
Inverse Problems and Imaging doi:10.3934/ipi.2019026

Volume 13, No. 3, 2019, 545–573

INVERSE OBSTACLE SCATTERING FOR ELASTIC WAVES IN

THREE DIMENSIONS

Peijun Li∗ and Xiaokai Yuan

Department of Mathematics, Purdue University

West Lafayette, Indiana 47907, USA

(Communicated by Hongyu Liu)

Abstract. Consider an exterior problem of the three-dimensional elastic wave
equation, which models the scattering of a time-harmonic plane wave by a

rigid obstacle. The scattering problem is reformulated into a boundary value

problem by introducing a transparent boundary condition. Given the incident
field, the direct problem is to determine the displacement of the wave field

from the known obstacle; the inverse problem is to determine the obstacle’s
surface from the measurement of the displacement on an artificial boundary

enclosing the obstacle. In this paper, we consider both the direct and inverse

problems. The direct problem is shown to have a unique weak solution by
examining its variational formulation. The domain derivative is studied and a

frequency continuation method is developed for the inverse problem. Numerical

experiments are presented to demonstrate the effectiveness of the proposed
method.

1. Introduction. The obstacle scattering problem, which concerns the scattering
of a time-harmonic incident wave by an impenetrable medium, is a fundamental
problem in scattering theory [9]. It has played an important role in many scientific
areas such as geophysical exploration, nondestructive testing, radar and sonar, and
medical imaging. Given the incident field, the direct obstacle scattering problem is
to determine the wave field from the known obstacle; the inverse obstacle scattering
problem is to determine the obstacle from the measured wave field. Due to the
wide applications and rich mathematics, the direct and inverse obstacle scattering
problems have been extensively studied for acoustic and electromagnetic waves by
numerous researchers in both the engineering and mathematical communities [10,
26, 28].

Recently, the scattering problems for elastic waves have received ever-increasing
attention because of the significant applications in geophysics and seismology [1, 5,
22]. The propagation of elastic waves is governed by the Navier equation, which is
complex due to the coupling of the compressional and shear waves with different
wavenumbers. The inverse elastic obstacle scattering problem is investigated math-
ematically in [11, 15, 17] for uniqueness and numerically in [18, 23] for the shape
reconstruction. We refer to [2, 6, 20, 27] on related direct and inverse scattering
problems for elastic waves.
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In this paper, we consider the direct and inverse obstacle scattering problems
for elastic waves in three dimensions. The goal is fourfold: (1) develop a trans-
parent boundary condition to reduce the scattering problem into a boundary value
problem; (2) establish the well-posedness of the solution for the direct problem
by studying its variational formulation; (3) characterize the domain derivative of
the wave field with respect to the variation of the obstacle’s surface; (4) propose
a frequency continuation method to reconstruct the obstacle’s surface. This paper
significantly extends the two-dimensional work [25]. We need to consider more com-
plicated Maxwell’s equation and associated spherical harmonics when studying the
transparent boundary condition (TBC). Computationally, it is also more intensive.

The obstacle is assumed to be embedded in an open space filled with a homo-
geneous and isotropic elastic medium. The scattering problem is reduced into a
boundary value problem by introducing a transparent boundary condition on a
sphere enclosing the obstacle. The non-reflecting boundary conditions can also be
found in [12, 13] for the two- and three-dimensional elastic wave equation. We show
that the direct problem has a unique weak solution by examining its variational for-
mulation. The proofs are based on asymptotic analysis of the boundary operators,
the Helmholtz decomposition, and the Fredholm alternative theorem.

The calculation of domain derivatives, which characterize the variation of the
wave field with respect to the perturbation of the boundary of an medium, is an
essential step for inverse scattering problems. The domain derivatives have been
discussed by many authors for the inverse acoustic and electromagnetic obstacle
scattering problems [14, 21, 29]. Recently, the domain derivative is studied in
[24] for the elastic wave by using boundary integral equations. Here we present a
variational approach to show that it is the unique weak solution of some boundary
value problem. We propose a frequency continuation method to solve the inverse
problem. The method requires multi-frequency data and proceed with respect to
the frequency. At each frequency, we apply the descent method with the starting
point given by the output from the previous step, and create an approximation to
the surface filtered at a higher frequency. Numerical experiments are presented to
demonstrate the effectiveness of the proposed method. A topic review can be found
in [3] for solving inverse scattering problems with multi-frequencies to increase the
resolution and stability of reconstructions.

The paper is organized as follows. Section 2 introduces the formulation of the
obstacle scattering problem for elastic waves. The direct problem is discussed in
section 3 where well-posedness of the solution is established. Section 4 is devoted to
the inverse problem. The domain derivative is studied and a frequency continuation
method is introduced for the inverse problem. Numerical experiments are presented
in section 5. The paper is concluded in section 6. To avoid distraction from the main
results, we collect in the appendices some necessary notation and useful results on
the spherical harmonics, functional spaces, and transparent boundary conditions.

2. Problem formulation. Consider a three-dimensional elastically rigid obstacle
D with a Lipschitz continuous boundary ∂D. Denote by ν = (ν1, ν2, ν3) the unit
normal vector on ∂D pointing towards the exterior of D. We assume that the open
exterior domain R3 \ D̄ is filled with a homogeneous and isotropic elastic medium
with a unit mass density. Let BR = {x ∈ R3 : |x| < R} be a ball with radius R > 0
such that D̄ ⊂ BR. Denote by ΓR = {x ∈ R3 : |x| = R} boundary of BR. Let
Ω = BR \ D̄ be the bounded domain which is enclosed by ∂D and ΓR.
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Let the obstacle be illuminated by a time-harmonic plane wave

(1) uinc = deiκpx·d or uinc = d⊥eiκsx·d,

where d is the unit incident direction vector and d⊥ is the unit polarization vector
satisfying d ·d⊥=0. In (1), the former is called the compressional plane wave while
the latter is called the shear plane wave. Here

(2) κp =
ω

(λ+ 2µ)1/2
and κs =

ω

µ1/2

are known the compressional wavenumber and the shear wavenumber, respectively,
where ω > 0 is the angular frequency, µ and λ are the Lamé parameters satisfying
µ > 0 and λ + µ > 0. It is easy to verify that both the compressional plane wave
and the shear plane wave in (1) satisfy the three-dimensional Navier equation:

(3) µ∆uinc + (λ+ µ)∇∇ · uinc + ω2uinc = 0 in R3 \ D̄.

The displacement of the total wave field u also satisfies

(4) µ∆u+ (λ+ µ)∇∇ · u+ ω2u = 0 in R3 \ D̄.

Since the obstacle is elastically rigid, the total wave field vanishes on ∂D:

(5) u = 0 on ∂D.

The total wave field u can be decomposed into the incident wave uinc and the
scattered wave v:

u = uinc + v.

Subtracting (3) from (4) yields the Navier equation for the scattered wave v:

(6) µ∆v + (λ+ µ)∇∇ · v + ω2v = 0 in R3 \ D̄.

An appropriate radiation condition is needed for the exterior scattering problem.
For any solution v of (6), we introduce the Helmholtz decomposition:

(7) v = ∇φ+∇×ψ, ∇ ·ψ = 0,

where φ and ψ is called the scalar potential function and the vector potential
function, respectively. Substituting (7) into (6) yields

∇
[
(λ+ 2µ)∆φ+ ω2φ

]
+∇× (µ∆ψ + ω2ψ) = 0,

which is fulfilled if φ and ψ satisfy the Helmholtz equation:

(8) ∆φ+ κ2
pφ = 0, ∆ψ + κ2

sψ = 0.

where κp and κs are defined in (2). Hence, we request that φ and ψ satisfy the
Sommerfeld radiation condition:

(9) lim
r→∞

r (∂rφ− iκpφ) = 0, lim
r→∞

r (∂rψ − iκsψ) = 0, r = |x|.

Using the identity

∇× (∇×ψ) = −∆ψ +∇(∇ ·ψ),

we have from the Helmholtz equation (8) that ψ satisfies the Maxwell system:

(10) ∇× (∇×ψ)− κ2
sψ = 0.

As is known, the Silver–Müller radition condition is commonly imposed as an ap-
propriate radiation condition for Maxwell’s equations. It is shown (cf. [10, Theorem
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6.8]) that the Sommerfeld radiation for ψ in (9) is equivalent to the Silver–Müller
radiation condition:

(11) lim
r→∞

((∇×ψ)× x− iκsrψ) = 0, r = |x|.

Given the incident field uinc, the direct problem is to determine the displacement
of the total field u for the known obstacle D; the inverse problem is to determine
the obstacle’s surface ∂D from the boundary measurement of the displacement u on
ΓR. The purpose of this paper is to study the well-posedness of the direct problem
and develop a continuation method for the inverse problem. Hereafter, we take the
notation of a . b or a & b to stand for a ≤ Cb or a ≥ Cb, where C is a positive
constant. Some commonly used functional spaces, such as H1

∂D(Ω), Hs(ΓR), and
H(curl,Ω), are list in appendix B.

3. Direct scattering problem. In this section, we study the variational formu-
lation for the direct problem and show that it admits a unique weak solution.

3.1. Transparent boundary condition. We derive a transparent boundary con-
dition on ΓR to reformulate the problem from the open domain R3 \ D̄ into the
bounded domain Ω.

Given v ∈ L2(ΓR), it follows from Appendix A that v has the Fourier expansion

v(R, θ, ϕ) =

∞∑
n=0

n∑
m=−n

vm1nT
m
n (θ, ϕ) + vm2nV

m
n (θ, ϕ) + vm3nW

m
n (θ, ϕ),

where the Fourier coefficients

vm1n =

∫
ΓR

v(R, θ, ϕ) · T̄mn (θ, ϕ)dγ,

vm2n =

∫
ΓR

v(R, θ, ϕ) · V̄ m
n (θ, ϕ)dγ,

vm3n =

∫
ΓR

v(R, θ, ϕ) · W̄m
n (θ, ϕ)dγ.

Define a boundary operator

(12) Bv = µ∂rv + (λ+ µ)(∇ · v)er on ΓR,

which is assumed to have the Fourier expansion:

(13) (Bv)(R, θ, ϕ) =

∞∑
n=0

n∑
m=−n

wm1nT
m
n (θ, ϕ) + wm2nV

m
n (θ, ϕ) + wm3nW

m
n (θ, ϕ).

Taking ∂r of v in (60), evaluating it at r = R, and using the spherical Bessel
differential equations [30], we get

∂rv(R, θ, ϕ) =

∞∑
n=0

n∑
m=−n

[√
n(n+ 1)φmn

R2
(zn(κpR)− 1)− ψm2n

R2

(
1 + zn(κsR)

+ (Rκs)
2 − n(n+ 1)

)]
Tmn +

[
κ2

sψ
m
3n√

n(n+ 1)
zn(κsR)

]
V m
n +

[
φmn
R2

(
n(n+ 1)

− (Rκp)2 − 2zn(κpR)
)

+

√
n(n+ 1)ψm2n

R2
(zn(κsR)− 1)

]
Wm

n ,(14)
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where zn(t) = th
(1)′

n (t)/h
(1)
n (t), h

(1)
n is the spherical Hankel function of the first kind

with order n, φmn and ψmjn are the Fourier coefficients for φ and ψ on ΓR, respectively.

Noting (60) and using ∇ · v = ∆φ = 2
r∂rφ+ ∂2

rφ+ 1
r∆ΓR

φ, we have

∇ · v(r, θ, ϕ) =

∞∑
n=0

n∑
m=−n

φmn

h
(1)
n (κpR)

[
2

r

d

dr
h(1)
n (κpr) +

d2

dr2
h(1)
n (κpr)

−n(n+ 1)

r2
h(1)
n (κpr)

]
Xm
n ,(15)

where ∆ΓR
is the Laplace–Beltrami operator on ΓR.

Combining (12) and (14)–(15), we obtain

Bv =
∞∑
n=0

n∑
m=−n

µ

R2

[√
n(n+ 1)(zn(κpR)− 1)φmn −

(
1 + zn(κsR) + (Rκs)

2

− n(n+ 1)
)
ψm2n

]
Tmn +

µκ2
s√

n(n+ 1)
zn(κsR)ψm3nV

m
n +

1

R2

[
µ
(
n(n+ 1)− (Rκp)2

− 2zn(κpR)
)
φmn + µ

√
n(n+ 1)(zn(κsR)− 1)ψm2n − (λ+ µ)(κpR)2φmn

]
Wm

n .

(16)

Comparing (13) with (16), we have

(17) (wm1n, w
m
2n, w

m
3n)> =

1

R2
Gn(φmn , ψ

m
2n, ψ

m
3n)>,

where the matrix

Gn =

 0 0 G
(n)
13

G
(n)
21 G

(n)
22 0

G
(n)
31 G

(n)
32 0

 .
Here

G
(n)
13 =

µ(κsR)2zn(κsR)√
n(n+ 1)

, G
(n)
21 = µ

√
n(n+ 1)(zn(κpR)− 1),

G
(n)
22 = µ

(
n(n+ 1)− (κsR)2 − 1− zn(κsR)

)
,

G
(n)
31 = µ

(
n(n+ 1)− (κpR)2 − 2zn(κpR)

)
− (λ+ µ)(κpR)2,

G
(n)
32 = µ

√
n(n+ 1)(zn(κsR)− 1).

Let vmn = (vm1n, v
m
2n, v

m
3n)>, Mnv

m
n = bmn = (bm1n, b

m
2n, b

m
3n)>, where the matrix

Mn =

M
(n)
11 0 0

0 M
(n)
22 M

(n)
23

0 M
(n)
32 M

(n)
33

 .
Here

M
(n)
11 =

( µ
R

)
zn(κsR), M

(n)
22 = −

( µ
R

)(
1 +

(κsR)2zn(κpR)

Λn

)
,

M
(n)
23 =

√
n(n+ 1)

( µ
R

)(
1 +

(κsR)2

Λn

)
,

Inverse Problems and Imaging Volume 13, No. 3 (2019), 545–573



550 Peijun Li and Xiaokai Yuan

M
(n)
32 =

√
n(n+ 1)

(
µ

R
+

(λ+ 2µ)

R

(κpR)2

Λn

)
,

M
(n)
33 = − (λ+ 2µ)

R

(κpR)2

Λn
(1 + zn(κsR))− 2

( µ
R

)
,

where Λn = zn(κpR)(1 + zn(κsR))− n(n+ 1).
Using the above notation and combining (17) and (64), we derive the transparent

boundary condition:

(18) Bv = T v :=

∞∑
n=0

n∑
m=−n

bm1nT
m
n + bm2nV

m
n + bm3nW

m
n on ΓR.

Lemma 3.1. The matrix M̂n = − 1
2 (Mn + M∗n) is positive definite for sufficiently

large n.

Proof. Using the asymptotic expansions of the spherical Bessel functions [30], we
may verify that

zn(t) = −(n+ 1) +
1

16n
t4 +

1

2n
t2 +O

(
1

n2

)
,

Λn(t) = − 1

16
(κpt)

4 − 1

16
(κst)

4 − 1

2
(κpt)

2 − 1

2
(κst)

2 +O

(
1

n

)
.

It follows from straightforward calculations that

M̂n =

M̂
(n)
11 0 0

0 M̂
(n)
22 M̂

(n)
23

0 M̂
(n)
32 M̂

(n)
33

 ,
where

M̂
(n)
11 =

( µ
R

)
(n+ 1) +O

(
1

n

)
, M̂

(n)
22 = −

(
ω2R

Λn

)
(n+ 1) +O (1) ,

M̂
(n)
23 = −

(
µ

R
+
ω2R

Λn

)√
n(n+ 1) +O(1),

M̂
(n)
32 = −

(
µ

R
+
ω2R

Λn

)√
n(n+ 1) +O(1),

M̂
(n)
33 =

2µ

R
+
ω2R

Λn
(1 + zn(κsR)) = −

(
ω2R

Λn

)
n+O(1).

For sufficiently large n, we have

M̂
(n)
11 > 0 and M̂

(n)
22 > 0,

which gives

det[(M̂n)(1:2,1:2)] = M̂
(n)
11 M̂

(n)
22 > 0.

Since Λn < 0 for sufficiently large n, we have

M̂
(n)
22 M̂

(n)
33 −

(
M̂

(n)
23

)2

= n(n+ 1)

[(
ω2R

Λn

)2

−
(
µ

R
+
ω2R

Λn

)2
]

+O(n) > 0.

A simple calculation yields

det[M̂n] = M̂
(n)
11

(
M̂

(n)
22 M̂

(n)
33 −

(
M̂

(n)
23

)2
)
> 0,

Inverse Problems and Imaging Volume 13, No. 3 (2019), 545–573



Inverse obstacle scattering for elastic waves 551

which completes the proof by applying Sylvester’s criterion.

Lemma 3.2. The boundary operator T : H1/2(ΓR) → H−1/2(ΓR) is continuous,
i.e.,

‖T u‖H−1/2(ΓR) . ‖u‖H1/2(ΓR), ∀u ∈H1/2(ΓR).

Proof. For any given u ∈H1/2(ΓR), it has the Fourier expansion

u(R, θ, ϕ) =

∞∑
n=0

n∑
m=−n

um1nT
m
n (θ, ϕ) + um2nV

m
n (θ, ϕ) + um3nW

m
n (θ, ϕ).

Let umn = (um1n, u
m
2n, u

m
3n)>. It is easy to verify from the definition of Mn and the

asymptotic expansion of zn(t) that

|M (n)
i,j | . (1 + n(n+ 1))1/2.

Hence we have

‖T u‖2
H1/2(ΓR)

=

∞∑
n=0

n∑
m=−n

(1 + n(n+ 1))
−1/2 |Mnu

m
n |2

.
∞∑
n=0

n∑
m=−n

(1 + n(n+ 1))
1/2 |umn |2 = ‖u‖2

H1/2(ΓR)
,

which completes the proof.

3.2. Uniqueness. It follows from the Dirichlet boundary condition (5) and the
Helmholtz decomposition (7) that

(19) v = ∇φ+∇×ψ = −uinc on ∂D.

Taking the dot product and the cross product of (19) with the unit normal vector
ν on ∂D, respectively, we get

∂νφ+ (∇×ψ) · ν = −u1, (∇×ψ)× ν +∇φ× ν = −u2,

where

u1 = uinc · ν, u2 = uinc × ν.
We obtain a coupled boundary value problem for the potential functions φ and ψ:

∆φ+ κ2
pφ = 0, ∇× (∇×ψ)− κ2

sψ = 0, in Ω,

∂νφ+ (∇×ψ) · ν = −u1, (∇×ψ)× ν +∇φ× ν = −u2 on ∂D,

∂rφ−T1φ = 0, (∇×ψ)× er − iκsT2ψΓR
= 0 on ΓR.

(20)

where T1 and T2 are the transparent boundary operators given in (46) and (54),
respectively.

Multiplying test functions (p, q) ∈ H1(Ω) ×H(curl,Ω), we arrive at the weak
formulation of (20): To find (φ,ψ) ∈ H1(Ω)×H(curl,Ω) such that

(21) a(φ,ψ; p, q) = 〈u1, p〉∂D + 〈u2, q〉∂D, ∀ (p, q) ∈ H1(Ω)×H(curl,Ω),

where the sesquilinear form

a(φ,ψ; p, q) = (∇φ,∇p) + (∇×ψ,∇× q)− κ2
p(φ, p)− κ2

s (ψ, q)

− 〈(∇×ψ) · ν, p〉∂D − 〈∇φ× ν, q〉∂D − 〈T1φ, p〉ΓR
− iκs〈T2ψΓR

, qΓR
〉ΓR

.

Theorem 3.3. The variational problem (21) has at most one solution.
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Proof. It suffices to show that φ = 0,ψ = 0 in Ω if u1 = 0,u2 = 0 on ∂D. If (φ,ψ)
satisfy the homogeneous variational problem (21), then we have

(∇φ,∇φ) + (∇×ψ,∇×ψ)− κ2
p(φ, φ)− κ2

s (ψ,ψ)− 〈(∇×ψ) · ν, φ〉∂D
−〈∇φ× ν,ψ〉∂D − 〈T1φ, φ〉ΓR

− iκs〈T2ψΓR
,ψΓR

〉ΓR
= 0.(22)

Using the integration by parts, we may verify that

〈(∇×ψ) · ν, φ〉∂D = −〈ψ,ν ×∇φ〉∂D = 〈ψ,∇φ× ν〉∂D,
which gives

(23) 〈(∇×ψ) · ν, φ〉∂D + 〈∇φ× ν,ψ〉∂D = 2Re〈∇φ× ν,ψ〉∂D.
Taking the imaginary part of (22) and using (23), we obtain

Im〈T1φ, φ〉ΓR
+ κsRe〈T2ψΓR

,ψΓR
〉ΓR

= 0,

which gives φ = 0,ψ = 0 on ΓR, due to Lemma C.1 and Lemma C.2. Using (46)
and (54), we have ∂rφ = 0, (∇× ψ)× er = 0 on ΓR. By the Holmgren uniqueness
theorem, we have φ = 0,ψ = 0 in R3 \ B̄. A unique continuation result concludes
that φ = 0,ψ = 0 in Ω.

3.3. Well-posedness. Using the transparent boundary condition (18), we obtain
a boundary value problem for u:

µ∆u+ (λ+ µ)∇∇ · u+ ω2u = 0 in Ω,

u = 0 on ∂D,

Bu = T u+ g on ΓR,

(24)

where g = (B − T )uinc. The variational problem of (24) is to find u ∈ H1
∂D(Ω)

such that

(25) b(u,v) = 〈g,v〉ΓR
, ∀v ∈H1

∂D(Ω),

where the sesquilinear form b : H1
∂D(Ω)×H1

∂D(Ω)→ C is defined by

b(u,v) = µ

∫
Ω

∇u : ∇v̄ dx+ (λ+ µ)

∫
Ω

(∇ · u)(∇ · v̄) dx

−ω2

∫
Ω

u · v̄ dx− 〈T u,v〉ΓR
.

Here A : B = tr(AB>) is the Frobenius inner product of square matrices A and B.
The following result follows from the standard trace theorem of the Sobolev

spaces. The proof is omitted for brevity.

Lemma 3.4. It holds the estimate

‖u‖H1/2(ΓR) . ‖u‖H1(Ω), ∀u ∈H1
∂D(Ω).

Lemma 3.5. For any ε > 0, there exists a positive constant C(ε) such that

‖u‖L2(ΓR) ≤ ε‖u‖H1(Ω) + C(ε)‖u‖L2(Ω), ∀u ∈H1
∂D(Ω).

Proof. Let B′ be the ball with radius R′ > 0 such that B̄′ ⊂ D. Denote Ω̃ = B \ B̄′.
Given u ∈H1

∂D(Ω), let ũ be the zero extension of u from Ω to Ω̃, i.e.,

ũ(x) =

u(x), x ∈ Ω,

0, x ∈ Ω̃ \ Ω̄.
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The extension of ũ has the Fourier expansion

ũ(r, θ, ϕ) =

∞∑
n=0

n∑
m=−n

ũm1n(r)Tmn (θ, ϕ) + ũm2n(r)V m
n (θ, ϕ) + ũm3n(r)Wm

n (θ, ϕ).

A simple calculation yields

‖ũ‖2L2(ΓR) =

∞∑
n=0

n∑
m=−n

|ũm1n(R)|2 + |ũm2n(R)|2 + |ũm3n(R)|2.

Since ũ(R′, θ, ϕ) = 0, we have ũmjn(R′) = 0. For any given ε > 0, it follows from
Young’s inequality that

|ũmjn(R)|2 =

∫ R

R′

d

dr
|ũmjn(r)|2dr ≤

∫ R

R′
2|ũmjn(r)|

∣∣∣∣ d

dr
ũmjn(r)

∣∣∣∣dr
≤ (R′ε)

−2
∫ R

R′
|ũmjn(r)|2dr + (R′ε)

2
∫ R

R′

∣∣∣∣ d

dr
ũmjn(r)

∣∣∣∣2 dr,

which gives

|ũmjn(R)|2 ≤ C(ε)

∫ R

R′
|ũmjn(r)|2r2dr + ε2

∫ R

R′

∣∣∣∣ d

dr
ũmjn(r)

∣∣∣∣2 r2dr.

The proof is completed by noting that

‖ũ‖L2(ΓR) = ‖u‖L2(ΓR), ‖ũ‖L2(Ω̃) = ‖u‖L2(Ω), ‖ũ‖H1(Ω̃) = ‖u‖H1(Ω).

Lemma 3.6. It holds the estimate

‖u‖H1(Ω) . ‖∇u‖L2(Ω), ∀u ∈H1
∂D(Ω).

Proof. As is defined in the proof of Lemma 3.5, let ũ be the zero extension of u
from Ω to Ω̃. It follows from the Cauchy–Schwarz inequality that

|ũ(r, θ, ϕ)|2 =

∣∣∣∣∫ r

R′
∂rũ(r, θ, ϕ)dr

∣∣∣∣2 .
∫ R

R′
|∂rũ(r, θ, ϕ)|2 dr.

Hence we have

‖ũ‖2
L2(Ω̃)

=

∫ R

R′

∫ 2π

0

∫ π

0

|ũ(r, θ, ϕ)|2r2drdθdϕ

.
∫ R

R′

∫ 2π

0

∫ π

0

∫ R

R′
|∂rũ(r, θ, ϕ)|2drdθdϕdr

.
∫ R

R′

∫ 2π

0

∫ π

0

|∂rũ(r, θ, ϕ)|2drdθdϕ . ‖∇ũ‖2
L2(Ω̃)

.

The proof is completed by noting that

‖u‖L2(Ω) = ‖ũ‖L2(Ω̃), ‖∇u‖L2(Ω) = ‖∇ũ‖L2(Ω̃),

‖u‖2H1(Ω) = ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω).

Theorem 3.7. The variational problem (25) admits a unique weak solution u ∈
H1

∂D(Ω).
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Proof. Using the Cauchy–Schwarz inequality, Lemma 3.2, and Lemma 3.4, we have

|b(u,v)| ≤µ‖∇u‖L2(Ω)‖∇v‖L2(Ω) + (λ+ µ)‖∇ · u‖0,Ω‖∇ · v‖L2(Ω)

+ ω2‖u‖L2(Ω)‖v‖L2(Ω) + ‖T u‖H−1/2(ΓR)‖v‖H1/2(ΓR)

.‖u‖H1(Ω)‖v‖H1(Ω),

which shows that the sesquilinear form b(·, ·) is bounded.

It follows from Lemma 3.1 that there exists an N0 ∈ N such that M̂n is positive
definite for n > N0. The sesquilinear form b can be written as

b(u,v) =µ

∫
Ω

(∇u : ∇v̄) dx+ (λ+ µ)

∫
Ω

(∇ · u)(∇ · v̄) dx− ω2

∫
Ω

u · v̄ dx

−
∑
|n|>N0

n∑
m=−n

〈Mnu
m
n ,v

m
n 〉 −

∑
|n|≤N0

n∑
m=−n

〈Mnu
m
n ,v

m
n 〉 .

Taking the real part of b, and using Lemma 3.1, Lemma 3.6, Lemma 3.5, we obtain

Re b(u,u) = µ‖∇u‖2L2(Ω) + (λ+ µ)‖∇ · u‖2L2(Ω) +
∑
|n|>N0

n∑
m=−n

〈M̂nu
m
n ,u

m
n 〉

− ω2‖u‖L2(Ω) +
∑
|n|≤N0

n∑
m=−n

〈M̂nu
m
n ,u

m
n 〉

≥ C1‖u‖H1(Ω) − ω2‖u‖L2(Ω) − C2‖u‖L2(ΓR)

≥ C1‖u‖H1(Ω) − ω2‖u‖L2(Ω) − C2ε‖u‖H1(Ω) − C(ε)‖u‖L2(Ω)

= (C1 − C2ε)‖u‖H1(Ω) − C3‖u‖L2(Ω).

Letting ε > 0 to be sufficiently small, we have C1 − C2ε > 0 and thus G̊arding’s
inequality. Since the injection of H1

∂D(Ω) into L2(Ω) is compact, the proof is
completed by using the Fredholm alternative (cf. [28, Theorem 5.4.5]) and the
uniqueness result in Theorem 3.3.

4. Inverse scattering. In this section, we study a domain derivative of the scat-
tering problem and present a continuation method to reconstruct the surface.

4.1. Domain derivative. We assume that the obstacle has a C2 boundary, i.e.,
∂D ∈ C2. Given a sufficiently small number h > 0, define a perturbed domain Ωh
which is surrounded by ∂Dh and ΓR, where

∂Dh = {x+ hp(x) : x ∈ ∂D}.

Here the function p ∈ C2(∂D).
Consider the variational formulation for the direct problem in the perturbed

domain Ωh: To find uh ∈H1
∂Dh

(Ωh) such that

(26) bh(uh,vh) = 〈g,vh〉ΓR
, ∀vh ∈H1

∂Dh
(Ωh),

where the sesquilinear form bh : H1
∂Dh

(Ωh)×H1
∂Dh

(Ωh)→ C is defined by

bh(uh,vh) = µ

∫
Ωh

∇uh : ∇v̄h dy + (λ+ µ)

∫
Ωh

(∇ · uh)(∇ · v̄h) dy

−ω2

∫
Ωh

uh · v̄h dy − 〈T uh,vh〉ΓR.(27)
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Similarly, we may follow the proof of Theorem 3.7 to show that the variational
problem (26) has a unique weak solution uh ∈H1

∂Dh
(Ωh) for any h > 0.

Since the variational problem (3.7) is well-posed, we introduce a nonlinear scat-
tering operator:

S : ∂Dh → uh|ΓR
,

which maps the obstacle’s surface to the displacement of the wave field on ΓR. Let
uh and u be the solution of the direct problem in the domain Ωh and Ω, respectively.
Define the domain derivative of the scattering operator S on ∂D along the direction
p as

S ′(∂D;p) := lim
h→0

S (∂Dh)−S (∂D)

h
= lim
h→=0

uh|ΓR
− u|ΓR

h
.

For a given p ∈ C2(∂D), we extend its domain to Ω̄ by requiring that p ∈
C2(Ω)∩C(Ω̄),p = 0 on ΓR, and y = ξh(x) = x+ hp(x) maps Ω to Ωh. It is clear

to note that ξh is a diffeomorphism from Ω to Ωh for sufficiently small h. Denote
by ηh(y) : Ωh → Ω the inverse map of ξh.

Define ŭ(x) = (ŭ1, ŭ2, ŭ3) := (uh ◦ ξh)(x). Using the change of variable y =
ξh(x), we have from straightforward calculations that∫

Ωh

(∇uh : ∇vh) dy =

3∑
j=1

∫
Ω

∇ŭjJηhJ>ηh∇¯̆vj det(Jξh) dx,∫
Ωh

(∇ · uh)(∇ · v̄h) dy =

∫
Ω

(∇ŭ : J>ηh)(∇¯̆v : J>ηh) det(Jξh) dx,∫
Ωh

uh · v̄h dy =

∫
Ω

ŭ · ¯̆v det(Jξh) dx,

where v̆(x) = (v̆1, v̆2, v̆3) := (vh ◦ ξh)(x), Jηh and Jξh are the Jacobian matrices of

the transforms ηh and ξh, respectively.
For a test function vh in the domain Ωh, it follows from the transform that v̆ is a

test function in the domain Ω. Therefore, the sesquilinear form bh in (27) becomes

bh(ŭ,v) =

3∑
j=1

µ

∫
Ω

∇ŭjJηhJ>ηh∇v̄j det(Jξh) dx+ (λ+ µ)

∫
Ω

(∇ŭ : J>ηh)(∇v̄ : J>ηh)

×det(Jξh) dx− ω2

∫
Ω

ŭ · v̄ det(Jξh) dx− 〈T ŭ,v〉ΓR
,

which gives an equivalent variational formulation of (26):

bh(ŭ,v) = 〈g,v〉ΓR
, ∀v ∈H1

∂D(Ω).

A simple calculation yields

b(ŭ− u,v) = b(ŭ,v)− 〈g,v〉ΓR
= b(ŭ,v)− bh(ŭ,v) = b1 + b2 + b3,

where

b1 =

3∑
j=1

µ

∫
Ω

∇ŭj
(
I − JηhJ>ηh det(Jξh)

)
∇v̄j dx,(28)

b2 = (λ+ µ)

∫
Ω

(∇ · ŭ)(∇ · v̄)− (∇ŭ : J>ηh)(∇v̄ : J>ηh) det(Jξh) dx,(29)

b3 = ω2

∫
Ω

ŭ · v̄
(
det(Jξh)− 1

)
dx.(30)
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Here I is the identity matrix. Following the definitions of the Jacobian matrices,
we may easily verify that

det(Jξh) = 1 + h∇ · p+O(h2),

Jηh = J−1
ξh
◦ ηh = I − hJp +O(h2),

JηhJ>ηhdet(Jξh) = I − h(Jp + J>p ) + h(∇ · p)I +O(h2),

where the matrix Jp = ∇p.
Substituting the above estimates into (28)–(30), we obtain

b1 =

3∑
j=1

µ

∫
Ω

∇ŭj
(
h(Jp + J>p )− h(∇ · p)I +O(h2)

)
∇v̄j dx,

b2 = (λ+ µ)

∫
Ω

h(∇ · ŭ)(∇v̄ : J>p ) + h(∇ · v̄)(∇ŭ : J>p )

− h(∇ · p)(∇ · ŭ)(∇ · v̄) +O(h2) dx,

b3 = ω2

∫
Ω

ŭ · v̄
(
h∇ · p+O(h2)

)
dx.

Hence we have

(31) b

(
ŭ− u
h

,v

)
= g1(p)(ŭ,v) + g2(p)(ŭ,v) + g3(p)(ŭ,v) +O(h),

where

g1 =

3∑
j=1

µ

∫
Ω

∇ŭj
(
(Jp + J>p )− (∇ · p)I

)
∇v̄j dx,

g2 = (λ+ µ)

∫
Ω

(∇ · ŭ)(∇v̄ : J>p ) + (∇ · v̄)(∇ŭ : J>p )− (∇ · p)(∇ · ŭ)(∇ · v̄) dx,

g3 = ω2

∫
Ω

(∇ · p)ŭ · v̄ dx.

Theorem 4.1. Given p ∈ C2(∂D), the domain derivative of the scattering operator
S is S ′(∂D;p) = u′|ΓR

, where u′ is the unique weak solution of the boundary value
problem: 

µ∆u′ + (λ+ µ)∇∇ · u′ + ω2u′ = 0 in Ω,

u′ = −(p · ν)∂νu on ∂D,

Bu′ = T u′ on ΓR,

(32)

and u is the solution of the variational problem (25) corresponding to the domain
Ω.

Proof. Given p ∈ C2(∂D), we extend its definition to the domain Ω̄ as before.
It follows from the well-posedness of the variational problem (25) that ŭ → u in
H1

∂D(Ω) as h→ 0. Taking the limit h→ 0 in (31) gives

(33) b

(
lim
h→0

ŭ− u
h

,v

)
= g1(p)(u,v) + g2(p)(u,v) + g3(p)(u,v),

which shows that (ŭ − u)/h is convergent in H1
∂D(Ω) as h → 0. Denote the limit

by u̇ and rewrite (33) as

(34) b(u̇,v) = g1(p)(u,v) + g2(p)(u,v) + g3(p)(u,v).
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First we compute g1(p)(u,v). Noting p = 0 on ∂B and using the identity

∇u
(
(Jp + J>p )− (∇ · p)I

)
∇v̄ =∇ · [(p · ∇u)∇v̄ + (p · ∇v̄)∇u− (∇u · ∇v̄)p]

− (p · ∇u)∆v̄ − (p · ∇v̄)∆u,

we obtain from the divergence theorem that

g1(p)(u,v) = −
3∑
j=1

µ

∫
∂D

(p · ∇uj)(ν · ∇v̄j) + (p · ∇v̄j)(ν · ∇uj) dγ

+

3∑
j=1

µ

∫
∂D

(p · ν)(∇uj · ∇v̄j) dγ

−
3∑
j=1

µ

∫
Ω

(p · ∇uj)∆v̄j + (p · ∇v̄j)∆uj dx

= −µ
∫
∂D

(p · ∇u) · (ν · ∇v̄) + (p · ∇v̄) · (ν · ∇u)

+ µ

∫
∂D

(p · ν)(∇u : ∇v̄) dγ

− µ
∫

Ω

(p · ∇u) ·∆v̄ + (p · ∇v̄) ·∆udx.

Noting

µ∆u+ (λ+ µ)∇∇ · u+ ω2u = 0 in Ω,

we have from the integration by parts that

µ

∫
Ω

(p · ∇v̄) ·∆udx = −(λ+ µ)

∫
Ω

(p · ∇v̄) · (∇∇ · u) dx− ω2

∫
Ω

(p · ∇v̄) · udx

= (λ+ µ)

∫
Ω

(∇ · u)∇ · (p · ∇v̄) dx+ (λ+ µ)

∫
∂D

(∇ · u)(ν · (p · ∇v̄)) dγ

− ω2

∫
Ω

(p · ∇v̄) · udx.

Using the integration by parts again yields

µ

∫
Ω

(p · ∇u) ·∆v̄ dx = −µ
∫

Ω

∇(p · ∇u) : ∇v̄ dx+ µ

∫
∂D

(p · ∇u) · (ν · ∇v̄) dγ.

Let τ 1(x), τ 2(x) be any two linearly independent unit tangent vectors on ∂D. Since
u = v = 0 on ∂D, we have

∂τ1
uj = ∂τ2

uj = ∂τ1
vj = ∂τ2

vj = 0.

Using the identities

∇uj = τ 1∂τ1
uj + τ 2∂τ2

uj + ν∂νuj = ν∂νuj ,

∇vj = τ 1∂τ1vj + τ 2∂τ2vj + ν∂νvj = ν∂νvj ,

we have

(p · ∇v̄j)(ν · ∇uj) = (p · ν∂ν v̄j)(ν · ν∂νuj) = (p · ν)(∂ν v̄j∂νuj),

which gives ∫
∂D

(p · ∇v̄) · (ν · ∇u)− (p · ν)(∇u : ∇v̄) dγ = 0.
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Noting v = 0 on ∂D and

(∇ · p)(u · v̄) + (p · ∇v̄) · u = ∇ · ((u · v̄)p)− (p · ∇u) · v̄,

we obtain by the divergence theorem that∫
Ω

(∇ · p)(u · v̄) + (p · ∇v̄) · udx = −
∫

Ω

(p · ∇u) · v̄ dx.

Combining the above identities, we conclude that

g1(p)(u,v) + g3(p)(u,v)

= µ

∫
Ω

∇(p · ∇u) : ∇v̄ dx− (λ+ µ)

∫
Ω

(∇ · u)∇ · (p · ∇v̄) dx

− ω2

∫
Ω

(p · ∇u) · v̄ dx+ (λ+ µ)

∫
∂D

(∇ · u)(ν · (p · ∇v̄)) dγ.(35)

Next we compute g2(p)(u,v). It is easy to verify that∫
Ω

(∇ · u)(∇v̄ : J>p ) + (∇ · v̄)(∇u : J>p ) dx =

∫
Ω

(∇ · u)∇ · (p · ∇v̄) dx

−
∫

Ω

(∇ · u)(p · (∇ · (∇v̄)>)) dx+

∫
Ω

(∇ · v̄)∇ · (p · ∇u) dx

−
∫

Ω

(∇ · v̄)(p · (∇ · (∇u)>)) dx.

Using the integration by parts, we obtain∫
Ω

(∇ · p)(∇ · u)(∇ · v̄) dx = −
∫

Ω

p · ∇((∇ · u)(∇ · v̄)) dx

−
∫
∂D

(∇ · u)(∇ · v̄)(ν · p) dγ

= −
∫

Ω

(∇ · v̄)(p · (∇ · (∇u)>)) dx−
∫

Ω

(∇ · u)(p · (∇ · (∇v)>)) dx

−
∫
∂D

(∇ · u)(∇ · v̄)(ν · p) dγ.

Let τ 1 = (−ν3, 0, ν1)>, τ 2 = (0,−ν3, ν2)>, τ 3 = (−ν2, ν1, 0)>. It follows from τ j ·
ν = 0 that τ j are tangent vectors on ∂D. Since v = 0 on ∂D, we have ∂τ jv = 0,
which yields that

ν1∂x3
v1 = ν3∂x1

v1, ν1∂x3
v2 = ν3∂x1

v2, ν1∂x2
v1 = ν2∂x1

v1,

ν1∂x3
v3 = ν3∂x1

v3, ν1∂x2
v2 = ν2∂x1

v2, ν1∂x2
v3 = ν2∂x1

v3,

ν2∂x3v1 = ν3∂x2v1, ν2∂x3v2 = ν3∂x2v2, ν2∂x3v3 = ν3∂x2v3.

Hence we get∫
∂D

(∇ · u)(∇ · v̄)(ν · p) dγ =

∫
∂D

(∇ · u)(ν · (p · ∇v̄)) dγ.

Combining the above identities gives

g2(p)(u,v) = (λ+ µ)

∫
Ω

(∇ · u)∇ · (p · ∇v̄) dx+ (λ+ µ)

∫
Ω

∇ · (p · ∇u)(∇ · v̄) dx

− (λ+ µ)

∫
∂D

(∇ · u)(ν · (p · ∇v̄)) dγ.(36)
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Noting (34), adding (35) and (36), we obtain

b(u̇,v) = µ

∫
Ω

∇(p·∇u) : ∇v̄ dx+(λ+µ)

∫
Ω

∇·(p·∇u)(∇·v̄) dx−ω2

∫
Ω

(p·∇u)·v̄ dx.

Define u′ = u̇ − p · ∇u. It is clear to note that p · ∇u = 0 on ΓR since p = 0 on
ΓR. Hence, we have

(37) b(u′,v) = 0, ∀v ∈H1
∂D(Ω),

which shows that u′ is the weak solution of the boundary value problem (32). To
verify the boundary condition of u′ on ∂D, we recall the definition of u′ and have
from ŭ = u = 0 on ∂D that

u′ = lim
h→0

ŭ− u
h
− p · ∇u = −p · ∇u on ∂D.

Noting u = 0 on ∂D, we have

(38) p · ∇u = (p · ν)∂νu,

which completes the proof by combining (37) and (38).

4.2. Reconstruction method. Consider a parametric equation for the surface:

∂D = {r(θ, ϕ) = (r1(θ, ϕ), r2(θ, ϕ), r3(θ, ϕ))>, θ ∈ (0, π), ϕ ∈ (0, 2π)},

where rj are biperiodic functions of (θ, ϕ) and have the Fourier series expansions:

rj(θ, φ) =

∞∑
n=0

n∑
m=−n

amjnReY mn (θ, ϕ) + bmjnImY mn (θ, ϕ),

where Y mn are the spherical harmonics of order n. It suffices to determine amjn, b
m
jn

in order to reconstruct the surface. In practice, a cut-off approximation is needed:

rj,N (θ, ϕ) =

N∑
n=0

n∑
m=−n

amjnReY mn (θ, ϕ) + bmjnImY mn (θ, ϕ).

Denote by DN the approximated obstacle with boundary ∂DN , which has the
parametric equation

∂DN = {rN (θ, ϕ) = (r1,N (θ, ϕ), r2,N (θ, ϕ), r3,N (θ, ϕ))>, θ ∈ (0, π), φ ∈ (0, 2π)}.

Let ΩN = BR \ D̄N and

aj = (a0
j0, · · · , amjn, · · · , aNjN ), bj = (b0j0, · · · , bmjn, · · · , bNjN ),

where n = 0, 1, . . . , N, m = −n, . . . , n. Denote the vector of Fourier coefficients

C = (a1, b1,a2, b2,a3, b3)> = (c1, c2, . . . , c6(N+1)2)> ∈ R6(N+1)2

and a vector of scattering data

U = (u(x1), . . . ,u(xK))> ∈ C3K ,

where xk ∈ ΓR, k = 1, . . . ,K. Then the inverse problem can be formulated to solve
an approximate nonlinear equation:

F (C) = U ,

where the operator F maps a vector in R6(N+1)2 into a vector in C3K .
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Theorem 4.2. Let uN be the solution of (25) corresponding to the obstacle DN .
The operator F is differentiable and its derivatives are

∂Fk(C)

∂ci
= u′i(xk), i = 1, . . . , 6(N + 1)2, k = 1, . . . ,K,

where u′i is the unique weak solution of the boundary value problem
µ∆u′i + (λ+ µ)∇∇ · u′i + ω2u′i = 0 in ΩN ,

u′i = −qi∂νN
uN on ∂DN .

Bu′i = T u′i on ΓR.

(39)

Here νN = (νN1, νN2, νN3)> is the unit normal vector on ∂DN and

qi(θ, ϕ) =



νN1ReY mn (θ, ϕ), i = n2 + n+m+ 1,

νN1ImY mn (θ, ϕ), i = (N + 1)2 + n2 + n+m+ 1,

νN2ReY mn (θ, ϕ), i = 2(N + 1)2 + n2 + n+m+ 1,

νN2ImY mn (θ, ϕ), i = 3(N + 1)2 + n2 + n+m+ 1,

νN3ReY mn (θ, ϕ), i = 4(N + 1)2 + n2 + n+m+ 1,

νN3ImY mn (θ, ϕ), i = 5(N + 1)2 + n2 + n+m+ 1,

where n = 0, 1, . . . , N,m = −n, . . . , n.

Proof. Fix i ∈ {1, . . . , 6(N + 1)2} and k ∈ {1, . . . ,K}, and let {e1, . . . , e6(N+1)2}
be the set of natural basis vectors in R6(N+1)2 . By definition, we have

∂Fk(C)

∂ci
= lim
h→0

Fk(C + hei)−Fk(C)

h
.

A direct application of Theorem 4.1 shows that the above limit exists and the limit
is the unique weak solution of the boundary value problem (39).

Consider the objective function

f(C) =
1

2
‖F (C)−U‖2 =

1

2

K∑
k=1

|Fk(C)− u(xk)|2.

The inverse problem can be formulated as the minimization problem:

min
C

f(C), C ∈ R6(N+1)2 .

To apply the descend method, we compute the gradient of the objective function:

∇f(C) =

(
∂f(C)

∂c1
, . . . ,

f(C)

∂c6(N+1)2

)>
.

We have from Theorem 4.2 that

∂f(C)

∂ci
= Re

K∑
k=1

u′i(xk) · (F̄k(C)− ū(xk)).

We assume that the scattering data U is available over a range of frequencies
ω ∈ [ωmin, ωmax], which may be divided into ωmin = ω0 < ω1 < · · · < ωJ =
ωmax. We now propose an algorithm to reconstruct the Fourier coefficients ci, i =
1, . . . , 6(N + 1)2.
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Algorithm: Frequency continuation algorithm for surface reconstruction.

1. Initialization: take an initial guess c2 = −c4 = 1.44472R0 and c3(N+1)2+2 =
c3(N+1)2+4 = 1.44472R0, c4(N+1)2+3 = 2.0467R0 and ci = 0 otherwise. The
initial guess is a ball with radius R0 under the spherical harmonic functions;

2. First approximation: begin with ω0, let k0 = [ω0], seek an approximation
to the functions rj,N :

rj,k0 =

k0∑
n=0

n∑
m=−n

amjnReY mn (θ, φ) + bmjnImY mn (θ, φ).

Denote C
(1)
k0

= (c1, c2, . . . , c6(k0+1)2)> and consider the iteration:

(40) C
(l+1)
k0

= C
(l)
k0
− τ∇f(C

(l)
k0

), l = 1, . . . , L,

where τ > 0 and L > 0 are the step size and the number of iterations for
every fixed frequency, respectively.

3. Continuation: increase to ω1, let k1 = [ω1], repeat Step 2 with the previous
approximation to rj,N as the starting point. More precisely, approximate rj,N
by

rj,k1 =

k1∑
n=0

n∑
m=−n

amjnReY mn (θ, φ) + bmjnImY mn (θ, φ),

and determine the coefficients c̃i, i = 1, . . . , 6(k1 + 1)2 by using the descent
method starting from the previous result.

4. Iteration: repeat Step 3 until a prescribed highest frequency ωJ is reached.

5. Numerical experiments. We present two examples to show the effectiveness
of the proposed method. The scattering data is obtained from solving the direct
problem by using the finite element method with the perfectly matched layer (PML)
technique, which is implemented via FreeFem++ [16]. The research on the PML
technique has undergone a tremendous development since Berenger proposed a PML
for solving the Maxwell equations [4]. The basic idea of the PML technique is to
surround the domain of interest by a layer of finite thickness fictitious material
which absorbs all the waves coming from inside the computational domain. When
the waves reach the outer boundary of the PML region, their values are so small
that the homogeneous Dirichlet boundary conditions can be imposed. However, the
PML technique is much less studied for the elastic wave scattering problems, espe-
cially for the rigorous convergence analysis [7, 8, 19]. In contrast, the transparent
boundary condition (TBC) is mathematically exact. It helps to reduce the scatter-
ing problem equivalently from an open domain into a boundary value problem in a
bounded domain, which makes the analysis feasible. The finite element solution is
interpolated uniformly on ΓR. To test the stability, we add noise to the data:

uδ(xk) = u(xk)(1 + δ rand), k = 1, . . . ,K,

where rand are uniformly distributed random numbers in [−1, 1] and δ is the noise
level, xk are the data points. In our experiments, we pick 100 uniformly distributed
points xk on ΓR, i.e., K = 100. We take λ = 2, µ = 1, R = 1. The radius of the
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initial R0 = 0.5. The noise level δ = 5%. The step size in (40) is τ = 0.005/ki
where ki = [ωi]. The incident field is taken as a plane compressional wave.

Example 1. Consider a bean-shaped obstacle:

r(θ, ϕ) = (r1(θ, ϕ), r2(θ, ϕ), r3(θ, ϕ))>, θ ∈ [0, π], ϕ ∈ [0, 2π],

where

r1(θ, ϕ) = 0.75 ((1− 0.05 cos(π cos θ)) sin θ cosϕ)
1/2

,

r2(θ, ϕ) = 0.75 ((1− 0.005 cos(π cos θ)) sin θ sinϕ+ 0.35 cos(π cos θ))
1/2

,

r3(θ, ϕ) = 0.75 cos θ.

The exact surface is plotted in Figure 1(a). This obstacle is non-convex and is
usually difficult to reconstruct the concave part of the obstacle. The obstacle is
illuminated by the compressional wave sent from a single direction d = (0, 1, 0)>; the
frequency ranges from ωmin = 1 to ωmax = 5 with increment 1 at each continuation
step, i.e., ωi = i + 1, i = 0, . . . , 4; for any fixed frequency, repeat L = 100 times
with previous result as starting points. The step size for the decent method is
0.005/ωi. The number of recovered coefficients is 6(ωi + 2)2 for corresponding
frequency. Figure 1(b) shows the initial guess which is the ball with radius R0 = 0.5;
Figure 1(c) shows the final reconstructed surface; Figures 1(d)–(f) show the cross
section of the exact surface along the plane x1 = 0, x2 = 0, x3 = 0, respectively;
Figures 1(g)–(i) show the corresponding cross section for the reconstructed surface
along the plane x1 = 0, x2 = 0, x3 = 0, respectively. As is seen, the algorithm
effectively reconstructs the bean-shaped obstacle.

Example 2. Consider a cushion-shaped obstacle:

r(θ, ϕ) = r(θ, ϕ)(sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ))>, θ ∈ [0, π], ϕ ∈ [0, 2π],

where

r(θ, ϕ) = (0.75 + 0.45(cos(2ϕ)− 1)(cos(4θ)− 1))
1/2

.

Figure 2(a) shows the exact surface. This example is much more complex than the
bean-shaped obstacle due to its multiple concave parts. Multiple incident direc-
tions are needed in order to obtain a good result. In this example, the obstacle is
illuminated by the compressional wave from 6 directions, which are the unit vectors
pointing to the origin from the face centers of the cube. The multiple frequencies are
the same as the first example, i.e., the frequency ranges from ωmin = 1 to ωmax = 5
with ωi = i+ 1, i = 0, . . . , 4. For each fixed frequency and incident direction, repeat
L = 50 times with previous result as starting points. The step size for the decent
method is 0.005/ωi and number of recovered coefficients is 6(ωi+2)2 for correspond-
ing frequency. Figure 2(b) shows the initial guess ball with radius R0 = 0.5; Figure
2(c) shows the final reconstructed surface; Figure 2(d)–(f) show the cross section of
the exact surface along the plane x1 = 0, x2 = 0, x3 = 0, respectively; while Figure
2(g)–(i) show the corresponding cross section for the reconstructed surface along
the plane x1 = 0, x2 = 0, x3 = 0, respectively. It is clear to note that the algorithm
can also reconstruct effectively the more complex cushion-shaped obstacle.

6. Conclusion. In this paper, we study the direct and inverse obstacle scattering
problems for elastic waves in three dimensions. An exact transparent boundary
condition is developed. The direct problem is shown to have a unique weak so-
lution. The domain derivative is derived for the total displacement. A frequency
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Example 1: A bean-shaped obstacle. (a) the exact
surface; (b) the initial guess; (c) the reconstructed surface; (d)–(f)
the corresponding cross section of the exact surface along plane
x1 = 0, x2 = 0, x3 = 0, respectively; (g)–(i) the corresponding
cross section of the reconstructed surface along plane x1 = 0, x2 =
0, x3 = 0, respectively.

continuation method is proposed to solve the inverse problem. Numerical exam-
ples are presented to demonstrate the effectiveness of the proposed method. The
results show that the method is stable and accurate to reconstruct surfaces with
noise. Future work includes the surfaces of different boundary conditions and mul-
tiple obstacles. We hope to be able to address these issues and report the progress
elsewhere in the future.

Appendix A. Spherical harmonics. The spherical coordinates (r, θ, ϕ) are re-
lated to the Cartesian coordinates x = (x1, x2, x3) by x1 = r sin θ cosϕ, x2 =
r sin θ sinϕ, x3 = r cos θ. The local orthonormal basis is

er = (sin θ cosϕ, sin θ sinϕ, cos θ),

eθ = (cos θ cosϕ, cos θ sinϕ,− sin θ),

eϕ = (− sinϕ, cosϕ, 0),
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Example 2: A cushion-shaped obstacle. (a) the exact
surface; (b) the initial guess; (c) the reconstructed surface; (d)–(f)
the corresponding cross section of the exact surface along the plane
x1 = 0, x2 = 0, x3 = 0, respectively; (d)–(f) the corresponding cross
section of the reconstructed surface along the plane x1 = 0, x2 =
0, x3 = 0, respectively.

where θ and ϕ are the Euler angles. Note that er is also the unit outward normal
vector on ΓR.

Let {Y mn (θ, ϕ) : n = 0, 1, 2, . . . ,m = −n, . . . , n} be the orthonormal sequence
of spherical harmonics of order n on the unit sphere. Define rescaled spherical
harmonics

Xm
n (θ, ϕ) =

1

R
Y mn (θ, ϕ).

It can be shown that {Xm
n (θ, ϕ) : n = 0, 1, . . . ,m = −n, . . . , n} form a complete

orthonormal system in L2(ΓR), which is the space of square integrable functions on
ΓR.

For a smooth scalar function u(R, θ, ϕ) defined on ΓR, let

∇ΓR
u = ∂θu eθ + (sin θ)−1∂ϕu eϕ

be the tangential gradient on ΓR. The surface vector curl is defined by

curlΓR
u = ∇ΓR

u× er.
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Denote by divΓR
and curlΓR

the surface divergence and the surface scalar curl,
respectively. For a smooth vector function u tangential to ΓR, it can be represented
by its coordinates in the local orthonormal basis:

u = uθeθ + uϕeϕ,

where

uθ = u · eθ, uϕ = u · eϕ.
The surface divergence and the surface scalar curl can be defined as

divΓR
u = (sin θ)−1 (∂θ(uθ sin θ) + ∂ϕuϕ) ,

curlΓR
u = (sin θ)−1 (∂θ(uϕ sin θ)− ∂ϕuθ) .

Define a sequence of vector spherical harmonics:

Tmn (θ, ϕ) =
1√

n(n+ 1)
∇ΓR

Xm
n (θ, ϕ),

V m
n (θ, ϕ) = Tmn (θ, ϕ)× er,

Wm
n (θ, ϕ) = Xm

n (θ, ϕ)er,

where n = 0, 1, . . . ,m = −n, . . . , n. Using the orthogonality of the vector spherical
harmonics, we can easily show that

1. {(Tmn ,V
m
n ,W

m
n ) : n = 0, 1, 2, . . . ,m = −n, . . . , n} form a complete orthonor-

mal system in L2(ΓR) = L2(ΓR)3;
2. {(Tmn ,V

m
n ) : n = 0, 1, 2, . . . ,m = −n, . . . , n} form a complete orthonormal

system in L2
t (ΓR) = {w ∈ L2(ΓR),w · er = 0}.

Appendix B. Functional spaces. Denote by L2(Ω) the square integrable func-
tions on Ω. Let L2(Ω) = L2(Ω)3 be equipped with the inner product and norm:

(u,v) =

∫
Ω

u · v̄ dx, ‖u‖L2(Ω) = (u,u)1/2.

Denote by H1(Ω) the standard Sobolev space with the norm given by

‖u‖H1(Ω) =

(∫
Ω

|u(x)|2 + |∇u(x)|2 dx

)1/2

.

Let H1
∂D(Ω) = H1

∂D(Ω)3, where H1
∂D(Ω) := {u ∈ H1(Ω) : u = 0 on ∂D}. Introduce

the Sobolev space

H(curl,Ω) = {u ∈ L2(Ω),∇× u ∈ L2(Ω)},
which is equipped with the norm

‖u‖H(curl,Ω) =
(
‖u‖2L2(Ω) + ‖∇ × u‖2L2(Ω)

)1/2

.

Denote by Hs(ΓR) the standard trace functional space which is equipped with
the norm

‖u‖Hs(ΓR) =

( ∞∑
n=0

n∑
m=−n

(1 + n(n+ 1))s|umn |2
)1/2

,

where

u(R, θ, ϕ) =

∞∑
n=0

n∑
m=−n

umn X
m
n (θ, ϕ).
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Let Hs(ΓR) = Hs(ΓR)3 which is equipped with the normal

‖u‖Hs(ΓR) =

( ∞∑
n=0

n∑
m=−n

(1 + n(n+ 1))s|umn |2
)1/2

,

where umn = (um1n, u
m
2n, u

m
3n) and

u(R, θ, ϕ) =

∞∑
n=0

n∑
m=−n

um1nT
m
n (θ, ϕ) + um2nV

m
n (θ, ϕ) + um3nW

m
n (θ, ϕ).

It can be verified that H−s(ΓR) is the dual space of Hs(ΓR) with respect to the
inner product

〈u,v〉ΓR
=

∫
ΓR

u · v̄ dγ =

∞∑
n=0

n∑
m=−n

um1nv̄
m
1n + um2nv̄

m
2n + um3nv̄

m
3n,

where

v(R, θ, ϕ) =

∞∑
n=0

n∑
m=−n

vm1nT
m
n (θ, ϕ) + vm2nV

m
n (θ, ϕ) + vm3nW

m
n (θ, ϕ).

Introduce three tangential trace spaces:

Hs
t(ΓR) = {u ∈Hs(ΓR), u · er = 0},

H−1/2(curl,ΓR) = {u ∈H−1/2
t (ΓR), curlΓR

u ∈ H−1/2(ΓR)},

H−1/2(div,ΓR) = {u ∈H−1/2
t (ΓR), divΓR

u ∈ H−1/2(ΓR)}.

For any tangential field u ∈Hs
t(ΓR), it can be represented in the series expansion

u(R, θ, ϕ) =

∞∑
n=0

n∑
m=−n

um1nT
m
n (θ, ϕ) + um2nV

m
n (θ, ϕ).

Using the series coefficients, the norm of the space Hs
t(ΓR) can be characterized by

‖u‖2Hs
t (ΓR) =

∞∑
n=0

n∑
m=−n

(1 + n(n+ 1))s
(
|um1n|2 + |um2n|2

)
;

the norm of the space H−1/2(curl,ΓR) can be characterized by

‖u‖2
H−1/2(curl,ΓR)

=

∞∑
n=0

n∑
m=−n

1√
1 + n(n+ 1)

|um1n|2 +
√

1 + n(n+ 1)|um2n|2;

the norm of the space H−1/2(div,ΓR) can be characterized by

‖u‖2
H−1/2(div,ΓR)

=

∞∑
n=0

n∑
m=−n

√
1 + n(n+ 1)|um1n|2 +

1√
1 + n(n+ 1)

|um2n|2.

Given a vector field u on ΓR, denote by

uΓR
= −er × (er × u)

the tangential component of u on ΓR. Define the inner product in C3:

〈u,v〉 = v∗u, ∀u,v ∈ C3.

where v∗ is the conjugate transpose of v.
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Appendix C. TBC for potential functions. It follows from the Helmholtz de-
composition (7) that any solution of (6) can be written as

v = ∇φ+∇×ψ, ∇ ·ψ = 0,

where the scalar potential function φ satisfies (8) and (9):

(41)

{
∆φ+ κ2

pφ = 0 in R3 \ D̄,
∂rφ− iκpφ = o(r−1) as r →∞,

and the vector potential function ψ satisfies (10) and (11):

(42)

{
∇× (∇×ψ)− κ2

sψ = 0 in R3 \ D̄,
(∇×ψ)× x̂− iκsψ = o(r−1) as r →∞,

where r = |x| and x̂ = x/r.
In this section, we introduce the TBC for the scalar potential function φ and the

vector potential function ψ, respectively. The TBCs help to reduce (41) and (42)
equivalently from the open domain R3 \ D̄ into the bounded domain Ω.

In the exterior domain R3 \ B̄R, the solution φ of (41) has the following Fourier
expansion in the spherical coordinates:

(43) φ(r, θ, ϕ) =

∞∑
n=0

n∑
m=−n

h
(1)
n (κpr)

h
(1)
n (κpR)

φmn X
m
n (θ, ϕ),

where h
(1)
n is the spherical Hankel function of the first kind with order n and the

Fourier coefficient

φmn =

∫
ΓR

φ(R, θ, ϕ)X̄m
n (θ, ϕ)dγ.

We define the boundary operator T1 such that

(44) (T1φ)(R, θ, ϕ) =
1

R

∞∑
n=0

n∑
m=−n

zn(κpR)φmn X
m
n (θ, ϕ),

where

zn(t) =
th

(1)′

n (t)

h
(1)
n (t)

satisfies (cf. [28, Theorem 2.6.1])

(45) − (n+ 1) ≤ Rezn(t) ≤ −1, 0 < Imzn(t) ≤ t.

Evaluating the derivative of (43) with respect to r at r = R and using (44), we get
the transparent boundary condition for the scalar potential function φ:

(46) ∂rφ = T1φ on ΓR.

The following result can be easily shown from (44)–(45).

Lemma C.1. The operator T1 is bounded from H1/2(ΓR) to H−1/2(ΓR). Moreover,
it satisfies

Re〈T1u, u〉ΓR
≤ 0, Im〈T1u, u〉ΓR

≥ 0, ∀u ∈ H1/2(ΓR).

If Re〈T1u, u〉ΓR
= 0 or Im〈T1u, u〉ΓR

= 0, then u = 0 on ΓR.

Inverse Problems and Imaging Volume 13, No. 3 (2019), 545–573



568 Peijun Li and Xiaokai Yuan

Next is to derive the TBC for the vector potential function ψ. Define an auxiliary
function ϕ = (iκs)

−1∇×ψ. We have from (42) that

(47) ∇×ψ − iκsϕ = 0, ∇×ϕ+ iκsψ = 0,

which are Maxwell’s equations. Hence φ and ψ plays the role of the electric field
and the magnetic field, respectively.

Introduce the vector wave functions

(48)

{
Mm

n (r, θ, ϕ) = ∇× (xh
(1)
n (κsr)X

m
n (θ, ϕ)),

Nm
n (r, θ, ϕ) = (iκs)

−1∇×Mm
n (r, θ, ϕ),

which are the radiation solutions of (47) in R3 \ {0} (cf. [26, Theorem 9.16]):

∇×Mm
n (r, θ, ϕ)− iκsN

m
n (r, θ, ϕ) = 0, ∇×Nm

n (r, θ, ϕ) + iκsM
m
n (r, θ, ϕ) = 0.

Moreover, it can be verified from (48) that they satisfy

(49) Mm
n = h(1)

n (κsr)∇ΓR
Xm
n × er

and

(50) Nm
n =

√
n(n+ 1)

iκsr
(h(1)
n (κsr) + κsrh

(1)′

n (κsr))T
m
n +

n(n+ 1)

iκsr
h(1)
n (κsr)W

m
n .

In the domain R3 \ B̄R, the solution of ψ in (47) can be written in the series

(51) ψ =

∞∑
n=0

n∑
m=−n

αmnN
m
n + βmnM

m
n ,

which is uniformly convergent on any compact subsets in R3\B̄R. Correspondingly,
the solution of ϕ in (47) is given by

(52) ϕ = (iκs)
−1∇×ψ =

∞∑
n=0

n∑
m=−n

βmn N
m
n − αmnM

m
n .

It follows from (49)–(50) that

−er × (er ×Mm
n ) = −

√
n(n+ 1)h(1)

n (κsr)V
m
n ,

−er × (er ×Nm
n ) =

√
n(n+ 1)

iκsr
(h(1)
n (κsr) + κsrh

(1)′

n (κsr))T
m
n

and

er ×Mm
n =

√
n(n+ 1)h(1)

n (κsr)T
m
n ,

er ×Nm
n =

√
n(n+ 1)

iκsr
(h(1)
n (κsr) + κsrh

(1)′

n (κsr))V
m
n .

Therefore, by (51), the tangential component of ψ on ΓR is

ψΓR
=

∞∑
n=0

n∑
m=−n

√
n(n+ 1)

iκsR
(h(1)
n (κsR) + κsRh

(1)′

n (κsR))αmn T
m
n

+
√
n(n+ 1)h(1)

n (κsR)βmn V
m
n .
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Similarly, by (52), the tangential trace of ϕ on ΓR is

ϕ× er =

∞∑
n=0

n∑
m=−n

√
n(n+ 1)h(1)

n (κsR)αmn T
m
n

−
√
n(n+ 1)

iκsR
(h(1)
n (κsR) + κsRh

(1)′

n (κsR))βmn V
m
n .

Given any tangential component of the electric field on ΓR with the expression

u =

∞∑
n=0

n∑
m=−n

um1nT
m
n + um2nV

m
n ,

where

um1n =

∫
ΓR

u(R, θ, ϕ) · T̄mn (θ, ϕ)dγ, um2n =

∫
ΓR

u(R, θ, ϕ) · V̄ m
n (θ, ϕ)dγ,

we define

(53) T2u =

∞∑
n=0

n∑
m=−n

iκsR

1 + zn(κsR)
um1nT

m
n +

1 + zn(κsR)

iκsR
um2nV

m
n .

Using (53), we obtain the TBC for the vector potential ψ:

(54) (∇×ψ)× er = iκsT2ψΓR
on ΓR.

The following result can also be easily shown from (45) and (53)

Lemma C.2. The operator T2 is bounded from H1/2(curl,ΓR) to H−1/2(div,ΓR).
Moreover, it satisfies

Re〈T2u,u〉ΓR
≥ 0, ∀u ∈H1/2(curl,ΓR).

If Re〈T2u,u〉ΓR
= 0, then u = 0 on ΓR.

Appendix D. Fourier coefficients. Recalling the Helmholtz decomposition (7):

v = ∇φ+∇×ψ, ∇ ·ψ = 0,

we derive the mutual representations of the Fourier coefficients between v and
(φ,ψ).

First we have from (43) that

(55) φ(r, θ, ϕ) =

∞∑
n=0

n∑
m=−n

h
(1)
n (κpr)

h
(1)
n (κpR)

φmn X
m
n (θ, ϕ).

Substituting (49)–(50) into (51) yields

ψ(r, θ, ϕ) =

∞∑
n=0

n∑
m=−n

√
n(n+ 1)

iκsr
(h(1)
n (κsr) + κsrh

(1)′

n (κsr))α
m
n T

m
n

+
√
n(n+ 1)h(1)

n (κsr)β
m
n V

m
n +

n(n+ 1)

iκsr
h(1)
n (κsr)α

m
nW

m
n .(56)

Given ψ on ΓR, it has the Fourier expansion:

(57) ψ(R, θ, ϕ) =

∞∑
n=0

n∑
m=−n

ψm1nT
m
n (θ, ϕ) + ψm2nV

m
n (θ, ϕ) + ψm3nW

m
n (θ, ϕ),
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where the Fourier coefficients

ψm1n =

∫
ΓR

ψ(R, θ, ϕ) · T̄mn (θ, ϕ)dγ,

ψm2n =

∫
ΓR

ψ(R, θ, ϕ) · V̄ m
n (θ, ϕ)dγ,

ψm3n =

∫
ΓR

ψ(R, θ, ϕ) · W̄m
n (θ, ϕ)dγ.

Evaluating (56) at r = R and then comparing it with (57), we get

(58) αmn =
iκsR

n(n+ 1)h
(1)
n (κsR)

ψm3n, βmn =
1√

n(n+ 1)h
(1)
n (κsR)

ψm2n.

Plugging (58) back into (56) gives

ψ(r, θ, ϕ) =

∞∑
n=0

n∑
m=−n

(
R

r

)(
h

(1)
n (κsr) + κsrh

(1)′

n (κsr)√
n(n+ 1)h

(1)
n (κsR)

)
ψm3nT

m
n

+

(
h

(1)
n (κsr)

h
(1)
n (κsR)

)
ψm2nV

m
n +

(
R

r

)(
h

(1)
n (κsr)

h
(1)
n (κsR)

)
ψm3nW

m
n .(59)

In the spherical coordinates, we have from (55) and (59) that

∇φ = ∂rφ er +
1

r
∇ΓR

φ

=

∞∑
n=0

n∑
m=−n

(
κph

(1)′

n (κpr)

h
(1)
n (κpR)

)
φmn X

m
n er +

(
h

(1)
n (κpr)

rh
(1)
n (κpR)

)
φmn ∇ΓR

Xm
n

=

∞∑
n=0

n∑
m=−n

(
κph

(1)′

n (κpr)

h
(1)
n (κpR)

)
φmnW

m
n +

(√
n(n+ 1)h

(1)
n (κpr)

rh
(1)
n (κpR)

)
φmn T

m
n .

and

∇×ψ =

∞∑
n=0

n∑
m=−n

Im1n + Im2n + Im3n,

where

Im1n = ∇×

[(
R

r

)(
h

(1)
n (κsr) + κsrh

(1)′

n (κsr)√
n(n+ 1)h

(1)
n (κsR)

)
ψm3nT

m
n

]

=
Rh

(1)
n (κsr)√

n(n+ 1)h
(1)
n (κsR)

(
κ2

s −
n(n+ 1)

r2

)
ψm3nV

m
n ,

Im2n = ∇×

[(
h

(1)
n (κsr)

h
(1)
n (κsR)

)
ψm2nV

m
n

]

=

(
h

(1)
n (κsr) + κsrh

(1)′

n (κsr)

rh
(1)
n (κsR)

)
ψm2nT

m
n +

√
n(n+ 1)h

(1)
n (κsr)

rh
(1)
n (κsR)

ψm2nW
m
n ,

Im3n = ∇×

[(
R

r

)(
h

(1)
n (κsr)

h
(1)
n (κsR)

)
ψm3nW

m
n

]
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=
R
√
n(n+ 1)h

(1)
n (κsr)

r2h
(1)
n (κsR)

ψm3nV
m
n .

Combining the above equations, we obtain

v(r, θ, ϕ) = ∇φ(r, θ, ϕ) +∇×ψ(r, θ, ϕ)

=

∞∑
n=0

n∑
m=−n

(√
n(n+ 1)h

(1)
n (κpr)

rh
(1)
n (κpR)

φmn +
(h

(1)
n (κsr) + κsrh

(1)′

n (κsr))

rh
(1)
n (κsR)

ψm2n

)
Tmn

+

(
κph

(1)′

n (κpr)

h
(1)
n (κpR)

φmn +

√
n(n+ 1)h

(1)
n (κsr)

rh
(1)
n (κsR)

ψm2n

)
Wm

n

+
κ2

sRh
(1)
n (κsr)√

n(n+ 1)h
(1)
n (κsR)

ψm3nV
m
n ,

(60)

which gives

v(R, θ, ϕ) =

∞∑
n=0

n∑
m=−n

1

R

(√
n(n+ 1)φmn + (1 + zn(κsR))ψm2n

)
Tmn

+
κ2

sR√
n(n+ 1)

ψm3nV
m
n +

1

R

(
zn(κpR)φmn +

√
n(n+ 1)ψm2n

)
Wm

n .(61)

On the other hand, v has the Fourier expansion:

(62) v(R, θ, ϕ) =

∞∑
n=0

n∑
m=−n

vm1nT
m
n + vm2nV

m
n + vm3nW

m
n .

Comparing (61) with (62), we obtain

(63)



vm1n =

√
n(n+ 1)

R
φmn +

(1 + zn(κsR))

R
ψm2n,

vm2n =
κ2

sR√
n(n+ 1)

ψm3n,

vm3n =
zn(κpR)

R
φmn +

√
n(n+ 1)

R
ψm2n,

and

(64)



φmn =
R(1 + zn(κsR))

Λn
vm3n −

R
√
n(n+ 1)

Λn
vm1n,

ψm2n =
Rzn(κpR)

Λn
vm1n −

R
√
n(n+ 1)

Λn
vm3n,

ψm3n =

√
n(n+ 1)

κ2
sR

vm2n,

where

Λn = zn(κpR)(1 + zn(κsR))− n(n+ 1).

Noting (45), we have from a simple calculation that

ImΛn = Rezn(κpR)Imzn(κsR) + (1 + Rezn(κsR))Imzn(κpR) < 0,

which implies that Λn 6= 0 for n = 0, 1, . . . .
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