
Recent Studies on Inverse Medium Scattering Problems

Gang Bao∗, Peijun Li†, and Songming Hou‡

Abstract

Regularized recursive linearization methods are presented for solving a two-dimensional in-
verse medium scattering problem, which reconstructs the scatterer of an inhomogeneous medium
from the measurements of near field current densities. Energy estimates of the scattered field are
obtained on which the Born approximation is based. The methods start from the Born approxi-
mation corresponding to the weak scattering, each update is obtained via recursive linearization
with respect to the wavenumber or the spatial frequency by solving one forward problem and
one adjoint problem of the Helmholtz equation. In the case that the weak scattering criterion is
not satisfied, a technique based on a direct imaging algorithm may be developed to generate an
initial guess. Numerical examples are presented to illustrate the efficiency and robustness of the
underlying computational method.

1 Introduction

Consider the Helmholtz equation in two dimensions,

∆φ(x) + κ2(1 + q(x))φ(x) = 0, x ∈ R2, (1.1)

where φ is the total field, κ is a positive real number, known as the wavenumber, and the scatterer q

is a function with q(x) > −1 for all x ∈ R2. The function q is assumed to be supported in a bounded
domain Ω ⊂ R2, as shown in Figure 1.

Denote the wave vector k = (η, k(η)), where η is the transverse part of the wave vector and

k(η) =

{ √
κ2 − η2, for κ > |η|,

i
√

η2 − κ2, for κ < |η|.

The number |η| is known as the spatial frequency.
The scatterer is illuminated by a one-parameter family of plane waves

φ0(x) = eik·x. (1.2)
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Figure 1: The problem geometry. For a plane wave φ0 incident on the scatterer q, the scattered wave
ψ is measured at xj , j = 1, . . . , m.

The modes for which |η| ≤ κ correspond to propagating plane waves while the modes with |η| > κ

correspond to evanescent plane waves. For propagating waves, we explicitly have by letting η = κ cos α

and k(η) = κ sinα that
φ0(x) = eiκd·x . (1.3)

Here d = (cos α, sinα) denotes the propagation direction. For evanescent waves, we explicitly have

φ0(x) = eiηx1−
√

η2−κ2x2 . (1.4)

These waves are oscillatory parallel to the x1 axis and decay exponentially along the x2 axis. The
higher the spatial frequency of the evanescent plane waves used to probe the scatterer is, the more
rapidly the field decays as a function of depth into the scatterer. It is well known that the high spatial
frequency evanescent plane waves may be generated at the interface of two media by total internal
reflection [11, 16], which has been in practical use for decades, especially in near-field optics [24]. A
recent review on the near-field optics and near-field microscopy may be found in [20]. Evidently, such
incident waves satisfy the homogeneous equation

∆φ0 + κ2φ0 = 0. (1.5)

The total field φ takes the form
φ = φ0 + ψ. (1.6)

Here ψ : R2 7→ C is the scattered field which satisfies from (1.1), (1.5), and (1.6) that

∆ψ(x) + κ2(1 + q(x))ψ(x) = −κ2q(x)φ0(x), x ∈ R2, (1.7)

and the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂ψ

∂r
− iκψ

)
= 0, r = |x|, (1.8)

uniformly along all directions x/|x|.
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In this context, the direct scattering problem is to determine the scattered field ψ, given the incident
field φ0 and the scatterer q, which has been studied extensively over the last few decades [18,32,35].
To serve our general purpose, we restrict to the finite element method for solving the direct problem
numerically. A crucial step is to truncate the infinite physical domain to a bounded domain around
the scatterer by introducing suitable artificial boundary conditions for the truncated domain. Based
on the Dirichlet-to-Neumann map, a nonlocal transparent boundary condition is adopted for the finite
element method. Using the Lax-Milgram lemma and the Fredholm alternative, the direct problem
is shown in this survey to have a unique solution for all but possibly a discrete set of wavenumbers.
Energy estimates for the scattered field are established, which provide criteria for the weak scattering.
For the regularity of the scattered field, the reader is referred to [3]. The inverse scattering problem
is to reconstruct the scatterer q from the measurements of the scattered field ψ at xj , j = 1, . . . , m,
given the incident field φ0. The inverse problem arises naturally in diverse applications such as radar
and sonar, geophysical exploration, medical imaging, and nondestructive testing [19, 33]. However,
numerical solution of the inverse problem remains challenging for the following two prinicple reasons.
The inverse problem is inherently nonlinear. From the point of view of numerical computations, the
problem is also severely ill-posed. In particular, small variations in the measured data can lead to
large errors in the reconstruction.

The goal of this work is to report our progress on regularized recursive linearization methods for
solving the inverse problems for the Helmholtz equation with multiple and single frequency scattering
data. The reader is referred to [5–7, 14, 15] for solving the inverse problems in the two-dimensional
Helmholtz equation and the three-dimensional Maxwell equations in the case of full aperture data.
In the limited aperture case, the reader is referred to [8] and [9] for homogeneous and more recently
inhomogeneous background medium. Finally, due to the space limitation, no attempt has been made
to cover other relevant approaches. We refer the reader to [21, 26, 34, 39] for related results on the
inverse medium scattering problem. See [17, 19] for an account of recent scattering progress on the
general inverse scattering problem.

The outline of the survey is as follows. In Section 2, the variational problem for direct scattering
is analyzed and energy estimates on the scattered field are given. Initial guesses of the reconstruction
from the Born approximation or from a direct imaging algorithm are derived in Section 3. Regularized
recursive linearization methods are presented in Section 4. Section 5 is devoted to the numerical study
of the proposed methods. The survey is concluded with some general remarks and directions for future
research in Section 6.

2 Analysis of the direct scattering

In this section, the variational formulation for the direct problem is discussed. The analysis provides
some criteria for the weak scattering, which plays an important role in the inversion method.

Let the support of the scatterer Ω be contained in the interior of the ball BR = {x ∈ R2 : |x| < R}
with boundary ΓR = ∂BR, as seen in Figure 1. In the domain R2 \ B̄R, the solution of (1.7), (1.8)
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can be written under the polar coordinates as follows:

ψ(r, θ) =
∑

n∈Z

H
(1)
n (κr)

H
(1)
n (κR)

ψ̂neinθ, (2.1)

where

ψ̂n =
1
2π

∫ 2π

0
ψ(R, θ)e−inθdθ,

and H
(1)
n is the Hankel function of the first kind with order n. To proceed, we introduce the following

notation. For any function u defined on the circle ΓR having the Fourier expansion:

u =
∑

n∈Z
ûneinθ, ûn =

1
2π

∫ 2π

0
ue−inθdθ,

we define

‖ u ‖2
H1/2(ΓR)

= 2π
∑

n∈Z
(1 + n2)1/2|ûn|2,

‖ u ‖2
H−1/2(ΓR)

= 2π
∑

n∈Z
(1 + n2)−1/2|ûn|2.

Let T : H1/2(ΓR) → H−1/2(ΓR) be the Dirichlet-to-Neumann operator defined as follows: for any
u ∈ H1/2(ΓR),

T u =
1
R

∑
hn(κR)ûneinθ, (2.2)

where

hn(z) = z
H

(1)′
n (z)

H
(1)
n (z)

and ûn =
1
2π

∫ 2π

0
ue−inθdθ.

The solution written as in (2.1) satisfies

∂ψ

∂n
= T ψ onΓR, (2.3)

where n is the unit outward normal to ΓR.
Following [1], we have

z
H

(1)′
n (z)

H
(1)
n (z)

= −fn(z)
gn(z)

+ i
z

gn(z)
, (2.4)

where

fn(z) = c0
n + 2c1

n

1
z2

+ · · ·+ (n + 1)cn
n

1
z2n

,

gn(z) = c0
n + c1

n

1
z2

+ · · ·+ cn
n

1
z2n

,

and
cm
n =

(m + n)!(2m)!
4m(m!)2(n−m)!

.

Evidently, we have
1 ≤ −<hn(z) ≤ n + 1 and 0 ≤ =hn(z) ≤ z. (2.5)
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To state the boundary value problem, we introduce the bilinear form a : H1(BR)×H1(BR) → C

a(u, v) = (∇u,∇v)− κ2 ((1 + q)u, v)− 〈T u, v〉, (2.6)

and the linear functional on H1(BR)
b(v) = κ2(qφ0, v). (2.7)

Here we have used the standard inner products

(u, v) =
∫

BR

u · vdx and 〈u, v〉 =
∫

ΓR

u · vds,

where the overline denotes the complex conjugate. The direct problem (1.7), (1.8) is equivalent to
the following weak formulation: to find ψ ∈ H1(BR) such that

a(ψ, ξ) = b(ξ), ∀ξ ∈ H1(BR). (2.8)

Throughout the paper, C stands for a positive generic constant whose value may change step by
step, but should always be clear from the context.

Lemma 2.1 There exists a constant C such that for any u ∈ H1/2(ΓR) the following inequality holds:

‖T u‖H−1/2(ΓR) ≤ C‖u‖H1/2(ΓR).

Furthermore,
−<〈T u, u〉 ≥ C‖u‖2

L2(ΓR) and =〈T u, u〉 ≥ 0.

Proof. For any function u ∈ H1/2(ΓR), we have the Fourier series expansion:

u =
∑

n∈Z
ûneinθ, ûn =

1
2π

∫ 2π

0
ue−inθdθ.

It follows from the norms for H−1/2(ΓR) and H1/2(ΓR) and (2.5) that

‖T u‖2
H−1/2(ΓR)

=
2π

R2

∑

n∈Z

|hn(κR)|2
(1 + n2)1/2

|ûn|2 ≤ C
∑

n∈Z
(1 + n2)1/2|ûn|2 = C‖u‖2

H1/2(ΓR)
.

Using the inner product and the Fourier expansion, we arrive at

〈T u, u〉 =
2π

R

∑

n∈Z
hn(κR)|ûn|2.

It follows from (2.5) that

<〈T u, u〉 =
2π

R

∑

n∈Z
<(hn(κR))|ûn|2 ≤ −2π

R

∑

n∈Z
|ûn|2 = −C‖u‖2

L2(ΓR),

=〈T u, u〉 =
2π

R

∑

n∈Z
=(hn(κR))|ûn|2 > 0.
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Theorem 2.1 If the wavenumber κ is sufficiently small, the variational problem (2.8) admits a unique
weak solution in H1(BR). Further, there is a positive constant C which depends only on R, such that

‖ψ‖H1(BR) ≤ Cκ2‖q‖L∞(BR)‖φ0‖L2(BR). (2.9)

Proof. Decompose the bilinear form a into a = a1 − κ2a2, where

a1(ψ, ξ) = (∇ψ,∇ξ)− 〈T ψ, ξ〉 and a2(ψ, ξ) = ((1 + q)ψ, ξ) .

We conclude that a1 is coercive from Lemma 2.1

|a1(ψ, ψ)| ≥ C‖ψ‖2
H1(BR),

Next we prove the compactness of a2. Define an operator A : L2(BR) → H1(BR) by

a1(Aψ, ξ) = a2(ψ, ξ), ∀ξ ∈ H1(BR),

which gives
(∇Aψ,∇ξ)− 〈T Aψ, ξ〉 = ((1 + q)ψ, ξ) .

Using the Lax–Milgram lemma and Lemma 2.1, we obtain

‖Aψ‖H1(BR) ≤ C‖ψ‖L2(BR). (2.10)

Thus, A is bounded from L2(BR) to H1(BR) and H1(BR) is compactly embedded into L2(BR).
Hence, A is a compact operator.

Define a function u ∈ L2(BR) by requiring u ∈ H1(BR) and satisfying

a1(u, ξ) = b(ξ), ∀ξ ∈ H1(BR).

It follows from the Lax–Milgram lemma again that

‖u‖H1(BR) ≤ Cκ2‖q‖L∞(BR)‖φ0‖L2(BR). (2.11)

Using the operator A, we can see that the problem (2.8) is equivalent to find ψ ∈ L2(BR) such that

(I − κ2A)
ψ = u. (2.12)

When the wavenumber κ is small enough, the operator I − κ2A has a uniformly bounded inverse.
We then have the estimate

‖ψ‖L2(BR) ≤ C‖u‖L2(BR), (2.13)

where the constant C is independent of κ. Rearranging (2.11), we have ψ = u−κ2Aψ, so ψ ∈ H1(BR)
and, by the estimate (2.10) for the operator A, we have

‖ψ‖H1(BR) ≤ ‖u‖H1(BR) + Cκ2‖ψ‖L2(BR).

The proof is complete by combining the above estimate and (2.11).
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Remark 2.1 For the propagating plane wave, the estimated (2.9) can be written as

‖ψ‖H1(BR) ≤ Cκ2|Ω|1/2‖q‖L∞(BR). (2.14)

The energy estimate of the scattered field (2.14) provide a criterion for weak scattering. From this
estimate, it is easily seen that, fixing any two of the three quantities, i.e., the wavenumber, the compact
support of the scatterer Ω, and the L∞(BR) norm of the scatterer, the scattering is weak when the
third one is small. Especially for the given scatterer q, i.e., the norm and the compact support are
fixed, the scattering is weak when the wavenumber is small.

Remark 2.2 For a general wavenumber, from (2.12) the uniqueness and existence follow from the
Fredholm alternative, i.e., if κ is not the eigenvalue for the Helmholtz equation in the domain BR,
then the operator I − κ2A has a bounded inverse. However, the bound depends on the wavenumber.
Therefore, the constant C in the estimate (2.9) depends on the wavenumber.

Theorem 2.2 Given the scatterer q ∈ L∞(BR), for all but possibly a discrete set of wavenumbers,
the variational problem (2.8) admits a unique weak solution in H1(BR). Further, there is a positive
constant C which depends on R and κ, such that

‖ψ‖H1(BR) ≤ C‖q‖L∞(BR)‖φ0‖L2(BR). (2.15)

Remark 2.3 For the evanescent plane wave with |η| > κ, the estimate (2.14) can be written as

‖ψ‖H1(BR) ≤ C
(
η2 − κ2

)−1/4 ‖q‖L∞(BR), (2.16)

where the constant C depends on κ and R. The above energy estimate also provides a criterion for
the weak scattering. For a fixed wavenumber κ and a scatterer q, the scattered field is weak if the
spatial frequency of the incident wave |η| is large.

3 Initial guess

In this section, we discuss how to generate an initial guess for the proposed recursive linearization
method based on either the linearized Lippmann–Schwinger integral equation when the weak scat-
tering is valid, or the multiple signal classification algorithm when the weak scattering may not be
valid.

3.1 Born approximation

Rewrite (1.7) as
∆ψ + κ2ψ = −κ2q(φ0 + ψ). (3.1)

7



From the energy estimates (2.14) and (2.16), the scattered field is weak when the wavenumber κ is
small or when the spatial frequency |η| is large. By dropping the scattered field at the right hand
side of (3.1) under the weak scattering, we obtain

∆ψ + κ2ψ = −κ2qφ0, (3.2)

which is the well-known Born approximation.
Consider an auxiliary function ψ0(x) = eiκp·x,p = (cos β, sinβ), β ∈ [0, 2π]. This auxiliary func-

tion represents propagating plane waves and hence satisfies (1.5). Multiplying (3.2) by ψ0 and inte-
grating over BR on both sides, we have

∫

BR

ψ0∆ψdx + κ2

∫

BR

ψ0ψdx = −κ2

∫

BR

qφ0ψ0dx. (3.3)

Integration by parts yields
∫

BR

ψ∆ψ0dx +
∫

ΓR

(
ψ0

∂ψ

∂n
− ψ

∂ψ0

∂n

)
ds + κ2

∫

BR

ψ0ψdx = −κ2

∫

BR

qφ0ψ0dx. (3.4)

We have by noting (1.5) and the boundary condition (2.3) that
∫

BR

qφ0ψ0dx =
1
κ2

∫

ΓR

(
ψ

∂ψ0

∂n
− ψ0T ψ

)
ds. (3.5)

Using the special form of the incident wave and the auxiliary function, we then get
∫

BR

qei(k+κp)·xdx =
1
κ2

∫

ΓR

(
ψ

∂ψ0

∂n
− ψ0T ψ

)
ds. (3.6)

When the incident waves are propagating waves, i.e., k = κd, the linear integral equation (3.6)
becomes ∫

BR

qeiκ(d+p)·xdx =
1
κ2

∫

ΓR

(
ψ

∂ψ0

∂n
− ψ0T ψ

)
ds. (3.7)

Since the scatterer q has a compact support, we use the notation

q̂(ξ) =
∫

BR

q(x)eiκ(p+n)·x,

where q̂(ξ) is the Fourier transform of q(x) with ξ = κ(p + d). It is obvious that the domain
[0, 2π]× [0, 2π] of (α, β) corresponds to the ball {ξ ∈ R2 : |ξ| ≤ 2κ}. Thus, the Fourier modes of q(x)
in the ball {ξ : |ξ| ≤ 2κ} can be determined. The scattering data with higher wavenumber must be
used in order to recover more modes of the true scatterer.

Define the data

D(ξ) =

{
1
κ2

∫
ΓR

(
ψ ∂ψ0

∂n − ψ0T ψ
)

ds for |ξ| ≤ 2κ,

0 for |ξ| > 2κ.

The equation (3.7) can be formally reformulated as

q̂(ξ) = D(ξ). (3.8)
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Taking the inverse Fourier transform of (3.8) leads to an initial approximation

q(x) =
1

(2π)2

∫

R2

e−ix·ξD(ξ)dξ, (3.9)

which may be implemented by using the fast Fourier transform.
When the incident waves are evanescent, i.e., k = (η, i

√
η2 − κ2), the linear integral equation

(3.6) becomes
∫

BR

q(x)ei(κ cos β+η)x1e(iκ sin β−
√

η2−κ2)x2dx =
1
κ2

∫

ΓR

(
ψ

∂ψ0

∂n
− ψ0T ψ

)
ds. (3.10)

Since the scatterer q(x) has a compact support, (3.10) can be rewritten as
∫ ∞

−∞
q̂(ξ, x2)e(iκ sin β−

√
η2−κ2)x2dx2 = D(ξ, η), (3.11)

where ξ = κ cos β + η and q̂(ξ, x2) is the Fourier transform of q(x) with respect to x1. When the
spatial frequency |η| is large, the incident wave penetrates a thin layer of the scatterer. Thus, the Born
approximation allows a reconstruction containing information of the true scatterer in that thin layer.
For propagating plane incident waves, the inversion involves data related to the scatterer through the
Fourier transform in the case of weak scattering. For evanescent plane wave, the inversion involves
data related to the scatterer through a Fourier (with respect to x1)–Laplace (with respect to x2)
transform in the case of the weak scattering.

Introduce the integral kernel

K(ξ, η;x2) = e(iκ sin β−
√

η2−κ2)x2 .

The integral equation (3.11) can be formally written as

K(ξ)q̂(ξ) = D(ξ). (3.12)

In practice, Equation (3.12) is implemented by using the method of least squares with Tikhonov
regularization

q̂(ξ) = (λI +K∗K)−1K∗D(ξ), (3.13)

where λ is a small positive number, I is the identity operator, and K∗ is the adjoint operator of
K. Once q̂(ξ, x2) is available, an approximation of q(x) may be obtained from the inverse Fourier
transform.

3.2 MUSIC algorithm

The MUSIC (MUltiple SIgnal Classification) algorithm for extended scatterers proposed in [27] is used
to generate an image for the shape of the scatterer. The MUSIC algorithm for point scatterers may
be found in [25]. The image may be further converted into a level set representation for the scatterer
through image processing. See also [2] for an up-to-date discussion on various types of mathematical
imaging methods.
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3.2.1 The MUSIC algorithm for extended scatterers

Consider plane incident waves illuminating from m evenly spaced angles with a certain wavenumber.
The scattered fields are recorded on ∂Ω with the same m evenly spaced angles. The data collected
forms an m-by-m matrix, denoted by P , which is known as the response matrix. For simplicity of
discussion, here we have the incident plane wave directions coincide with the recorded scattered field
directions. However, the MUSIC algorithm and our continuation method to be discussed later can
both handle the general case where the number of incident plane wave directions is different from the
number of recorded scattered field directions and the directions do not coincide.

Let P = UΣV H be the singular value decomposition of the response matrix. Define the illumina-
tion vector

g(x) = [eikx·d1 , . . . , eikx·dm ]T ,

where dj are the propagation directions of incident waves and x is any point in the space. The MUSIC
imaging function may be introduced:

I(x) =
1

‖g(x)‖2
2 −

∑s
`=1 |g(x)Hu`|2

, (3.14)

where u` is the `th column of the matrix U and the number of singular vectors s that spans the signal
space is determined by the resolution analysis based thresholding algorithm in [27].

The imaging function (3.14) provides an image for the boundary of the scatterer, which may be
further converted into a level set representation for the scatterer.

3.2.2 Image processing and the level set function

In this section, we briefly describe an image processing to convert the image for the boundary of the
scatterer into a level set representation, which leads to an initial guess. Additional discussions and
results are available in [4].

There are many edge detector algorithms in the literature [12,13,31]. Here, we employ a relatively
simple approach. Starting with a large domain enclosing the scatterer, we minimize the cost functional

C(∂Ω) =
∫

∂Ω
f(x)ds, (3.15)

where f(x) = 1 if the imaging function I(x) is larger than some threshold and f(x) = 100 otherwise.
In other words, on the boundary of the scatterer, f is small. It makes the curve shrink to the boundary
of the scatterer by minimizing the functional (3.15). In fact, the function f acts as the weight for the
curvature-based force in the curve evolution.

Let ϕ(x) be a level set function that characterizes the curve ∂Ω, i.e., ϕ(x) = 0 on ∂Ω, ϕ(x) > 0
outside Ω; ϕ(x) < 0 inside Ω. The cost functional can be formulated as [40]

C(∂Ω) = W (ϕ) =
∫

R2

f(x)δ(ϕ) | ∇ϕ | dx, (3.16)

where δ is the Dirac delta function. Taking the derivative with respect to the evolution time t, we
have

dW

dt
=

∫

R2

(
δ′(ϕ) | ∇ϕ | ϕt + δ(ϕ)

∇ϕ

| ∇ϕ | · ∇(ϕt)
)

f(x)dx. (3.17)
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The level set formulation for shape evolution with the normal velocity v(x) is [36]

ϕt = −v(x) | ∇ϕ | . (3.18)

By substituting (3.18) into (3.17) and using δ′(ϕ)∇ϕ = ∇(δ(ϕ)), we obtain

dW

dt
= −

∫

R2

(
v(x)∇(δ(ϕ)) · ∇ϕ + δ(ϕ)

∇ϕ

| ∇ϕ | · ∇(v(x) | ∇ϕ |)
)

f(x)dx. (3.19)

Although the evolution velocity is only defined on the moving curve initially, it can be extended
by a constant normal extension away from the curve. Since ∇ϕ is in the normal direction, we have
∇v · ∇ϕ = 0. Therefore, the equation (3.19) can be rewritten as

dW

dt
= −

∫

R2

(
∇(δ(ϕ)) · ∇ϕ + δ(ϕ)

∇ϕ

| ∇ϕ | · ∇(| ∇ϕ |)
)

v(x)f(x)dx. (3.20)

It follows from the divergence theorem on the first term of the right hand side of (3.20) that

dW

dt
=

∫

R2

δ(ϕ)
(
∇ · (v(x)f(x)∇ϕ)− ∇ϕ

| ∇ϕ | · ∇(| ∇ϕ |)v(x)f(x)
)

dx. (3.21)

Simple calculations from the product rule yield

dW

dt
=

∫

R2

δ(ϕ) | ∇ϕ | v(x)∇ ·
(

f(x)
∇ϕ

| ∇ϕ |
)

dx, (3.22)

which can be written as a curve integral

dW

dt
=

∫

∂Ω
v(x)∇ ·

(
f(x)

∇ϕ

| ∇ϕ |
)

ds. (3.23)

Let v(x) = −∇ · (f(x) ∇ϕ
|∇ϕ|). By substituting it into (3.18), we arrive at the gradient flow for the level

set function
ϕt =| ∇ϕ | ∇ ·

(
f(x)

∇ϕ

| ∇ϕ |
)

. (3.24)

By using such a normal velocity, we always have dW/dt < 0, i.e., the cost functional decreases
monotonically in the shape evolution. In practice, a local level set method [37] with reinitialization
using a time marching scheme [38] is employed for solving (3.24).

Starting with a box containing all scatterers, the evolution will stop at the convex envelope of the
shapes for scatterers in the MUSIC imaging result. The level set function representing the shape of
the envelope may be selected as an initial guess.

4 Recursive linearization

In this section, two regularized recursive linearization methods for solving the inverse medium scat-
tering problem with multiple frequency and single frequency are proposed, respectively.

One of the recursive linearization methods, obtained by continuation on the wavenumber κ, re-
quires multiple frequency scattering data. At each wavenumber κ, the algorithm determines a forward
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model which produces the prescribed scattering data. At low wavenumber κ, the scattered field is
weak. Consequently, the nonlinear equation become essentially a linear one. The algorithm first
solves this nearly linear equation at the lowest κ to obtain low-frequency modes of the true scatterer.
The approximation is then used to linearize the nonlinear equation at the next higher κ to produce
a better approximation which contains more modes of the true scatterer. This process is continued
until a sufficiently high wavenumber κ where the dominant modes of the scatterer are essentially
recovered.

Another recursive linearization method, obtained by continuation method on the spatial frequency
of a one-parameter family of incident plane waves, requires only single frequency scattering data. At
each transverse part of the incident wave, the algorithm determines a forward model which produces
the prescribed scattering data. Since the incident wave at a high spatial frequency can only penetrate a
thin layer of the scatterer, the scattered field is weak. Consequently, the nonlinear equation becomes
essentially linear, known as the Born approximation. The algorithm first solves this nearly linear
equation at the largest |η| to obtain an approximation of the scatterer. This approximation is then
used to linearize the nonlinear equation at the next smaller spatial frequency of the incident wave,
which can penetrate a thicker layer of the scatterer, to produce a better approximation. When the
spatial frequency, |η|, is smaller than the fixed wavenumber κ, the incident wave becomes usual
propagating plane wave, and the whole scatterer is illuminated. This process is continued until
the spatial frequency is zero, where the approximation of the scatterer is considered as the final
reconstruction.

4.0.3 Multiple frequency

As discussed in the previous section, when the wavenumber κ is small, the Born approximation
allows a reconstruction of those low Fourier modes for the function q. We now describe a procedure
that recursively determines better approximations qκ at κ = κl for l = 1, 2, ... with the increasing
wavenumbers. Suppose now that an approximation of the scatterer, qκ̃, has been recovered at some
wavenumber κ̃, and that the wavenumber κ is slightly larger that κ̃. We wish to determine qκ, or
equivalently, to determine the perturbation

δq = qκ − qκ̃.

For the reconstructed scatterer qκ̃, we solve at the wavenumber κ the forward scattering problem

∆ψ̃i + κ2(1 + qκ̃)ψ̃i = −κ2qκ̃φ
(i)
0 inBR, (4.1)

∂ψ̃i

∂n
= T ψ̃i onΓR, (4.2)

where φ
(i)
0 is the incident with incident angle αi, i = 1, . . . , n.

For the scatterer qκ, we have

∆ψi + κ2(1 + qκ)ψi = −κ2qκφ
(i)
0 inBR, (4.3)

∂ψi

∂n
= T ψi onΓR. (4.4)

12



Subtracting (4.1) from (4.3) and omitting the second order smallness in δq and in δψi = ψi − ψ̃i, we
obtain

∆δψi + κ2(1 + qκ̃)δus
i = −κ2δq(φ(i)

0 + ψ̃i) in BR, (4.5)
∂δψi

∂n
= T δψi onΓR. (4.6)

Given a solution ψi of (4.3), we define the measurements

Mψi(x) = [ψi(x1), ..., ψi(xm)]T . (4.7)

The measurement operator M is well defined and maps the scattered field to a vector of complex
numbers in Cm, which consists of point measurements of the scattered field at xj , j = 1, ..., m.

For the scatterer qκ and the transmitted field φ
(i)
0 , we define the forward scattering operator

S(qκ, φ
(i)
0 ) = Mψi. (4.8)

It is easily seen that the forward scattering operator S(qκ, φ
(i)
0 ) is linear with respect to φ

(i)
0 but

nonlinear with respect to qκ. For simplicity, we denote S(qκ, φ
(i)
0 ) by Si(qκ). Let S

′
i(qκ̃) be the

Fréchet derivative of Si(qκ) and denote the residual operator

Ri(qκ̃) = M(δψi). (4.9)

It follows from the linearization of the nonlinear equation (4.8) that

S
′
i(qκ̃)δq = Ri(qκ̃). (4.10)

Applying the Landweber iteration [22] to the linearized equation (4.10) yields

δq = τS
′
i(qκ̃)∗Ri(qκ̃), (4.11)

where τ is a positive relaxation parameter and S
′
i(qκ̃)∗ is the adjoint operator of S

′
i(qκ̃).

In order to compute the correction δq, we need some efficient way to compute S
′
i(qκ̃)∗Ri(qκ̃). Let

Ri(qκ̃) = [ζi1, ..., ζim]T ∈ Cm. Consider the adjoint problem

∆wi + κ2(1 + qκ̃)wi = −κ2
m∑

j=1

ζijδ(x− xj) inBR, (4.12)

∂wi

∂n
= T ∗wi onΓR, (4.13)

where the operator T ∗ is defined as

T ∗u = κ
∑

n∈Z

(
H

(1)′
n (κR)

H
(1)
n (κR)

)
ûneinθ, ûn =

1
2π

∫ 2π

0
ue−inθdθ.

Multiplying (4.5) with the complex conjugate of wi and integrating over BR on both sides, we
obtain ∫

BR

∆δψi widx +
∫

BR

κ2(1 + qκ̃)δψi widx = −κ2

∫

BR

δq(φ(i)
0 + ψ̃i) widx.
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Using Green’s formula, we have
∫

BR

(
∆wi + κ2(1 + qκ̃)wi

)
δψidx +

∫

ΓR

(
∂wi

∂n
δψi − ∂δψi

∂n
wi

)
ds

= −κ2

∫

BR

δq(φ(i)
0 + ψ̃i) ψidx.

It follows from the adjoint equation (4.12) that

m∑

j=1

δψi(xj)ζij =
∫

BR

δq(φ(i)
0 + ψ̃i) widx. (4.14)

Noting (4.9), (4.10), and the adjoint operator S
′
i(qκ̃)∗, the left-hand side of (4.14) may be deduced

m∑

j=1

δus
i(xj)ζij = 〈M(δus

i), Ri(qκ̃)〉Cm = 〈S′i(qκ̃)δq, Ri(qκ̃)〉Cm

= 〈δq, S′i(qκ̃)∗Ri(qκ̃)〉L2(BR) =
∫

BR

δq S′(qk̃)
∗Ri(qκ̃)dx. (4.15)

where 〈·, ·〉Cm and 〈·, ·〉L2(BR) are the standard inner-products defined in the complex vector space Cm

and the square integrable functional space L2(BR) .
Combining (4.14) and (4.15) yields

∫

BR

δq S′(qκ̃)∗Ri(qκ̃)dx =
∫

BR

δq (φ(i)
0 + ψ̃i) widx,

which holds for any δq. It follows that

S
′
(qκ̃)∗Ri(qκ̃) = (φ(i)

0 + ψ̃i) wi. (4.16)

Using the above result, Equation (4.11) can be written as

δq = τ(φ(i)
0 + ψ̃i) wi. (4.17)

Thus, for each incident wave, we solve one forward problem (4.1), (4.2) and one adjoint problem
(4.12), (4.13). Once δq is determined, qκ is updated by qκ̃ + δq. After completing the pth sweep, we
get the reconstructed scatterer qκ at the wavenumber κ.

4.0.4 Single frequency

As discussed in the previous section, when the spatial frequency |η| is large, the Born approximation
allows a reconstruction of the thin layer for the true scatterer. In this section, a regularized recur-
sive linearization method for solving the two-dimensional Helmholtz equation at fixed frequency is
proposed.

Choose a large positive number ηmax and divide the interval [0, ηmax] into N subdivisions with
the endpoints {η0, η1, ..., ηN}, where η0 = 0, ηN = ηmax, and ηn−1 < ηn for 1 ≤ n ≤ N . We intend to
obtain qη recursively at η = ηN , ηN−1, ..., η0.
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Suppose now that the scatterer qη̃ has been recovered at some η̃ = ηn+1 and that η = ηn is slightly
less than η̃. We wish to determine qη, or equivalently, to determine the perturbation

δq = qη − qη̃.

For the reconstructed scatterer qη̃, we solve at the spatial frequency η the forward scattering
problem

∆ψ̃i + κ2(1 + qη̃)ψ̃i = −κ2qη̃φ
(i)
0 inBR, (4.18)

∂ψ̃i

∂n
= T ψ̃i onΓR, (4.19)

where the incident wave φ
(i)
0 = eiηix1+ik(ηi)x2 , |ηi| ≥ η.

For the scatterer qη, we have

∆ψi + κ(1 + qη)ψi = −κ2qηφ
(i)
0 inBR, (4.20)

∂ψi

∂n
= T ψi onΓR. (4.21)

Subtracting (4.18), (4.19) from (4.20), (4.21) and omitting the second-order smallness in δq and in
δψi = ψi − ψ̃i, we obtain

∆δψi + κ2(1 + qη̃)δψi = −κ2δq(φ(i)
0 + ψ̃i) in BR, (4.22)

∂δψi

∂n
= T δψi onΓR. (4.23)

In order to compute the update δq, we may similarly consider the adjoint equation (4.12) and
(4.13). Following from the same procedure as that in the case of multiple frequency, we may have
again (4.17).

So for each incident wave with a transverse part ηj , we have to solve one forward problem (4.1),
(4.2) along with one adjoint problem (4.12), (4.13). Since the adjoint problem has a similar variational
form as the forward problem. Essentially, we need to compute two forward problems at each sweep.
Once δq is determined, qη̃ is updated by qη̃ + δq. After completing sweeps with |ηj | ≥ η, we get the
reconstructed scatterer qη at the spatial frequency η.

5 Numerical experiments

In order to illustrate the performance of our algorithms, we present three numerical examples. The
scattering data are obtained by numerical solution of the direct scattering problem, which is imple-
mented by using the finite element method with a perfectly matched layer technique. For stability
analysis, some relative random noise is added to the data, i.e., the scattered field takes the form

ψ(xj) := (1 + σ rand)ψ(xj), j = 0, . . . , m.

Here, rand gives uniformly distributed random numbers in [−1, 1] and σ is a noise level parameter
taken to be 0.05 in our numerical experiments. Define the relative error by

e2 =
(
∑

i,j |qij − q̃ij |2)1/2

(
∑

i,j |qij |2)1/2
,
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Figure 2: Example 1. (a) the true scatterer; (b) the reconstructed scatterer; (c) the difference between
the true scatterer and the reconstructed one.

where q̃ is the reconstructed scatterer and q is the true scatterer.
Example 1. Reconstruct a scatterer shown in Figure 2(a) using multiple frequency data. The initial

guess is obtained from the Born approximation corresponding to weak scattering at low frequency. See
Figure 3 for the relative error of reconstructions using different maximum wavenumber. It is clearly
illustrated that the reconstruction is better using a large wavenumber than that using a smaller
one. This result may be explained by Heisenberg’s uncertainty principle. Figure 2(b) shows the
reconstructed scatterer at wavenumber κ = 4.0 and Figure 2(c) plots the difference between the true
scatterer and the reconstructed one.

Example 2. Reconstruct a five-leave shape scatterer with a disc of radius 1 removed, see Figure
4(a). Figure 4(b) shows the initial guess from the MUSIC algorithm and Figure 4(c) shows the final
reconstruction. The initial guesses are obtained via MUSIC algorithm and a level set representation
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Figure 3: Example 1. The relative error of reconstructions.

at the wavenumber κ = 1. The largest wavenumber used in the recursive linearization algorithm is
κ = 6. The step size for wavenumbers is 0.5, i.e., the number of iteration along wavenumbers is 10.
From this example, we observe that the MUSIC algorithm does not provide detailed shape information
from the starting low frequency data. However, it is a very fast direct algorithm to provide initial
guesses. The final results after recursive linearization is very promising.

Example 3. Reconstruct a scatterer given in Figure 5(a) using single frequency data with an
initial guess from the Born approximation corresponding to weak scattering at high spatial frequency.
This scatterer is difficult to reconstruct because of the discontinuity across two circles. Figure 5(b)
and Figure 5(c) respectively show the reconstructed scatterer and the difference between the true
scatterer and the reconstructed using the wavenumber κ = 15. The plots show that the error of
the reconstruction occurs largely around the discontinuity, while the smooth part is recovered more
accurately. As expected, the Gibbs phenomenon appears in the reconstructed scatterer near the
discontinuity.

6 Conclusion

We have presented two regularized recursive linearization methods with respect to the wavenumber
and the spatial frequency of a one-parameter family of plane waves. The recursive linearization al-
gorithms are robust and efficient for solving the inverse medium scattering with multiple or single
frequency. Finally, we point out some future directions along the line of this work. The first is
concerned with the convergence analysis. Although our numerical experiments demonstrate the con-
vergence and stability of the inversion algorithm, no rigorous mathematical analysis of the algorithms
is available at present. Initial attempt has been made recently in [10] to establish convergence results
by taking into account of the uncertainty principle. Another direction is to investigate inverse medium
problems for Maxwell’s equations with limited aperture case. An on-going effort of our group is to
extend the approaches in this survey to the more complicated 3D model problems.
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Figure 4: Example 2. (a) the true scatterer; (b) the initial guess; (c) the final reconstruction.
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Figure 5: Example 3. (a) the true scatterer; (b) the reconstructed scatterer; (c) the difference between
the true scatterer and the reconstructed one.
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