γ1 γ2
Ω(f,h)

x

y

Figure 2.  Schematic of the integral contour.
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(ReA0)
2 + (ImA0)

2 = 1,� (3.3)

1
2Λ

∫ Λ

0
|u(x, h)|2dx − 1 = cos(2κh)ReA0 − sin(2κh)ImA0� (3.4)

and Am , m �= 0 via the pseudo-inverse method

ReAm = cos(Φm)ReA−m + sin(Φm)ImA−m,� (3.5)

ImAm = − sin(Φm)ReA−m + cos(Φm)ImA−m� (3.6)

where coefficients A−m and Am  satisfy

1
Λ

∫ Λ

0
|u(x, h)|2eiαmxdx =

(
ei(κ+βm)h + Ā0ei(−κ+βm)h)A−m +

(
e−i(κ+β̄m)h + A0ei(κ−β̄m)h)Ām

� (3.7)
and Φm are the angles and satisfy

tan
(Φm

2

)
= Im

(∫ Λ

0
|u(x, h)|2eiαmxdx

)
/Re

(∫ Λ

0
|u(x, h)|2eiαmxdx

)
.

In appendix A.1, we provide more details concerning the derivation of (3.3)–(3.7).

3.3.  Reconstruction method

We present an iterative method to reconstruct the scattering surface. The main idea is to lin-
earize the system (2.12) and (2.13) and update the approximated surface function iteratively.

Let f0 = 0 be the initial guess. Denote by f� the current approximated surface. We wish to 
determine the next approximation f�+1, or equivalently, to determine the perturbation

f�+1(x)− f�(x) = εg(x),� (3.8)

where g(x) = O(λ).
Since the deformation parameter ε is small, we consider power series expansions:

Bm =

∞∑
j=0

B( j)
m ε j

� (3.9)

and

e±iβnf�+1 = e±iβn( f�+εg) = e±iβnf�e±iβnεg = e±iβnf�(x)
∞∑

j=0

(±iβng) j
ε j,� (3.10)

where Bm  are the Fourier coefficients of (1 + ( f ′(x))2)1/2∂νu(x, f (x)) and B( j)
m  is the jth 

expansion coefficient of Bm  with respect to ε. Plugging (3.9) and (3.10) into (2.12) and (2.13) 
and dropping high order O(ε2) terms, we obtain a linearized system for (2.12) and (2.13):

∑
m∈Z

∫ Λ

0
ei(αm−nx+βnf�(x))

(
B(0)

m + εB(1)
m + iβnB(0)

m εg(x)
)

dx = 2iκΛδ0n,� (3.11)

∑
m∈Z

∫ Λ

0
ei(αm−nx−βnf�(x))

(
B(0)

m + εB(1)
m − iβnB(0)

m εg(x)
)

dx = −2iβnΛAn� (3.12)

J Zheng et alInverse Problems 33 (2017) 115004
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where the Rayleigh coefficient An can be obtained from the phase data u(x, h) through (3.1) 
or the phaseless data |u(x, h)| by (3.3)–(3.7). Coefficients B(0)

m  is updated by fitting (2.12) with 
the interface f�(x).

Since the exact surface f (x) is periodic, we assume that both f�(x) and εg(x) are periodic 
too. More precisely, we can expand εg(x) into the Fourier series:

εg(x) =
∑
k∈Z

Ckeiαkx.� (3.13)

Our goal is to recover the Fourier coefficients Ck. Substituting the Fourier series (3.13) into 
(3.11) and (3.12) yields

∑
m∈Z

∫ Λ

0
ei(αm−nx+βnf�(x))

(
B(0)

m + εB(1)
m + iβnB(0)

m

∑
k∈Z

Ckeiαkx

)
dx = 2iκΛδ0n,

�

(3.14)

∑
m∈Z

∫ Λ

0
ei(αm−nx−βnf�(x))

(
B(0)

m + εB(1)
m − iβnB(0)

m

∑
k∈Z

Ckeiαkx

)
dx = −2iβnΛAn,

�

(3.15)

where εB(1)
m  and Ck are unknown variables. Solving the linear system (3.14) and (3.15), we can 

finally obtain the Fourier coefficients Ck of the increment εg(x) which is then added to f�(x) to 
iteratively generated the approximate surface function f�+1(x).

We summarize the algorithm as below.

Algorithm 1.  Surface identification algorithm.

Input: Measurement of phase data u(x, h) or phaseless data |u(x, h)|, truncated number N for 
the Rayleigh expansion, max iterative number L.
Output: Updated surface function f�,N(x).
1: Set f0(x) = 0;
2: �Convert the measurement into the Rayleigh coefficients An by (3.1) or (3.3)–(3.7), 

n = 0,±1,±2, . . . ,±N ;
3: For � = 1, 2, . . . , L
4:    Solve the direct problem (2.12) with f�,N(x) as

N∑
m=−N

(∫ Λ

0 ei(αm−nx+βnf�,N(x))dx
)

B(0)
m = 2iκΛδ0n, n = 0,±1, . . . ,±N                        (3.16)

to obtain the coefficients B(0)
m , m = 0,±1, . . . ,±N;

5:    �Find the surface increment εg�,N(x) =
∑N

k=−N C�+1,keiαkx and the auxiliary variables B(1)
k , 

k = 0,±1, . . . ,±N  by solving the linearized system (3.14) and (3.15):
N∑

k=−N

(∫ Λ

0 ei(αk−nx+βnf�,N(x))dx
)

B(1)
k + iβn

N∑
k=−N

(
N∑

m=−N

∫ Λ

0 ei(αm+k−nx+βnf�,N(x))B(0)
m dx

)
C�+1,k 

= 2iκΛδ0n −
N∑

m=−N

(∫ Λ

0 ei(αm−nx+βnf�,N(x))dx
)

B(0)
m ,                            (3.17)

N∑
k=−N

(∫ Λ

0 ei(αk−nx−βnf�,N(x))dx
)

B(1)
k − iβn

N∑
k=−N

(
N∑

m=−N

∫ Λ

0 ei(αm+k−nx−βnf�,N(x))B(0)
m dx

)
C�+1,k 

= −2iβnΛAn −
N∑

m=−N

(∫ Λ

0 ei(αm−nx−βnf�,N(x))dx
)

B(0)
m .                         (3.18)

6:    Update the scattering surface f�+1,N(x) = f�,N(x) + εg�,N(x);
7: End

J Zheng et alInverse Problems 33 (2017) 115004
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4.  Error estimate

In this section, we estimate the error between the updated surface function f�+1,N(x) and the 
exact one f. The notation f � g for two functions stands for f � Cg where C > 0 is a generic 
constant.

4.1.  Auxiliary lemmas

Let the initial guess f0(x) = 0. Our algorithm produces f�+1,N(x) at (�+ 1)th step via the 
formula

f�+1,N(x) = f�,N(x) +
N∑

n=−N

C�+1,neiαnx,� (4.1)

where C�+1,n is updated from (�+ 1)th iteration of Algorithm 1. On the other hand, the exact 
interface can also be expressed in term of f�,N

f (x) = f�,N(x) +
∞∑

n=−∞
Cneiαnx.� (4.2)

We truncate 2N + 1 terms of the Fourier series of the exact surface f (x) and denote it by

fN(x) = f�,N(x) +
N∑

n=−N

Cneiαnx.

Subtracting (4.2) from (4.1), we may easily verify that

‖ f�+1,N − f‖H2(0,Λ) � ‖ f�+1,N − fN‖H2(0,Λ) + ‖ f − fN‖H2(0,Λ)

�
( N∑

n=−N

n4|C�+1,n − Cn|2
)1/2

+ ‖ f − fN‖H2(0,Λ).
�

(4.3)

The truncated error ‖ f − fN‖H2(0,Λ) is fixed for our algorithm, so we mainly focus on the 
error bound for the computed part |C�+1,n − Cn| with |n| � N , i.e. the error bound of 
‖ f�+1,N − fN‖H2(0,Λ).

First, we introduce the following lemma, which allows a well-defined expansion formula 
(3.9). The proof is given in appendix A.2.

Lemma 4.1.  Assume that the surface functions fj ∈ C2
p([0,Λ]) satisfy ‖ fj‖H2(0,Λ) � ε, 

fj � 0 and

‖ f1 − f2‖H2(0,Λ) � τ .� (4.4)

Let

Ωj =
{
(x, y) ∈ R2|0 � x � Λ, fj(x) � y � 1

}
.

Then, the solutions uj of (2.5) in Ωj  satisfy
∥∥∥(1 + ( f ′1)

2)1/2∂ν1 u1 − (1 + ( f ′2)
2)1/2∂ν2 u2

∥∥∥
H1/2(0,Λ)

� τ ,

where νj are the unit outward normal vectors on Γfj.
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The above lemma suggests that a small perturbation of the scattering surface gives a small 
change of the normal derivative on Γf. This lemma allows to quantify the difference between 
the exact surface f and the updated surface f�+1,N . Meanwhile, the following lemma is needed 

to quantify the error of the mth Fourier mode Bm,N of (1 + ( f ′�,N)
2)1/2∂νu�(x, f�,N) and B(0)

m  of 
the power series (3.16). The proof is presented in appendix A.2.

Lemma 4.2.  Let N be the cut-off parameter in (3.16). Suppose f�,N(x) ∈ C2
p([0,Λ])  

satisfying

‖ f�,N‖H2(0,Λ) <
ε

max{
√
Λ, 1/

√
Λ}

.

Let u be the solution of (2.5) and ∂νu be the normal derivative of u at Γf�,N      with

(1 + ( f ′�,N)
2)1/2∂νu =

∑
m∈Z

Bm,Neiαnx.

If the deformation parameter ε is sufficiently small such that

ε max
n∈[−N,N]

|βn| < min
{
Λ, 1

}
/6π2, n = 0,±1, . . . ,±N,

�
(4.5)

then the difference between Bm,N and B(0)
m  satisfies

|Bm,N − B(0)
m | � ε2N−1/2 max

n∈[−N,N]
|βn|.

4.2.  Monotonicity of the error estimate

In the error analysis, one of the key steps is to estimate

|C�+1,n − Cn|, n = 0,±1 . . . ,±N.

Since the goal of this work is to address the super-resolution, we may assume that κ < 2π/Λ, 
which gives |βn| ∼ n. Now we present the monotonicity of the error estimate for �+ 1 step in 
algorithm 1.

Theorem 4.3.  Let f (x) and f�,N(x) be the exact surface and the approximated surface at �
th step, respectively. If f (x) and f�,N(x) satisfy

‖ f‖H2(0,Λ) � ε, ‖ f�,N‖H2(0,Λ) � ε, ‖ f�,N − f‖H2(0,Λ) � τ ,

and

εN2 = O(1), τ � ε,� (4.6)

then

|C�+1,n − Cn| � (ε2 + τ 2 + ε‖ f − fN‖H2(0,Λ))(1 + |n|)−1/2

and

‖ f�+1,N − f‖H2(0,Λ) � (ε2 + τ 2)N2 + ‖ f − fN‖H2(0,Λ).
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Proof.  For n = 0,±1, . . . ,±N , we reformulate the forward problem (2.12) and (2.13) as 
follows

N∑
k=−N

(∫ Λ

0
ei(βnf�,N+αk−nx)dx

)
(Bk − B(0)

k ) + iβn

N∑
m=−N

∫ Λ

0
B(0)

m ( fN − f�,N)ei(βnf�,N+αm−nx)dx

= 2iκΛδ0n −
N∑

m=−N

(∫ Λ

0
ei(βnf�,N+αm−nx)dx

)
B(0)

m + b(1)
n

and

N∑
k=−N

(∫ Λ

0
ei(−βnf�,N+αk−nx)dx

)
(Bk − B(0)

k )− iβn

N∑
m=−N

∫ Λ

0
B(0)

m ( fN − f�,N)ei(−βnf�,N+αm−nx)dx

= −2iβnΛAn −
N∑

m=−N

(∫ Λ

0
ei(−βnf�,N+αm−nx)dx

)
B(0)

m + b(2)
n ,

where fN is the truncated Fourier series of f and b(i)
n , i = 1, 2 is defined as

b(i)
n =−

∞∑
m=−∞

(∫ Λ

0
ei((−1)i−1βnf�,N+αm−nx)

(
e(−1)i−1iβn( f−f�,N) − 1 − (−1)i−1iβn ( f − f�,N)

)
dx

)
Bm

−
∑
|m|>N

(∫ Λ

0
ei((−1)i−1βnf�,N+αm−nx) (1 + (−1)i−1iβn ( f − f�,N)

)
dx

)
Bm

+ (−1)i−1iβn

N∑
m=−N

(∫ Λ

0
ei((−1)i−1βnf�,N+αm−nx) ( f − f�,N) dx

)
(B(0)

m − Bm)

− (−1)i−1iβn

N∑
m=−N

∫ Λ

0
B(0)

m ( f − fN)ei((−1)i−1βnf�,N+αm−nx)dx.

�

(4.7)

The estimates of b(i)
n  are given in lemma B.3.

Subtracting (3.17) and (3.18) from above equalities and noticing that

fN − f�,N =
N∑

k=−N

Ckeiαkx,

we get a linear system for Ck − C�+1,k , k = 0,±1, . . . ,±N :

N∑
k=−N

a(1)
n,k (Bk − B(0)

k − B(1)
�+1,k) +

N∑
k=−N

a(3)
n,k (Ck − C�+1,k) = b(1)

n ,� (4.8)

N∑
k=−N

a(2)
n,k (Bk − B(0)

k − B(1)
�+1,k) +

N∑
k=−N

a(4)
n,k (Ck − C�+1,k) = b(2)

n ,� (4.9)

where a( j)
n , j = 1, . . . , 4 are defined as
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a(1)
n,k =

∫ Λ

0
ei(βnf�,N+αk−nx)dx,

a(2)
n,k =

∫ Λ

0
ei(−βnf�,N+αk−nx)dx,

a(3)
n,k = iβn

N∑
m=−N

∫ Λ

0
ei(βnf�,N+αm+k−nx)B(0)

m dx,

a(4)
n,k = −iβn

N∑
m=−N

∫ Λ

0
ei(−βnf�,N+αm+k−nx)B(0)

m dx.

The factor iβn in a(3)
n,k and a(4)

n,k can affect the sharpness of our method used in lemma 4.2. To 

circumvent this difficulty, we scale Ck − C�+1,k  with |k|+ 1 such that linear system (4.8) and 
(4.9) is transformed into

N∑
k=−N

â(1)
n,k (Bk − B(0)

k − B(1)
�+1,k) +

N∑
k=−N,k �=0

â(3)
n,k (|k|+ 1)(Ck − C�+1,k) = b(1)

n ,

�

(4.10)

N∑
k=−N,k �=0

â(2)
n,k (Bk − B(0)

k − B(1)
�+1,k) +

N∑
k=−N,k �=0

â(4)
n,k (|k|+ 1)(Ck − C�+1,k) = b(2)

n ,

�

(4.11)

with

â(1)
n,k = a(1)

n,k , â(2)
n,k = a(2)

n,k , â(3)
n,k = a(3)

n,k /(|k|+ 1), â(4)
n,k = a(4)

n,k /(|k|+ 1).

Their estimates can be found in lemmas B.1 and B.2.

Let x(1)
k =

(
Bk − B(0)

k − B(1)
�+1,k

)
 and x(2)

k = (|k|+ 1)
(
Ck − C�+1,k

)
. The linear system 

(4.10) and (4.11) can be written into the matrix form:
(

A(1) A(3)

A(2) A(4)

)(
x(1)

x(2)

)
=

(
b(1)

b(2)

)
,

where x( j) =
(
x( j)
−N , x( j)

−N+1, . . . , x( j)
N

)�, y( j) =
(
y( j)
−N , y( j)

−N+1, . . . , y( j)
N

)�, and

A( j) =




â( j)
−N,−N â( j)

−N,−N+1 . . . â( j)
−N,N

â( j)
−N,−N â( j)

−N,−N+1 . . . â( j)
−N,N

...
...

. . .
...

â( j)
N,−N â( j)

N,−N+1 . . . â( j)
N,N




.

Let A(i) = diagA(i) + δA(i), where diagA(i) is the diagonal matrix of A(i) and δA(i) is its off-
diagonal matrix. Then, we decompose A into a block diagonal matrix with small perturbation 
as A = diagA + δA, where
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13

diagA =

(
diagA(1) diagA(3)

diagA(2) diagA(4)

)
, δA =

(
δA(1) δA(3)

δA(2) δA(4)

)
.

Define

T(1) = (diagA(1))−1 + (diagA(1))−1diagA(3)T(4)diagA(2)(diagA(1))−1,

T(2) = −T(4)diagA(2)(diagA(1))−1,

T(3) = −(diagA(1))−1diagA(3)T(4),

T(4) =
(
diagA(4) − diagA(2)(diagA(1))−1diagA(3))−1

.

Denote t(1)
n,n , t(2)

n,n , t(3)
n,n , t(4)

n,n be their corresponding diagonal entries. A direct calculation yields

diagA−1 =

(
T(1) T(3)

T(2) T(4)

)
.

The invertibility of diagA is guaranteed by the lower bound in lemma B.2 when λ/Λ is not 
an integer.

Noting that the assumption (4.5) can be obtained by the assumption (4.6), we derive from 
lemma B.2 that there exists a positive constant C independent on ε, h and N such that

1

|t(4)
n,n |

= |â(4)
n,n − â(2)

n,n â(3)
n,n /â(1)

n,n | �
|βn|

(|n|+ 1)

(
4
3
κΛ2 − Cε|βn|

)
.

It follows from (4.6) that

1
3
κΛ2 > Cε|βn|,

which gives that

|t(1)
n,n |, |t(3)

n,n | � 1, |t(2)
n,n |, |t(4)

n,n | �
(|n|+ 1)

|βn|
� 1.� (4.12)

It is easy to verify the following fundamental estimates:

N∑
k=1

1
k
�

∫ N

1
x−1dx + 1 � lnN,

N∑
k=−N,k �=n

1
(|k|+ 1)|n − k|1/2 �

∫ |n|−1

0
+

∫ ∞

|n|+1

1
(x + 1)(|n| − x)1/2 � 1,

N∑
k=−N,k �=n

|βn|
(|k|+ 1)(n − k)2 �

N∑
k=0,k �=n

|n|
(k + 1)(|n| − k)2

�
∫ |n|−1

0
+

∫ ∞

|n|+1

|n|
(x + 1)(|n| − x)2 dx � 1.
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Using (4.12), we get

‖diagA−1δA‖∞ � max
n

{ N∑
k=−N,k �=n

|t(1)
n,n |(|â

(1)
n,k |+ |â(3)

n,k |) + |t(3)
n,n |(|â

(2)
n,k |+ |â(4)

n,k |),

N∑
k=−N,k �=n

|t(2)
n,n |(|â

(1)
n,k |+ |â(3)

n,k |) + |t(4)
n,n |(|â

(2)
n,k |+ |â(4)

n,k |)
}

� max
n

(
|t(1)

n,n |+ |t(2)
n,n |+ |t(3)

n,n |+ |t(4)
n,n |

) N∑
k=−N,k �=n

(
|â(1)

n,k |+ |â(2)
n,k |+ |â(3)

n,k |+ |â(4)
n,k |

)

� max
n

N∑
k=−N,k �=n

(
ε|n|

(n − k)2 +
|n|

|k|+ 1
ε

(
ε|n|+ |n|

(n − k)2 +
1

|n − k|1/2

))

� εN,

which, according to the assumption (4.6), yields that

‖diagA−1δA‖∞ < 1.

Meanwhile, it follows from (4.12) that
∥∥diagA−1

∥∥
∞ � 1.

Combining the above estimates, we obtain

‖A−1 − diagA−1‖∞ �
∞∑

k=1

∥∥diagA−1δA
∥∥k
∞

∥∥diagA−1
∥∥
∞ � εN.

Hence we derive that

(|n|+ 1)
∣∣Cn − C�+1,n

∣∣ � ∥∥A−1 − diagA−1
∥∥
∞ ‖b‖∞ + |(T(2)b(1) + T(4)b(2))n|

� (ε2 + τ 2 + ε‖ f − fN‖H2(0,Λ))(1 + |n|)1/2.

The error estimate of ‖ f�+1,N − f‖H2(0,Λ) is a consequence of (4.3).� □ 

4.3.  Discussion on noisy phase data

In this section, we discuss the estimates when the data is contaminated by some noise. Let 
uδ(x, h) be the noise data such that

‖uδ(x, h)− u(x, h)‖L∞(0,Λ) � δ,� (4.13)

where δ > 0 is the noise level. Notice that the reconstruction result highly depends on the 
accuracy of the Rayleigh coefficients in Algorithm 1. We consider the influence of the noise 
data on Rayleigh’s coefficients via formula (3.1). It follows from the assumption κ < 2π/Λ 
that the noise Rayleigh coefficients Aδ

n satisfy

|Aδ
n − An| � e|n|h/Λδ.� (4.14)
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If we assume that the cut-off index N satisfies

Nh = O(Λ),� (4.15)
then the difference |Aδ

n − An| between the exact Rayleigh’s coefficient and the noise one in the 
highest frequency mode N is of the order O(δ).

Theorem 4.4.  Let the assumptions of theorem 4.3 hold true and the noise data obey (4.13). 
Then

|Cδ
�+1,n − Cn| � (ε2 + τ 2 + ε‖ f − fN‖H2(0,Λ))(1 + |n|)−1/2 +

1
|n|+ 1

eNh/Λδ + e|n|h/Λδ.

Additionally, if the measure height h and the cut-off index N satisfy (4.15), then

‖ f δ�+1,N − f‖H2(0,Λ) �
(
τ 2 + ε2 + δ

)
N2 + ‖ f − fN‖H2(0,Λ).

Proof.  Due to the noise data uδ(x, h), an additional term −2iβnΛ(Aδ
n − An) appears in the 

right hand side of (3.18). The linear system (4.10) and (4.11) is written as

N∑
k=−N

â(1)
n,k (Bk − B(0)

k − B(1)
�+1,k) +

N∑
k=−N,k �=0

â(3)
n,k (|k|+ 1)(Ck − Cδ

�+1,k) = b(1)
n ,

N∑
k=−N,k �=0

â(2)
n,k (Bk − B(0)

k − B(1)
�+1,k) +

N∑
k=−N,k �=0

â(4)
n,k (|k|+ 1)(Ck − Cδ

�+1,k) = b(2)
n − 2iβnΛ(Aδ

n − An).

Let b̃(1)
n = b(1)

n , b̃(2)
n = b(2)

n − 2iβnΛ(Aδ
n − An), b( j) =

(
b( j)
−N , b( j)

−N+1, . . . , b( j)
N

)�, and 
b̃
( j)

=
(
b̃( j)
−N , b̃( j)

−N+1, . . . , b̃( j)
N

)�. From the definition, it follows

|b̃( j)| � |b( j)|+ |βn|e|n|h/Λδ, ‖b̃
( j)

‖∞ � ‖b( j)‖∞ +
N∑

n=−N

|βn|e|n|h/Λδ � ‖b( j)‖∞ + NeNh/Λδ.

We may use the estimate of theorem 4.3 to obtain

(|n|+ 1)
∣∣Cn − Cδ

�+1,n

∣∣ � ∥∥A−1 − diagA−1
∥∥
∞ ‖b̃‖∞ + |(T(2)b̃

(1)
+ T(4)b̃

(2)
)n|

�
∥∥A−1 − diagA−1

∥∥
∞ ‖b‖∞ + |b(1)

n |+ |b(2)
n |+ εN2eNh/Λδ + (|n|+ 1)e|n|h/Λδ

�(ε2 + τ 2 + ε‖ f − fN‖H2(0,Λ))(1 + |n|)1/2 + eNh/Λδ + (|n|+ 1)e|n|h/Λδ.

The estimate of ‖ f δ�+1,N − f‖H2(0,Λ) is followed from (4.3).� □ 

We point out that the cut-off index N in theorem 4.4 is chosen such that

N = min
{

N1, N2 : εN2
1 = O(1), N2h = O(Λ)

}
.

The index N1 is chosen to guarantee the convergence of Algorithm 1. The index N2 is used 
to stabilize the measurement error and is usually smaller than N1. The error between the final 
approximated surface and the exact surface contains following components:

‖ f − f δL,N‖H2(0,Λ) � (ε2 + δ)N2 + ‖ f − fN‖H2(0,Λ).
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If we choose a small cut-off index N, the truncation error ‖ f − fN‖H2(0,Λ) may dominate the 
total error. On the other hand, if we choose a large cut-off index N, then the condition (4.15) 
may not be satisfied and the approximated surface may blow up because the noise is expo-
nentially amplified in (4.14). The convergence rate of our proposed Algorithm 1 depends on 
several aspects, such as the decaying properties of the truncation error ‖ f − fN‖H2(0,Λ), where 
an assumption of higher regularity of f is required, and the balance errors in theorems 4.3 
and 4.4.

5.  Numerical experiments

In this section, we present some numerical experiments to illustrate our proposed algorithm for 
both phase and phaseless data. In all experiments, we take the wavenumber κ = π/Λ, which 
yields λ = 2Λ, i.e. the wavelength of incident wave is twice of the surface period. The con-
ventional far-field optics cannot capture the details of the surface by using this incident field 
due to the diffraction limit. As is shown below, our proposed algorithm can break the diffrac-
tion limit and obtain subwavelength resolution. Theoretically, the assumptions ‖ f‖H2(0,Λ) < ε 
and εN2 = O(1) are needed in the proof of theorem 4.3. In practice, the assumption can be 
released to

max
x

| f (x)|N3/2 � Λ� (5.1)

for noise free data and

N = min
{

N1, N2 : max
x

| f (x)|N3/2
1 � Λ, N2h � Λ

}
� (5.2)

for the noise data with phase information.
The results in theorems 4.3 and 4.4 show that any initial guess ‖ f0‖H2(0,Λ) � ε yields the 

convergence, which is verified by our numerical experience. Moreover, the smaller τ (satisfy-
ing ‖ f0 − f‖ � τ ) is, the less iteration is needed. Noting that the exact surface is a small per-
turbation from the flat surface, we simply choose the initial guess in all examples as f0 = 0.

5.1.  Reconstruction with phase data

First we consider noise free phase data. In this case, the error depends only on the deformation 
constant ε and the cut-off index N, whereas the measure height h has no impact. We illustrate 
this conclusion in the following examples.

Example 5.1.  The exact surface function is

f (x) = M(cos(x) + cos(5x) + cos(10x)− 3),

where we consider different parameters:

	 (i)	 M = 0.05, the cut-off index N = 10, the measure height h = 0.1λ; 
	(ii)	 M = 0.2, the cut-off index N = 10, the measure height h = 0.01λ; 
	(iii)	 M = 0.05, the cut-off index N = 10, the measure height h = 0.01λ; 
	(iv)	 M = 0.05, the cut-off index N = 9, the measure height h = 0.01λ.

It can be verified that the condition (5.1) is satisfied in each case. The numerical results are 
shown in figure 3. The following observations can be made:
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Figure 3.  Example 5.1 (noise free data). Reconstructed surfaces are plotted against the 
exact surface. From top to bottom: (a) case (i); (b) case (ii); (c) case (iii); (d) case (iv). 
The number of iterations L = 3.
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	(1)	Comparison of (i) and (iii): in both cases, the difference is the measure height h which, as 
we have discussed above, has no impact on the error estimate if (5.1) is satisfied. Although 
the case (iii) has a ten times smaller measure height than the case (i), the reconstructions 
are of the same accuracy.

	(2)	Comparison of (ii) and (iii): the difference between case (ii) and (iii) is the deformation 
parameter ε. By taking the same cut-off index N = 10, figure 3(c) shows a better recon-
struction than figure 3(b) does.
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Figure 4.  Example 5.2 (noise data). Reconstructed surfaces are plotted against the 
exact one. From top to bottom: (a) case (i) N = 3, h = 0.67λ, L = 3; (b) case (ii) 
N = 5, h = 0.2λ, L = 3; (c) case (iii) N = 5, h = λ, L = 1.
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	(3)	Comparison of (iii) and (iv): the cases of (iii) and (iv) have different cut-off parameters 
N. We note that the chosen N in the case (iv) does not cover all the frequency modes in 
the surface function. Hence the reconstruction loses small fine structures, whereas the 
reconstruction in the case (iii) has fully recovered the surface function.

Example 5.2.  In this example, we consider noise data. The exact surface function is

f (x) = 0.2
(∣∣∣ x

2π
− π

∣∣∣− π
)

.� (5.3)
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Figure 5.  Example 5.3 (noise phaseless data). Reconstructed surfaces are plotted 
against the exact one. (a) case (i) h = 0.15λ, N = 2, L = 3; (b) case (ii) h = 0.0625λ, 
N = 2, L = 3; (c) case (iii) h = 0.031λ, N = 2, L = 3.
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The surface (5.3) is a nonsmooth function and it has infinitely many Fourier modes. We con-
sider three different cases:

	 (i)	the cut-off index N = 3 and the measurement height h = 0.67λ; 
	(ii)	the cut-off index N = 5 and the measurement height h = 0.2λ; 
	(iii)	the cut-off index N = 5 and the measurement height h = λ.

The results are shown in figure 4. We observe that: the case (iii) does not satisfy the require-
ment (5.2) which is important to obtain a stable recovery; The reconstructed surfaces are quite 
accurate if the cut-off index N satisfies (5.2); As long as the truncation error dominates the 
overall error, the larger the cut-off N is, the finer the recovered surface function is; if (5.2) is 
not satisfied, the reconstructed surface blows up immediately after the first iteration.

5.2.  Reconstructions with phaseless data

Now we consider phaseless noise data. As shown in (4.15), the following heuristic condition 
is used to determine the measure height:

Nh �
Λ

4
.� (5.4)

We focus on the consequence of changing the measure height h if the above condition is not 
satisfied.

Example 5.3.  The exact surface is

f (x) = 0.4(sin(x) + cos(2x)− 1.124 997 781 483 376).

We also consider three cases:

	 (i)	the cut-off index N = 2 and the measurement height h = 0.15λ; 
	(ii)	the cut-off index N = 2 and the measurement height h = 0.0625λ; 
	(iii)	the cut-off index N = 2 and the measurement height h = 0.031λ,

where case (i) the parameters do not satisfy the condition (5.4).
Figure 5 shows the reconstructed surfaces by using different h and N given above. 

Figure 5(a) verifies the importance of the condition (5.4), where some of the main information 
is lost because of the noise. At the same time, both the height h = 0.0625λ and h = 0.031λ 
provide reasonable reconstructions but the latter is more accurate due to the smaller dropping 
terms in (3.3)–(3.7) when we recover Rayleigh’s coefficients for the phaseless data.

6.  Conclusion

We have presented a novel computational method for the inverse diffraction grating problem. 
The surface is assumed to be a sufficiently smooth and small perturbation from the flat surface. 
Subwavelength resolution is achieved by using the phase or phaseless data. Monotonicity 
is proved for the error estimate between the exact surface and the reconstructed surface. 
Numerical results show that the method is effective to reconstruct the grating surfaces with 
super-resolved resolution. By calibrating the Rayleigh expansion carefully, our proposed 
approach also works for the sound-hard and impedance surfaces. We are currently extending 
the method to the biperiodic structures, where the three-dimensional Maxwell equations need 
to be considered. The results will be reported elsewhere.

J Zheng et alInverse Problems 33 (2017) 115004



21

Acknowledgments

The author J Cheng is supported by NSFC (key projects no.11331004, no.11421110002) and 
the Programme of Introducing Talents of Discipline to Universities (number B08018). The 
author P Li is supported in part by the NSF grant DMS-1151308. The author S Lu is sup-
ported by NSFC (no.11522108, 91630309) and Shanghai Municipal Education Commission 
(no.16SG01).

Appendix A.  Useful formulas and proof of lemmas

We present derivation of several useful formulas below which are referred in the context.

A.1.  Derivation of the formula (3.3)–(3.7)

Multiplying (2.3) by its complex conjugate, we obtain

|u(x, h)|2 =1 +
∑
n∈Z

(
Anei(αnx+(κ+βn)h) + Āne−i(αnx+(κ+β̄n)h))

+
∑

n,m∈Z
AnĀmei(αn−mx+(βn−β̄m)h).

�
(A.1)

Comparing the Fourier coefficients on both sides of (A.1) and noticing βm = β−m, we can 
obtain

1
Λ

∫ Λ

0
|u(x, h)|2eiαmxdx − δ0m =A−mei(κ+βm)h + Āme−i(κ+β̄m)h

+
∑
n∈Z

AnĀn+mei(βn−β̄m+n)h.
�

(A.2)

Recalling that f is a small perturbation of the flat surface, we have that

|A0| = O(1), |An| = O(ε), n �= 0.

Dropping O(ε2) terms in (A.2), we obtain approximated nonlinear equations:

1
Λ

∫ Λ

0
|u(x, h)|2dx − 1 = A0e2iκh + Ā0e−2iκh + |A0|2� (A.3)

and

1
Λ

∫ Λ

0
|u(x, h)|2eiαmxdx =

(
ei(κ+βm)h + Ā0ei(−κ+βm)h)A−m

+
(
e−i(κ+β̄m)h + A0ei(κ−β̄m)h)Ām.

�
(A.4)

Then, with the additional condition (3.2), we obtain (3.3) and (3.4) by combining |A0| = 1 
with (A.3) and letting A0 = ReA0 + iImA0:

(ReA0)
2 + (ImA0)

2 = 1,

1
2Λ

∫ Λ

0
|u(x, h)|2dx − 1 = cos(2κh)ReA0 − sin(2κh)ImA0,
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which has a unique solution if we seek the solution around −1 for ReA0. After retrieving A0, 
we use the fact that |Am| = |A−m| and let

Am = rmeiθm = rm sin θm + irm cos θm,

A−m = rmeiϕm = rm sinϕm + irm cosϕm.

Plugging the above expressions into (A.4), we obtain after a straightforward calculation that

2rm cos
(θm − ϕm

2

)(
Im(Cm) cos

(θm + ϕm

2
)
+ Re(Cm) sin

(θm + ϕm

2
))

= Re
( 1
Λ

∫ Λ

0
|u(x, h)|2eiαmxdx

)

and

2rm sin
(θm − ϕm

2

)(
Im(Cm) cos

(θm + ϕm

2
)
+ Re(Cm) sin

(θm + ϕm

2
))

= Im
( 1
Λ

∫ Λ

0
|u(x, h)|2eiαmxdx

)
,

where

Cm = e−i(κ+β̄m)h + A0ei(κ−β̄m)h.

Consequently, the phase difference θm − ϕm := Φ(m) satisfies

tan
(θm − ϕm

2

)
= Im

(∫ Λ

0
|u(x, h)|2eiαmxdx

)
/Re

(∫ Λ

0
|u(x, h)|2eiαmxdx

)
,

which provides the relationship between Am  and A−m as in (3.5) and (3.6).

A.2.  Proof of lemmas

Proof of lemma 4.1.  Noting that

∂νj uj = (1 + ( f ′j )
2)−1/2 ( f ′j ∂xu1(x, fj)− ∂yuj(x, fj)

)
,

we have

‖(1 + ( f ′1)
2)1/2∂ν1 u1 − (1 + ( f ′2)

2)1/2∂ν2 u2‖H1/2(0,Λ)

�‖ f ′1∂x(u1(x, f1)− u2(x, f2))− ( f ′2 − f ′1)∂xu2(x, f2)− ∂y(u1(x, f1)− u2(x, f2))‖H1/2(0,Λ)

�‖u1(x, f1)− u2(x, f2)‖H3/2(0,Λ) + τ .

It requires to estimate ‖u1(x, f1)− u2(x, f2)‖H3/2(0,Λ) in order to prove the error estimate.

Recall that uj satisfies the boundary value problem:


∆uj + κ2uj = 0 in Ωj,
uj = 0 on Γfj ,
∂yuj = Tuj − 2iκe−iκ on Γ1.
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Consider the transformation

x̃ = x, ỹ =

(
1 − f1
1 − f2

)
y +

(
f1 − f2
1 − f2

)
, x ∈ [0,Λ], y ∈ [ f2(x), 1],� (A.5)

which transforms the sub-domain Ω2 into Ω1.
Let ω be the transformed function of u2 under (A.5). Dropping the tilde for simplicity of 

notation, we derive



∂xxω + c1∂yyω + c2∂xyω + c3∂yω + κ2ω = 0 in Ω1,
ω = 0 on Γf1 ,
∂yω = (Tω − 2iκe−iκ)(1 + ( f1 − f2)/(1 − f1)) on Γ1,

where

c1 =
(
(1 − f1)2(1 − f2)2 + (1 − y)2((1 − f1)( f ′1 − f ′2) + f ′1( f1 − f2)

)2)
/(1 − f2)4,

c2 =
(
2(1 − y)

(
(1 − f1)( f ′1 − f ′2) + f ′1( f1 − f2)

))
/(1 − f2)2,

c3 =
(
(1 − y)

(
2( f ′2)

2( f1 − f2) + (1 − f2)
(
(1 − f1)( f ′′1 − f ′′2 )

+ f ′′1 ( f1 − f2) + 2f ′2( f ′1 − f ′2)
)))

/
(
1 − f2)3).

Let p = u1 − ω. It is easy to note that


∆p + κ2p = g in Ω1,
p = 0 on Γf1 ,
∂yp = Tp + ϕ on Γ1,

where

g = (1 − c1)∂yyω − c2∂xyω − c3∂yω, ϕ = (Tω − 2iκe−iκ)( f1 − f2)/(1 − f1).

It follows from the regularity of surface functions fj and the condition fj � 0 that
∣∣∣ 1
1 − fj

∣∣∣ � 1, |1 − fj| � 1, ‖ f ′′1 − f ′′2 ‖L4(0,Λ) � ‖ f ′′1 − f ′′2 ‖L2(0,Λ).

Combining the above inequalities with (4.4), we have from the Hölder inequality that

‖1 − c1‖L∞(Ω1)

=

∥∥∥∥∥
(1 − f2)2(2 − f1 − f2)( f2 − f1)− (1 − y)2

(
(1 − f1)( f ′1 − f ′2) + f ′1( f1 − f2)

)2

(1 − f2)4

∥∥∥∥∥
L∞(Ω1)

�‖(2 − f1 − f2)( f2 − f1)‖L∞(Ω1) + ‖
(
(1 − f1)( f ′1 − f ′2) + f ′1( f1 − f2)

)2‖L∞(Ω1)

�‖ f2 − f1‖L∞(Ω1) + ‖( f ′1 − f ′2)
2 + ( f1 − f2)2 + ( f ′1 − f ′2)( f1 − f2)‖L∞(Ω1) � τ

and

‖c2‖L∞(Ω1) � ‖(1 − f1)( f ′1 − f ′2)‖L∞(Ω1) + ‖ f ′1( f1 − f2)‖L∞(Ω1) � τ ,
‖c3‖L4(Ω1) � ‖ f1 − f2‖L4(Ω1) + ‖ f ′′1 − f ′′2 ‖L4(Ω1) + ‖ f ′1 − f ′2‖L4(Ω1) � τ .
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It follows from the well-posedness of the boundary value problem for w that

‖ω‖H2(Ω1) � 1.

Applying the Sobolev imbedding theorem yields that

‖g‖L2(Ω1) �
(
‖1 − c1‖L∞(Ω1) + ‖c2‖L∞(Ω1) + ‖c3‖L4(Ω1))

∥∥ω‖H2(Ω1) � τ .
�

(A.6)

On the other hand, since the operator T is a bounded operator, it implies that

‖ϕ‖H1/2(Γ1) � τ .� (A.7)

Using (A.6) and (A.7) and the classical result of elliptic equations (see [25]), we obtain

‖ p‖H2(Ω1) � ‖g‖L2(Ω1) + ‖ϕ‖H1/2(Γ1) � τ .

Following the trace theorem it yields

‖u1(x, f1)− u2(x, f2)‖H3/2(0,Λ) = ‖u1(x, f1)− ω(x, f1)‖H3/2(0,Λ) � ‖ p‖H2(Ω1) � τ ,

which completes the proof.� □ 

Proof of lemma 4.2.  Recall that the coefficients Bm,N satisfies

∞∑
m=−∞

(∫ Λ

0
ei(αm−nx+βnf�,N(x))dx

)
Bm,N = 2iκΛδ0n, n = 0,±1, . . . ,±N.

Using (3.16), we obtain for m = 0,±1, . . . ,±N that

N∑
m=−N

(∫ Λ

0
ei(αm−nx+βnf�,N(x))dx

)
(Bm,N − B(0)

m )

= −
∑
|m|>N

(∫ Λ

0
ei(αm−nx+βnf�,N(x))dx

)
Bm,N , n = 0,±1, . . . ,±N.

�

(A.8)

Denote

an,m =

∫ Λ

0
ei(αm−nx+βnf�,N(x))dx, xm = Bm,N − B(0)

m , yn = −
∑
|m|>N

an,mBm,N .

The linear system (A.8) can be reformulated into the matrix form:

Ax = y,� (A.9)

where x = (x−N , x−N+1, . . . , xN)
�, y = (y−N , y−N+1, . . . , yN)

�, and

A =




a−N,−N a−N,−N+1 . . . a−N,N

a−N+1,−N a−N+1,−N+1 . . . a−N+1,N

...
...

. . .
...

aN,−N aN,−N+1 . . . aN,N


 .
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It is required to estimate Bm,N − B(0)
m = xm = (A−1y)m, m = 0,±1, . . . ,±N.

Let A = A1 + A2 , where

A1 =




a−N,−N 0 . . . 0
0 a−N+1,−N+1 . . . 0
...

...
. . .

...

0 0 . . . aN,N


 , A2 =




0 a−N,−N+1 . . . a−N,N

a−N+1,−N 0 . . . a−N+1,N

...
...

. . .
...

aN,−N aN,−N+1 . . . 0


 .

It is easy to verify that the matrix A is strongly diagonally dominant. Using lemma B.1 and the 
assumption (4.5), we have

‖A−1
1 A2‖∞ = max

n

N∑
m=−N,m�=n

|an,m/an,n|

� max
n

N∑
m=−N,m�=n

18ε|βn|
Λ(m − n)2 �

6π2

Λ
εmax

n
|βn| < 1,

which yields

(I + A−1
1 A2)

−1 =

∞∑
k=0

(−A−1
1 A2)

k.

Hence we have

∥∥A−1 − A−1
1

∥∥
∞ �

∞∑
k=1

∥∥A−1
1 A2

∥∥k

∞

∥∥A−1
1

∥∥
∞ � εmax

n
|βn|.

Next, we estimate yn in (A.9). It is easy to note that

|yn| �

∣∣∣∣∣∣
∑
|m|�N

an,m(Bm,N − B f0
m )

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
|m|�N

an,mB f0
m

∣∣∣∣∣∣

with f0(x) = 0 and

∂νu(x, f0(x)) =
∑
m∈Z

B f0
m eiαmx, B f0

m ∈ C.

Noting that f�,N(x) and f0(x) = 0 satisfy the assumptions of lemma 4.1 with τ = ε, we obtain
∥∥∥(1 + ( f ′�,N)

2)1/2∂νf�,N
u − ∂νf0

u0

∥∥∥
H1/2(0,Λ)

� ε.

Choosing f0(x) = 0, we obtain u0(x, y) = e−iκy − eiκy  and ∂νf0
u0 = −2iκ. If F(x) ∈ H1/2(0,Λ), 

it follows from the decay rate of Fourier coefficients in [26] that the Fourier coefficient F̂(n) 
satisfies

|F̂(n)| � |n|−1/2‖F‖H1/2(0,Λ) for n �= 0.
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In particular, the Fourier coefficient of ∂νf0
u0 satisfies

∂̂νf0
u0(m) =

{
0 for m �= 0,
−2iκΛ for m = 0,

which yields
{
|Bm,N | � ε|m|−1/2 for m �= 0,
|Bm,N + 2iκΛ| � ε for m = 0.

� (A.10)

It follows from the above discussion that

|yn| �
∑
|m|>N

ε2|βn|
|m|1/2(m − n)2 �

ε2|βn|
N1/2 .

Combining the above estimates, we obtain

|Bm,N − B(0)
m | � |(A−1

1 y)m|+
∥∥A−1 − A−1

1

∥∥
∞ ‖y‖∞

� ε2|βm|N−1/2 + ε3N−1/2 max
n

|βn|2

� ε2N−1/2 max
n

|βn|,

which complete the proof.� □ 

Appendix B. Technical lemmas

In this section, we provide detailed estimates used in proof of theorem 4.3.

Lemma B.1.  Let f�,N be a surface function satisfying

‖ f�,N‖H2(0,Λ) <
ε

max{
√
Λ, 1/

√
Λ}

.

If the deformation parameter ε is small enough such that

εmax
n

|βn| < 1.

Then the variables a( j)
n,m defined by

a( j)
n,m =

∫ Λ

0
ei(αm−nx+(−1) j+1βnf�,N)dx, j = 1, 2

admit the following error estimates:

|a( j)
n,m| �

6ε|βn|
(n − m)2 for n �= m,

1
3
Λ � |a( j)

n,m| � 3Λ for n = m.

Proof.  For simplicity’s sake, we only show the estimate for a(1)
n,m since the proof for a(2)

n,m is 
similar. Using the classical results of Fourier analysis in [26] and noting

∣∣eiβnf�,N(x)
∣∣ � e|βnf�,N(x)| � eε|βn| � e < 3,
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we have

|a(1)
n,m| =

∣∣ ̂eiβnf�,N(x)(n − m)
∣∣ � 1

(n − m)2

∥∥(eiβnf�,N(x))′′
∥∥

L1(0,Λ)

�
3
√
Λ|βn|

(n − m)2

∥∥ f ′′�,N(x) + ( f ′�,N(x))
2βn

∥∥
L2(0,Λ)

�
6ε|βn|

(n − m)2 ,

where we have used the smallness assumption of ‖ f�,N‖H2(0,Λ) and maxn ε|βn| < 1.

It follows from (2.4) that βn is a positive real number if n � Λ/λ. We can decompose

eiβnf�,N(x) = cos(βnf�,N(x)) + i sin(βnf�,N(x)).

Noting that 0 � βnf�,N(x) � −ε|βn| > −π/2, we get

∣∣∣a(1)
n,n

∣∣∣ =
∣∣∣∣∣
∫ Λ

0
cos (βnf�,N(x)) + i sin (βnf�,N(x)) dx

∣∣∣∣∣

=

(∣∣
∫ Λ

0
cos (βnf�,N(x)) dx

∣∣2 + ∣∣
∫ Λ

0
sin (βnf�,N(x)) dx

∣∣2
)1/2

�

∣∣∣∣
∫ Λ

0
cos (−ε|βn|) dx

∣∣∣∣ = Λcos(−ε|βn|).

On the other hand, eiβnf�,N(x) is a positive real number if n > Λ/λ. A straightforward calcul
ation yields

∣∣∣a(1)
n,n

∣∣∣ � Λ min
x∈[0,Λ]

eiβnf�,N(x) � Λe−ε|βn|.

Since ex � cos(x) when −1 � x � 0, we combine both lower bounds and have
∣∣∣a(1)

n,n

∣∣∣ � Λe−ε|βn| �
1
3
Λ for n = 0,±1, . . . ,±N.

The upper bound is easily shown as follows

|a(1)
n,n | � Λmax |eiβnf�,N(x)| � 3Λ.

Lemma B.2.  Let f�,N be a surface function satisfying

‖ f�,N‖H2(0,Λ) <
ε

max{
√
Λ, 1/

√
Λ}

, (1 + ( f ′�,N)
2)1/2∂νu =

∑
m∈Z

Bmeiαmx.

Let B(0)
n  be the coefficient computed in (3.16). If the deformation parameter ε is small enough 

such that

εmax
n

|βn| < 1,

then the variables â( j)
n,k defined as
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â( j)
n,k = (−1) j+1i

βn

|k|+ 1

N∑
m=−N

B(0)
m

∫ Λ

0
ei(αk−n+m+(−1) j+1βnf�,N)dx, j = 3, 4

admit the following error estimates:


|â( j)

n,k | �
|βn|
|k|+1ε

(
ε|βn|+ |βn|

(n−k)2 +
1

|n−k|1/2

)
for n �= k,

|â( j)
n,k | �

|βn|
|n|+1 for n = k.

Moreover,

|â(4)
n,n − â(2)

n,n â(3)
n,n /â(1)

n,n | �
|βn|

(|n|+ 1)

(
4
3
κΛ2 − Cε|βn|

)
,

where the constant C is independent on ε, h, n.

Proof.  We present the proof for â(3)
n,k and omit the discussion on â(4)

n,k. First task is to evaluate 
B(0)

n . Noting ‖ f�,N‖H2(0,Λ) <
ε

max{
√
Λ,1/

√
Λ} and (A.10), we have

{
|Bn| � ε|n|−1/2 for n �= 0,
|Bn + 2iκΛ| � ε for n = 0.

It follows from lemma 4.2 that

|Bn − B(0)
n | � ε2N−1/2 max

n
|βn| � ε2n−1/2 max

n
|βn|.

Combining the above two bounds and assuming maxn ε|βn| < 1 lead to

|B(0)
n + 2iκΛδ0n| � |Bn + 2iκΛδ0n|+ |Bn − B(0)

n |.

More precisely, we have
{
|B(0)

n | � ε|n|−1/2 for 0 < |n| � N,

|B(0)
n + 2iκΛ| � ε for n = 0.

� (B.1)

Using (B.1), we find the upper bound for â(3)
n,k, n �= k:

|â(3)
n,k | �

1
|k|+ 1




ε|βn|2

(n − k)2 +
|εβn|

|n − k|1/2 +

N∑

m = −N, m �= 0
m �= n − k

|εβn|2

(n − k − m)2|m|1/2




�
|βn|

|k|+ 1
ε

(
|βn|

(n − k)2 +
1

|n − k|1/2 + ε|βn|
)

and the upper bound for â(3)
n,n:
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|â(3)
n,n | �

1
|n|+ 1


|βn|+

N∑
m=−N,m �=0

|εβn|2

m5/2


 �

|βn|
|n|+ 1

.

Next, we consider the lower bound for â(4)
n,n − â(2)

n,n â(3)
n,n /â(1)

n,n, which admits

|â(4)
n,n − â(2)

n,n â(3)
n,n/â(1)

n,n | �
∣∣∣â(4)

n,n − â(3)
n,n

∣∣∣−
∣∣∣
(

â(2)
n,n /â(1)

n,n − 1
)

â(3)
n,n

∣∣∣ .

Since ez =
∑∞

k=0 zk/k!, ∀z ∈ C, we have

1 − e−2iβnf�,N = −
∞∑

k=1

(−2iβnf�,N)
k/k!.

It follows from lemma B.1 that
∣∣∣â(2)

n,n/â(1)
n,n − 1

∣∣∣ = 1

|â(1)
n,n |

|â(2)
n,n − â(1)

n,n |

�
3
Λ

∣∣∣∣∣
∫ Λ

0
eiβnf�,N

(
1 − e−2iβnf�,N

)
dx

∣∣∣∣∣

� |
∞∑

k=1

(−2iβnf�,N)
k/k!| � ε|βn|.

�

(B.2)

Meanwhile,

|â(4)
n,n − â(3)

n,n | =
|βn|

|n|+ 1

∣∣∣∣∣∣
B(0)

0 (â(2)
n,n + â(1)

n,n ) +

N∑
m=N,m�=0

B(0)
m

∫ Λ

0
(eiβnf�,N + e−iβnf�,N )eiαmxdx

∣∣∣∣∣∣

=
|βn|

|n|+ 1

∣∣∣−2iκΛ(â(2)
n,n + â(1)

n,n ) + (B(0)
0 + 2iκΛ)(â(2)

n,n + â(1)
n,n )

+

N∑
m=−N,m�=0

B(0)
m

∫ Λ

0
(eiβnf�,N + e−iβnf�,N )eiαmxdx

∣∣∣∣∣∣

�
|βn|

|n|+ 1

( ∣∣∣2iκΛ
(

â(1)
n,n + â(2)

n,n

)∣∣∣−
∣∣∣
(

B(0)
0 + 2iκΛ

)(
â(1)

n,n + â(2)
n,n

)∣∣∣

−
N∑

m=−N,m�=0

∣∣∣∣∣B
(0)
m

∫ Λ

0

(
eiβnf�,N + e−iβnf�,N

)
eiαmxdx

∣∣∣∣∣
)

.

By definition, we obtain

â(1)
n,n + â(2)

n,n =

{
2
∫ Λ

0 cos(|βn| f�,N)dx when n � Λ
λ∫ Λ

0 e|βn| f�,N + e−|βn| f�,N dx when n > Λ
λ .

Noting

2
∫ Λ

0
cos(|βn| f�,N)dx � 2Λcos(−ε|βn|) �

2
3
Λ
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and
∫ Λ

0
e|βn| f�,N + e−|βn| f�,N dx � 2

∫ Λ

0
e|βn| f�,N dx � 2Λe−ε|βn| �

2
3
Λ,

we obtain

â(1)
n,n + â(2)

n,n �
2
3
Λ.

Thus we conclude from (B.1) that there exists a constant C such that

|â(4)
n,n − â(3)

n,n | �
|βn|

|n|+ 1

(
4
3
κΛ2 − Cε

)
.� (B.3)

Combining (B.2) and (B.3), we have the lower bound:

|â(4)
n,n − â(2)

n,n â(3)
n,n /â(1)

n,n | �
∣∣∣â(4)

n,n − â(3)
n,n

∣∣∣−
∣∣∣
(

â(2)
n,n /â(1)

n,n − 1
)

â(3)
n,n

∣∣∣

�
|βn|

|n|+ 1

(
4
3
κΛ2 − Cε|βn|

)
,

which completes the proof.� □ 

Lemma B.3.  Let conditions in theorem 4.3 hold true. Then, the variables b(i)
n , 

i = 1, 2, n = 0,±1, . . . ,±N  defined in (4.7) admit the following error estimates

|b(i)
n | � (ε2 + τ 2 + ε‖ f − fN‖H2(0,Λ))(1 + |n|)1/2.

Proof.  We show the estimate for b(1)
n . Recall the definition of b(1)

n  in (4.7), it is required to 
estimate

‖eiβn( f−f�,N) − 1 − iβn ( f − f�,N) ‖H2(0,Λ),
∥∥∥(eiβnf�,N (1 + iβn( f − f�,N))

)′′∥∥∥
L2(0,Λ)

, |B(0)
m − Bm|.

Noting ez =
∑∞

k=0 zk/k! in the complex plane, we obtain

∥∥∥eiβn( f−f�,N) − 1 − iβn( f − f�,N)
∥∥∥

L2(0,Λ)
=

∥∥∥∥∥
∞∑

k=2

(iβn( f − f�,N))
k
/k!

∥∥∥∥∥
L2(0,Λ)

� τ 2|βn|2,

∥∥∥eiβn( f−f�,N) − 1 − iβn( f − f�,N)
∥∥∥

H1(0,Λ)
� τ 2|βn|2 + ‖iβn( f − f�,N)‖H1(0,Λ)

×

∥∥∥∥∥
∞∑

k=1

(iβn( f − f�,N))
k
/k!

∥∥∥∥∥ � τ 2|βn|2,

∥∥∥eiβn( f−f�,N) − 1 − iβn( f − f�,N)
∥∥∥

H2(0,Λ)
� τ 2|βn|2 + ‖iβn( f − f�,N)‖H2(0,Λ)

×

∥∥∥∥∥
∞∑

k=1

(iβn( f − f�,N))
k
/k!

∥∥∥∥∥ � τ 2|βn|2,

where we have used the estimates τ |βn| � ε|βn| � 1.
A straightforward calculation yields
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∥∥∥(eiβnf�,N (1 + iβn( f − f�,N))
)′′∥∥∥

L2(0,Λ)

�‖iβnf ′′�,Neiβnf�,N (1 + iβn( f − f�,N))‖L2(0,Λ) + ‖(iβnf ′�,N)
2eiβnf�,N (1 + iβn( f − f�,N))‖L2(0,Λ)

+ 2‖(iβn)
2f ′�,Neiβnf�,N ( f ′ − f ′�,N))‖L2(0,Λ) + ‖iβneiβnf�,N ( f ′′ − f ′′�,N))‖L2(0,Λ) � (ε+ τ)|βn|

�ε|βn|.

Recall that Bm,N are the Fourier coefficients of (1 + ( f ′�,N(x))
2)1/2∂νu�(x, f�,N(x)), B(0)

m  is 
computed in (3.16), and Bm  are the Fourier coefficients of (1 + ( f ′)2)1/2∂νu�(x, f (x)). To 
obtain the estimate of B(0)

m − Bm, we consider
∣∣B(0)

m − Bm
∣∣ � |Bm,N − Bm|+

∣∣B(0)
m − Bm,N

∣∣.

By lemma 4.1, we have
∥∥∥∥

∂u
∂nf�,N

(1 + ( f ′�,N)
2)1/2 − ∂u

∂nf
(1 + ( f ′)2)1/2

∥∥∥∥
H1/2(0,Λ)

� τ ,

which yields

|Bm,N − Bm| �
{
τ for m = 0,
τ |m|−1/2 for m �= 0.

Since κ < 2π/Λ, we have |βn| ∼ n and
∣∣B(0)

m − Bm
∣∣ � ∣∣B(0)

m − Bm
∣∣+ |Bm,N − Bm|

� ε2N−1/2 max
n

|βn|+
{
τ for m = 0,
τ |m|−1/2 for m �= 0

� ε2N1/2 +

{
τ for m = 0,
τ |m|−1/2 for m �= 0.

For the cases n �= 0, the first term of b(1)
n  admits

∣∣∣∣
∞∑

m=−∞

(∫ Λ

0
ei(βnf�,N+αm−nx)

(
eiβn( f−f�,N) − 1 − iβn ( f − f�,N)

)
dx

)
Bm

∣∣∣∣

�
∞∑

m=−∞
|

̂(
eiβnf�,N

(
eiβn( f−f�,N) − 1 − iβn

(
f − f�,N

)))
(m − n)| · |Bm|

�

∥∥∥∥eiβnf�,N
(
eiβn( f−f�,N) − 1 − iβn

(
f − f�,N

))∥∥∥∥
H2(0,Λ)


|Bn|+

∞∑
m=−∞,m�=n

|Bm|
(m − n)2




�
∥∥eiβnf�,N

∥∥
H2(0,Λ)

∥∥eiβn( f−f�,N) − 1 − iβn
(

f − f�,N
)∥∥

H2(0,Λ)


|Bn|+

∞∑
m=−∞,m�=n

|Bm|
(m − n)2




� (τ |βn|)2


 1

n2 +
ε

|n|1/2 +

∞∑
m=−∞,m �=0,n

ε

|m|1/2(m − n)2


 � τ 2.
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The second term of b(1)
n  satisfies

∣∣∣∣
∑
|m|>N

(∫ Λ

0
ei(βnf�,N+αm−nx) (1 + iβn ( f − f�,N)) dx

)
Bm

∣∣∣∣

�
∑
|m|>N

∣∣∣∣∣
̂(

eiβnf�,N (1 + iβn ( f − f�,N))

)
(m − n)

∣∣∣∣∣ · |Bm|

�

∥∥∥∥(eiβnf�,N (1 + iβn ( f − f�,N)))
′′
∥∥∥∥

L2(0,Λ)

∑
|m|>N

|Bm|
(m − n)2

�
∑
|m|>N

ε2|βn|
|m|1/2(m − n)2 � ε2|n|1/2.

The third term of b(1)
n  has

∣∣∣∣iβn

N∑
m=−N

(∫ Λ

0
ei(βnf�,N+αm−nx) ( f − f�,N) dx

)
(B(0)

m − Bm)

∣∣∣∣

� |βn|
N∑

m=−N

∣∣∣∣∣
̂(

eiβnf�,N ( f − f�,N)

)
(m − n)

∣∣∣∣∣ · |B
(0)
m − Bm|

� |βn| ·
∥∥∥∥eiβnf�,N ( f − f�,N)

∥∥∥∥
H2(0,Λ)


|B(0)

n − Bn|+
N∑

m=−N,m�=n

|B(0)
m − Bm|
(m − n)2




� τ |βn|


ε2N1/2 + τ

n2 +
τ

|n|1/2 + ε2N1/2 +
N∑

m=−N,m�=0,n

( τ
|m|1/2 + ε2N1/2)

(m − n)2




� τ 2|n|1/2 +
ετ

N1/2 .

The fourth term of b(1)
n  admits

∣∣∣∣iβn

N∑
m=−N

∫ Λ

0
B(0)

m ( f − fN)ei(βnf�,N+αm−nx)dx
∣∣∣∣

� |βn|
∑
|k|>N

|Ck| ·

∣∣∣∣∣
∫ Λ

0
ei(βnf�,N+αk−nx)dx

∣∣∣∣∣+ |βn|
N∑

m=−N,m�=0

|B(0)
m | ·

∣∣∣∣∣
∫ Λ

0
( f − fN)ei(βnf�,N+αm−nx)dx

∣∣∣∣∣

� |βn|
∑
|k|>N

ε2|βn|
k2(k − n)2 + |βn|

N∑
m=−N,m�=0

∣∣∣∣∣
̂(

eiβnf�,N ( f − fN)
)
(m − n)

∣∣∣∣∣ · |B
(0)
m |

� ε2 + |βn| ·
∥∥eiβnf�,N ( f − fN)

∥∥
H2(0,Λ)


B(0)

n +

N∑
m=−N,m�=0,m�=n

|B(0)
m |

(m − n)2




� ε2 + |βn| · ‖ f − fN‖H2(0,Λ)


 ε

|n|1/2 +
N∑

m=−N,m�=0,m�=n

ε

|m|1/2(m − n)2




� ε2 + ε|n|1/2‖ f − fN‖H2(0,Λ).
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Similarly, for the case n = 0, we have the following estimates for the four terms:
∣∣∣∣

∞∑
m=−∞

(∫ Λ

0
ei(κf�,N+αmx)

(
eiκ( f−f�,N) − 1 − iκ ( f − f�,N)

)
dx

)
Bm

∣∣∣∣

� τ 2


1 +

∞∑
m=−∞,m�=0

ε2

|m|5/2


 � τ 2,

∣∣∣∣
∑
|m|>N

(∫ Λ

0
ei(κf�,N+αmx) (1 + iκ ( f − f�,N)) dx

)
Bm

∣∣∣∣

�
∑
|m|>N

ε2

|m|5/2 � ε2,

∣∣∣∣iκ
N∑

m=−N

(∫ Λ

0
ei(κf�,N+αmx) ( f − f�,N) dx

)
(B(0)

m − Bm)

∣∣∣∣

� τ


τ + ε2N1/2 +

N∑
m=−N,m�=0

( τ
|m|1/2 + ε2N1/2)

|m|2


 � τ 2 +

ετ

N
,

∣∣∣∣i
N∑

m=−N

∫ Λ

0
B(0)

m ( f − fN)ei( f�,N+αm−nx)dx
∣∣∣∣

� ε2 + ‖ f − fN‖H2(0,Λ)

N∑
m=−N,m�=0

ε

|m|5/2 � ε‖ f − fN‖H2(0,Λ) + ε2,

which completes the proof.� □ 
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