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AN ADAPTIVE FINITE ELEMENT DtN METHOD FOR THE
ELASTIC WAVE SCATTERING PROBLEM IN THREE DIMENSIONS*
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Abstract. Consider the elastic scattering of an incident wave by a rigid obstacle in three di-
mensions, which is formulated as an exterior problem for the Navier equation. By constructing a
Dirichlet-to-Neumann (DtN) operator and introducing a transparent boundary condition, the scat-
tering problem is reduced equivalently to a boundary value problem in a bounded domain. The
discrete problem with the truncated DtN operator is solved by using the a posteriori error estimate
based adaptive finite element method. The estimate takes account of both the finite element approx-
imation error and the truncation error of the DtN operator, where the latter is shown to converge
exponentially with respect to the truncation parameter. Moreover, the generalized Woodbury ma-
trix identity is utilized to solve the resulting linear system efficiently. Numerical experiments are
presented to demonstrate the superior performance of the proposed method.
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1. Introduction. A basic problem in classical scattering theory, the obstacle
scattering problem refers to the scattering of a time-harmonic wave by an impenetrable
medium of compact support. It plays a fundamental role in diverse scientific areas
such as radar and sonar, geophysical exploration, medical imaging, and nondestructive
testing. Obstacle scattering problems have been extensively investigated in both
the engineering and mathematical communities. A great number of numerical and
mathematical results are available, especially for acoustic and electromagnetic waves
[9, 31, 32]. Recently, the scattering problems for elastic waves have received ever-
increasing attention due to the significant applications in geophysics, seismology, and
elastography [2, 6, 7, 26]. Compared to work on acoustic and electromagnetic waves,
in the research on scattering problems for elastic waves, there remain many unresolved
issues on theoretical analysis and numerical computation because of the complexity
of the model equation [8, 24].

The elastic obstacle scattering problem is imposed in an unbounded domain,
which needs to be truncated into a bounded one when applying domain discretiza-
tion based numerical methods. Therefore, an appropriate boundary condition is re-
quired on the boundary of the truncated domain so that no artificial wave reflec-
tion occurs. Such a boundary condition is called a nonreflecting boundary condi-
tion or transparent boundary condition (TBC). Despite the large amount of work
done so far, developing effective nonreflecting boundary conditions in the area of
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computational wave propagation remains an important and active research subject
[5, 11, 13, 14, 15, 16, 17, 20, 36]. In this work, we construct a Dirichlet-to-Neumann
(DtN) operator and develop a TBC for solving the elastic obstacle scattering problem
in three dimensions. Based on the Helmholtz decomposition, the scattered field of the
elastic displacement is split into the compressional and shear wave components, which
satisfy the Helmholtz equation and the Maxwell equation, respectively. Therefore, the
DtN operator for the elastic wave equation can be obtained from the well-studied DtN
operators for the Helmholtz and Maxwell equations. Since the TBC is exact, the ar-
tificial boundary could be put as close as possible to the obstacle so as to reduce the
computational complexity [23, 29].

To design an efficient numerical method, there are two more issues which need
to be addressed. The first issue concerns the truncation of the DtN operator. The
nonlocal DtN operator is given as an infinite series, which has to be truncated into
a sum of finitely many terms in actual computation. However, it is known that the
convergence of the truncated DtN operator could be arbitrarily slow in the operator
norm [19]. From the computational viewpoint, it is important to answer the question
of how many terms are required in order to maintain a certain level of accuracy.
Second, the solution may have local singularity when the obstacle has edges. The
mesh should be fine around the nonsmooth part of the obstacle in order to capture
the singularity of the solution, while the mesh could be coarse in other parts of the
domain where the solution is smooth. Hence, it is crucial to design an algorithm for
mesh modification which can equally distribute the computational effort and optimize
the computation.

In this paper, we propose an a posteriori error estimate based adaptive finite
element method with the truncated DtN operator to overcome the two difficulties.
Specifically, we consider the scattering of an incident wave by a rigid obstacle in three
dimensions. The exterior domain is assumed to be filled with a homogeneous and
isotropic elastic medium. The elastic wave propagation is governed by the Navier
equation. Based on the TBC, the exterior scattering problem is formulated equiva-
lently into a boundary value problem in a bounded domain. The discrete problem is
solved by using the finite element method with the truncated DtN operator. A new
duality argument is developed by using the Helmholtz decomposition to obtain an
a posteriori error estimate between the solutions of the original scattering problem
and the discrete problem. The estimate takes account of both the finite element ap-
proximation error and the truncation error of the DtN operator, where the latter is
shown to decay exponentially with respect to the truncation parameter. The estimate
is used to design the adaptive finite element algorithm to choose elements for refine-
ments and to determine the truncation parameter. The stiffness matrix is made of a
sparse, real, and symmetric matrix, which comes from the discretization of the vari-
ational formulation in the interior of the domain, and a dense low rank matrix given
by vector products, which arises from the nonlocal TBC. The generalized Woodbury
matrix identity is utilized to solve the resulting linear system efficiently. Numerical
experiments are presented to demonstrate the superior performance of the proposed
method.

Recently, the adaptive finite element DtN method has been developed to solve
many acoustic and electromagnetic scattering problems, such as obstacle scattering
problems [3, 21], diffraction grating problems [22, 35], and open cavity scattering
problems [38]. This paper is a nontrivial extension of our previous work on the two-
dimensional elastic obstacle scattering problem [28]. Apparently, the analysis is more
sophisticated and the computation is more intensive for the three-dimensional prob-
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lem. This work adds a significant contribution to designing efficient computational
methods for solving elastic wave scattering problems.

The paper is organized as follows. In section 2, the elastic wave equation is
introduced, the boundary value problem is formulated by using the TBC, and the
corresponding weak formulation is discussed. In section 3, the discrete problem is
considered by using the finite element approximation with the truncated DtN opera-
tor. Section 4 is devoted to the a posteriori error analysis and serves as the basis of
the adaptive algorithm. In section 5, we discuss the numerical implementation of the
adaptive algorithm, the construction of the stiffness matrix, and an efficient solver for
the linear system; two numerical examples are presented to illustrate the performance
of the proposed method. The paper concludes with some general remarks in section
6.

2. Problem formulation. Let D C R?® be an elastically rigid obstacle with
Lipschitz continuous boundary dD. Denote by v the unit outward normal vector on
OD. The exterior domain R3 \ D is assumed to be filled with a homogeneous and
isotropic elastic medium with a unit mass density. Let Bg = {& € R® : |z| < R} and
Br = {x € R®: || < R'} be balls with radii R and R, where 0 < R’ < R. Denote
by I'g and Tg/ the surfaces of Br and Bg, respectively. Let Q = Bgr \ D be the
bounded domain enclosed by the surfaces 0D and T'g.

Let the obstacle be illuminated by an incident wave ©™°, which can be either a
plane wave or a point source. The displacement of the total field w satisfies the elastic
wave equation

inc

(2.1) pAu+ A+ p)VV-u +w?u=0 inR3\ D,

where w > 0 is the angular frequency and A, u are the Lamé constants satisfying
w > 0,3\ + 2u > 0. Since the obstacle is assumed to be elastically rigid, the total
field vanishes on the surface of the obstacle

u=0 ondD.
Introduce the Helmholtz decomposition
(2.2) u=Vo+Vxy, V-¢p=0.
Substituting (2.2) into (2.1), we may verify that the potentials ¢ and ) satisfy the
Helmholtz equation and the Maxwell equation in R? \ D, respectively, i.e.,
Ap+r2p=0, Vx(Vxup)—rip=0,

where k, = w/(A+2u)/? and k, = w/u'/? are known as the compressional wavenum-
ber and the shear wavenumber, respectively.

Denote the scattered field u® = w — u'™°, and let ¢° and 1° be the potential
functions of the Helmholtz decomposition for the scattered field u®. It is required
that ¢* and 1° satisfy the Sommerfeld radiation condition and the Silver—Miiller
radiation condition, respectively, i.e.,

ILm p(0,0° —ikpe®) =0, lim (V x¥°) x & —ikspyp®) =0, p=|x|
p—>00

p—r00

The obstacle scattering problem is defined in the unbounded domain R?\ D. It
needs to be reduced into the bounded domain 2. Next we introduce a TBC on I'g. The
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details can be found in the accompanying supplementary material file supplement.pdf
[local/web 314KB]. Define a boundary operator for the displacement of the scattered
wave

(2.3) Pu’ = pd,u’ + (A +p)(V-ule, onTlp.
In the spherical coordinates, the scattered field admits the following expansion on I'g:
(R, 6, ) Z Z WU (0, 9) +usm VIO, ) +uim X0, p)e,.
n=0m=—n

Introduce the DtN operator .7, and the TBC is imposed as

oo n
(2.4) Iu’ = Tu’ = Z Z bR U,y w4 bg X'e, onlpg,
n=0m=-n
where the Fourier coefficients b" = (b72,, b7 ,b5) " and us™ = (u§™, u™, ui™) " are

connected by b,' = M,u?™. Here M, is a 3 x 3 matrix, and all of its elements can
be found in SM4. Since u = u® + u'™, the TBC for the total field is

(2.5) Pu=Ju+g,

where g := Zu"® — T u'*°,
Based on (2.5), the scattering problem can be reformulated as the following vari-
ational problem: find w € H} () such that

(2.6) b(u,v):/ g-vds Yve Hpyy(Q),
I'r
where the sesquilinear form b: H},(Q) x Hpp () — C is defined as

b(u,v):u/QVu:Vﬁdm+(A+u)/ﬂ(V-u)(V~5)dx

—wz/u-idw— Ju - vds.
Q I'r

Here A: B =tr (ABT) is the Frobenius inner product of square matrices A and B.
It is shown in [27] that the variational problem admits a unique weak solution
uw € H}p(Q), which satisfies the estimate

(2.7) ull o) S ”g”H*l/Q(FR) S ”uinC”Hl(Q)'

Hereafter, the notation a < b stands for a < Cb, where C' > 0 is a generic constant
whose value is not required and may change step by step in the proofs.

Since the variational problem is well-posed, we have from the general theory in [1]
that there exists a constant « > 0 such that the following inf-sup condition holds:

b(u,v
sup PO S e Yue Hp(@).
0#£veHY () H’UHHl(Q)

Remark 2.1. As an alternative to (2.3), the following traction operator may be
adopted to handle the TBC:

Pu =2p0p,u + AV -u)v + pv x (V x u).

Although the traction operator will change the specific form of the DtN operator
and the variational formulation, the analysis can be similarly carried out for the a
posteriori error estimate.
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3. The discrete problem. Given a sufficiently large N, define the truncated
DtN operator

N n
(3.1) Tnu=Y_ > bRUN+05 VI + by, X e,

n=0m=-—n

In practice, g has to be approximated by g, := Zu'™ — Jyu®. The truncated
variational problem is to find uy € H}p(Q) such that

(3.2) bN(uN,v):/ gy -Bds Yve Hjp(Q),
T'r
where the sesquilinear form by : Hjp(Q) x Hpp () — C is given by

b (w0, 0) = 1 QVu:Vﬁdx—l—()\—i—u)/g(v-u)(v-ﬁ)dx

—wQ/ u - vdx — Inu - vds.
Q Tr

Let My, be a regular tetrahedral mesh of €2, where h denotes the maximum
diameter of all the elements in Mj. For simplicity, we assume that the surfaces 9D
and I'p are polyhedral and ignore the approximation error on the surfaces, which
allows us to focus on deducing the a posteriori error estimate. Thus any face e € My,
is a subset of A if it has three boundary vertices. Let V;, € H'(Q) be a conforming
finite element space, i.e.,

Vi={veC@Q)?® vl € Pu(T)* VT € My},

where m is a positive integer and P, (T) denotes the set of all polynomials of degree
no more than m. We introduce an isoparametric-equivalent finite element space [25]:

V= {’U(F_l(il:)) cxe F(Q),ve f/h} :

where F' is a one-to-one continuous mapping which maps the polyhedral surface ex-
actly on the spherical surface. The finite element approximation to the variational
problem (3.2) is to find u?\, € V,0p such that

(3.3) by (uly, o) = / gy - Trds Vo' € V5, op,
T'r

where Vh7a]_‘) = {’U eVy:v= OOH@D}.

Following the idea in [19] and the discussion of [27], we may show that for suffi-
ciently large N the variational problem (3.2) is well-posed. Meanwhile, for sufficiently
small h, the discrete inf-sup condition of the sesquilinear form by may also be estab-
lished by following the approach in [33]. Based on the general theory in [1], the trun-
cated variational problem (3.3) can be shown to have a unique solution u?\, € V.
The details are omitted since our focus is the a posteriori error estimate and the
convergence analysis for the truncated DtN operator.
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4. The a posteriori error analysis. For any tetrahedral element T € My,
denote by hr its diameter. Let Br denote the set of all the faces of T' and hr be the
size of the face F'. For any interior face F' which is the common face of tetrahedral
element 77,7y € My, define the jump residual across F' as

Tp == [pVul - v + (A + @) (V- ul)vn + pValy - ve + (A + p)(V - )]

where v; is the unit outward normal vector on the boundary of 7}, j = 1,2. For any
boundary edge F' C I'g, the jump residual is

Jp =2 (Inuly + gy — pVuly e, — A+ p)(V - ule,) .

For any tetrahedral element T' € My, define the local error estimator as

1/2
1
e =l @uklion + (5 3 helelEa )
FeoT

where &% is the residual operator denoted by
Ruly = pAuly + (N4 p)V(V - uly) + ol

Introduce the weighted norm
(4.1) H|u|||i,1(m = ,u/Q \Vul?dx + (A + p) /Q |V - ul?de +w2/Q IRGES

It is easy to check that for any w € H'(Q) we have
. 2 2 < 2 < I\ + 3. w2 2
min(g, w”)||ul[ g o) < llullzg ) < max(2A + 3p, w7) [ullz ),

which implies that the norms || - || g1 (o) and ||| - [[| g1 () are equivalent.

Now, let us state the main result of this paper.

THEOREM 4.1. Let uw and u®; be the solutions of the variational problems (2.6)
and (3.3), respectively. Let & = u —u®.. Then for sufficiently large N, the following
a posteriori error estimate holds:

1/2 ,
R'\N inc
o s (3 ) +8(F) el
TeMy

It can be seen from the theorem that the a posteriori error estimate consists of two
parts: the first part arises from the finite element discretization error; the second part
accounts for the truncation error of the DtN operator, which decreases exponentially
with respect to N since R’ < R.

Remark 4.2. Tt is worth pointing out that the constant in the a posteriori error
estimate depends implicitly on the frequency w. It is difficult to obtain the constant
with an explicit dependence on the frequency due to the lack of stability estimate in
general domains. We refer the reader to [30] for the stability analysis with an explicit
dependence on the wavenumber in a spherical shell for Maxwell’s equations.
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Using (4.1) and the integration by parts, we obtain
€Il @ = | VE: VEdz+ (-t [ (V-€XV-Ede+? [ -8
:%b(£,£)+2w2/£~gdw+§ﬁ TE - €ds
Q

I'r

(4.2) =R0(£, &)+ N (7 — In)€-€ds + 2w2/ ¢ &z + R In€ - €ds.
Q

T'r I'r

To prove Theorem 4.1, it suffices to estimate the four terms given on the right-hand
side of (4.2).

The following lemma concerns the trace theorem. The proof is standard and so
is omitted for brevity.

LEMMA 4.3. For any u € HY(Q), the following estimates hold:
||UHH1/2(FR) S ”u”Hl(Q)a ||U||H1/2(FR/) S ||UHH1(Q)-

LEMMA 4.4. Let u® € Hl(Q) be the scattered field corresponding to the solution
of the variational problem (2.6). For any v € H' (), the following estimate holds:

R/ N inc
§N(§) flw ||H1(Q)HU||H1(Q)~

/ (T — In)u® - vds
I'r

Proof. Let ¢* and 1°® be the potentials of the Helmholtz decomposition for the
scattered field w®. It can be verified from (SM4.1)-(SM4.2) that

(43) 657 (R) = Rop (R, v (B) = =pug (R, v () = () shus (),

where 22 = h%l)(fpr)/hg)(mpR’) and z§ = hﬁ,,”(msR)/hS)(msR’). Substituting (4.3)
into (SM4.3) and using (SM4.4) with R being replaced with R’, we obtain

(4.4> u€7n< ) Qn ?m( )7
where the entries of the matrix @,, are
R/
Qna1 = TA, (1) [ n(n+1)z8 + 2 (s, R')(1 + zél)(msR))zfl} ,
R/
Qnis = AL () n(n+1) [(1 + 20 (kR — (1 + zsll)(/gsR))Z,sl} ;
R/
Qn31 = RA. (R’) n(n+1) [ (1)( kpR)zP +z (npR/) ]
/
Qs = TR (14 20 (5 R (e R) 28, — mln 4+ 1)23]

and Q22 = 2, Qn12 = Qn,21 = Qn23 = Qn3z2 =0
We use the element (), 11 as an example to show the estimate of the matrix @,
since all the other elements can be similarly estimated. A simple calculation yields

/

@n11 = RAL(RY) n(n+1)(z, - 2p)
+ RAL (R [zﬁLl)(mpr)@ + 20 (ksR)) —n(n+1)| z

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/12/22 to 128.210.107.129 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

ADAPTIVE FEM FOR 3D ELASTIC SCATTERING 2907

It follows from Lemma SM5.5 and (SM5.9)—(SM5.10) that
R'\"

<nl2

Qnl S n(R) :

Similarly, we may show that all the other entries of @,, satisfy

/

R/'\n
Quasl Sn(%) s id =123

Substituting the estimate of @, into (4.4), we have
sm R/ " sm
u (B Sn(Z) (R

Combining the above estimates with (SM4.6) and using Lemma 4.3 and (2.7) give

/ (7 = Tn)u - vds|=|> En: M,us™(R) -T™(R)
I'r n>N m=—n
= Z Z MnQnqum(R/)'ﬁzn(R)
n>N m=—n
< gminﬁ(i)”ufﬂm T(R)

!

< max (n(g)n)HUmCHHI Q ||”||H1 Q)-
~ n>N R © @

The proof is completed by noting that n (R’'/R)" decreases for sufficiently large n. O

Based on Lemma 4.4, the estimate of the first two terms in (4.2) is given in the
following lemma.

LEMMA 4.5. Let v be any function in Hpyp,(Q); the following estimate holds:

'b(E,v>+/FR (7 — T € wds

1/2 LN
R .
S (Z @) 8 (7) Loy | 1ol o

KeMy

Proof. For any function v in Hjp(Q) and v" in V', sp, we have
b(&,v) +/ (7 — In)€-vds
I'r
= b(u, v) — by (uly, v") + b (uly, v") — b(u]!,v) +/ (7 — In)E-vds
I'r
:/ gy - (ﬁ—ﬁ) ds — bl (uhy, v — o™)
I'r

+/ (Q—QN)-ﬁds—i—/ (7 — In)u-vds.
T'r Tr

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Using integration by parts yields

—by (ul, v —v") + (gn, v — ")

. {M/KV'U,?V:V(’u—'uh)das+(/\+u)/K(V-u§§,)V~(v—vh)dx}

KeMy
p {—C‘JQ/KU%-(v—v”')d:v—/F . (e%vu?v+gN)~(v—w)ds}
KeMy RN
= — ho y Wl (T — ot

[ (Tl +an) (v—'vh)ds}
T'rNOK

S /[uAu’](,+(/\+u)VV-u’]§,+w2u?v]~(ﬁ—W)dx
K

KeMy
_ 1 _
= Z [/K%u?\,-(v—vh)dw—l— Z 2/EJE-(U—vh)dS}.
KeMy e€cOK

By the definitions of g and g, we get

/ (g — g’ﬁ,) -vds = / [(%ui“" — ﬂuinc) - (%uinc - ﬂNui“C)] -wvds
I'r

I'r

= / (TN — T)u™ - vds.
I'r
It follows from Lemma 4.4 that

(97— 9% 0) o, + (7 = T0)w,0),

R
V() el lolmo

/ (7 — In)u’ - vds
'r

The proof is completed by combining the above estimates. 0

It is proved in [27] that the matrix M, = —1 (M, + M) is positive definite for
sufficiently large n, where the star denotes the complex transpose. The following
result can be obtained easily by following the proof of [28, Lemma 4.6].

LEMMA 4.6. For any § > 0, there exists a positive constant C(§) independent of
N such that

- R
Tng - €ds < O35, + (37 )10 (5,050

T'r

To estimate the third term of (4.2), we introduce the dual problem

(4.5) b('v,p):/'v-gdm Vo e Hpyp(Q).
Q
It is easy to verify that p satisfies the boundary value problem

pAp + A+ p)VV - p+ w?p = —¢ in Q,
(4.6) p=20 on 0D,
9p=T*p on I'g,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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where .7* is the adjoint operator to the DtN operator 7.
Letting v = £ in (4.5) leads to

WD) el =bern)+ [ (7- e pds— [ (7)€ pds
Tr I'r

The first two terms of (4.7) can be estimated in the same way as that of Lemma 4.5.
Thus it suffices to estimate the third term of (4.7). Next we deduce the solution of
the dual problem (4.5) which is crucial for the estimate.

Consider the system

(4.8) V(+VxZ=¢ V-Z=0 in Br \ Br,

. ((R)=0, Z(R)=0 on I'p.
By a straightforward calculation, the Fourier coefficients for the solution of (4.8) are
given by

R
o) = o [ loner = (e Deal ()

(4.9) —v/nn+1)(ca — cg)&5, (7)dr,

R
(410) 200 = gy || lner = (et el e
R
250 = gy | VAl e - o)

(4.11) + [(n 4+ 1)ca + neq] £75 (7)dT,

/ vn(n+1)(er — c3)é&q (T)dr

(4.12) zZn (

" 2n+1

P —n—2 P —n—1 P n—1 P\
a=(7) o e=(0) . e=()) . a=(7)-
T T T T

Consider the following boundary value problem:

where

AQ+H§9:—A+12#Ca _VX(VXQ)J'_’%E(]:_%Z in BR\BR’a

(413) Vq:VZZO il’lBR\BR/’
’ 0,9 =79, (Vxq)xe,=—iksTy'qr, on I'g,
9=9, 4=4 on I'p,

where .7;* and .7," are the adjoint operators to the DtN operators .7; (cf. (SM4.7)) and
T (cf. (SM4.8)), respectively, and qr, = —e, X (e, X q) is the tangential component
of g on I'g.

LEMMA 4.7. If (¢, Z) and (g, q) are the solutions of the systems (4.8) and (4.13),
respectively, then p = Vg+V x q is the solution of the dual problem (4.6) in Bg\ Bg:.

Proof. Letting p = Vg + V x g and substituting it into the elastic wave equation,
we get

PA (Vg +V xq)+ A+ p)VV - (Vg+V x q) +w? (Vg+V x q)
=V (A +2p)Ag +w?g) +V x (=uV x V x g+ uVV - g + w?q)
=-V(-VxZ=-¢,
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which shows that p satisfies the elastic wave equation in (4.6). The rest of the proof

is to show that p satisfies the boundary condition p = 7 *p on I'g.
It follows from (SM2.1)—(SM2.2) that

p=Vg+V xq

=> > [ n+lgn(p);q3ﬁl(p)qé’5(p)1 uy

neN |m|<n
1 m m/ n(n + 1) m m
+ |=ain(p) + ain (p) — ———a5,(p) |V
P 4
m’ n(n + 1 m
(1.14) + o2 (o) = Y g ()| K,

Let v (p) = pdi),(p). Since V - @ = 0, we have from (SM2.3) that

) = . (o1(0) + 0 (9))

(n+1)p
m’ _ 1 _ivm lvm/ ,Um,”
10) = s () + S 0 ).

It follows from Lemma SM6.3 that

n(n+1)
p

- (o 2o - " )

1 m TTL/
;fhn(P) + a1y (p) — @3 (P)

nin+1) P P
(4.15) - —n(;ﬂ) (B (p) + 520" (p)

Substituting (4.15) into (4.14) and taking derivative of p, we obtain

ZWZ[ g (3000)) - o (G - ') o

L _[a )+ ()] Ve
)

NOTESY
@io) o) - Vit - (Sane) )| xie,

A simple calculation yields

4.1 p=Ag = —
(4.17) V-p=Ag T
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Substituting (4.16)—(4.17) into the boundary operator 2, we have
Ip = ndpp+ (A +p)(V-ple,

=5 % { [0 - o w0 X,

neN |m|<n

+un+1( w)ur}

+py Z{ [5(%% )+q£”n”(p)}UZ‘

neN |m|<n

g () e

 J/at 1) [ p) + Ky ()}V"}_</\+2A2L)Cep
(4.18) = I+ I + I,

where I, I, and I3 account for the summation of g*, ¢3},, and g3}, respectively.
It follows from (SM2.4) that

1
Ag+rpg=-—
g+ kpg )\+2ug’
which gives
" 2 n(n+1) 2 1
m 4 m T ) m m xm —
o> {gn (0) 200 () = =5 (p)+“p9n} A e

neN |m|<n

Substituting the above equation into I; and replacing the second order derivative give

= > {[Hgn - (A +n) pglb”(p)} Xy'e,

neN |m|<n

v/l o (o)) Uz}
=2 H n=gn ( p)+uM9n (p)—w2g£”(p)} Xy'e,

neN |m|<n ,0
1 m/ 1 m m
/T[S0 () - o) U }
Replacing the first order derivative by the TBC
, 2 R
gy () = 2Vl gy
we have from a straightforward computation that
LR =3 3 { 2052 (5, R) + nln + D — 2B g1 (R)X e,
neN |m|<n

+ /(1) |22 (5, R) — 1] g (R )UZ‘}.
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Using (4.13) and (SM2.5), we get

102 n(n+1) omon_ Lom
pap (pQQn(p)) + TQQ’@(IO) - ’%sz(l’) - ;ZZn(p)7

which implies that

12 2 m/ (’I’L—|— 1)

m 1
@ (p) = G (p) + p a5 (p) — K245 (p) — ;Zé”fl(p)-

Substituting the above equation into I> and replacing the second derivative leads to

L=p) Y, { [qgn +<—;2QZL(0)+;QQ”T;(M>}U?

neN |m|<n

1 m 1 ml m
CES) (—quMp) g <p>) X }

=n>> > {[ )= D ) + a0+ 2800

neN |m|<n

1 1 4 m 1 m 1m/ m
+Lafi) - pqm(p)}rfn W 1) (—p2q2n<p>+pq2n<p>)xnep}

5 5 Pt (v 5 -

neN |m|<n P
1 m/ 1 m m
—/n(n+1) { azy, (p pg‘hn(P)} X5 ep}-

Note that the terms Z]7 and ¢ vanish on I'p. Substituting the TBC back into I3 and
eliminating the first order terms, we deduce

== 2 {[ (koR) + K2R +1 = n(n+1)| g (R)UT

neN |m|<n
n(n+1) [ @ (kyR) — 1] qgjl(R)X,Tep}.
By (4.12), we have 8™ (R) = 0. It follows from Lemma SM6.3 that
= 1d D e BB R (B VE
neN|m|<n TL-|— 1 [ ]

(ks R) g3, (R)V3)

%W;n Vv n+1
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Substituting I, Is, and I3 into (4.18), we get
9p = 1L(R) + I(R) + I3(R)

- {[ 200 22 (k5 R) + i + e — 22| g1 (R)X e,

neN m|<n

/D) [+, 1) 1] R0

Z 3 {{ +ﬁ2R2+1—n(n+1)]q2n(R)U:{‘
neN |m|<n
(2) 2 P2
2 m m Zn (HsR)K:sR m m
(419) - TL(TL + 1) |:Z7(L )(HéR) - 1:| Q2n(R)Xn eﬂ - ’I’L(TL + 1) an(R)Vn }

Note that (4.19) is the complex conjugate of (16) in [27]. Using the fact that the TBCs
of g and q are the complex conjugate of the original TBCs, we deduce Ip = .7 *p on
T'r and complete the proof. ]

LEMMA 4.8. Let

p(p, 0, 9) Z Z Pl (PU(0,9) + 05 (0) V7 (0, 0) + P () X7 (0, 9)e,

n=0m=-—n

be the solution of (4.6) in Br \ Br/. Then the following estimate holds:

. 1 .
s (5 Zw (R + el §=1.2.3

Proof. Tt follows from (4.14), (SM6.2), and (SM6.5) that

n(n+1) 1., L o

Pin(R) = =4 gZ”L(R)—qun(R) g (ke R)ag, (R)
:7”(2“) SE(R)gr ;/thsp R)WZ(R',t )ég@(t)dt]
= [P0 R)] | Sa(RIag (R + 2 / 3R >W,i<R',t>Zﬁ<t>dt].

Using (4.14) and (SM6.7) yields

pan(R) = \/7 2R(13n (R)
_ 1 R/SS(R) (R/) lﬂs/ tSSS(R)WS(R/ t)Zm (t)dt
- \/7 @3 2R (R0 Z3),
B m s FSL R () + =5 / , tBSZ(R)Wi(R’,t)ZQZL(t)dt].
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We have from (4.14), (SM6.2), and (SM6.5) that

Pin(R) = lZq(f)(f*fpﬁ’/)gl?(R) - @QQE(R)

ik

R A
SpRg )+ 52 [ t?sz<R>W5<th><,T<t>dt]

=yl ey

27(12) (kpR)

nn+1)
-

. R
Sp(Rag (R + 5 t2SZ(R)WS(R’,t)Z§ZL(t)dt] .

’

Denote a diagonal matrix by

MY(k,R) B (ksR) hS)(nSR)>

Mdi = dl&g 7 ) 7 ) 7
ag (h;“ (R Y (5, R) B (kR

It is easy to check that

m m m m m m T
(pln(R)aPQn(R)vp.Bn (R))T = n(R)Mdiag (gn (R/)’ dan (RI)’ d3p (RI))
(4.20) + K (R) Maiag (B3, b3, b55)
where

. R . R
o = Ot = (5 [ ewnocrow 5 [ ewiar oz,
1Kg

2RR’

R R T
/ t3WE(R, t)Zg’,;(t)dt) .
Rl

The next step is to estimate p at p = R’. By (4.14) and (SM6.8), we have

m V ’I’L(’I’L + 1) m 1 m m’
pln(R/) = Tgn (R/) - ﬁq%z(R/) — qa2pn (R/)
- RrR (R) - EQQn(R,) - ﬁzg)(’isR/)QQn(R/)
2 n 5
- WLR,/R 1285 (£) 23 ()dt
n(n + 1) m 1 m
= L (R) = [14 2D (5 R)| a8 (R)
2K a 2 Qs 7m
(4.21) i, t°S: () 25 (t)dt.
A simple calculation from (4.14)—(4.15) yields
1 .
(422) Ph(R) = = s [ KRG (R) + RZG(R)].

It follows from (4.14) and (SM6.3) that

n(n+1)

P (R) = g (R) = —p—a ()
1 . 2%, [ - n(n+1) .
(12) = PR (R) + i [ espodrod - YU e )
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We get from (4.21)—(4.23) that

m m m T T (DI (M m m T
(P1n(R), p3y, (R), P, (R')) - = Kn(R) (9, (R'), 435, (R'), a3, ()
(4.24) + (d7, dy, die) "
where
m m m mo\ T 2Ké s om
ay = g a5)" = (- 2 [ ey 2500
1 2%, (B . T
4.25 - ——RZMR / t2SP(t ,Ttdt) :
(4.25) — R, (B 1)

Substituting (4.24) into (4.20) and using the definition (4.4), we obtain
(426) ( ) Qn m( /) - @dzl + Kn R) Mdiag bnm

By (4.9), it can be verified that

b= — e [ g pen(oar
in — )\+2,U, 2 R n 9 n

A+12ui;p 2n1—|—1/ EWIR' ){/tR[”(i)_n_l(nH)(i)n] in (7)

n(n—|—1){(£) " (i)n]fﬁ(r)dr}dt.

We have from (4.11) that

iKg
2p

1
— ) thR’ {/ Vvn(n+1)(ea — ca)&5(T)

2n+12p

mo__
b2n_

/ CPWE(R  t) Z3 (t)dt

+ [(n + 1)ca + ney) fﬁ(r)dT}dt

= e [ewawa] [y - (5 Jene

2n+12u

+[<n+1>(;) () e arar
It follows from (4.12) that

mo_ A /Rt3WS(R’ )21 (¢)dt
3n — 2,URR, R n ) 3n

.. S /t?’WS (Rt {/ Vn(n+1)(er — es)€gL( )dT}

2uRR 2n + 1

1K 1 3
= WE(R't
QMRR’ 2n +1 / (F'.1)

< / Vi [(£) " = (2 e far

T
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Substituting (4.9)—(4.12) into (4.25), we obtain

f=- 2 [ esiozon
B WQ/:Z’in—i—l/ QSS {/ Y n+1 ( ) (;)n] n(7)

+ [+ 1>(;)’ " —I—n(;) ]emr)dr}dt,

1 /
(RS Y Y0
nn+1) p

/ R I e o
——miznil// n(n+1)[(§> 2—(?) 1]5;’;(7)&

and

m 1 2HP 2 p m

1 2k, 1 2 ap /R ty—n-1 t\"
_ _ _ (= m
)\+2,u7rR’2n—|—1/ 5, (){ ) [ "(7) (n+ >(T) |
t n—1 t\"n m
rD[(7) - () ]fln(ﬂdf}dt-
For sufficiently large n, it is shown in Lemma 4.4 and [3] that

R/ n R/ n 1 t n
@l sn () o I <0 () W5 ()

Substituting the above estimates into b)," and d;' leads to

R n . 1 R n
b7, (R’) 1€l Lo ((rr,mpys | §n2<R'> 1€l o= (R, R))-

Hence we have from (4.26) that

|p | < |ann RI ’ + |Qndm‘ + ‘K Mdlagb

R n 3
< n( ) S I () + S ey + = e .
=1

which completes the proof. 0

LEMMA 4.9. Let p be the solution of the dual problem (4.6). For sufficiently large
N, the following estimate holds:

1
T - -p’dsg 2o
JRESEAL €l o)
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Proof. It is shown in [27] that all the elements of the DtN matrix M,, have an
order n. Hence,

/F (7 — Tx)€-pds| <

Y > MER)-P(R)

n=N+1|m|<n

< Y Y n(EB)] IR + &5 (R))

n=N+1|m|<n

X (Ip15 (R)| + |poy, (R)| + |p5,, (R)])

Y [n(1+n(n+1))l/2}_1/2 St +nm+1)?

n=N+1 ml<n

1/2

< (e R)P + g8 (R + e (R))

1/2

x l >2 0 (I (B + g (R) + o5 (R)F)

[m|<n

1/2

5]1V||§||HI/Q<FR[ S (P + g (R + i (R?)

n=N+1|m|<n
1/2

(4.27) <||e||H1m[ S (B + R + g (R)P)

n=N+1|m|<n

It follows from Lemma 4.8 that

S22 Wt (PRI + s (R + iR

n=N+1|m|<n

S 3 e[ (B S bnme + L
R) 2P o2 18l (7. R))

n=N+1|m|<n

/ 2n 3
) Z"S(R) ZPZ?L R)P+ Y D0 (Lt +n) 1€ gy

n=N+1|m|<n n=N+1|m|<n
= Jl + JQ.

Noting that the function t*e¢~2! is bounded on (0, +00), we have
2
05 (4 (5)") 55 n X0 < ol 5 el
n=N+1 ‘m|<n =1

It is shown in [21] that

a0 - s( ) Oy + 1 O3y,
2
)_

GA [( + ) o + R

o) ] ar
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Substituting them into Jy gives

B > Y (A+n(l4n)t?

n=N+1|m|<n

m 1 m/
. Z (g + IR Oy + 3065 O |

S ||s||H1<BR\BR,> < €l -
which yields
2 m 2
S22 Wt (PRI + 5 (R)F + 5 (R)F) < 1€]30 )
n=N+1|m|<n

Plugging the above estimate into (4.27), we obtain

/F (7 — n)€ - pds| < 2

S NHS”%P(Q)a
which completes the proof. 0
We are now in position to show the proof of Theorem 4.1.
Proof. Tt follows from (4.2) that
€l @ = RUEE)+R [ (7)€ Es+ 22 [ €-daem [ e gas

I'r I'r

<al( X )" v () 1o |1l

TeMy,
R
+(Cot OO 1€+ (75 ) S1EIR o

Choosing § such that £ we get

R mln(u w?) < 2’

1/2 RN inc
el @ <200 (3 )"+ 5 (E) 1w ln o] lelno)

TeM,
(4.28) +2(C2 + C(9)) €720
Using Lemmas 4.3, 4.5, and 4.9 yields
€30y =bEp) + [ (7= T)gpas— [ (7 T)e-pas
R

I'r

1/2 R/ N inc 1
S| ) 4w () I o | Moy + 16055 o
TeMy
Substituting the above estimate into (4.28) and taking sufficiently large N such that
2C+C0) 1
N min(p, w?)

<1,

we obtain

1/2 RN inc
= wlellere S (30 72) "+ N (F) el
TeMy,

which completes the proof. 0
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TABLE 1
The adaptive finite element DtN method.

Given the tolerance € > 0,0 € (0, 1);
Fix the computational domain Q = Br \B by choosing the radius R;
Choose R’ and N such that ey < 108
Construct an initial mesh Mj, over Q and compute error estimators;
While €, > € do

Refine the mesh M;, according to the strategy:

S Gl o=

if 7 > 0 max nr, then refine the element T e Mp;
TeMy

7. Solve the discrete problem (3.3) on the new mesh which is still denoted as Myp;
Compute the corresponding error estimators;
End while.

© ®

5. Implementation and numerical experiments. In this section, we discuss
the algorithmic implementation of the adaptive finite element DtN method and pres-
ent two numerical examples to demonstrate the effectiveness of the proposed method.

5.1. Adaptive algorithm. Based on the a posteriori error estimate in Theorem
4.1, we adopt FreeFem [18] to implement the adaptive algorithm of the linear finite
elements. By Theorem 4.1, the a posteriori error estimator consists of three parts:
the first two parts are related to the finite element discretization error €, and the
third part is the DtN truncation error ep, which depends on the truncation number
N. Explicitly,

1/2 RI N in
€h = ( Z 77T) ; EN = N(ﬁ) (™| 1 (-
TeMy,

In the implementation, the parameters R’, R, and N are chosen such that the
finite element discretization error is not polluted by the DtN truncation error; i.e., en
is required to be very small compared to €, for example, ey < 1078, For simplicity,
in the following numerical experiments, R’ is chosen such that the obstacle is exactly
contained in the ball Bg/, and N is taken to be the smallest positive integer such that
en < 1078, Table 1 shows the algorithm of the adaptive finite element DtN method
for solving the elastic obstacle scattering problem.

5.2. TBC matrix construction. Denote by {\Ilj}f:1 the basis of the finite
element space V. Then the finite element approximation of the solution is

L
(5.1) uy =y u;¥
j=1
Recall that the truncated DtN operator (3.1) is

Tnuy = Z Z { (M (R) + M ™ i, (R)| U+ MG ™ (R)V?

n=0m=-—n

(5:2) o [ME g (R) + Mg (R)] Xm}
where
m m m T TT™M Y ym (Yom T
63) (R R R) = [ - (TT VT (Xe,)) s
R
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Substituting (5.1) into (5.3) yields

L o T
(.4) (B R, (R) =Y [ W, (OT.VT (K)o

Define the components of the vectors @(L;L’m), @&?’m), and <I>()?’m) as follows:

(9 0. 0%5) = [ wy (Ui (e, Jas

Denote by B the TBC matrix. It follows from (5.2) and (5.4) that

L
ZBijuj = «7NUN ‘I’ ds
=1

I'r

N n

n=0m=—n

P mw}

which indicates that the TBC matrix is a low rank matrix constructed by vector
products. Specifically, we have

N n
B=3 > (Mipmef el + miymegm el

n=0m=—n

(5:5)  + MGl Mpe el 4 M e( e,
To simplify the notation, define matrices U and V as

U:(@$”%¢$m2¢$”l¢§mléﬁwﬁ( .
V= (Ml e ag ol gl
MR g gl

(n,m).
Then we have from (5.5) that
(5.6) B=UV.

Denote by A the stiffness matrix corresponding to the variational problem with
the Neumann condition Zu = 0 on I'p and the Dirichlet boundary condition on 0D,
which has the sesquilinear form

(V-u)(V-v) da:fwz/ﬂirﬁda:.

b(u,v) = /Vu Vvda:Jr()\Jru)/

Q
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so0f
1000 .
1500 1 |
2000
2500
3000
3500

4000 *

4500 oy oo
5000

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
nz = 186209 nz = 15832187

Fic. 1. Sparsity pattern of the coefficient matriz. Left: Matriz A. Right: Matric W.

Then the stiffness matrix W for the variational problem (3.3) takes the form
(5.7) W=A-B.

Since the DtN operator is nonlocal, it is clear to note from (5.6) that the nonzeros
of B and A are O(h=*) and O(h™3), respectively. Figure 1 plots the sparsity patterns
of matrices A and W with 1805 nodal points in the mesh. Hence, the bandwidth of
matrix W is much larger than the bandwidth of matrix A. For the above reason, we
do not assemble matrix W and solve the resulting linear system directly.

The matrix A is sparse, real, and symmetric. It can be handled effectively by
many parallel direct solvers. Since B is a low rank matrix given in (5.6), the linear
system Wz = b can be solved effectively via the generalized Woodbury matrix identity
by using the following steps: (1) construct matrices U and V; (2) solve Az; = b with
a parallel direct solver; (3) perform matrix-vector product ze = Vz1; (4) construct
matrices C = A71U and H = I + VC; (5) solve a dense but small-size linear system
Hzz = z9; (6) perform matrix-vector product z4 = Czs; (7) construct the solution of
the system Wz = b by z = 21 — z4. The above approach has several advantages: (1)
it is only needed to store matrices A, U and V. The nonzeros of U,V are O(h™2); (2)
the bandwidth of matrix A is much smaller, so it is faster to solve Az; = b. Once the
linear solver is set up, the construction of matrix C' = A~1U is very fast.

Remark 5.1. In the algorithm, it is crucial to accurately compute the Fourier
coefficients (5.4), especially for high frequency modes under coarse meshes. Since our
focus in this paper is on the a posteriori error estimate, we do not intend to elaborate
on this aspect and leave it as future work. We refer the reader to [12, 34, 37] and the
references cited therein for the related work.

5.3. Numerical examples. We present two examples to show the performance
of the proposed method. In the first example, the obstacle is a ball so that the explicit
solution is available. The incident wave is chosen as the third column of the Green
tensor. By comparing the numerical solution with the explicit solution, we are able
to report the accuracy of the proposed algorithm. In the second example, we consider
a more complex geometry: a rectangular U-shaped obstacle. The obstacle is assumed
to be illuminated by a compressional plane wave. We pay particular attention to the
mesh refinement around the corners of the obstacle, where the solution has singularity.
In both examples, the a posteriori error is plotted against the number of unknowns
in order to show the convergence rate.

Ezxample 1. In this example, we intend to test the accuracy of the proposed
algorithm. The obstacle is taken as a ball with radius 0.5. The TBC is set on the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/12/22 to 128.210.107.129 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

2922 GANG BAO, PEIJUN LI, AND XTAOKAI YUAN

10* 10° 108
Number of unknowns

Fic. 2. Example 1. Quasi-optimality of the a priori and a posteriori error estimates.

sphere I'p with radius R = 1. Denote by G(x,y;w) the Green tensor of the three-
dimensional elastic wave equation. More explicitly, we have

1 1
Gz, y;w) = ;g(w,y;ns)I + ﬁvwv; (9(m, y; ks) — g(@, Y5 Kp)) 5
where I is the 3 x 3 identity matrix and g(@,y; k) = 1= el;‘:;ll‘
solution of the three-dimensional Helmholtz equation. The incident wave is chosen as
a multiple of the third column of the Green tensor, i.e.,

is the fundamental

uinc(m; y) = 1OG(IB, Y; w)(:v 3)a

where the source point y = (0,0,0)" is taken as the origin, the angular frequency
w = m, and the Lamé parameters p = 1, A\ = 2. Then it is easy to check that the
scattered field is u = —u'"®.

Denote the a priori error by e, = |ju — 'u/?vHHl(Q). Figure 2 displays the curves
of log e;, and log €, against log DoF, for the adaptive mesh refinements, where DoF,
stands for the degrees of freedom or the number of knowns for the mesh M. The red
circle line represents the a posteriori error estimate, and the yellow star line stands for
the a priori error estimate; the slope of the straight blue line is —1/3 (color available
online). It indicates that the meshes and the associated numerical complexity are
quasi-optimal; i.e., ||u — u?VHHl(Q) = O(DoFgl/g) holds asymptotically.

Ezxample 2. This example demonstrates that the method can handle the problem
where the solution has singularity. We consider a more complex geometry: a rectan-
gular U-shaped obstacle, which is shown on the left of Figure 3. In this example, the
parameters of the rectangular U-shaped geometry are L =1, D =0.6, H =W = 0.2.
The obstacle is assumed to be illuminated by a compressional plane wave

uinc(x;d) —_ deinpayd’

where d = (0, —1,0) T is the incident direction, the angular frequency w = 7, and the
Lamé parameters g = 1, A\ = 2. Thus the compressional wavenumber x, = 7/2. The
TBC is set on the sphere I'p with radius R = 1. Figure 3 plots the curves of log ey,
versus log DoF', for the adaptive mesh refinements. The blue circle line represents for
the a posteriori error estimate, and the red line is a straight line with slope —1/3 (color
available online). Again, it indicates that the meshes and the associated numerical
complexity are quasi-optimal. Figure 4 shows the initial mesh (1805 nodal points)
and the refined mesh after 2 iterative steps with 13352 nodal points. It is clear to
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—©— A posteriori error
Slope -1/3

H' error

10* 10° 108
Number of unknowns

Fic. 3. Exzample 2: Quasi-optimality of the a posteriori error estimates.

Fi1G. 4. Ezample 2: Cross sections of the initial mesh (left) and refined mesh (right).

note that the mesh is refined mainly around the corners and the interior part of the
U-shaped obstacle, where the solution has singularity, and stays relatively coarse near
the TBC surface, where the solution is smooth.

6. Conclusion. In this paper, we have presented an adaptive finite element
DtN method for the elastic obstacle scattering problem in three dimensions. Based
on the Helmholtz decomposition, a new duality argument is developed to obtain
the a posteriori error estimate. It not only takes into account the finite element
discretization error but also includes the truncation error of the DtN operator. We
show that the truncation error decays exponentially with respect to the truncation
parameter. The a posteriori error estimate for the solution of the discrete problem
serves as a basis for the adaptive finite element approximation. Numerical results
show that the proposed method is accurate and effective.
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