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Abstract. Consider the scattering of a time-harmonic plane wave by hetero-

geneous media consisting of linear or nonlinear point scatterers and extended
obstacles. A generalized Foldy–Lax formulation is developed to take fully into

account of the multiple scattering by the complex media. A new imaging func-

tion is proposed and an FFT-based direct imaging method is developed for the
inverse obstacle scattering problem, which is to reconstruct the shape of the

extended obstacles. The novel idea is to utilize the nonlinear point scatterers

to excite high harmonic generation so that enhanced imaging resolution can be
achieved. Numerical experiments are presented to demonstrate the effective-

ness of the proposed method.

1. Introduction. In scattering theory, one of the basic problems is the scattering
of a time-harmonic plane wave by an impenetrable medium, which is called the
obstacle scattering problem [20]. Given the incident wave, the direct obstacle scat-
tering problem is to determine the scattered wave for the known obstacle; while
the inverse obstacle scattering problem is to reconstruct the shape of the obstacle
from either near-field or far-field measurement of the scattered wave. The obstacle
scattering problem has played a fundamental role in diverse scientific areas such
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Figure 1. Schematic of the problem geometry.

as geophysical exploration, radar and sonar, medical imaging, and nondestructive
testing.

The inverse obstacle scattering problem is challenging due to nonlinearity and
ill-posedness. It has been extensively studied by many researchers. Various compu-
tational methods have been developed to overcome the issues and solve the inverse
problem. Broadly speaking, these methods can be classified into two types: opti-
mization based iterative methods [6] and imaging based direct methods [3, 4, 5, 13,
17, 18, 19, 23, 24, 30, 31, 32, 33, 34, 39, 46, 40, 41, 48]. The former are known
as quantitative methods and aim at recovering the functions which parameterize
the obstacles. The latter are usually called qualitative methods and attempt to
design imaging functions which highlight the obstacles. According to the Rayleigh
criterion, there is a resolution limit, roughly one half the wavelength, on the ac-
curacy of the reconstruction for a given incident wave [9, 10, 49]. To improve the
resolution, one approach is simply to use an incident wave with shorter wavelength
or higher frequency as an illumination. A topical review can be found in [8] on
computational approaches and mathematical analysis for solving inverse scattering
problems by multi-frequencies.

In this paper, we consider the inverse obstacle scattering problem with an empha-
sis on resolution enhancement. Motivated by nonlinear optics [11, 12, 45], we utilize
nonlinear point scatterers to excite high harmonic generation so that enhanced reso-
lution can be achieved to reconstruct the obstacles. To realize this idea, we consider
the scattering problem of a time-harmonic plane incident wave by a heterogeneous
medium, which consists of small scale point scatterers and wavelength comparable
extended obstacles. The main purpose of this work is threefold:

1. develop a generalized Foldy–Lax formulation and design an efficient solver for
the scattering problem involving point scatterers and extended obstacles;

2. propose a new imaging function and develop an FFT-based method to effi-
ciently evaluate the imaging function on large sampling points;

3. explore the features of high harmonic generation for nonlinear optics and apply
them to the area of inverse scattering to achieve enhanced imaging resolution.

The Foldy–Lax formulation was developed in [25, 43] to describe the scattering
of an incoming wave by a group of linear point scatterers. The scattered field can
be computed by solving a self-contained system of liner equations. Using a unified
approach, we first extend the Foldy–Lax formulation to handle a group of linear,
quadratically nonlinear, or cubically nonlinear point scatterers. It is known that the
Foldy–Lax formulation is only appropriate for media whose sizes are much smaller
than the wavelength [14, 15, 16, 22, 47]. It is no longer adequate for the scattering by
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wavelength comparable media [35, 44]. The boundary integral equation method is
particularly useful for the scattering by extended obstacles. The scattering problem
becomes sophisticated when both the point scatterers and extended obstacles are
present, as seen in Figure 1. The generalized Foldy–Lax formulation has been
studied in [7, 36, 37, 38] to take into account the multiple scattering between linear
point scatterers and extended obstacles. Here we develop a generalized Foldy–Lax
formulation to take fully into account the multiple scattering between the nonlinear
point scatterers and extended obstacles. The generalized formulation couples the
Foldy–Lax and boundary integral equation formulations and is self-contained linear
or nonlinear system of equations. The coupled system needs to be solved numerically
in order to obtain the scattered field and its far-field pattern. For linear point
scatterers, we apply LU factorization based direct solver to solve the coupled linear
system of equations; for nonlinear point scatterers, we propose an efficient nonlinear
solver which combines the Schur complement technique and trust region Newton
type method.

The imaging based methods do not require solving any direct problem, which
make them very attractive to solve the inverse scattering problem. But, they could
be still very time-consuming when evaluating the imaging functions on large sam-
pling points. The reason is that the evaluation usually involves the dense matrix-
vector multiplication at each sampling point. To overcome this issue, we construct
two illumination vectors and propose a new imaging function. The function, un-
der an appropriate transformation, can be taken as the Fourier transform of the
response matrix from the frequency space into the physical space. However, the
frequency sampling points are not uniform, which implies the standard FFT can
not be applied. We propose an acceleration technique using the non-uniform fast
Fourier transform (NUFFT)[26]. The method can greatly reduce the computational
complexity and accelerate the evaluation.

Using the quadratically or cubically nonlinear point scatterers, the second or
third harmonic generation is excited to image the extended obstacles. Essentially,
this approach is equivalent to using double or triple frequency wave to illuminate
the obstacles. As a consequence, enhanced resolution can be achieved. However, we
find out that the location of the nonlinear point scatterers is crucial to the imaging.
Interestingly, they should be aligned up in the same direction as the propagation
direction of the plane incident wave so that the correct reconstruction results can
appear with the desirable imaging resolution. Numerical experiments are shown
to demonstrate the effectiveness of the proposed method. To make the paper self-
contained, we briefly introduce in the appendix the nonlinear wave equations and
nonlinear point scatterer models.

The paper is organized as follows. In section 2, the Foldy–Lax formulation is
introduced for the scattering by a group of point scatterers. In section 3, the bound-
ary integral formulation is briefly reviewed for the scattering by extended scatterers.
Section 4 introduces the generalized Foldy–Lax formulation for the scattering by
mixed scatterers. Section 5 is devoted to the inverse scattering problem, where
the fast direct imaging method is developed. Numerical experiments are given in
section 6. The paper is concluded with some general remarks and possible future
work in section 7.

2. Foldy–Lax formulation. In this section, we introduce the Foldy–Lax formu-
lation for the scattering of a plane incident wave by a group of linear, quadratically
nonlinear, or cubically nonlinear point scatterers.
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2.1. Linear point scatterers. Consider a collection of m separated linear and
isotropic point scatterers located at rk ∈ R2, k = 1, . . . ,m. Let φinc be the plane
incident wave given explicitly by

(1) φinc(r) = eiκr·d, r ∈ R2,

where κ = ω/c is the wavenumber, ω > 0 is the angular frequency and c is the
speed of wave propagation, and d ∈ S1 is the unit propagation direction. It is easy
to verify the incident field satisfies the Helmholtz equation:

(2) ∆φinc + κ2φinc = 0 in R2.

As is shown in (80), the total field φ satisfies

(3) ∆φ(r) + κ2φ(r) = −
m∑
k=1

σkφkδ(r− rk), r ∈ R2,

where σk > 0 is the scattering coefficient for the k-th point scatterer, φk is the
external field acting on the k-th point scatterer, and δ is the Dirac delta function.
We comment that φk is also the total field at the location rk, i.e., φk = φ(rk).

The total field φ consists of the incident field φinc and the scattered field ψ:

φ = φinc + ψ.

Subtracting (2) from (3) yields

(4) ∆ψ(r) + κ2ψ(r) = −
m∑
k=1

σkφkδ(r− rk), r ∈ R2.

The scattered field is required to satisfy the Sommerfeld radiation condition:

(5) lim
r→∞

r1/2(∂rψ − iκψ) = 0, r = |r|.

It follows from (4) and (5) that the scattered field can be written as

(6) ψ(r) =

m∑
k=1

σkφkGκ(r, rk),

where

Gκ(r, r′) =
i

4
H

(1)
0 (κ|r− r′|)

is the free space Green function for the two-dimensional Helmholtz equation. Here

H
(1)
0 is the Hankel function of the first kind with order zero. It is left to compute

the external fields φk in order to compute the scattered field (6).
Adding the incident field on both sides of (6) gives

(7) φ(r) = φinc(r) +

m∑
k=1

σkφkGκ(r, rk).

Evaluating (7) at ri and excluding the self-interaction to avoid the singularity of
the Green function, we obtain a linear system of algebraic equations for φk:

(8) φi −
m∑
k=1
k 6=i

σkφkGκ(ri, rk) = φinc(ri),

which is known as the Foldy–Lax formulation.
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2.2. Quadratically nonlinear point scatterers. We assume that the nonlinear
point scatterers respond to the incoming wave quadratically and the nonlinearity
is weak. Let the plane incident wave φinc, given in (1), be of a single frequency
ω. The point scatterers generate fields at frequencies ω1 = ω and ω2 = 2ω due to
the quadratic nonlinearity, which is known as the second harmonic generation. Let
κj = ωj/c and φ(j) be the field at the frequency ωj , j = 1, 2.

As is known in (81), the fields φ(j) satisfy the coupled Helmholtz equations in
R2:

∆φ(1)(r) + κ2
1φ

(1)(r) = −
m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
δ(r− rk),(9a)

∆φ(2)(r) + κ2
2φ

(2)(r) = −
m∑
k=1

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
δ(r− rk),(9b)

where the bar denotes the complex conjugate, σ
(1)
k,1 and σ

(1)
k,2 are the linear scattering

coefficients for the k-th point scatterer, σ
(2)
k,1 and σ

(2)
k,2 are the quadratically nonlinear

scattering coefficients for the k-th point scatterer, and φ
(j)
k is the external field acting

on the k-th point scatterer at frequency ωj . The fields φ(j) satisfy the following
relationship:

φ(1) = φinc + ψ(1), φ(2) = ψ(2),

where ψ(j) is the scattered field corresponding to the wavenumber κj . It can be
verified that the scattered fields satisfy

∆ψ(1)(r) + κ2
1ψ

(1)(r) = −
m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
δ(r− rk),(10a)

∆ψ(2)(r) + κ2
2ψ

(2)(r) = −
m∑
k=1

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
δ(r− rk).(10b)

In addition, they are required to satisfy the Sommerfeld radiation condition

lim
r→∞

r1/2
(
∂rψ

(j) − iκjψ
(j)
)

= 0, r = |r|.

It follows from (10) that the scattered fields satisfy

ψ(1)(r) =

m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
Gκ1

(r, rk),(11a)

ψ(2)(r) =

m∑
k=1

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
Gκ2

(r, rk),(11b)

where Gκj is the free space Green function for the two-dimensional Helmholtz equa-
tion at the wavenumber κj . Adding the incident field on both sides of (11a) and

noting φ(2) = ψ(2) for (11b), we obtain

φ(1)(r) = φinc(r) +

m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
Gκ1

(r, rk),(12a)

φ(2)(r) =

m∑
k=1

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
Gκ2(r, rk).(12b)
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Similarly, evaluating (12) at ri and excluding the self-interaction yield a nonlinear

system of equations for φ
(j)
k :

φ
(1)
i −

m∑
k=1
k 6=i

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
Gκ1

(ri, rk) = φinc(ri),(13a)

φ
(2)
i −

m∑
k=1
k 6=i

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
Gκ2(ri, rk) = 0,(13b)

which is the Foldy–Lax formulation for point scatterers with quadratic nonlinearity.

2.3. Cubically nonlinear point scatterers. Taking the plane incident wave φinc

with frequency ω, we consider the scattering by point scatterers with weak cubic
nonlinearity. The interaction gives rise to fields with frequencies ω1 = ω and ω3 =
3ω, which is called the third harmonic generation. Let κj = ωj/c and denote the

field at frequency ωj by φ(j), j = 1, 3.

By (82), the fields φ(j) satisfy the following coupled Helmholtz equations in R2:

∆φ(1)(r) + κ2
1φ

(1)(r) = −
m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k

+ σ
(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
δ(r− rk),(14a)

∆φ(3)(r) + κ2
2φ

(3)(r) = −
m∑
k=1

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
δ(r− rk),(14b)

where σ
(1)
k,1 and σ

(1)
k,2 are the linear scattering coefficients for the k-th point scatterer,

σ
(3)
k,1, σ

(3)
k,2 and σ

(3)
k,3 are the cubically nonlinear scattering coefficients for the k-th

point scatterer, and φ
(j)
k is the external field acting on the k-th point scatterer at

frequency ωj . The fields φ(j) satisfy the following relationship:

φ(1) = φinc + ψ(1), φ(3) = ψ(3),

where ψ(j) is the scattered field corresponding to the wavenumber κj . It can be
verified that the scattered fields satisfy

∆ψ(1)(r) + κ2
1ψ

(1)(r) = −
m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k

+ σ
(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
δ(r− rk),(15a)

∆ψ(3)(r) + κ2
2ψ

(3)(r) = −
m∑
k=1

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
δ(r− rk).(15b)

In addition, they are required to satisfy the Sommerfeld radiation condition

lim
r→∞

r1/2
(
∂rψ

(j) − iκjψ
(j)
)

= 0, r = |r|.

It is easy to verify from (15) that the scattered fields satisfy

ψ(1)(r) =

m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k + σ

(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
Gκ1

(r, rk),(16a)
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ψ(3)(r) =

m∑
k=1

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
Gκ3

(r, rk),(16b)

where Gκj is the free space Green function for the two-dimensional Helmholtz equa-
tion at the wavenumber κj . Adding the incident field on both sides of (16a) and

noting φ(2) = ψ(2) for (16b), we obtain

φ(1)(r) = φinc(r) +

m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k

+ σ
(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
Gκ1

(r, rk),(17a)

φ(3)(r) =

m∑
k=1

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
Gκ2

(r, rk).(17b)

Evaluating (17) at ri and excluding the self-interaction, we get a nonlinear system

of equations for φ
(j)
k :

φ
(1)
i −

m∑
k=1
k 6=i

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k

+ σ
(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
Gκ1

(ri, rk) = φinc(ri),(18a)

φ
(3)
i −

m∑
k=1
k 6=i

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
Gκ3

(ri, rk) = 0,(18b)

which is the Foldy–Lax formulation for point scatterers with cubic nonlinearity.

3. Boundary integral formulation. In this section, we briefly introduce the
boundary integral equation method for solving the scattering problem with extended
scatterers. The detailed information can be found in [20].

Consider the scattering of a plane incident wave by a sound-soft extended scat-
terer. The scatterer is described by the domain D with a boundary Γ, which consists
of a finite number of disjoint, closed, bounded surfaces belonging to the class C2.
The exterior R2 \ D̄ is assumed to the connected, whereas D itself is allowed to
have more than one component. The unit normal vector ν on Γ is assumed to be
directed into the exterior of D.

The total field satisfies the Helmholtz equation:

(19) ∆φ+ κ2φ = 0 in R2 \ D̄.

The sound-soft boundary implies that

(20) φ = 0 on Γ.

The total field φ consists of the incident field φinc and the scattered field ψ:

(21) φ = φinc + ψ.

It follows from (2), (19), and (21) that the scattered field ψ also satisfies the
Helmholtz equation:

(22) ∆ψ + κ2ψ = 0 in R2 \ D̄.
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The following Sommerfeld radiation condition is imposed to ensure the well-posed-
ness of the scattering problem:

(23) lim
r→∞

r1/2(∂rψ − iκψ) = 0, r = |r|.

It is shown in [20] by using the second Green theorem that∫
Γ

(φinc(r′)∂ν′Gκ(r, r′)− ∂ν′φinc(r′)Gκ(r, r′)) ds(r′) =

{
−φinc(r), r ∈ D,
0, r ∈ R2 \ D̄.

and ∫
Γ

(ψ(r′)∂ν′Gκ(r, r′)− ∂ν′ψ(r′)Gκ(r, r′)) ds(r′) =

{
0, r ∈ D,
ψ(r), r ∈ R2 \ D̄.

Adding the above two equations and using the sound-soft boundary condition (20),
we get

(24) φinc(r) =

∫
Γ

Gκ(r, r′)∂ν′φ(r′)ds(r′), r ∈ D.

and

(25) ψ(r) = −
∫

Γ

Gκ(r, r′)∂ν′φ(r′)ds(r′), r ∈ R2 \ D̄.

To compute the scattered field ψ, it is required to compute ∂νφ on Γ.
Taking the normal derivative of (24) on Γ and applying the jump condition yield

(26) ∂νφinc(r) =

∫
Γ

∂νGκ(r, r′)∂ν′φ(r′)ds(r′) +
1

2
∂νφ(r), r ∈ Γ.

Multiplying (24) by iη and subtracting it from (26), we thus obtain a boundary
integral equation for ∂νφ on Γ:

(27)
1

2
∂νφ(r) +

∫
Γ

(∂ν − iη)Gκ(r, r′)∂ν′φ(r′)ds(r′) = (∂ν − iη)φinc(r),

where the coupling parameter η > 0 is introduced to ensure the unique solvability
of (27).

4. Generalized Foldy–Lax formulation. This section presents the generalized
Foldy–Lax formulation for the scattering problem of mixed scatterers, which consist
of both the extended and point scatterers. We introduce the generalized Foldy–
Lax formulation for the linear, quadratically nonlinear, or cubically nonlinear point
scatterers, respectively.

4.1. Linear point scatterers. Viewing the external field acting on the point scat-
terers as point sources for the extended obstacle, we have the following equation for
the total field:

(28) ∆φ(r) + κ2φ(r) = −
m∑
k=1

σkφkδ(r− rk), r ∈ R2 \ D̄,

where φk is the external field acting on the k-th point scatterer and δ is the Dirac
delta function. The obstacle is assumed to be sound-soft. The total field vanishes
on the boundary, i.e.,

(29) φ = 0 on Γ.
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Subtracting the incident field (2) from the total field (28), we get the equation for
the scattered field:

(30) ∆ψ(r) + κ2ψ(r) = −
m∑
k=1

σkφkδ(r− rk), r ∈ R2 \ D̄,

As usual, the scattered field is required to satisfy the Sommerfeld radiation condi-
tion:

(31) lim
r→∞

r1/2(∂rψ − iκψ) = 0, r = |r|.

We can follow the same steps as those in [20] to show that∫
Γ

(φinc(r′)∂ν′Gκ(r, r′)− ∂ν′φinc(r′)Gκ(r, r′)) ds(r′) =

{
−φinc(r), r ∈ D,
0, r ∈ R2 \ D̄,

and
m∑
k=1

σkφkGκ(r, rk) +

∫
Γ

(ψ(r′)∂ν′Gκ(r, r′)− ∂ν′ψ(r′)Gκ(r, r′)) ds(r′)

=

{
0, r ∈ D,
ψ(r), r ∈ R2 \ D̄.

Adding the above two equations and using the boundary condition (29), we have

(32) φinc(r) =

∫
Γ

Gκ(r, r′)∂ν′φ(r′)ds(r′)−
m∑
k=1

σkφkGκ(r, rk), r ∈ D.

and

(33) ψ(r) =

m∑
k=1

σkφkG(r, rk)−
∫

Γ

Gκ(r, r′)∂ν′φ(r′)ds(r′), r ∈ R2 \ D̄.

To compute the scattered field ψ, it is required to compute ∂νφ and φk, k = 1, . . . ,m.
Adding the incident field on both sides of (33) yields

(34) φ(r) = φinc(r) +
m∑
k=1

σkφkG(r, rk)−
∫

Γ

G(r, r′)∂ν′φ(r′)ds(r′), r ∈ R2 \ D̄.

Evaluating (34) at ri and excluding the self-interaction of the point scatterers, we
get

(35) φi −
m∑
k=1
k 6=i

σkφkGκ(ri, rk) +

∫
Γ

Gκ(ri, r
′)∂ν′φ(r′)ds(r′) = φinc(ri).

Taking the normal derivative of (32) on Γ and applying the jump condition lead to

∂νφinc(r) =

∫
Γ

∂νGκ(r, r′)∂ν′φ(r′)ds(r′)

−
m∑
k=1

σkφk∂νGκ(r, rk) +
1

2
∂νφ(r), r ∈ Γ.(36)
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Multiplying (32) by iη and subtracting it from (36), we obtain

1

2
∂νφ(r) +

∫
Γ

(∂ν − iη)Gκ(r, r′)∂ν′φ(r′)ds(r′)

−
m∑
k=1

σkφk(∂ν − iη)Gκ(r, rk) = (∂ν − iη)φinc(r).(37)

The coupled system (35) and (37) forms the generalized Foldy–Lax formulation for
the scattering problem with the linear point scatterers and extended scatterers.

4.2. Quadratically nonlinear point scatterers. Consider the point scatterers
with weak quadratic nonlinearity. Let κj = ωj/c and φ(j) be the field corresponding
to the wavenumber κj . Viewing the external field, which acts on the nonlinear
point scatterers, as point sources for the extended obstacle, we have the following
equations in the exterior domain R2 \ D̄:

∆φ(1)(r) + κ2
1φ

(1)(r) = −
m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
δ(r− rk),(38a)

∆φ(2)(r) + κ2
2φ

(2)(r) = −
m∑
k=1

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
δ(r− rk).(38b)

The sound-soft boundary condition implies that

(39) φ(1) = φ(2) = 0 on Γ.

The fields satisfy the following relationship:

φ(1) = φinc + ψ(1), φ(2) = ψ(2),

where ψ(j) is the scattered field corresponding to the wavenumber κj and satisfies
the Sommerfeld radiation condition

lim
r→∞

r1/2
(
∂rψ

(j) − iκjψ
(j)
)

= 0, r = |r|.

Similarly, we may show that the incident field satisfies∫
Γ

(φinc(r′)∂ν′Gκ1
(r, r′)− ∂ν′φinc(r′)Gκ1

(r, r′)) ds(r′) =

{
−φinc(r), r ∈ D,
0, r ∈ R2 \ D̄;

the scattered fields satisfy∫
Γ

(
ψ(1)(r′)∂ν′Gκ1(r, r′)− ∂ν′ψ(1)(r′)Gκ1(r, r′)

)
ds(r′)

+

m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
Gκ1(r, rk) =

{
0, r ∈ D,
ψ(1)(r), r ∈ R2 \ D̄,

and ∫
Γ

(
ψ(2)(r′)∂ν′Gκ2(r, r′)− ∂ν′ψ(2)(r′)Gκ2(r, r′)

)
ds(r′)

+

m∑
k=1

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
Gκ2(r, rk) =

{
0, r ∈ D,
ψ(2)(r), r ∈ R2 \ D̄.
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Adding the above equations and using the boundary condition yield for r ∈ D that

φinc(r) =

∫
Γ

Gκ1
(r, r′)∂ν′φ(1)(r′)ds(r′)

−
m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
Gκ1(r, rk),(40a)

0 =

∫
Γ

Gκ2
(r, r′)ds(r′)∂ν′φ(2)(r′)

−
m∑
k=1

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
Gκ2

(r, rk),(40b)

and for r ∈ R2 \ D̄ that

ψ(1)(r) =

m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
Gκ1

(r, rk)

−
∫

Γ

Gκ1(r, r′)∂ν′φ(1)(r′)ds(r′),(41a)

ψ(2)(r) =

m∑
k=1

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
Gκ2

(r, rk)

−
∫

Γ

Gκ2(r, r′)∂ν′φ(2)(r′)ds(r′).(41b)

Adding the incident field to (41a) and noting φ(2) = ψ(2), we obtain for r ∈ R2\D̄
that

φ(1)(r) = φinc(r) +

m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
Gκ1

(r, rk)

−
∫

Γ

Gκ1(r, r′)∂ν′φ(1)(r′)ds(r′),(42a)

φ(2)(r) =
m∑
k=1

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
Gκ2

(r, rk)

−
∫

Γ

Gκ2(r, r′)∂ν′φ(2)(r′)ds(r′).(42b)

Evaluating (42) at ri leads to

φ
(1)
i −

m∑
k=1
k 6=i

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
Gκ1

(ri, rk)

+

∫
Γ

Gκ1(ri, r
′)∂ν′φ(1)(r′)ds(r′) = φinc(ri),(43a)

φ
(2)
i −

m∑
k=1
k 6=i

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
Gκ2

(ri, rk)

+

∫
Γ

Gκ2(ri, r
′)∂ν′φ(2)(r′)ds(r′) = 0.(43b)
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Taking the normal derivative of (40) and using the jump conditions, we get

∂νφinc(r) =

∫
Γ

∂νGκ1
(r, r′)∂ν′φ(1)(r′)ds(r′)

−
m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
∂νGκ1

(r, rk) +
1

2
∂νφ

(1)(r),(44a)

0 =

∫
Γ

∂νGκ2
(r, r′)∂ν′φ(2)(r′)ds(r′)

−
m∑
k=1

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
∂νGκ2

(r, rk) +
1

2
∂νφ

(2)(r).(44b)

Multiplying (40) by iη and subtract it from (44) give

1

2
∂νφ

(1)(r) +

∫
Γ

(∂ν − iη)Gκ1(r, r′)∂ν′φ(1)(r′)ds(r′)

−
m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
(∂ν − iη)Gκ1

(r, rk) = (∂ν − iη)φinc(r),(45a)

1

2
∂νφ

(2)(r) +

∫
Γ

(∂ν − iη)Gκ2(r, r′)∂ν′φ(2)(r′)ds(r′)

−
m∑
k=1

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
(∂ν − iη)Gκ2

(r, rk) = 0.(45b)

The coupled system (43) and (45) gives the generalized Foldy–Lax formulation
for the scattering problem with quadratic nonlinear point scatterers and extended
scatterers.

4.3. Cubically nonlinear point scatterers. Consider the point scatterers with
weak cubic nonlinearity. Let κj = ωj/c and φ(j) be the field corresponding to the
wavenumber κj . Viewing the external field, which acts on the nonlinear point scat-
terers, as point sources for the extended obstacle, we have the following equations
in the exterior domain R2 \ D̄:

∆φ(1)(r) + κ2
1φ

(1)(r) = −
m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k

+ σ
(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
δ(r− rk),(46a)

∆φ(3)(r) + κ2
3φ

(3)(r) = −
m∑
k=1

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
δ(r− rk).(46b)

The sound-soft boundary condition gives that

(47) φ(1) = φ(3) = 0 on Γ.

The fields satisfy

φ(1) = φinc + ψ(1), φ(3) = ψ(3),

where ψ(j) is the scattered field corresponding to the wavenumber κj and satisfies
the Sommerfeld radiation condition

lim
r→∞

r1/2
(
∂rψ

(j) − iκjψ
(j)
)

= 0, r = |r|.
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Similarly, we may show that the incident field satisfies∫
Γ

(φinc(r′)∂ν′Gκ1(r, r′)− ∂ν′φinc(r′)Gκ1(r, r′)) ds(r′) =

{
−φinc(r), r ∈ D,
0, r ∈ R2 \ D̄;

the scattered fields satisfy∫
Γ

(
ψ(1)(r′)∂ν′Gκ1

(r, r′)− ∂ν′ψ(1)(r′)Gκ1
(r, r′)

)
ds(r′)

+

m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k + σ

(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
Gκ1(r, rk)

=

{
0, r ∈ D,
ψ(1)(r), r ∈ R2 \ D̄,

and ∫
Γ

(
ψ(3)(r′)∂ν′Gκ3

(r, r′)− ∂ν′ψ(3)(r′)Gκ3
(r, r′)

)
ds(r′)

+

m∑
k=1

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
Gκ3

(r, rk) =

{
0, r ∈ D,
ψ(3)(r), r ∈ R2 \ D̄.

Adding the above equations and using the boundary condition yield for r ∈ D that

φinc(r) =

∫
Γ

Gκ1(r, r′)∂ν′φ(1)(r′)ds(r′)

−
m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k + σ

(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
Gκ1

(r, rk),(48a)

0 =

∫
Γ

Gκ3
(r, r′)ds(r′)∂ν′φ(3)(r′)−

m∑
k=1

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
Gκ3

(r, rk),(48b)

and for r ∈ R2 \ D̄ that

ψ(1)(r) =

m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k + σ

(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
Gκ1

(r, rk)

−
∫

Γ

Gκ1(r, r′)∂ν′φ(1)(r′)ds(r′),(49a)

ψ(3)(r) =

m∑
k=1

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
Gκ3

(r, rk)

−
∫

Γ

Gκ3
(r, r′)∂ν′φ(3)(r′)ds(r′).(49b)

Adding the incident field to (49a) and noting φ(3) = ψ(3), we obtain

φ(1)(r) = φinc(r) +

m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k + σ

(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
Gκ1

(r, rk)

−
∫

Γ

Gκ1(r, r′)∂ν′φ(1)(r′)ds(r′), r ∈ R2 \ D̄,(50a)
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φ(3)(r) =

m∑
k=1

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
Gκ3

(r, rk)

−
∫

Γ

Gκ3(r, r′)∂ν′φ(3)(r′)ds(r′), r ∈ R2 \ D̄.(50b)

Evaluating (50) at ri and excluding the self-interaction lead to

φ
(1)
i −

m∑
k=1
k 6=i

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k + σ

(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
Gκ1

(ri, rk)

+

∫
Γ

Gκ1(ri, r
′)∂ν′φ(1)(r′)ds(r′) = φinc(ri),(51a)

φ
(3)
i −

m∑
k=1
k 6=i

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
Gκ3

(ri, rk)

+

∫
Γ

Gκ3(ri, r
′)∂ν′φ(3)(r′)ds(r′) = 0.(51b)

Taking the normal derivative of (48) and using the jump conditions, we get

∂νφinc(r) =

∫
Γ

∂νGκ1
(r, r′)∂ν′φ(1)(r′)ds(r′)−

m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k

+ σ
(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
∂νGκ1

(r, rk) +
1

2
∂νφ

(1)(r),(52a)

0 =

∫
Γ

∂νGκ3
(r, r′)∂ν′φ(3)(r′)ds(r′)

−
m∑
k=1

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
∂νGκ3

(r, rk) +
1

2
∂νφ

(3)(r).(52b)

Multiplying (40) by iη and subtract it from (44) give

1

2
∂νφ

(1)(r)−
m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k + σ

(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
(∂ν − iη)Gκ1

(r, rk)

+

∫
Γ

(∂ν − iη)Gκ1(r, r′)∂ν′φ(1)(r′)ds(r′) = (∂ν − iη)φinc(r),(53a)

1

2
∂νφ

(3)(r)−
m∑
k=1

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
(∂ν − iη)Gκ3

(r, rk)

+

∫
Γ

(∂ν − iη)Gκ3(r, r′)∂ν′φ(3)(r′)ds(r′) = 0.(53b)

The coupled system (51) and (53) gives the generalized Foldy–Lax formulation for
the scattering problem with cubic nonlinear point scatterers and extended scatter-
ers.

5. Direct imaging method. In this section, we introduce a fast direct imaging
method to reconstruct the shape of the extended scatterers.
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5.1. Far-field pattern. The far-field pattern is an important quantity which en-
codes the information about the scatterers such as location and shape. Given an
incident field with incident direction d, the scattered field has the asymptotic be-
havior

(54) ψ(r,d) =
eiκ|r|

|r| 12
(
ψ∞(r̂,d) +O(|r|)−1

)
, |r| → ∞,

uniformly in all directions r̂ = r/|r|, where the function ψ∞ is called the far-field
pattern of the scattered field ψ. Here r̂ ∈ S1 is known as the unit observation
direction.

Recall the asymptotic behavior for the Hankel function for large arguments

H
(1)
0 (z) =

√
2

πz
ei(z−π4 ) (1 +O(z−1)

)
, z →∞,

and the following identity

|r− r′| =
√
|r|2 − 2r · r′ + |r′|2 = |r| − r̂ · r′ +O(|r|−1), |r| → ∞.

Using (54) and the scattered field representations (6), (11), (16), (25), (33), (41),
(49), we obtain the following far-field patterns of the scattered field for the scattering
problem with point scatterers, extended scatterers, or mixed scatterers, respectively.

(i) Foldy–Lax formulation for point scatterers:
(a) Linear point scatterers

(55) ψ∞,FL,l(r̂,d) = γ

m∑
k=1

σkφk(d)e−iκr̂·rk ;

(b) Quadratically nonlinear point scatterers

ψ
(1)
∞,FL,q(r̂,d) = γ1

m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
e−iκr̂·rk ,(56a)

ψ
(2)
∞,FL,q(r̂,d) = γ2

m∑
k=1

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
e−iκr̂·rk ;(56b)

(c) Cubically nonlinear point scatterers

ψ
(1)
∞,FL,c(r̂,d) =γ1

m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k + σ

(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
e−iκr̂·rk ,(57a)

ψ
(3)
∞,FL,c(r̂,d) =γ3

m∑
k=1

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
e−iκr̂·rk ;(57b)

(ii) Boundary integral formulation for extended scatterers:

(58) ψ∞,BI(r̂,d) = −γ
∫

Γ

∂ν′φ(r′; d)e−iκr̂·r′ds(r′);

(iii) Generalized Foldy–Lax formulation for mixed scatterers:
(a) Linear point scatterers

(59) ψ∞,GFL,l(r̂,d) = γ

[
m∑
k=1

σkφk(d)e−iκr̂·rk −
∫

Γ

∂ν′φ(r′; d)e−iκr̂·r′ds(r′)

]
;
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(b) Quadratically nonlinear point scatterers

ψ
(1)
∞,GFL,q(r̂,d) = γ1

[
m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(2)
k,1φ̄

(1)
k φ

(2)
k

)
e−iκr̂·rk

−
∫

Γ

∂ν′φ(1)(r′; d)e−iκr̂·r′ds(r′)

]
,(60a)

ψ
(2)
∞,GFL,q(r̂,d) = γ2

[
m∑
k=1

(
σ

(1)
k,2φ

(2)
k + σ

(2)
k,2

(
φ

(1)
k

)2)
e−iκr̂·rk

−
∫

Γ

∂ν′φ(2)(r′; d)e−iκr̂·r′ds(r′)

]
,(60b)

(c) Cubically nonlinear point scatterers

ψ
(1)
∞,GFL,c(r̂,d) =γ1

[
m∑
k=1

(
σ

(1)
k,1φ

(1)
k + σ

(3)
k,1|φ

(1)
k |

2φ
(1)
k + σ

(3)
k,2

(
φ̄

(1)
k

)2
φ

(3)
k

)
e−iκr̂·rk

−
∫

Γ

∂ν′φ(1)(r′; d)e−iκr̂·r′ds(r′)

]
,(61a)

ψ
(3)
∞,GFL,c(r̂,d) =γ3

[
m∑
k=1

(
σ

(1)
k,2φ

(3)
k + σ

(3)
k,3

(
φ

(1)
k

)3)
e−iκr̂·rk

−
∫

Γ

∂ν′φ(3)(r′; d)e−iκr̂·r′ds(r′)

]
,(61b)

where

γ =
eiπ4
√

8πκ
, γj =

eiπ4√
8πκj

.

When the observation directions and the number of point scatterers are large, it
is very slow to directly evaluate the far-field patterns (55)–(61). In practice, the
evaluation of the far-field patterns are accelerated by the fast multipole method
(FMM)[27].

5.2. Imaging function. Consider an array of transmitters that can send out plane
incident waves and record the far-field pattern of the scattered waves. Assume
that we have a set of incident plane waves with incident directions d1, . . . ,dN
and the far-field patterns are recorded at observation direction r̂1, . . . , r̂M , where
ri = (cosαi, sinαi) and dj = (cosβj , sinβj), i = 1, . . . ,M, j = 1, . . . , N . Here αi
is the observation angle and βj is the incident angle. These measurement of the
far-field patterns form an M ×N response matrix

(62) Pκ =

 ψ∞(κ; r̂1,d1) · · · ψ∞(κ; r̂1,dN )
...

...
...

ψ∞(κ; r̂M ,d1) · · · ψ∞(κ; r̂M ,dN )

 ,
where the far-field pattern ψ∞ represents any one of the far-field patterns in (55)–
(61).

Consider two unit vectors:

uκ(r) =
1√
M

(eiκr·r̂1 , . . . , eiκr·r̂M )>
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and

vκ(r) =
1√
N

(eiκr·d1 , . . . , eiκr·dN )>,

which are the illumination vectors with respect to the receivers and the transmitters,
respectively. Define an imaging function

(63) Iκ(r) = u>κ (r)Pκvκ(r).

The direct imaging method is to evaluate the imaging function (63) at any given
sampling point r ∈ R2. The method has the same spirit as any other direct imaging
methods such as the MUSIC [23]: the maximum value of the modulus of Iκ(r)
indicates the boundary of the unknown objects.

Since the imaging function I(r) needs to be evaluated at every sampling point
and each evaluation requires the matrix-vector multiplication, the computation is
intensive. However, the imaging function can be written as

Iκ(r) =
1√
MN

M∑
i=1

N∑
j=1

eiκr·(r̂i+dj)P (i,j)
κ

=
1√
MN

M∑
i=1

N∑
j=1

eiκ[x(cosαi+cos βj)+y(sinαi+sin βj)]P (i,j)
κ .(64)

It is clear to note from (64) that the imaging function Iκ(r) is the two-dimensional

Fourier transform of the (i, j)-th entry of the response matrix P
(i,j)
κ , which takes the

response matrix from the frequency space (κ(cosαi+cosβj), κ(sinαi+sinβj)) to the
physical space r = (x, y)>. Since the frequency points (κ(cosαi+ cosβj), κ(sinαi+
sinβj)) are not uniformly spaced, we need to apply the two-dimensional non-uniform
fast Fourier transform (NUFFT) to accelerate the evaluation.

5.3. NUFFT. We give a short introduction to NUFFT in one dimension and the
details can be found in [26]. We refer to [42] on an application of the NUFFT to
accelerate the evaluation of the direct multi-particle scattering problem in a layered
medium.

Consider the following expression:

(65) f(xi) =

n∑
j=1

cje
iξjxi , i = 1, . . . ,m,

where cj ∈ C, xi ∈ [−m/2,m/2 − 1], ξj ∈ [−π, π]. Given cj and ξj , the goal is to
evaluate f(xi) efficiently. When m = n and xi, ξj are uniformly distributed in their
intervals, the sum can be accelerated by the standard FFT.

Consider the situation where m 6= n and ξj is not uniformly given in the interval
[−π, π]. Assuming that xi is uniformly distributed, we rewrite equation (65) as

f(xi) =

n∑
j=1

cj

∫ ∞
−∞

δ(ξ − ξj)eiξxidξ =

∫ ∞
−∞

F (ξ)eiξxidξ, i = 1, . . . ,m,

where δ is the Dirac delta function and

F (ξ) =

n∑
j=1

cjδ(ξ − ξj).

Hence f(x) can be retrieved by taking the Fourier transform of F (ξ). However, F (ξ)
consists of delta functions, which is numerically difficult to evaluate. The function
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Figure 2. Schematic of the imaging modality with nonlinear point scatterers.

F (ξ) can be modified by convolving with a Gaussian function g(ξ) = e−ξ
2/4τ , where

τ > 0 is a small number. Let

F̃ (ξ) =

∫ ∞
−∞

F (t)e−(ξ−t)2/4τdt =

n∑
j=1

cje
−(ξ−ξj)2/4τ .

We take an over sampling of F̃ (ξ) uniformly on the interval [−π, π] and apply the

Fourier transform of F̃ (ξ) via the standard FFT. It is worth to note that both

F (ξ) and g(ξ) are periodized first on [−π, π] before evaluating F̃ (ξ) in order to

apply the FFT [26]. Denote by ˆ̃F (x) and ĝ(x) the Fourier transform F̃ (ξ) and g(ξ),
respectively. It follows from the convolution property of Fourier transform that
f(x) can be approximated by

f(x) =
ˆ̃F (x)

ĝ(x)
=
( τ
π

)− 1
2

eτx
2 ˆ̃F (x).

To conclude, the NUFFT consists of three steps: (1) take a convolution with
a Gaussian function; (2) apply the standard FFT for the over sampled function;
(3) take a deconvolution with the Gaussian function. The choices of parameter τ
and oversampling factor in step 2 highly affect the numerical performance of the
NUFFT. For the one dimensional case, τ is usually chosen to be 12/m2 and the
number of over sampling points is 2m, which guarantees 12 digits precision. Using
these parameters, we can easily find out that the complexity of the one-dimensional
NUFFT is O(K logK), where K = max{m,n}. The scheme introduced here can
be easily extended to the two- and higher-dimensional cases. The two-dimensional
NUFFT is used in this work to evaluate (64).

5.4. Imaging with nonlinear point scatterers. The method introduced in the
beginning of this section works effectively to image the extended scatterers sur-
rounded by linear point scatterers. The method can also be applied directly to the
scattered field generated by the first order frequency wave in the nonlinear case.
The purpose of adding nonlinear point scatterers is to introduce higher order field,
which allows to capture more details of the extended scatterers.

However, if we fix the location of the nonlinear point scatterers, the imaging
method will fail for testing the higher order frequency waves. The reason is that
the test function vκ depends on the incident angles dj , j = 1, . . . , N . For higher
order frequency waves, the incident wave is essentially generated by the nonlinear
interaction of point scatterers. The direction of such excited incident wave does not
line up with the incident direction in the test function.
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To remedy the scheme, we first put the point scatterers sufficiently far away
from the extended scatterers and line up the point scatterers towards the incident
direction, as is shown in Figure 2. In addition, we move the point scatterers along
with the change of incident direction. For the higher order frequency waves, the
entries of the response matrix are taken as the difference of the far-field patterns
from the generalized Foldy–Lax formulation and the Foldy–Lax formulation, i.e.,

P (i,j)
κ = ψ∞,GFL,q(κ; r̂i,dj)− ψ∞,FL,q(κ; r̂i,dj)

for the quadratically nonlinear point scatterers and

P (i,j)
κ = ψ∞,GFL,c(κ; r̂i,dj)− ψ∞,FL,c(κ; r̂i,dj)

for the cubically nonlinear point scatterers. The purpose of taking the difference
is to avoid the possibility that the far-field pattern from the point scatterers may
dominate the far-field pattern from the extended scatterers.

Remark 1. Although the field generated by the nonlinear point scatterers is very
weak, the measurement for the first order field and the higher order field are taken
separately at two different frequencies. The measurement noise of the first order
field is not expected to affect the measurement of the higher order field. They are
used independently to generate the images. Therefore, no rescaling is needed for
the higher order field.

6. Numerical experiments. In this section, we discuss the implementation of the
direct scattering problem and present some numerical experiments for the inverse
scattering problem. In all of the following examples, the extended scatterer is a
five-leaf shaped obstacle and can be parameterized, up to a shift and rotation, by

(66) r(t) = r(t)(cos t, sin t), r(t) = 2 + 0.5 cos(5t),

where t ∈ [0, 2π] is the parameter. For convenience, we summarize some of the
parameters used in the numerical experiments in Table 1. The resulting system of
equations are obtained after discretizing the boundary of the extended scatterers.
The total number of unknowns is Npoint +Nboundary for linear point scatterers and
2(Npoint +Nboundary) for nonlinear point scatterers.

To test the stability of the proposed direct imaging algorithm, we add uniformly
distributed random noise to the far field data, i.e.,

ψγ∞(κ; r̂i,dj) = (1 + γ rand)ψ∞(κ; r̂i,dj),

where γ > 0 represents the relative noise level and rand is a random number uni-
formly distributed in the interval (−1, 1). Let P γκ be the response matrix in (62),
where the entries ψ∞(κ; r̂i,dj) are replaced by ψγ∞(κ; r̂i,dj). Let Iγκ (r) be the cor-
responding imaging function where the response matrix Pκ is replace by P γκ . Noting
that uκ(r) and vk(r) are unit vectors, we have

|Iγκ (r)− Iκ(r)| ≤ |u>κ (r)(P γκ − Pκ)vκ(r)|
≤ ‖P γκ − Pκ‖ ≤ Cγ max

1≤i≤M
1≤j≤N

|ψ∞(κ; r̂i,dj)|,(67)

where C > 0 is a constant independent of r. The estimate (67) shows that the
imaging method is stable with respect to the noise. We take γ = 0.2 in the following
examples.
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Table 1. Parameters used in the numerical experiments.

Npoint number of point scatterers
Nboundary number of points to discretize the boundary of extended scatterer(s)
Ndirection number of incident and observation directions
Nsampling number of sampling points along the x- and y-direction
Tinvert time to invert (factorize) the scattering matrix
Tsolver time to solve the linear system for one incidence
Tffp time to evaluate the far-field patterns
TNUFFT time to apply the NUFFT to evaluate the imaging function

6.1. Direct scattering problem solver. Let

φ = (φ1, . . . , φm)>,φinc = (φinc(r1), . . . , φinc(rm))>.

Define an m×m matrix

Aκ =


1 −σ2Gκ(r1, r2) · · · −σmGκ(r1, rm)

−σ1Gκ(r2, r1) 1 · · · −σmGκ(r2, rm)
...

...
. . .

...
−σ1Gκ(rm, r1) −σ2Gκ(rm, r2) · · · 1


and three linear operators

Mκu =

(∫
Γ

Gκ(r1, r
′)u(r′)ds(r′), . . . ,

∫
Γ

Gκ(rm, r
′)u(r′)ds(r′)

)>
,

(Nκφ)(r) = −
m∑
k=1

σkφk(∂ν − iη)Gκ(r, rk),

(Kκu)(r) =
1

2
u(r) +

∫
Γ

(∂ν − iη)Gκ(r, r′)u(r′)ds(r′).

The generalized Foldy–Lax formulation of linear point scatterers (35) and (37) can
be written as the operator form:

(68)

[
Aκ Mκ

Nκ Kκ

] [
φ
ϕ

]
=

[
φinc

ϕinc

]
,

where ϕ = ∂νφ(r) and ϕinc = (∂ν − iη)φinc(r). In the discretization, the surface of
the extended obstacle Γ is discretized by a set of uniform points in the parameter
space t; the singular integral is evaluated by the Alpert quadrature [2]; the boundary
integral equations are solved by the Nyström method.

There are three approaches to solve the linear system (68):

1. Direct solver. Apply the LU factorization from the Lapack library and paral-
lelize it by OpenMP on a multicore workstation;

2. Iterative solver. Apply GMRES to the whole system and accelerate the matrix
vector product by the fast multipole method (FMM)[27];

3. Hybrid method. Assume that the number of points to discretize the extended
obstacle is relatively small compared to the number of point scatterers. First
is to invert Kκ directly and then solve the Schur complement of (68) by an
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Table 2. Time (in seconds) to solve the linear system (68) on an
HP workstation.

Npoint Nboundary Method 1 Method 2 Method 3
1000 600 0.16 1.42 0.89
10000 600 8.9 fail to converge fail to converge

iterative method, i.e., solve iteratively with the FMM acceleration of the linear
system

(Aκ −MκK−1
κ Nκ)φ = φinc −MκK−1

κ ϕinc.

To investigate the three different methods, we solve the scattering problem for the
extended obstacle in (66), which is surrounded by a group of linear point scatterers.
Table 2 shows the numerical performance for the three different methods. Obviously,
the direct solver is the best option for the linear problem. It solves the system
very rapidly with parallelization, and it is independent of the location of the point
scatterers and the wavenumber. Both of the iterative methods fail if the point
scatterers are randomly and densely distributed in a specific area. In addition, to
solve the inverse problem, the direct problem (68) has to be solved many times
with different right hand sides in order to construct the response matrix, which
corresponds to the far-field patterns for different incident directions. The advantage
of the direct solver is clear: we only need to invert (68) once and apply matrix vector
product for different right hand sides, which can also be done by parallelization.

Next we discuss the solver for the generalized Foldy–Lax of nonlinear point scat-
terers. We only describe the steps for the quadratically nonlinear point scatterers
since they are similar to the cubically nonlinear point scatterers.

Let φ(j) = (φ
(j)
1 , . . . , φ

(j)
m )> and ϕ(j) = ∂νφ

(j)(r) be the external field acting on
the point scatterers and the normal derivative of the total field on the boundary of
the extended obstacle at the wavenumber κj , respectively. The generalized Foldy–
Lax for nonlinear point scatterers can be written as

(69)


D11 D12 Mκ1 0
D21 D22 0 Mκ2

H11 H12 Kκ1
0

H21 H22 0 Kκ2




φ(1)

φ(2)

ϕ(1)

ϕ(2)

 =


φinc

0
ϕinc

0

 ,
where Dij represents the nonlinear interaction between φ(1) and φ(2) at the point
scatterers, Hij is the nonlinear interaction from the point scatterers to the extended
obstacle,Mκj denotes the linear interaction from the extended obstacle to the point
scatterers at the wavenumber κj , and Kκj is the linear interaction for the extended
obstacle.

Due to the large number of unknowns and nonlinearity, neither the direct solver
nor the iterative method is applicable to the nonlinear system (69). Assuming that
the number of point scatterers is relatively small, we propose an efficient nonlinear
solver, which can be be applied to the Schur complement of (69). Specifically, we
invert Kκ1

and Kκ2
directly, and then solve the following nonlinear system:{[

D11 D12

D21 D22

]
−
[
Mκ1

K−1
κ1

0
0 Mκ2

K−1
κ2

] [
H11 H12

H21 H22

]}[
φ(1)

φ(2)

]
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Table 3. Results for imaging two extended scatterers surrounded
by linear point scatterers.

κ Npoint Nboundary Ndirection Nsampling

Example 1 10 1000 600 360 500
Example 2 50 1000 4800 1800 500

Tinvert Tsampling Tffp TNUFFT

Example 1 7.95e-2 2.56e-3 2.23e-2 2.46e-1
Example 2 1.61 2.17e-2 3.49e-1 3.70
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Figure 3. Imaging of two extended scatterers surrounded by 1000
linear point scatterers. (a) Example 1: κ = 10; (b) Example 2:
κ = 50.

=

[
φinc

0

]
−
[
Mκ1K−1

κ1
0

0 Mκ2
K−1
κ2

] [
ϕinc

0

]
.(70)

Finally, we apply a trust region Newton type method to solve the resulting nonlinear
system (70).

6.2. Linear point scatterers. We show the imaging results of extended scatterers
which are surrounded by a group of linear point scatterers. These point scatterers
are randomly and uniformly distributed in the annulus {r ∈ R2 : 10 < |r| < 11}.
The scattering coefficients are σk = 0.5 for all the point scatterers. The numerical
performance of the following two examples is shown in Table 3. It is clear to note
the the proposed method is not only efficient for the direct problem simulation but
also for the inverse problem imaging.

6.2.1. Example 1. This example is to image two extended scatterers which are sur-
rounded by 1000 linear point scatterers at the wavenumber κ = 10. The imaging
result is shown in Figure 3(a). The extended scatterers are well reconstructed except
for the parts where these two scatterers are close.

6.2.2. Example 2. To show the influence of the wavenumber on the imaging reso-
lution, we take the same extended and point scatterers as those in Example 1, but
we use the wavenumber κ = 50. The imaging result is shown in Figure 3(b), which
has a better resolution than Figure 3(a) does. These two scatterers are well recon-
structed even for the parts where they are close. As is expected, higher wavenumber
can capture finer structures.
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Table 4. Results for imaging the extended scatterers surrounded
by quadratically nonlinear point scatterers.

κ Npoint Nboundary Ndirection Nsampling

Example 3 2 2 600 360 500
Example 4 5 2 1200 360 500

Tinvert Tsolver Tffp TNUFFT

Example 3 1.22e-3 8.52e-3 1.39e-2 3.39e-1
Example 4 1.90e-1 3.99e-3 1.96e-2 3.84e-1
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Figure 4. Example 3: Imaging of one extended scatterer with two
fixed quadratically nonlinear point scatterers. (a) Imaging with
κ1 = 2; (b) Imaging with κ2 = 4.

6.3. Quadratically nonlinear point scatterers. We consider the imaging of
extended scatterers with two quadratically nonlinear point scatterers. The nonlinear

scattering coefficients are σ
(1)
k,1 = σ

(1)
k,2 = 0.5 and σ

(2)
k,1 = σ

(2)
k,2 = 0.4. The numerical

performance is shown in Table 4 for the following two examples. As can be seen,
the proposed method is also efficient for the nonlinear direct problem simulation.

6.3.1. Example 3. This example is to image one extended scatterers with two quad-
ratically nonlinear point scatterers. The wavenumber of the incident wave is κ = 2.
First we consider the case when the two point scatterers are fixed at the loca-
tion (−13, 0) and (−14, 0), respectively. The imaging result is shown in Figure 4.
The linear wave can reconstruct the extended scatterer but with poor resolution.
The wave from the second harmonic generation cannot reconstruct the extended
scatterer. As is described in section 4.4, we change the location of the two point
scatterers on the circle with radius 13 and 14 aligned with the incident direction.
For instance, if the angle of the incidence is θ = π

3 , the two point scatterers are
located at (13 cos θ, 13 sin θ) and (14 cos θ, 14 sin θ). The imaging result is shown in
Figure 5. The linear wave yields almost the same imaging result as the fixed point
scatterers does. But the wave from the second harmonic generation gives a much
better imaging result due to the doubled frequency.

6.3.2. Example 4. This example is to image two extended scatterers with two point
scatterers located on the circles of radii |r| = 13 and |r| = 14. The wavenumber of
the incident wave is κ = 5. The imaging result is shown in Figure 6. The linear
wave can still produces a reasonable imaging result. But the nonlinear wave fails to
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Figure 5. Example 3: Imaging of one extended scatterer with two
moving quadratically nonlinear point scatterers. (a) Imaging with
κ1 = 2; (b) Imaging with κ2 = 4.
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Figure 6. Example 4: Imaging of two extended scatterers with
two quadratically nonlinear point scatterers close by. (a) Imaging
with κ1 = 5; (b) Imaging with κ2 = 10.

identify the two extended scatterers. Next we keep everything else the same except
moving away the two point scatterers to the circles of radii |r| = 130 and |r| = 131.
The imaging result is shown in Figure 7. It can be seen that the nonlinear wave
can clearly identify the two extended scatterers. The reason is clear: when the
point scatterers are far away, the excited wave arising from the interaction with the
extended obstacles is more like a plane incident wave, which can be better resolved
by the illumination vectors.

6.4. Cubically nonlinear point scatterers. Finally, we investigate the perfor-
mance of using cubically nonlinear point scatterers. We put two cubically nonlinear
point scatterers around the extended scatterers. The scattering coefficients are

σ
(1)
k,1 = σ

(1)
k,2 = 0.5 and σ

(3)
k,1 = σ

(3)
k,2 = σ

(3)
k,3 = 0.1. The numerical performance is

summarized in Table 5.

6.4.1. Example 5. This example is to image one extended scatterer with two point
scatterers located at the circles with radii |r| = 13 and |r| = 14, respectively. The
wavenumber of the incidence is κ = 2. The imaging result is shown in Figure 8.
Comparing Figure (5)(b) with Figure (8)(b), we observe that the cubically nonlinear
point scatterers can produce a better resolution than the quadratically nonlinear
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Figure 7. Example 4: Imaging of two extended scatterers with
two quadratically nonlinear point scatterers far away. (a) Imaging
with κ1 = 5; (b) Imaging with κ2 = 10.

Table 5. Results for imaging the extended scatterers surrounded
by cubically nonlinear point scatterers.

κ Npoint Nboundary Ndirection Nsampling

Example 5 2 2 600 360 500
Example 6 5 2 1200 360 500

Tinvert Tsolver Tffp TNUFFT

Example 5 1.24e-3 1.00e-2 1.22e-2 4.33e-1
Example 6 4.22e-3 1.91e-2 2.11e-2 4.41e-1
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Figure 8. Example 5: Imaging of two extended scatterers with
two cubically nonlinear point scatterers. (a) Imaging with κ1 = 2;
(b) Imaging with κ3 = 6.

point scatterers does, which confirms once again that higher frequency produces
finer resolution.

6.4.2. Example 6. This example is to image two extended scatterers with two point
scatterers located at the circles with radii |r| = 200 and |r| = 201, respectively.
The wavenumber of the incidence is κ = 5. The imaging result is shown in Figure
9. Comparing Figure (7)(b) with Figure (9)(b), we observe the same pattern that
higher frequency wave generates better resolved imaging result.
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Figure 9. Example 6: Imaging of two extended scatterers with
two cubically nonlinear point scatterers. (a) Imaging with κ1 = 5;
(b) Imaging with κ3 = 15.

7. Conclusion. We present the generalized Foldy–Lax formulations for the scat-
tering by the heterogeneous media consisting of linear or nonlinear point scatterers
and extended obstacles. A new imaging function is proposed and a fast direct
imaging method is developed for the inverse obstacle scattering problem. Using the
nonlinear point scatterers to excite high harmonic generation, enhanced imaging
resolution is achieved to reconstruct the extended obstacle. Our method shares
the attractive features of all the other direct imaging methods. In addition, the
evaluation is accelerated by using the FFT due to the special construction of the
imaging function. Numerical results show that the method is effective to solve the
inverse obstacle scattering problem. The proposed method can be directly extended
to solve the inverse obstacle scattering problem in three dimensions. As an FFT-
based method, a greater potential can show up in higher dimensions. In this work,
we derive the formulations formally without any mathematical justification. It is
also a difficult problem for the solvability of the coupled nonlinear systems. We
intend to address these issue in future work.

Appendix A. Nonlinear wave equations. In the scalar theory of electromag-
netic fields, the scalar electric field u(r, t) obeys the wave equation:

(71) ∆u(r, t)− 1

c2
∂2
t u(r, t) =

4π

c2
∂2
t P (r, t), r ∈ R2,

where c > 0 is the light speed and P (r, t) is the polarization density.
We adopt the following Fourier and inverse Fourier transformation convention:

f(r, ω) =

∫
R
f(r, t)eiωtdt, f(r, t) =

1

2π

∫
R
f(r, ω)e−iωtdω.

Note that if f(r, t) is a real-valued function, then f(r,−ω) = f̄(r, ω), where the
bar is the complex conjugate. Taking the Fourier transform of (71), we obtain the
Helmholtz equation:

(72) ∆u(r, ω) + κ2(ω)u(r, ω) = −4πκ2(ω)P (r, ω),

where κ(ω) = ω/c is the wavenumber.
The polarization may be expanded in powers of the electric field. In principle

the expansion involves infinitely many terms, but only the first few terms are of
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practical importance if the nonlinearity is weak. In this paper, we consider linear,
quadratically nonlinear, and cubically nonlinear media.

(i) A medium is linear if

(73) P (r, ω) = χ(1)(r, ω)u(r, ω),

where the coefficient χ(1)(r, ω) is the first-order susceptibility. Combining (72) and
(73) gives

(74) ∆u(r, ω) + κ2(ω)(1 + 4πχ(1)(r, ω))u(r, ω) = 0.

(ii) A medium is quadratically nonlinear if

(75) P (r, ω) = χ(1)(r, ω)u(r, ω) +
∑

ω1+ω2=ω

χ(2)(r, ω1, ω2)u(r, ω1)u(r, ω2),

where χ(2)(r, ω1, ω2) are the second-order susceptibilities. The summation indicates
that the electric fields at the frequencies ω1 and ω2 contribute to the polarization at
the frequency ω if ω1 + ω2 = ω. Second-order nonlinear effects include second har-
monic generation, which is excited by a monochromatic incident field of frequency ω
in a quadratically nonlinear medium. We assume that the nonlinear susceptibilities
are sufficiently weak, i.e.,∑

ω1+ω2=ω

χ(2)(r, ω1, ω2)u(r, ω1)u(r, ω2)� χ(1)(r, ω)u(r, ω).

We also assume that the second-order susceptibilities have full permutation sym-
metry, i.e.,

χ(2)(r, ω1, ω2) = χ(2)(r, ω2, ω1).

Let ω1 = ω and ω2 = 2ω. Define κj = ωj/c. Denote by u(j) the field corresponding

to the wavenumber κj . It follows from (72) and (75) that u(j) satisfies

∆u(1)(r)+κ2
1(1 + 4πχ(1)(r, ω1))u(1)(r)

= −8πκ2
1χ

(2)(r, ω2,−ω1)ū(1)(r)u(2)(r),(76a)

∆u(2)(r)+κ2
2(1 + 4πχ(1)(r, ω2))u(2)(r)

= −4πκ2
2χ

(2)(r, ω1, ω1)
(
u(1)(r)

)2
.(76b)

(iii) A medium is cubically nonlinear if
(77)

P (r, ω) = χ(1)(r, ω)u(ω) +
∑

ω1+ω2+ω3=ω

χ(3)(r, ω1, ω2, ω3)u(r, ω1)u(r, ω2)u(r, ω3),

where χ(3)(r, ω1, ω2, ω3) are the third order susceptibilities. Materials with inversion
symmetry have zero second order susceptibilities and thus fall into this category.
Third-order nonlinear effects include third-harmonic generation. We assume that
the nonlinear susceptibilities are sufficiently weak, i.e.,∑

ω1+ω2+ω3=ω

χ(3)(r, ω1, ω2, ω3)u(r, ω1)u(r, ω2)u(r, ω3)� χ(1)(r, ω)u(r, ω).

In addition, we assume that third-order susceptibilities have full permutation sym-
metry, i.e.,

χ(2)(r, ω1, ω2, ω3) = χ(2)(r, ωp(1), ωp(2), ωp(3)),

where {p(1),p(2),p(3)} is a permutation of {1, 2, 3}. Suppose that a source of
frequency ω is incident upon a cubic nonlinear medium. Let ω1 = ω and ω3 = 3ω.
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Define κj = ωj/c. Denote by u(j) the field corresponding to the wavenumber κj . It

follows from (72) and (77) that u(j) satisfies

∆u(1)(r) + κ2
1(1 + 4πχ(1)(r, ω1))u(1)(r)

= −12πκ2
1χ

(3)(r, ω1, ω1,−ω1)ū(1)(r)
(
u(1)(r)

)2
− 12πκ2

1χ
(3)(r, ω3,−ω1,−ω1)u(3)(r)

(
ū(1)(r)

)2
,(78a)

∆u(3)(r) + κ2
3(1 + 4πχ(1)(r, ω3))u(3)(r)

= −4πκ2
3χ

(3)(r, ω1, ω1, ω1)
(
u(1)(r)

)3
.(78b)

Appendix B. Point scatterer models. Scatterers that are small compared to
the wavelength can be effectively treated as point scatterers [22]. The susceptibilities
of a small scatterer located at r0 can be replaced by delta functions in the following
forms:

χ(1)(r, ω) = η(1)(r, ω)δ(r− r0),(79a)

χ(2)(r, ω1, ω2) = η(2)(r, ω1, ω2)δ(r− r0),(79b)

χ(3)(r, ω1, ω2, ω3) = η(3)(r, ω1, ω2, ω3)δ(r− r0),(79c)

where η(j) are the effective susceptibilities of the point scatterers. These effective
susceptibilities have to be chosen to ensure that the solution to the wave equations
involving the delta functions are good approximations of the scattered field from the
finite size scatterers outside of the interaction region, which is of size comparable
to the physical size of the scatterer. This can be done rigorously by considering
the norm limit of the resolvent of the renormalized scattering operators as the size
of the scatterers goes to zero when the scatterers are linear [1]. This justification
does not generalize to small nonlinear scatterers and no justification of the nonlinear
case is known. However, this heuristic model for small nonlinear scatterers is widely
used in the physics community and it has been producing results consistent with
experiments [28, 29]. One realization of a nonlinear point scatterer is the gold dimer
structure [21], which is a nano structure with a significant nonlinear susceptibility
that produces strong local field enhancement.

(i) For a collection of linear point scatterers located at rk ∈ R2, k = 1, . . . ,m,
the wave equation (74) takes the form:

(80) ∆u(r, ω) + κ2(ω)u(r, ω) = −4πκ2(ω)

m∑
k=1

η(1)(rk, ω)u(rk, ω)δ(r− rk).

We obtain (3) by taking the following substitutions:

u(r, ω) = φ(r), 4πκ2(ω)η(1)(rk, ω) = σk.

(ii) For a collection of quadratically nonlinear point scatterers located at rk ∈
R2, k = 1, . . . ,m, the wave equation (76) takes the form:

∆u(1)(r) + κ2
1u

(1)(r) =−
m∑
k=1

(
4πκ2

1η
(1)(rk, ω1)u(1)(rk)

+ 8πκ2
1η

(2)(rk, ω2,−ω1)ū(1)(rk)u(2)(rk)
)
δ(r− rk),(81a)
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∆u(2)(r) + κ2
2u

(2)(r) =−
m∑
k=1

(
4πκ2

2η
(1)(rk, ω2))u(2)(rk)

+ 4πκ2
2η

(2)(rk, ω1, ω1)
(
u(1)(rk)

)2)
δ(r− rk).(81b)

We obtain (9a) and (9b) by using the substitutions:

u(j) = φ(j), 4πκ2
1η

(1)(rk, ω1) = σ
(1)
k,1, 8πκ2

1η
(2)(rk, ω2,−ω1) = σ

(2)
k,1,

4πκ2
2η

(1)(rk, ω2) = σ
(1)
k,2, 4πκ2

2η
(2)(rk, ω1, ω1) = σ

(2)
k,2.

Note that σ
(1)
k,1 and σ

(1)
k,2 generically take different values, so do σ

(2)
k,1 and σ

(2)
k,2.

(iii) For a collection of cubically nonlinear point scatterers located at rk ∈ R2, k =
1, . . . ,m, the wave equation (78) takes the form:

∆u(1)(r) + κ2
1u

(1)(r) =−
m∑
k=1

(
4πκ2

1η
(1)(rk, ω1))u(1)(rk)

+ 12πκ2
1η

(3)(rk, ω1, ω1,−ω1)ū(1)(rk)
(
u(1)(rk)

)2
+ 12πκ2

1η
(3)(rk, ω3,−ω1,−ω1)u(3)(rk)

(
ū(1)(rk)

)2)
δ(r− rk),(82a)

∆u(3)(r) + κ2
3u

(3)(r) =−
m∑
k=1

(
4πκ2

3η
(1)(rk, ω3))u(3)(rk)

+ 4πκ2
3η

(3)(rk, ω1, ω1, ω1)
(
u(1)(rk)

)3)
δ(r− rk).(82b)

We obtain (14a) and (14b) by following the substitutions:

u(j) = φ(j), 4πκ2
1η

(1)(rk, ω1) = σ
(1)
k,1,

12πκ2
1η

(3)(rk, ω1, ω1,−ω1) = σ
(3)
k,1, 12πκ2

1η
(3)(rk, ω3,−ω1,−ω1) = σ

(3)
k,2,

4πκ2
3η

(1)(rk, ω3) = σ
(1)
k,2, 4πκ2

3η
(3)(rk, ω1, ω1, ω1) = σ

(3)
k,3.

Note that σ
(1)
k,1 and σ

(1)
k,2 generically take different values, and so do σ

(1)
k,1, σ

(1)
k,2 and

σ
(1)
k,3.
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