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Abstract. Consider an inverse obstacle scattering problem in an open space which
is filled with a homogeneous and isotropic elastic medium. The inverse problem is
to determine the obstacle’s surface from the measurement of the displacement on an
artificial boundary enclosing the obstacle. In this paper, a new approach is proposed
for numerical solution of the inverse problem. By introducing two scalar potential
functions, the method uses the Helmholtz decomposition to split the displacement of
the elastic wave equation into the compressional and shear waves, which satisfy a
coupled boundary value problem of the Helmholtz equations. The domain derivative
is studied for the coupled Helmholtz system. In particular, we show that the domain
derivative of the potentials is the Helmholtz decomposition of the domain derivative
of the displacement for the elastic wave equation. Numerical results are presented to
demonstrate the effectiveness of the proposed method.
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1 Introduction

As one of the fundamental problems in scattering theory, the obstacle scattering prob-
lem is concerned with the effect that an impenetrable medium on an incident field. If
the total field is viewed as the sum of an incident field and a scattered field, the direct
obstacle scattering problem is to determine the scattered field from the incident field and
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the governing equation for the wave motion; the inverse obstacle scattering problem is to
determine the shape of the medium from the measurement of the scattered field. These
problems have played essential roles in many scientific areas, such as radar and sonar,
nondestructive testing, medical imaging, and geophysical exploration.

Driven by significant applications, the direct and inverse obstacle scattering problems
have been widely studied by numerous researchers for all the three commonly encoun-
tered wave models, which include the Helmholtz equation (acoustic waves), the Maxwell
equations (electromagnetic waves), and the Navier equation (elastic waves). The inverse
obstacle scattering problems are challenging due to nonlinearity and ill-posedness. Com-
putational approaches can be broadly classified into two types: optimization based it-
erative methods and imaging based direct methods [8, 10]. The former are named as
quantitative methods while the latter are referred to as qualitative methods. The iterative
methods require good initial guesses and are computationally expensive as a sequence of
direct and adjoint problems need to be solved at each step of iterations. The direct meth-
ods require no a priori information on the obstacles and are computationally efficient,
but the reconstructions may not be as accurate as those by using iterative methods.

For the optimization based methods, it is inevitable to calculate the domain or Fréchet
derivatives when applying linearization procedures for these nonlinear problems. The
domain or Fréchet derivatives characterize the variation of wave field with respect to
perturbation of media such as the boundary of the obstacle. The domain derivatives
have been studied by many authors for the inverse acoustic and electromagnetic obsta-
cle scattering problems. In [32], Roger investigated the differentiability of the far-field
pattern with respect to the obstacle’s boundary and employed the Newton–Kantorovitch
iterative method to solve the inverse obstacle scattering problem. The Fréchet derivatives
of the scattering operators were studied in [12,15,19] by using the variational approaches
and in [28,29] by using the boundary integral equation techniques for either the Dirichlet,
Neumann, or impedance boundary condition. Recently, some related numerical results
can be found in [33] on profile reconstruction for a periodic transmission problem from
single-sided data.

The scattering problems for elastic waves have continuously attracted much atten-
tion by many researchers due to their significant applications in such areas as geophysics
and seismology [1, 6, 21, 27]. Elastic waves are governed by the Navier equation which
is complex due to the coexistence of compressional and shear waves that propagate at
different speeds. In [11, 13], Hahner and Hsiao, and Elschner and Yamamoto considered
the uniqueness of the inverse elastic scattering problem, separately. Various numerical
methods can be found in [2, 17, 25]. The Fréchet differentiability of the boundary inte-
gral operators was studied in [7]. In [22, 23], Louër investigated domain derivatives of
the inverse obstacle scattering problem for elastic waves by using the boundary integral
equation method. The domain derivatives were considered in [24, 26] for the two- and
three-dimensional inverse elastic obstacle scattering problems by using the variational
method, and a frequency recursive method was developed to reconstruct the surface of
the obstacle. Related numerical results can be found in [4, 5, 9, 31] on solving the inverse
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scattering problems with multi-frequencies. A topical review can be found in [3] on the
inverse source problems as well as other inverse scattering problems by using multiple
frequencies to overcome the ill-posedness and gain increased stability. General references
on inverse scattering problems for elastic waves may be found in [6, 16, 18, 20, 27].

In this paper, we propose a new approach to solve the inverse elastic obstacle scatter-
ing problem. The obstacle is assumed to be an elastically rigid body which is enclosed
in an open space filled with a homogeneous and isotropic elastic medium. Using the
Helmholtz decomposition, we introduce two scalar potential functions and split the dis-
placement of the wave field into the compressional wave and the shear wave. Based on
the transparent boundary conditions, the boundary value problem of the Navier equa-
tion is converted equivalently into a coupled boundary value problem of the Helmholtz
equations for the potential functions. The purpose of this work is threefold:

1. Calculate the domain derivative of the coupled boundary value problem of the
Helmholtz equations for the potential functions.

2. Establish the relation between the domain derivative of the Helmholtz system and
the Helmholtz decomposition of the domain derivative for the Navier system.

3. Develop a frequency recursive method for the coupled Helmholtz system to recon-
struct the obstacle’s surface.

Specifically, we present a variational approach and give an explicit characterization
of the domain derivative for the coupled Helmholtz system. The domain derivative is
shown to be the unique weak solution of some boundary value problem which shares
essentially the same variational formulation as the direct scattering problem. Hence the
domain derivative can be efficiently computed by solving a direct problem. In particular,
we prove that the domain derivative of the coupled Helmholtz system for the potential
functions is the Helmholtz decomposition of the domain derivative of the original Navier
system for the displacement. Computationally, we develop a recursive method for the
inverse scattering problem. The method requires multi-frequency scattering data and
proceeds from low to high frequencies. At each frequency, the steepest descent method
is applied for the linearization procedure and the starting point is always taken from the
output generated from the previous low frequency step. Therefore the method can create
a better approximation to the surface filtered at each step of higher frequency. Numerical
results demonstrate that the method is effective and stable. We mention that the proposed
method is efficient as it needs only to solve the scalar Helmholtz equations and avoids
solving the vector Navier equations. It provides a viable and simple alternative to solve
the inverse obstacle scattering problem for elastic waves.

The rest of the paper is organized as follows. In Section 2, we introduce the model
problems of the Navier equation and the coupled Helmholtz equations. The reduced
boundary value problems for both the Naiver system and the Helmholtz system are pre-
sented by using the transparent boundary conditions in Section 3. Section 4 is devoted
to the discussions of the domain derivatives of both systems. The recursive method is
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described to solve the inverse problem in Section 5. Numerical experiments are shown
to demonstrate the performance of the proposed method in Section 6. The paper is con-
cluded with some general remarks in Section 7.

2 Problem formulation

Consider the scattering problem by a two-dimensional elastically rigid obstacle, where
the obstacle is described as a bounded domain D with Lipschitz continuous boundary
∂D. Denote by ν = (ν1,ν2)⊤ and τ = (τ1,τ2)⊤ the unit normal and tangential vectors
on ∂D, where τ1 = −ν2 and τ2 = ν1. Assume that the exterior domain R2\D is filled
with a homogeneous and isotropic elastic medium with a unit mass density. Denote by
B =

{

x∈R2 : |x|<R
}

the disk with radius R > 0 such that D ⊂ B. Let Ω = B\D be the
bounded domain enclosed by ∂D and ∂B. The problem geometry is shown in Fig. 1.

D
∂D

∂B

Ω

Figure 1: Problem geometry of the elastic scattering by an obstacle.

Let the obstacle be illuminated by a time-harmonic plane wave uinc, which satisfies
the two-dimensional Navier equation:

µ∆uinc+(λ+µ)∇∇·uinc+ω2uinc=0 in R
2\D,

where ω> 0 is the angular frequency and λ,µ are the Lamé parameters satisfying µ> 0
and λ+µ>0. More explicitly, the incident wave can be the compressional plane wave

uinc(x)=deiκ1 d·x,

or the shear plane wave
uinc(x)=d⊥eiκ2d·x,

or a combination of both plane waves, where d = (cosθ,sinθ)⊤ is the unit propagation
direction vector, θ ∈ [0,2π) is the incident angle, d⊤ =(−sinθ,cosθ)⊤ is an orthonormal
vector of d, and

κ1=
ω

√

λ+2µ
, κ2=

ω√
µ
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are the compressional wavenumber and the shear wavenumber, respectively.
The displacement of the total field u also satisfies the Navier equation:

µ∆u+(λ+µ)∇∇·u+ω2u=0 in R
2\D.

Since the obstacle is elastically rigid, u satisfies the homogeneous Dirichlet boundary
condition

u=0 on ∂D.

Let the scattered field v=u−uinc. Then, v satisfies

{

µ∆v+(λ+µ)∇∇·v+ω2v=0 in R2\D,

v=−uinc on ∂D.
(2.1)

Given a vector function v = (v1,v2)⊤ and a scalar function v, define the scalar curl
operator and vector curl operator:

curlv=∂x1
v2−∂x2 v1, curlv=(∂x2 v,−∂x1

v)⊤.

Let

vp =− 1

κ2
1

∇∇·v, vs=
1

κ2
2

curlcurlv,

which are known as the compressional and shear wave components of v, respectively.
Since the scattering problem is imposed in the open domain R2\D, the scattered wave v

is required to satisfy the Kupradze–Sommerfeld radiation condition [30]:

lim
ρ→∞

ρ1/2(∂ρvp−iκ1vp)=0, lim
ρ→∞

ρ1/2(∂ρvs−iκ2vs)=0, ρ= |x|.

For any solution v of the elastic wave equation (2.1), the Helmholtz decomposition
reads

v=∇φ1+curlφ2, (2.2)

where φj, j = 1,2 are scalar potential functions. Substituting (2.2) into the elastic wave
equation (2.1) gives

∇[(λ+2µ)∆φ1+ω2φ1]+curl(µ∆φ2+ω2φ2)=0,

which is fulfilled if φj satisfies the Helmholtz equation

∆φj+κ2
j φj=0.

In addition, φj is required to satisfy the Sommerfeld radiation condition

lim
ρ→∞

ρ1/2(∂ρφj−iκjφj)=0, ρ= |x|. (2.3)
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It follows from the homogeneous Dirichlet boundary condition on ∂D that

v=∇φ1+curlφ2=−uinc on ∂D.

Taking the dot product of the above equation with ν and −τ, respectively, we get

∂νφ1+∂τφ2= f1, ∂νφ2−∂τφ1= f2,

where

f1=−ν·uinc, f2=τ ·uinc.

In summary, the scalar potential functions φ1,φ2 satisfy the coupled boundary value
problem











∆φj+κ2
j φj=0 in R2\D,

∂νφ1+∂τφ2= f1, ∂νφ2−∂τφ1= f2 on ∂D,

limρ→∞ ρ1/2(∂ρφj−iκjφj)=0, ρ= |x|.
(2.4)

Let L2(Ω)2 = L2(Ω)×L2(Ω) be the product space of L2(Ω) equipped with the inner
product and norm:

(u,v)=
∫

Ω
u·v̄, ||u||0,Ω =(u,u)1/2.

Let Hs(Ω) and Hs(∂B) be the standard Sobolev spaces with the norms given by

||w||2s,Ω = ∑
|α|≤s

∫

Ω
|Dαw|2

and

||w||2s,∂B =2π ∑
n∈Z

(1+n2)s|w(n)(R)|2,

where w(n)(R),n∈Z are the Fourier coefficients of w on ∂BR, i.e.,

w(n)(R)=
1

2π

∫ 2π

0
w(R,θ)e−inθdθ.

Define H1
∂D(Ω) =

{

w∈H1(Ω) : w=0 on ∂D
}

. Let H1
∂D(Ω)2 = H1

∂D(Ω)×H1
∂D(Ω) and

Hs(∂B)2 = Hs(∂B)×Hs(∂B) be the Cartesian product spaces equipped with the corre-
sponding 2-norms of H1

∂D(Ω) and Hs(∂B), respectively. It is known that H−s(∂B)2 is the
dual space of Hs(∂B)2 with respect to the inner product

〈u,v〉∂B =
∫

∂B
u·v̄.
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3 Reduced problems

In this section, we introduce the transparent boundary conditions on ∂B to reduce equiv-
alently the boundary value problems (2.1) and (2.4) into the bounded domain Ω.

In the exterior domain R2\B, it follows from the radiation condition (2.3) that the
solutions of (2.4) have the Fourier series expansions in the polar coordinates

φj(ρ,θ)= ∑
n∈Z

H
(1)
n (κjρ)

H
(1)
n (κjR)

φ
(n)
j (R)einθ , (3.1)

where H
(1)
n is the Hankel function of the first kind with order n.

For a given function w on ∂B, it has the Fourier series expansion

w(R,θ)= ∑
n∈Z

w(n)einθ , w(n)=
1

2π

∫ 2π

0
w(R,θ)e−inθdθ.

We define two boundary operators

(Tjw)(R,θ)=
1

R ∑
n∈Z

hn(κjR)w
(n)einθ , (3.2)

where hn(z)=zH
(1)′
n (z)/H

(1)
n (z). Taking the derivative of (3.1) with respect to ρ, evaluat-

ing it at ρ=R, and using the boundary operators (3.2), we get the transparent boundary
condition

∂ρφj =Tjφj on ∂B. (3.3)

In the frequency domain, the transparent boundary condition (3.3) becomes

(∂ρφj)
(n)(R)=α

(n)
j φ

(n)
j (R), α

(n)
j =

κjH
(1)′
n (κjR)

H
(1)
n (κjR)

. (3.4)

Taking ∂ρρ of (3.1) and then evaluating it at ρ=R yields

(∂ρρφj)
(n)(R)=β

(n)
j φ

(n)
j (R), β

(n)
j =

κ2
j H

(1)′′
n (κjR)

H
(1)
n (κjR)

. (3.5)

The polar coordinates (ρ,θ) are related to the Cartesian coordinates x = (x1,x2)⊤ by
x1=ρcosθ,x2=ρsinθ. The local orthonormal basis is

eρ=(cosθ,sinθ)⊤, eθ =(−sinθ,cosθ)⊤.
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For any vector w=(w1,w2)⊤ given in the Cartesian coordinates, it has a representation
in the polar coordinates w= ŵ1eρ+ŵ2eθ , which will be still denoted as w=(ŵ1,ŵ2)⊤ for
simplicity. For any function w, it is easy to verify that

∇w=

(

∂ρw,
1

ρ
∂θw

)⊤
, curlw=

(

1

ρ
∂θw,−∂ρw

)⊤
,

and

∆w=

(

∂ρρ+
1

ρ
∂ρ+

1

ρ2
∂θθ

)

w.

In the new coordinates, the Helmholtz decomposition (2.2) takes the form

v=

(

∂ρφ1+
1

ρ
∂θφ2,

1

ρ
∂θφ1−∂ρφ2

)⊤
. (3.6)

Taking the Fourier transform of (3.6) at ρ=R and applying the boundary condition (3.4),
we obtain

v(n)(R)=





α
(n)
1

in
R

in
R −α

(n)
2









φ
(n)
1 (R)

φ
(n)
2 (R)



. (3.7)

Taking ∂ρ of (3.6), applying the Fourier transform, and using (3.4)-(3.5), we have

(∂ρv)(n)(R)=





β
(n)
1 − in

R2 +
in
R α

(n)
2

− in
R2 +

in
R α

(n)
1 −β

(n)
2









φ
(n)
1 (R)

φ
(n)
2 (R)



. (3.8)

It follows from (2.2) that

∇·v=∆φ1=

(

∂ρρ+
1

ρ
∂ρ+

1

ρ2
∂θθ

)

φ1,

which yields after taking the Fourier transform that

(∇·v)(n)(R)=

(

β
(n)
1 +

1

R
α
(n)
1 −

( n

R

)2
)

φ
(n)
1 (R). (3.9)

Define a boundary operator for the displacement of the scattered wave

Bv=µ∂ρv+(λ+µ)(∇·v)eρ on ∂B,

which gives after taking the Fourier transform and using (3.8)-(3.9) that

(Bv)(n)(R)=µ





β
(n)
1 − in

R2 +
in
R α

(n)
2

− in
R2 +

in
R α

(n)
1 −β

(n)
2









φ
(n)
1 (R)

φ
(n)
2 (R)





+(λ+µ)

[

β
(n)
1 + 1

R α
(n)
1 − n2

R2 0

0 0

]





φ
(n)
1 (R)

φ
(n)
2 (R)



. (3.10)
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Combining (3.7) and (3.10) yields the transparent boundary condition:

Bv=T v := ∑
n∈Z

Mnv(n)einθ on ∂B, (3.11)

where

Mn=





M
(n)
11 M

(n)
12

M
(n)
21 M

(n)
22



=Λ−1
n





N
(n)
11 N

(n)
12

N
(n)
21 N

(n)
22



.

Here

Λn =
( n

R

)2
−α

(n)
1 α

(n)
2

and

N
(n)
11 =−α

(n)
2 ξ(n)+µ

( n

R

)2
η
(n)
2 , N

(n)
12 =− in

R
ξ(n)+µ

in

R
α
(n)
1 η

(n)
2 ,

N
(n)
21 =−µ

in

R
α
(n)
2 η

(n)
1 +µ

in

R
β
(n)
2 , N

(n)
22 =µ

( n

R

)2
η
(n)
1 −µα

(n)
1 β

(n)
2 ,

where

ξ(n)=(λ+2µ)β
(n)
1 +(λ+µ)

(

1

R
α
(n)
1 −

( n

R

)2
)

, η
(n)
j =α

(n)
j − 1

R
.

Using the transparent boundary condition (3.11), we can reformulate the scattering
problem to the following boundary value problem











µ∆u+(λ+µ)∇∇·u+ω2u=0 in Ω,

u=0 on ∂D,

Bu=T u+g on ∂B,

(3.12)

where g=(B−T )uinc. The variational problem of (3.12) is to find u∈H1
∂D(Ω)2 such that

b(u,v)= 〈g,v〉∂B, ∀v∈H1
∂D(Ω)2,

where the sesquilinear form b : H1
∂D(Ω)2×H1

∂D(Ω)2→C is defined by

b(u,v)=µ
∫

Ω
∇u :∇v̄+(λ+µ)

∫

Ω
(∇·u)(∇·v̄)−ω2

∫

Ω
u·v̄−〈T u,v〉∂B. (3.13)

Here A : B= tr(AB⊤) is the Frobenius inner product of square matrices A,B.
Alternatively, using the transparent boundary conditions (3.3), the coupled system

(2.4) can also be reformulated into a coupled boundary value problem











∆φj+κ2
j φj=0 in Ω,

∂νφ1+∂τφ2= f1, ∂νφ2−∂τφ1= f2 on ∂D,

∂ρφj−Tjφj=0 on ∂B.

(3.14)
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The weak formulation of (3.14) is to find (φ1,φ2)∈H1(Ω)2 such that

a(φ1,φ2;ψ1,ψ2)=−
2

∑
j=1

〈 f j,ψj〉∂D, ∀(ψ1,ψ2)∈H1(Ω)2,

where the sesquilinear form a : H1(Ω)2×H1(Ω)2→C is defined by

a(φ1,φ2;ψ1,ψ2)=
2

∑
j=1

∫

Ω
∇φj ·∇ψ̄j−κ2

j

∫

Ω
φjψ̄j−〈Tjφj,ψj〉∂B

−
∫

∂D
∂τφ2ψ̄1+

∫

∂D
∂τφ1ψ̄2. (3.15)

We may also consider the Helmholtz decomposition for total field u:

u=∇ϕ1+curlϕ2.

It is easy to verify that ϕ1,ϕ2 satisfy











∆ϕj+κ2
j ϕj=0 in Ω,

∂ν ϕ1+∂τ ϕ2=0, ∂ν ϕ2−∂τ ϕ1=0 on ∂D,

∂ρ ϕj−Tj ϕj= gj on ∂B,

(3.16)

where gj =∂ρφinc
j −Tjφ

inc
j and

φinc
1 =− 1

κ2
1

∇·uinc, φinc
2 =

1

κ2
2

curluinc.

The variational form of problem (3.16) is to find (ϕ1,ϕ2)∈H1(Ω)2 such that

a(ϕ1,ϕ2;ψ1,ψ2)=
2

∑
j=1

〈gj,ψj〉∂B, ∀(ψ1,ψ2)∈H1(Ω)2. (3.17)

We refer to [24] for the proofs of the well-posedness of the boundary value problems
(3.12), (3.14), and (3.16).

4 Domain derivatives

In this section, we study the domain derivatives for the boundary value problems (3.12)
and (3.16). Then we show that the Helmholtz decomposition of the domain derivative of
(3.12) is just the domain derivative of (3.16).
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4.1 Domain derivative for Navier equation

Given h>0, introduce a domain Ωh enclosed by ∂Dh and ∂B, where

∂Dh ={x+hp(x) : x∈∂D},

where the obstacle’s surface ∂D is assumed to be in C2 and the function p∈C2(∂D)2. It is
clear to note that ∂Dh ∈C2 is a perturbation of ∂D for sufficiently small h.

Let uh be the solution of the boundary value problem (3.12) for Navier equation cor-
responding to the domain Ωh. Define a nonlinear scattering operator

S : ∂Dh→γuh,

where γ is the trace operator onto ∂B. The domain derivative of the operator S on the
boundary ∂D along with the direction p is defined by

S
′(∂D,p) := lim

h→0

S (∂Dh)−S (∂D)

h
= lim

h→0

γuh−γu

h
.

The following result on the domain derivative of (3.12) is proved in [24].

Theorem 4.1. Let u be the solution of the variational problem (3.13). Given p∈C2(∂D)2, the
domain derivative of the scattering operator S is S ′(∂D;p)=γu′, where u′ is the unique weak
solution of the boundary value problem:











µ∆u′+(λ+µ)∇∇·u′+ω2u′=0 in Ω,

u′=−(p·ν)∂νu on ∂D,

Bu′=T u′ on ∂B.

(4.1)

4.2 Domain derivative for the coupled Helmholtz system

Consider the variational problem of the coupled Helmholtz system (3.16) in the per-
turbed domain Ωh =B\Dh: to find (ϕh

1,ϕh
2)∈H1(Ω)2 such that

ah(ϕh
1,ϕh

2;ψh
1 ,ψh

2)=
2

∑
j=1

〈gj,ψ
h
j 〉∂B, ∀(ψh

1 ,ψh
2)∈H1(Ωh)

2, (4.2)

where the sesquilinear form

ah(ϕh
1,ϕh

2;ψh
1 ,ψh

2)=
2

∑
j=1

∫

Ωh

∇ϕh
j ·∇ψ̄h

j −κ2
j

∫

Ωh

ϕh
j ψ̄h

j −〈Tj ϕ
h
j ,ψh

j 〉∂B

−
∫

∂Dh

∂τ ϕh
2ψ̄h

1+
∫

∂Dh

∂τ ϕh
1ψ̄h

2 .
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Define a nonlinear scattering operator for ϕh
j :

Sj : ∂Dh →γϕh
j , j=1,2.

The domain derivative of Sj on the boundary ∂D along with the direction p is defined
by

S
′
j (∂D,p) := lim

h→0

Sj(∂Dh)−Sj(∂D)

h
= lim

h→0

γϕh
j −γϕj

h
.

For a given p∈C2(∂D)2, we extend its domain to Ω by requiring that p∈C2(Ω)2∩
C(Ω)2 and p=0 on ∂B. Hence y= ξh(x)= x+hp(x) maps Ω to Ωh. It is clear to note that
ξh is a diffemorphism from Ω to Ωh for sufficiently small h. Denote by ηh(y) : Ωh →Ω

the inverse map of ξh. Define ϕ̆j(x) = (ϕh
j ◦ξh)(x), j = 1,2. It follows from the change of

variables that we have

∫

Ωh

∇ϕh
j ·∇ψh

j =
∫

Ω
(∇ ¯̆ψj)

⊤ Jηh J⊤ηh∇ϕ̆jdet(Jξh ),

∫

Ωh

ϕh
j ψ̄h

j =
∫

Ω
ϕ̆j

¯̆ψjdet(Jξh ),

∫

∂Dh

∂τ ϕh
2ψ̄h

1 =
∫

∂D
τh ·(J⊤ηh∇ϕ̆2)

¯̆ψ1det(Jξh ),
∫

∂Dh

∂τ ϕh
1ψ̄h

2 =
∫

∂D
τh ·(J⊤ηh∇ϕ̆1)

¯̆ψ2det(Jξh ),

where τh is the unit normal vector on ∂Dh, ψ̆j =(ψh
j ◦ξh)(x), Jηh and Jξh are the Jacobian

matrices of the transforms of ηh and ξh, respectively.

Since ψh
j is an arbitrary test function in the domain Ωh, it is easy to note that ψ̆j is also

a test function in the domain Ω according to the transform. Hence the sesquilinear form
ah in (4.2) can be written as

ah(ϕ̆1, ϕ̆2;ψ1,ψ2)=
2

∑
j=1

∫

Ω
(∇ψ̄j)

⊤ Jηh J⊤ηh∇ϕ̆jdet(Jξh )−κ2
j

∫

Ω
ϕ̆jψ̄jdet(Jξh )−〈Tj ϕ̆j,ψj〉∂B

−
∫

∂D
τh ·(J⊤ηh∇ϕ̆2)ψ̄1det(Jξh )+

∫

∂D
τh ·(J⊤ηh∇ϕ̆1)ψ̄2det(Jξh ), (4.3)

which gives an equivalent variational formulation of (4.2):

ah(ϕ̆1, ϕ̆2;ψ1,ψ2)=
2

∑
j=1

〈gj,ψj〉∂B, ∀(ψ1,ψ2)∈H1(Ω)2. (4.4)
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Combining (3.17), (4.4), and (4.3) yields

a(ϕ̆1−ϕ1, ϕ̆2−ϕ2;ψ1,ψ2)= a(ϕ̆1, ϕ̆2;ψ1,ψ2)−a(ϕ1,ϕ2;ψ1,ψ2)

= a(ϕ̆1, ϕ̆2;ψ1,ψ2)−
2

∑
j=1

〈gj,ψj〉∂B

= a(ϕ̆1, ϕ̆2;ψ1,ψ2)−ah(ϕ̆1, ϕ̆2;ψ1,ψ2).

Hence

a(ϕ̆1−ϕ1, ϕ̆2−ϕ2;ψ1,ψ2)

=
2

∑
j=1

∫

Ω
(∇ψ̄j)

⊤[I− Jηh J⊤ηh det(Jξh )]∇ϕ̆j−κ2
j

∫

Ω
[1−det(Jξh )]ϕ̆jψ̄j

−
∫

∂D
[τ−det(Jξh )Jηh τh]·∇ϕ̆2ψ̄1+

∫

∂D
[τ−det(Jξh )Jηh τh]·∇ϕ̆1ψ̄2. (4.5)

Following the definitions of the Jacobian matrices, we may easily verify that

det(Jξh )=1+h∇·p+O(h2),

Jηh = J−1
ξh ◦ηh = I−hJp+O(h2),

Jηh J⊤ηh det(Jξh)= I−h(Jp+ J⊤p )+h(∇·p)I+O(h2),

where I is the identity matrix and Jp =∇p.

As a closed curve, the obstacle’s surface has a parametric equation

∂D={r∈R
2 : r(t)=(r1(t),r2(t))

⊤, t∈ [0,2π]}.

It is easy to note that

τ=
(r′1(t),r

′
2(t))

⊤

|r′(t)| , ν=
(r′2(t),−r′1(t))

⊤

|r′(t)| .

Lemma 4.1. Let p=(p1,p2)⊤. Then for sufficiently small h, the following estimates hold:

det(Jξh )=1+h[∂x p1r′1(t)
2+∂y p2r′2(t)

2]+h(∂y p1+∂x p2)r
′
1(t)r

′
2(t)+O(h2),

τh =τ+hJpτ−h[∂x p1r′1(t)
2+∂y p1r′2(t)

2]τ−h(∂y p1+∂x p2)r
′
1(t)r

′
2(t)τ+O(h2).

Proof. Let r(t),t∈ [0,2π] be the parametric equation of ∂D. Then the parametric equation
of ∂Dh is

r̆(t)=

(

r̆1(t)
r̆2(t)

)

= r(t)+hp(r(t))=

(

r1(t)+hp1(r1(t),r2(t))
r2(t)+hp2(r1(t),r2(t))

)

.



822 J. Yue et al. / Commun. Comput. Phys., 26 (2019), pp. 809-837

It follows from the straightforward calculation that

det(Jξh )=|r̆′(t)|=(r̆′1(t)
2+ r̆′2(t)

2)1/2

=
{

[r′1(t)+h∂x p1r′1(t)+h∂y p1r′2(t)]
2+[r′2(t)+h∂x p2r′1(t)+h∂y p2r′2(t)]

2
}1/2

=
{

r′1(t)
2+h2(∂x p1)

2r′1(t)
2+h2(∂y p1)

2r′2(t)
2+2h∂x p1r′1(t)

2+2h∂y p1r′1(t)r
′
2(t)

+2h2∂x p1∂y p1r′1(t)r
′
2(t)+r′2(t)

2+h2(∂x p2)
2r′1(t)

2+h2(∂y p2)
2r′2(t)

2

+2h∂x p2r′1(t)r
′
2(t)+2h∂y p2r′2(t)

2+2h2∂x p2∂y p2r′1(t)r
′
2(t)

}1/2

=
{

1+h2[(∂x p1)
2+(∂x p2)

2]r′1(t)
2+h2[(∂y p1)

2+(∂y p2)
2]r′2(t)

2

+2h(∂x p1r′1(t)
2+∂y p2r′2(t)

2)+2h(∂y p1+∂x p2)r
′
1(t)r

′
2(t)

+2h2(∂x p1∂y p1+∂x p2∂y p2)r
′
1(t)r

′
2(t)

}1/2

=1+
1

2

{

2h(∂x p1r′1(t)
2+∂y p2r′2(t)

2)+2h(∂y p1+∂x p2)r
′
1(t)r

′
2(t)

}

+O(h2)

=1+h(∂x p1r′1(t)
2+∂y p2r′2(t)

2)+h(∂y p1+∂x p2)r
′
1(t)r

′
2(t)+O(h2).

Let τh be the unit tangent vector on ∂Dh. Then

τh=|r̆′(t)|−1

(

r̆′1(t)
r̆′2(t)

)

= |r̆′(t)|−1

(

r′1(t)+h∂x p1r′1(t)+h∂y p1r′2(t)
r′2(t)+h∂x p2r′1(t)+h∂y p2r′2(t)

)

=
[

1−h(∂x p1r′1(t)
2+∂y p2r′2(t)

2)−h(∂y p1+∂x p2)r
′
1(t)r

′
2(t)+O(h2)

]

×
(

τ+h

[

∂x p1 ∂y p1

∂x p2 ∂y p2

]

τ

)

=τ+hJpτ−h(∂x p1r′1(t)
2+∂y p2r′2(t)

2)τ−h(∂y p1+∂x p2)r
′
1(t)r

′
2(t)τ+O(h2),

which completes the proof.

Using Lemma 4.1, we obtain

τ−det(Jξh )Jηh τh

=τ−
(

1+h[∂x p1r′1(t)
2+∂y p2r′2(t)

2]+h[∂y p1+∂x p2]r
′
1(t)r

′
2(t)+O(h2)

)

(I−hJp)
(

τ+hJpτ−h[∂x p1r′1(t)
2+∂y p2r′2(t)

2]τ−h[∂y p1+∂x p2]r
′
1(t)r

′
2(t)τ+O(h2)

)

=τ−
(

τ+hJpτ−h[∂x p1r′1(t)
2+∂y p2r′2(t)

2]τ−h[∂y p1+∂x p2]r
′
1(t)r

′
2(t)τ

−hJpτ+h[∂x p1r′1(t)
2+∂y p2r′2(t)

2]τ+h[∂y p1+∂x p2]r
′
1(t)r

′
2(t)

)

τ+O(h2)

=O(h2).

Using the above estimates, we can easily verify that

(∇ψ̄j)
⊤[I− Jηh J⊤ηh det(Jξh)]∇ϕ̆j =h(∇ψ̄j)

⊤[Jp+ J⊤p −(∇·p)I]∇ϕ̆j+O(h2),

[1−det(Jξh )]ϕ̆jψ̄j =−h(∇·p)ϕ̆jψ̄j+O(h2),
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[τ−det(Jξh )Jηh τh]·∇ϕ̆2ψ̄1=O(h2),

[τ−det(Jξh )Jηh τh]·∇ϕ̆h
1ψ̄2=O(h2).

Hence, we have from (4.5) and the above estimates that

a

(

ϕ̆h
1−ϕ1

h
,
ϕ̆h

2−ϕ2

h
;ψ1,ψ2

)

=
1

h

2

∑
j=1

∫

Ω
(∇ψ̄j)

⊤[I− Jηh J⊤ηhdet(Jξh )]∇ϕ̆j−κ2
j

∫

Ω
[1−det(Jξh )]ϕ̆jψ̄j

− 1

h

∫

∂D
[τ−det(Jξh)Jηh τh]·∇ϕ̆2ψ̄1+

1

h

∫

∂D
[τ−det(Jξh )Jηh τh]·∇ϕ̆1ψ̄2

= g1(p)(ϕ̆1, ϕ̆2;ψ1,ψ2)+g2(p)(ϕ̆1, ϕ̆2;ψ1,ψ2)+O(h), (4.6)

where

g1(p)(ϕ̆1, ϕ̆2;ψ1,ψ2)=
2

∑
j=1

∫

Ω
(∇ψ̄j)

⊤[Jp+ J⊤p −(∇·p)I]∇ϕ̆j,

g2(p)(ϕ̆1, ϕ̆2;ψ1,ψ2)=
2

∑
j=1

κ2
j

∫

Ω
(∇·p)ϕ̆jψ̄j.

It follows from the well-posedness of the problem (3.16) that [24]

lim
h→0

gk(p)(ϕ̆j,ψj)= gk(p)(ϕj,ψj), k=1,2, j=1,2.

Denote

ϕ̇j= lim
h→0

ϕ̆j−ϕj

h
.

Then we have from (4.6) that

a(ϕ̇1, ϕ̇2;ψ1,ψ2)= g1(p)(ϕ1,ϕ2;ψ1,ψ2)+g2(p)(ϕ1,ϕ2;ψ1,ψ2). (4.7)

Noting p=0 on ∂B and using the identity

(∇u)⊤[Jp+ J⊤p −(∇·p)I]∇v

=∇·[(p ·∇u)∇v+(p ·∇v)∇u−(∇u·∇v)p]−(p ·∇u)∆v−(p ·∇v)∆u,
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we get from the divergence theorem that

∫

Ω
(∇u)⊤[Jp+ J⊤p −(∇·p)I]∇v̄

=−
∫

∂D
(p·∇u)(ν·∇v̄)+(p·∇v̄)(ν·∇u)−(∇u·∇v̄)(p·ν)

−
∫

Ω
(p·∇u)∆v̄−

∫

Ω
(p·∇v̄)∆u

=−
∫

∂D
(p·∇v̄)(ν·∇u)−(∇u·∇v̄)(p·ν)

−
∫

Ω
(p·∇v̄)∆u+

∫

Ω
∇(p·∇u)·∇v̄.

Lemma 4.2. Let p=(p1,p2)⊤ and ν=(ν1,ν2)⊤ be the unit normal vector on ∂D. Then

∫

∂D
(p·∇v̄)(ν·∇u)−(∇u·∇v̄)(p·ν)=

∫

∂D
ν·
(

−∂y(p2∂xu−p1∂yu)
∂x(p2∂xu−p1∂yu)

)

v̄.

Proof. A simple calculation yields that

∫

∂D
(p·∇v̄)(ν·∇u)−(∇u·∇v̄)(p·ν)

=
∫

∂D
(p1∂xv̄+p2∂yv̄)(ν1∂xu+ν2∂yu)−(∂xu∂x v̄+∂yu∂yv̄)(p1ν1+p2ν2)

=
∫

∂D
ν1[p1∂xv̄∂xu+p2∂yv̄∂xu−p1∂xu∂x v̄−p1∂yu∂yv̄]

+ν2[p1∂xv̄∂yu+p2∂yv̄∂yu−p2∂xu∂xv̄−p2∂yu∂yv̄]

=
∫

∂D

(

ν1∂yv̄−ν2∂x v̄
)

(p2∂xu−p1∂yu).

It follows from the divergence theorem that

∫

∂D

(

ν1∂yv̄−ν2∂xv̄
)

(p2∂xu−p1∂yu)

=−
∫

Ω
(p2∂xu−p1∂yu)∇·

(

∂yv̄
−∂xv̄

)

−
∫

Ω

(

∂yv̄
−∂xv̄

)

·
(

∂x(p2∂xu−p1∂yu)
∂y(p2∂xu−p1∂yu)

)

=−
∫

Ω

(

∂x v̄
∂yv̄

)

·
(

−∂y(p2∂xu−p1∂yu)
∂x(p2∂xu−p1∂yu)

)

=
∫

Ω
∇·
(

−∂y(p2∂xu−p1∂yu)
∂x(p2∂xu−p1∂yu)

)

v̄+
∫

∂D
ν·
(

−∂y(p2∂xu−p1∂yu)
∂x(p2∂xu−p1∂yu)

)

v̄

=
∫

∂D
ν·
(

−∂y(p2∂xu−p1∂yu)
∂x(p2∂xu−p1∂yu)

)

v̄,

which completes the proof.
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Lemma 4.3. Let ν and τ be the unit norm and tangent vectors on ∂D, respectively. Then
∫

∂D
(p·∇ψ̄1)(ν·∇ϕ1)−(∇ϕ1 ·∇ψ̄1)(p·ν)=

∫

∂D
∂τ(p·∇ϕ2)ψ̄1, (4.8)

∫

∂D
(p·∇ψ̄2)(ν·∇ϕ2)−(∇ϕ2 ·∇ψ̄2)(p·ν)=−

∫

∂D
∂τ(p·∇ϕ1)ψ̄2. (4.9)

Proof. Since the proofs of (4.8) and (4.9) are similar, we only show the proof of (4.8). By
Lemma 4.2, it suffices to prove

∫

∂D
∂τ(p·∇ϕ2)ψ̄1=

∫

∂D
ν·
(−∂y(p2∂x ϕ1−p1∂y ϕ1)

∂x(p2∂x ϕ1−p1∂y ϕ1)

)

ψ̄1.

Recalling the boundary condition (3.16)

∂ν ϕ1+∂τ ϕ2=0, ∂ν ϕ2−∂τ ϕ1=0

and
τ1=−ν2, τ2=ν1,

we get

(ν1∂x ϕ1+ν2∂y ϕ1)+(−ν2∂x ϕ2+ν1∂y ϕ2)=0,

(ν1∂x ϕ2+ν2∂y ϕ2)−(−ν2∂x ϕ1+ν1∂y ϕ1)=0,

which gives
∂x ϕ1=−∂y ϕ2, ∂y ϕ1=∂x ϕ2.

A simple calculation yields that

∫

∂D
ν·
(−∂y(p2∂x ϕ1−p1∂y ϕ1)

∂x(p2∂x ϕ1−p1∂y ϕ1)

)

ψ̄1

=
∫

∂D
ν·
(−∂y(−p2∂y ϕ2−p1∂x ϕ2)

∂x(−p2∂y ϕ2−p1∂x ϕ2)

)

ψ̄1

=
∫

∂D

(

ν1

ν2

)

·
(

∂y(p2∂y ϕ2+p1∂x ϕ2)
−∂x(p2∂y ϕ2+p1∂x ϕ2)

)

ψ̄1

=
∫

∂D

(−ν2

ν1

)

·
(

∂x(p2∂y ϕ2+p1∂x ϕ2)
∂y(p2∂y ϕ2+p1∂x ϕ2)

)

ψ̄1

=
∫

∂D
(τ ·∇(p·∇ϕ2))ψ̄1=

∫

∂D
∂τ(p·∇ϕ2)ψ̄1,

which completes the proof.

Lemma 4.4. Let ∆u+κ2u=0 in Ω. Then

κ2
∫

Ω
(∇·p)uv̄=−κ2

∫

∂D
(p·ν)uv̄−κ2

∫

Ω
(p·∇u)v̄+

∫

Ω
(p·∇v̄)∆u.
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Proof. Using the identity

uv̄∇·p=∇·(uv̄p)−(p·∇u)v̄−u(p·∇v̄),

we have from the divergence theorem that

−κ2
∫

∂D
(p·ν)uv̄=−κ2

∫

∂D
ν·(puv̄)=κ2

∫

Ω
∇·(puv̄)

=κ2
∫

Ω
uv̄∇·p+κ2

∫

Ω
(∇u·p)v̄+κ2

∫

Ω
u(∇v̄·p)

=κ2
∫

Ω
uv̄∇·p+κ2

∫

Ω
(∇u·p)v̄−

∫

Ω
∆u(∇v̄ ·p),

which completes the proof.

Theorem 4.2. Let (ϕ1,ϕ2) be the solution of the coupled boundary value problem (3.16). Given
p∈C2(∂D)2, the domain derivative of the scattering operator Sj is S ′

j (∂D,p) = γϕ′
j, j= 1,2,

where (ϕ′
1,ϕ′

2) is the unique weak solution of the boundary value problem:










∆ϕ′
j+κ2

j ϕ′
j=0 in Ω,

∂ν ϕ′
1+∂τ ϕ′

2=κ2
1(p·ν)ϕ1, ∂ν ϕ′

2−∂τ ϕ′
1=κ2

2(p·ν)ϕ2 on ∂D,

∂ρ ϕ′
j−Tj ϕ

′
j=0 on ∂B.

(4.10)

Proof. Using Lemmas 4.3 and 4.4, we obtain from (4.7) that

a(ϕ̇1, ϕ̇2;ψ1,ψ2)= g1(p)(ϕ1,ϕ2;ψ1,ψ2)+g2(p)(ϕ1,ϕ2;ψ1,ψ2)

=
2

∑
j=1

∫

Ω
(∇ψ̄j)

⊤[Jp+ J⊤p −(∇·p)I]∇ϕj+κ2
j

∫

Ω
(∇·p)ϕjψ̄j

=
2

∑
j=1

∫

Ω
∇(p·∇ϕj)·∇ψ̄j−κ2

j

∫

∂D
(p·ν)ϕjψ̄j−κ2

j

∫

Ω
(p·∇ϕj)ψ̄j

−
∫

∂D
∂τ(p·∇ϕ2)ψ̄1+

∫

∂D
∂τ(p·∇ϕ1)ψ̄2.

It is clear that note that p·∇ϕj =0 on ∂B since p=0 on ∂B. It follows from (3.15) that

a(p·∇ϕ1,p·∇ϕ2;ψ1,ψ2)=
2

∑
j=1

∫

Ω
∇(p·∇ϕj)·∇ψ̄j−κ2

j

∫

Ω
(∇ϕj ·p)ψ̄j

−
∫

∂D
∂τ(p·∇ϕ2)ψ̄1+

∫

∂D
∂τ(p·∇ϕ1)ψ̄2.

Denote ϕ′
j= ϕ̇j−p·∇ϕj, j=1,2. We obtain from the above equations that

a(ϕ′
1,ϕ′

2;ψ1,ψ2)=−
2

∑
j=1

κ2
j

∫

∂D
(p·ν)ϕjψ̄j,

which implies that (ϕ′
1,ϕ′

2) satisfies the problem (4.10) and completes the proof.
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4.3 Helmholtz decomposition of the domain derivative

In this subsection, we consider the Helmholtz decomposition of the domain derivative u′

for the boundary value problem (4.1), and show that the scalar potentials for the decom-
position are the domain derivative for the boundary value problem (4.10).

Theorem 4.3. Let u′ be the solution of the boundary value problem (4.1). Assume that u′ admits
the following Helmholtz decomposition

u′=∇ϕ̃′
1+curlϕ̃′

2,

then (ϕ̃′
1, ϕ̃′

2) satisfies (4.10), i.e., ϕ̃′
j= ϕj, j=1,2.

Proof. Since τ1=−ν2, τ2=ν1, we have

∂ν ϕ̃′
j=ν1∂x ϕ̃′

j+ν2∂y ϕ̃′
j, ∂τ ϕ̃′

j=−ν2∂x ϕ̃′
j+ν1∂y ϕ̃′

j.

By the Helmholtz decomposition

u′=∇ϕ̃′
1+curlϕ̃′

2=

(

∂x ϕ̃′
1+∂y ϕ̃′

2

∂y ϕ̃′
1−∂x ϕ̃′

2

)

,

we may easily verify that (ϕ̃′
1, ϕ̃′

2) satisfies

{

∆ϕ̃′
j+κ2

j ϕ̃′
j=0 in Ω,

∂ρ ϕ̃′
j−Tj ϕ̃

′
j=0 on ∂B.

Hence it only remains to show that

∂ν ϕ̃′
1+∂τ ϕ̃′

2=κ2
1(p·ν)ϕ1, ∂ν ϕ̃′

2−∂τ ϕ̃′
1=κ2

2(p·ν)ϕ2 on ∂D.

We only show the proof for the first equation since the proof is similar for the second
equation.

Recalling the Helmholtz decomposition

u=

(

u1

u2

)

=∇ϕ1+curlϕ2=

(

∂x ϕ1+∂y ϕ2

∂y ϕ1−∂x ϕ2

)

,

we get

∇u=

[

∂xu1 ∂yu1

∂xu2 ∂yu2

]

=

[

∂x(∂x ϕ1+∂y ϕ2) ∂y(∂x ϕ1+∂y ϕ2)

∂x(∂y ϕ1−∂x ϕ2) ∂y(∂y ϕ1−∂x ϕ2)

]

=

[

∂2
xx ϕ1+∂2

xy ϕ2 ∂2
xy ϕ1+∂2

yy ϕ2

∂2
xy ϕ1−∂2

xx ϕ2 ∂2
yy ϕ1−∂2

xy ϕ2

]

.
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Hence

∂νu=ν·∇u=

(

ν1∂2
xx ϕ1+ν1∂2

xy ϕ2+ν2∂2
xy ϕ1+ν2∂2

yy ϕ2

ν1∂2
xy ϕ1−ν1∂2

xx ϕ2+ν2∂2
yy ϕ1−ν2∂2

xy ϕ2

)

.

It follows from straightforward calculations that

ν·u′=ν·(∇ϕ̃′
1+curlϕ̃′

2)

=ν1(∂x ϕ̃′
1+∂y ϕ̃′

2)+ν2(∂y ϕ̃′
1−∂x ϕ̃′

2)

=(ν1∂x ϕ̃′
1+ν2∂y ϕ̃′

1)−(ν2∂x ϕ̃′
2−ν1∂y ϕ̃′

2)

=∂ν ϕ̃′
1+∂τ ϕ̃′

2

and

ν·∂νu=ν1(ν1∂2
xx ϕ1+ν1∂2

xy ϕ2+ν2∂2
xy ϕ1+ν2∂2

yy ϕ2)

+ν2(ν1∂2
xy ϕ1−ν1∂2

xx ϕ2+ν2∂2
yy ϕ1−ν2∂2

xy ϕ2

=ν2
1 ∂2

xx ϕ1+ν2
1 ∂2

xy ϕ2+ν1ν2∂2
xy ϕ1+ν1ν2∂2

yy ϕ2

+ν1ν2∂2
xy ϕ1−ν1ν2∂2

xx ϕ2+ν2
2 ∂2

yy ϕ1−ν2
2 ∂2

xy ϕ2. (4.11)

Since u=0 on ∂D, we have ∂τu=0 and

∂τu=τ ·∇u=

(−ν2

ν1

)

·
[

∂2
xx ϕ1+∂2

xy ϕ2 ∂2
xy ϕ1+∂2

yy ϕ2

∂2
xy ϕ1−∂2

xx ϕ2 ∂2
yy ϕ1−∂2

xy ϕ2

]

=0,

which yields that

0=τ ·∂τu=

(

−ν2

ν1

)

·
(

−ν2∂2
xx ϕ1−ν2∂2

xy ϕ2+ν1∂2
xy ϕ1+ν1∂2

yy ϕ2

−ν2∂2
xy ϕ1+ν2∂2

xx ϕ2+ν1∂2
yy ϕ1−ν1∂2

xy ϕ2

)

=ν2
2 ∂2

xx ϕ1+ν2
2 ∂2

xy ϕ2−ν1ν2∂2
xy ϕ1−ν1ν2∂2

yy ϕ2

−ν1ν2∂2
xy ϕ1+ν1ν2∂2

xx ϕ2+ν2
1 ∂2

yy ϕ1−ν2
1 ∂2

xy ϕ2. (4.12)

Combining (4.11) and (4.12), we obtain

ν·∂νu+τ ·∂τu=ν2
1 ∂2

xx ϕ1+ν2
1 ∂2

xy ϕ2+ν1ν2∂2
xy ϕ1+ν1ν2∂2

yy ϕ2

+ν1ν2∂2
xy ϕ1−ν1ν2∂2

xx ϕ2+ν2
2 ∂2

yy ϕ1−ν2
2 ∂2

xy ϕ2

+ν2
2 ∂2

xx ϕ1+ν2
2 ∂2

xy ϕ2−ν1ν2∂2
xy ϕ1−ν1ν2∂2

yy ϕ2

−ν1ν2∂2
xy ϕ1+ν1ν2∂2

xx ϕ2+ν2
1 ∂2

yy ϕ1−ν2
1 ∂2

xy ϕ2

=∂2
xx ϕ1+∂2

yy ϕ1=∆ϕ1=−κ2
1 ϕ1. (4.13)

Using the boundary condition

u′=−(p·ν)∂νu on ∂D,
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we have from (4.13) that

∂ν ϕ̃′
1+∂τ ϕ̃′

2=ν·u′=−(p·ν)(ν·∂νu)

=−(p·ν)(ν·∂νu+τ ·∂τu)=κ2
1(p·ν)ϕ1.

For similar process ∂ν ϕ̃′
2−∂τ ϕ̃′

1=κ2
2(p·ν)ϕ2 can be obtained, which completes the proof.

Remark 4.1. In (4.13), ∆ϕ1=−k2
1 ϕ1 is used on ∂D, which means higher order continuity

of ϕ1 on ∂D is required.

5 Reconstruction method

In this section, we introduce a numerical method to reconstruct obstacle’s surface based
on the decomposed system (2.4).

Assume that the obstacle’s surface has a parametric equation

∂D={r∈R
2 : r(t)=(r1(t),r2(t))

⊤, t∈ [0,2π]},

where r1,r2 are twice continuously differentiable and 2π-periodic functions. They admit
the following Fourier series expansions

rj(t)= r
(0)
j +

∞

∑
n=1

(r
(2n−1)
j cos(nt)+r

(2n)
j sin(nt)).

To reconstruct the surface, it suffices to determine the Fourier coefficients r
(n)
j . In practice,

a cut-off approximation is taken

rj,N(t)= r
(0)
j +

N

∑
n=1

(r
(2n−1)
j cos(nt)+r

(2n)
j sin(nt)).

For large N, rj,N differ from rj in high frequency modes which represent small details of
the obstacle’s surface.

Denote by DN the obstacle with boundary ∂DN , which has a parametric form

∂DN ={rN(t)∈R
2 : rN(t)=(r1,N(t),r2,N(t))

⊤, t∈ [0,2π]}.

Let ΩN =B\D̄N . Denote a vector of Fourier coefficients by

C=(c1,c2,··· ,c4N+2)
⊤∈R

4N+2,

where c2n+1=r
(n)
1 , c2n+2=r

(n)
2 , n=0,1,··· ,2N, and denote the scattering data for the scalar

potential functions from the total field by

U=((φ1(x1),φ2(x1)),··· ,(φ1(xM),φ2(xM)))⊤∈C
2M,
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where xm∈∂B, m=1,··· ,M.

There are two different ways to reconstruct obstacle’s surface: one is directly from
the elastic wave equation (3.12) which has been discussed in [24]; another is from the
Helmholtz decomposition (2.4).

The inverse problem can be formulated to solve an approximate nonlinear equation

FN(C)=U.

The operator FN maps a vector of Fourier coefficients in R4N+2 for the boundary ∂DN

into another vector of scattering data in C2M for the boundary ∂B.

Theorem 5.1. Let (ϕ1,ϕ2) be solution of the problem (3.16) corresponding to the obstacle DN.
Then the operator FN is differentiable and its derivatives are given by

∂FN,m(C)

∂cn
=(ϕ′

1n(xm),ϕ
′
2n(xm)),

where (ϕ′
1n(xm),ϕ′

2n(xm)) is the unique weak solution of the boundary value problem























∆ϕ′
jn+κ2

j ϕ′
jn =0 in ΩN,

∂νN
ϕ′

1n(rN(t))+∂τN
ϕ′

2n(rN(t))=κ2
1qn(t)ϕ1(rN(t)) for t∈ [0,2π],

∂νN
ϕ′

2n(rN(t))−∂τN
ϕ′

1n(rN(t))=κ2
2qn(t)ϕ2(rN(t)) for t∈ [0,2π],

∂ρ ϕ′
jn−Tj ϕ

′
jn =0 on ∂B.

(5.1)

Here νN and τN are the unit normal and tangent vectors on ∂DN , respectively,

q1(t)=−
r′2,N(t)

√

(r′1,N(t))
2+(r′2,N(t))

2
, q2(t)=

r′1,N(t)
√

(r′1,N(t))
2+(r′2,N(t))

2

and

qn(t)=























q1(t)cos(jt), n=4j−1,

q2(t)cos(jt), n=4j,

q1(t)sin(jt), n=4j+1,

q2(t)sin(jt), n=4j+2,

for j=1,··· ,N.

Proof. Let νN =(ν1N ,ν2N)
⊤. It is clear to note that

ν1N =−
r′2,N(t)

√

(r′1,N(t))
2+(r′2,N(t))

2
, ν2N =

r′1,N(t)
√

(r′1,N(t))
2+(r′2,N(t))

2
.
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Fix n∈{1,··· ,4N+2} and m∈{1,··· ,M}, and let {e1,··· ,e4N+2} be the set of natural basis
vectors in R4N+2. By definition, the domain derivative of the m-th component of the
operator FN on boundary ∂D along with the direction en is written as

F
′
N,m(C,en)=

∂FN,m(C)

∂cn
= lim

h→0

FN,m(C+hen)−FN,m(C)

h
.

A direct application of Theorem 4.2 shows that the above limit exists,i.e. F ′
N,m(C,en)=

(ϕ′
1n(xm), ϕ′

2n(xm)) and is the unique weak solution of the boundary value problem (5.1).

Consider an objective function

f (C)=
1

2
||FN(C)−U||2= 1

2

M

∑
m=1

‖FN,m(C)−(φ1(xm),φ2(xm))‖2.

The inverse problem can be formulated as the minimization problem:

min
C

f (C), C∈R
4N+2.

To apply the descent method, it is necessary to compute the gradient of the objective
function. Using Theorem 5.1, we have from a simple calculation that

∇ f (C)=

(

∂ f (C)

∂c1
,··· , ∂ f (C)

∂c4N+2

)⊤
,

where
∂ f (C)

∂cn
=Re

M

∑
m=1

(F̄N,m(C)−(φ̄1(xm),φ̄2(xm)))·(ϕ′
1n(xm),ϕ

′
2n(xm)).

Remark 5.1. In practice, the scattering data of the potential functions (φ1(xm),φ2(xm))
can be either directly measured or computed from the elastic wave field v(xm). In fact, it

follows from (3.7) that the Fourier modes of (φ
(n)
1 ,φ

(n)
2 ) can be computed from the Fourier

modes v(n) via the following equation





φ
(n)
1 (R)

φ
(n)
2 (R)



=

(

n2

R2
−α

(n)
1 α

(n)
2

)−1




−α
(n)
2 − in

R

− in
R α

(n)
1



v(n)(R). (5.2)

We assume that the scattering data U is available for a range of frequencies ω ∈
[ωmin,ωmax], which may be divided into ωmin =ω0 <ω1 < ···<ωK =ωmax. Correspond-
ingly, the compressional wavenumber may be divided into κ1,min=κ1,0<κ1,1< ···<κ1,K=
κ1,max and the shear wavenumber may be divided into κ2,min=κ2,0<κ2,1<···<κ2,K=κ2,max.
Let ki=[κ1,i] or ki=[κ2,i], i=0,1,··· ,K be the greatest integer less than or equal to κ1,i or κ2,i.
We now propose an algorithm to reconstruct the Fourier coefficients cn, n=1,··· ,4N+2.
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1. Set an initial approximation c3 = c6 = R0 > 0 and cn = 0 otherwise, i.e., the initial
approximation is a circle with radius R0.

2. Begin with the smallest frequency ω0, and seek an approximation to the functions
rj,N by Fourier series with Fourier modes not exceeding k0:

rj,k0
= r

(0)
j +

k0

∑
n=1

(r
(2n−1)
j cos(nt)+r

(2n)
j sin(nt)).

Denote Ck0
=(c1,c2,··· ,c4k0+2)

⊤ and consider the iteration

C
(l+1)
k0

=C
(l)
k0
−γ∇ f (C

(l)
k0
), l=1,··· ,L,

where γ> 0 and L> 0 are the step size and the total number of iterations for the
descent method, respectively.

3. Increase to the next higher frequency ω1 of the available data. Repeat Step 2 with
the previous approximation to rj,N as the starting point. More precisely, approxi-
mate rj,N by

rj,k1
= r̂

(0)
j +

k1

∑
n=1

(r̂
(2n−1)
j cos(nt)+ r̂

(2n)
j sin(nt)),

and determine the coefficients ĉn, n = 1,2,··· ,4k1+2 by using the descent method
starting from the previous result:

ĉn =

{

cn for 1≤n≤4k0+2,

0 for 4k0+2<n≤4k1+2,

where the coefficients cn come from Step 2. The resulting solution in this step repre-
sents the Fourier coefficients of rj,N corresponding to the frequencies not exceeding
k1.

4. Repeat Step 3 until a prescribed highest frequency ωK is reached.

We need to choose the prescribed frequency larger than the highest Fourier mode
of the surface in order to get a complete reconstruction. Numerical experiments show
that the recursive method converges for a wider class of surfaces than the usual Newton
method starting at the same initial guess of a circle with radius R0.

6 Numerical experiments

In this section, we take the two examples which are adopted in [24] to show the results
of the proposed method. The scattered data is obtained from the solution of problem
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(3.12) and the formula (5.2) in terms of the Fourier transform. The direct problem (3.12) is
solved by the finite element method with the perfectly matched layer technique, which is
implemented via FreeFem++ [14]. The finite element solution is interpolated uniformly
on ∂B. To test the stability, we add some relative noise to the data

uδ(xi)=u(xi)(1+δrand), i=1,··· ,M,

where rand are uniformly distributed random numbers in [−1,1]. Since the measurement
points xi∈∂B, we have xi=(Rcosψi,Rsinψi)

⊤, where ψi∈ [0,2π] is the observation angle.
In the following two examples, we take the Lamé constants λ=2, µ=1, which account

for the compressional wavenumber κ1 = ω/2 and the shear wavenumber κ2 = ω. The
radius of the ball B is R=2.5 and the radius of the initial guess of the circle R0=1.0. The
observation points M=64. The noise level δ=5%.

Example 6.1. Consider a commonly used benchmark test example, a kite-shaped obsta-
cle, which has the parametric equation

r1(t)=−0.65+cos(t)+0.65cos(2t), r2(t)=1.5sin(t), t∈ [0,2π].

The obstacle’s surface has a concave part. It has become a criterion to judge the quality
of a reconstruction method whether the concave part of the obstacle can be successfully
recovered. Our approach is essentially a Fourier spectral method and aims to recover
the Fourier coefficients. Since the surface functions only contain a couple of low Fourier
modes, our method works very well even by using few scattering data. Here we use a
single compressional plane wave with the incident angle θ=0 to illuminate the obstacle.
We take the scattering data at three frequencies ω0 = 2, ω1 = 4 and ω2 = 6, i.e., the com-
pressional wavenumbers are κ1,0=1, κ1,1=2, κ1,2=3. In the iteration process, the step size
γ=0.005, and for each wave number, the total number of iterations L=10. Fig. 2(a) shows
the exact surface and the initial guess of the unit circle. Fig. 2(b) shows the reconstructed
surface by using the full aperture data, i.e., the observation angle ψ∈ [0,2π]. The result
is almost perfect. We also investigate how the data aperture influences the quality of the
reconstruction. Fig. 2(c)-(i) plot the reconstructed surfaces and the corresponding data
apertures for the construction. It is clear to note that the results are as good as the one by
using the full aperture data as long as the observation angles cover the concave part of
the obstacle; the results deteriorate as the aperture gets smaller if the observation angles
don’t cover the concave part of the obstacle.

Example 6.2. Consider a star-shaped obstacle, which has the parametric equation

r1(t)=1.5cos(t)+0.15cos(4t)+0.15cos(6t),

r2(t)=1.5sin(t)−0.15sin(4t)+0.15sin(6t),

where t ∈ [0,2π]. Due to the oscillatory feature, this surface contains many more high
Fourier modes and is more difficult than the first example. The scattering data with
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Figure 2: Example 6.1: the kite-shaped obstacle. (a) exact surface and initial guess of the unit circle; (b)

ψ ∈ [0,2π]; (c) ψ ∈ [ π
4 , 7π

4 ]; (d) ψ ∈ [0, π
4 ]∪[ 3π

4 ,2π]; (e) ψ ∈ [0, 3π
4 ]∪[ 5π

4 ,2π]; (f) ψ ∈ [0, π
2 ]∪[ 3π

2 ,2π]; (g)

ψ∈ [0,π]; (h) ψ∈ [ π
2 , 3π

2 ]; (i) ψ∈ [π,2π].

higher frequencies is required in order to completely recover the obstacle. In this exam-
ple, we use a combination of two compressional plane waves with incident angles θ=0,π
to illuminate the obstacle. We take the scattering data at four frequencies ω0=2, ω1=4,
ω2=6, ω3=8, i.e., the compressional wavenumbers are κ2,0 =1, κ2,1 =2, κ2,3 =3, κ2,4 =4.
In the iterative process, the step size γ=0.005 and the total number of iterations L=5 at
each wavenumber. Fig. 3(a) shows the exact surface and the initial guess of the unit cir-
cle. Fig. 3(b)-(i) show the reconstructed surfaces by using different data apertures. We can
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Figure 3: Example 6.2: the star-shaped obstacle. (a) exact surface and initial guess of the unit circle; (b)

ψ ∈ [0,2π]; (c) ψ ∈ [ π
4 , 7π

4 ]; (d) ψ ∈ [0, π
4 ]∪[ 3π

4 ,2π]; (e) ψ ∈ [0, 3π
4 ]∪[ 5π

4 ,2π]; (f) ψ ∈ [0, π
2 ]∪[ 3π

2 ,2π]; (g)

ψ∈ [0,π]; (h) ψ∈ [ π
2 , 3π

2 ]; (i) ψ∈ [π,2π].

see that the part of the surface can be accurately reconstructed as long as the observation
angles cover that part.

7 Concluding remarks

In this paper, we have studied the inverse obstacle scattering problem for elastic waves
in two dimensions. Based on the Helmholtz decomposition and transparent boundary
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conditions, the boundary value problem of the Navier equation is converted into a cou-
pled boundary value problem of the Helmholtz equations. The domain derivatives are
investigated for the potential functions from two different aspects: one is to deduce the
domain derivative from the coupled boundary value problem of the potential functions
by using the variational approach; another is to take the Helmholtz decomposition of
the domain derivative for the displacement of the original Navier system. We show that
the two approaches are consistent and give the same domain derivative for the coupled
Helmholtz system. A frequency recursive method is developed for the inverse problem.
Numerical examples are presented to demonstrate the effectiveness and stability of the
proposed method. The results are comparable to those presented in [24], which requires
to solve the Navier equation. This work requires to solve the simpler Helmholtz equa-
tion. It provides a viable method to solve the inverse elastic obstacle scattering problem.
A possible continuation of this work is to study the three-dimensional problem and dif-
ferent boundary conditions.
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[12] H. Haddar and R. Kress, On the Fréchet derivative for obstacle scattering with an impedance
boundary condition, SIAM J. Appl. Math., 65(2004), 194–208.

[13] P. Hahner and G. C. Hsiao, Uniqueness theorems in inverse obstacle scattering of elastic
waves, Inverse Probl., 9(1993), 525–534.

[14] F. Hecht, New development in FreeFem++, J. Numer. Math. 20(2012), 251–265.
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