The Inverse Problem for Derivative Securities
of Interest Rate

Peijun Li Guanquan Zhang
State Key Laboratory of Scientific and Engineering Computing,
Institute of Computational Mathematics and Scientific/Engineering Computing,
Chinese Academy of Sciences, Beijing, 100080

E-mail:lpj@Isec.cc.ac.cn,zgq@Ilsec.cc.ac.cn

May 26, 2000

Abstract

Market price for risk of interest rate reflects the close relation between
risk and yield of securities dependent on interest rate. An inverse problem
for derivative security of interest rate is to determine the relationship. In
this paper, we reduce an inverse coefficient problem to an inverse source
problem, give an approximate solution, establish the theorem of existence
and uniqueness for the solution and propose an efficient iterative algo-
rithm.
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1 Introduction

Derivative security is a kind of security whose value depends on other more ba-
sic underlying varibles. Derivative security for interest rate is one whose payoff
is determined by interest rate to some extent. Recently, the derivative securities
for interest rate have been more and more fashionable in financial territory. We
consider the valuation of zero-coupon bond, which is sold in somewhat higher
discount and will be redeemed on its face value on the maturity date. However,
our results are also applicable to certain other derivative securities.

Suppose that the value of zero-coupon bond V' (¢,r) is a function of time t
and interest r. T is the expiration date and K is a certain face value of zero-
coupon bond. )\, dependent on t, is market price for risk of interest rate which
reflects the relationship between risk and yield. Suppose the ITO process [ of
interest rate is that

dr = (=y(r)r + 6(r))dt + w(r)dz.

where dz is a normally distributed random varible with zero mean and variance
dt. In practice the spot rate is never greater than a certain number, which is



assumed to be R, and never less than or equal to zero. Therefore we assume that
the interest rate r € [0, R]. vy(r) and d(r) are both smooth bounded functions
for r € [0, R] satisfying conditions 6(0) > 0 and —y(R)R + 6(R) < 0. The
above conditions are reasonable and indispensable in order to describe the mean
reversion of interest rate in the ITO process. w(r) is a non-negative and smooth
bounded function for r € [0, R] satisfying conditions w(0) = w(R) = 0. These
quantities can be determined by statistics and the least square method from the
historic data. Following the general method for derivative security pricing [,
we get the partial differential equation for a zero-coupon bond in the form

66—‘; +2 Q(T) 687‘2/ + (=y(r)r +6(r) + /\(t)w(r))aa—‘: —rV =0,
(t,r) € [0, 7] x [0, R] (L.1)

At r = 0 and r = R the equation degenerates into a hyperbolic equation with
positive and negative characteristics respectively:

%H(O)W = 0, (t,r)€0,T]x{0} (12)

o
O mr+ i) RV = 0, (L) el0.T)x (B} (19

The final condition is given by
V(T,r) =K (14)

Usually, if we assume that R is bounded, then one has to give a boundary
condition at r = R in order to have a unique solution. It is difficult to give a
boundary condition which has a clear and reasonable meaning in finance. The
ITO process for interest rate given here avoids such a problem.

It is convenient to make the change of variable 7 = T' — ¢. Then equations
(1.1)-(1.4) can be rewritten as a parabolic equation for the first initial-boundary
value with unknown coefficient function:

oV wi(r) 0°V

D O () +80) + ATl o~ 1V,

) eDTIx0,R,  (15)
=0, mrebTIxo) (19
W~ (mr a2 RV, (mr)e0TIx{R), (L7
V(0,r) = K. (1.8)

If the market price for risk of interest rate A is assumed to be known, the
initial-boundary value problem can have a unique solution for 0 < 7 < T'. How-
ever, we can not directly know the market price for risk of interest rate from
financial markets because interest rate is non-traded security. Therefore we
must have additional market data in order to determine the pair of functions



V(r,r) and A\(7) satisfying (1.5)-(1.8), which is called the inverse problem for
derivative securities of interest rate.

This paper is organized as follows. In section 2, by reducing (1.5)-(1.8) to an
inverse source problm, we obtain an approximate solution and the properly ad-
ditional data which can ensure that the problem (1.5)-(1.8) has unique solution
from mathematical standpoint. At the same time, we give the error estimation
for the approximate solution. In section 3, we introduce the finite difference
schemes and the numerical implementation for the inverse problem discussed
in section 2. Furthermore, we constuct an iterative algorithm to improve the
inversion accuracy. Finally we present several numerical examples and results
in section 4.

2 Reduction To an Inverse Source Problem

At first, we tried to use the direct method to solve the problem (1.5)-(1.8)
with the additional data V(7,r.),r« € (0, R). However, numerical experiments
show that the method is no good because the inversion A(7) is unstable for the
given additional data. Therefore we have to look for another method.

Consider the following problem

LI U A
() €[0,7)x 0, Bl )
V(T,r) = K. 2.2

According to the assumptions that v(r) and §(r) are smooth bounded functions,
using one known result [, the solution of (2.1),(2.2) is unique and contlnuously
differential. Let U = V — V, substracting (1.5) from (2.1) and (1.8) from (2.2),
then we have

0w I L 46 10+ ) 2L
(r,r) € [0,T] x [0, R], (2.3)
U(0,r) = 0. (2.4)

substituting %—‘: with %—‘; in (2.3), we obtain the approximation equations

= (43N G oD + R
() €DTIX0,R, (29
U0,r)=0 2.6

The problem (2.5),(2.6) is an inverse source problem because of the unknown
function A(7) in the right term. Let T'(7,r;s,£) be the fundamental solution of



(2.5), then

U(r,r) / / TTS§X() &) égg)dfd (2.7)
We differeniate (2.7) in both sides with respect to 7, and using the properties
of fundamental solution 2! arrive at

8U6(7T',7“):X(T) ) 8VT1“ // 6I‘Trs§) ()w({)anZ’E)dgds
(2.8)

What we need as the additional market data, M € (0, R), is indispens-

able for the linear Volterra integral equation (2.8) to have unique solution, in
this paper, which means the volatility for the difference between risk-free price
and risk price of zero-coupon bond. In showing the existence and uniqueness for
the solution of the integral equation, we shall make use of the following lemma.

Lemma 1 There exists at least an r. € (0, R) such that w do not vanish
forall0 <1 <T.

proof: Indeed, in the contrary case there exists one time 7, € (0,7") such that

W = 0 for all r € (0,R), that is to say, ‘7(7*,1“), not dependent on r,
is a constant. Then (2.1) can be rewritten as 2% = —rV, for all v € (0,R).

In practice, the formula holds only under the condition of free-risk yield when
the market price for risk of interest rate A(7.) is zero. However, V (7, ), which
satisfies equation (1.5), is the value for zero-coupon bond under the condition
of risk when the market price for risk of interest rate does not vanish for all
0 < 7 < T, which is a contradiction. I

Of course, we may assume w(r,) is not zero since w(r) is a non-negative

smooth one. We regard fR 8F(T =i 8 w(¢) 8‘78(2’5) d¢ as the integral kernel which

is continous by 12!, using the ex1stence and uniqueness of the solution for linear
volterra integral equation (4!, thus we have proved:

Theorem 1 Integral equation (2.8) posseses a unique continous solution for
0 < 7 < T if additional data w,r* € (0, R) is given, and the solution is
cotinously dependent on the additional data.

Now we shall introduce another lemma before analysing the error of the
approximate solution.

Lemma 2 Assumed that
10 =ar)+ [ " K (r.5)f(s)ds, (2.9)
Fr) = 5(0) + /0 " R(r, 5)5(s)ds. (2.10)



where g(7),9(7), K(7,s) and I?(T, s) are continous functions and |g(1) —g(7)| <
€1,|K(1,s) — K(1,s)| < €2,|K(7,5)| < My, for all0 < s <7 <T. Then

|f(r) — J?(T)| < (e1 + Myrey) - M7,

proof: First, by our assumptions on Volterra integral equations (2.9) and (2.10)
it follows that f(7) and f(7) exist and are continous for 0 < 7 < T Let |f(7)| <
M, subtracting (2.9) from (2.10), then we have
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Using known results in [*, we obtain

1£(7) = F(7)| < (e1 + Mares) - €M7,

By (2.8) and lemma 1,we have

X(T):U*(T)/a Tr* / / arTT‘*,Sf) (g)aV( )df/ ( ))X(s)ds

w(ry) ¢
e
Similarily,
_Ui(r) ,0V(7,74) 6FTT‘*;S £) Vv (s,§) ( Ts) $)ds
Ay = O [ [ w(© g e/ T e,
" 212)

where U, () is the additional condition. Subtracting (2.12) from (2.11) and
using lemma 2, we then have the following result.

Theorem 2 The error of approximate solution satisfies

oV (r,r.)  OV(r,r.)

- < (O - AT )
M) -3 < ¢ et T 7))

where C is the bound of g*(a(n:g/av(f;“) 8‘7(8::7"*) and A is the bound of
R T,"%;8, Vs, V(r,rs
Sy Py (€) S dg ) PR,



3  Numerical Implementation for the Inverse Source Problem

In this section, we describe the difference scheme for the inverse source prob-
lem, and propose an efficient iterative algorithm.
Let Q be the domain Q@ = {(r,7) | 0 <7 < T,0 < r < R}, and cover Q by
the grid {(m,r;)|m = iAT,r; = jAr, AT = %,Ar = %}, shown in Fig.1.
T
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(i-1,))

T

FIG.1. The grid used in numerical computation.

Denoting f; ; = f(mi,7;), discretizing equations (2.1),(2.2), (2.5) and (2.6), then
we get

-~

. . . ~
Vitrj = Vi _ w5 (Vierger — 2Vigrj + Vigr,j-1)

AT Ar?
‘7i+1, i1 — ‘7i+1, i1 S
v+ 0) o Vi
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AT 0 Ar
T on—Tins -
H—l,nAT i,n :( nR+6n) i,n Art,n 1 _R‘/i,na
VE),]' - K>
(Afiﬂ,j - (7” _w¥y (Ui+1,j+1 - 2ﬁi+1,j + ﬁi+1vj*1)
AT ) Ar?
it — o T
H(=rs + 8) z+1,y+12Ar HLITU L F +>\i+1w]~( z+1,y+12Ar i1, 1),
Uirr0 = Uio _ s (Uia = Uio)
AT 0 Ar ’
ﬁi+1n_ﬁin ﬁin_ﬁinfl g
’ — = nR 6n ’ - - RUz n
AT (ynft + 0n) Ar ’
Uo; =0

The difference schemes,(3.1) and (3.5), are implict and have truncation errors
O(A7 + Ar?). On boundary conditions, the difference schemes, (3.2),(3.3),(3.6)
and (3.7), are explict and have truncation errors O(Ar + Ar). The numerical
computation begins at the initial time 7 = 0 and advances forward. At each time



T, ‘7(7, r) are obtained from r = 0 to r = R by solving linear equations. After

solving (3.1)-(3.4), similarily, (7(7, ), A(T) can also be obtained from (3.5)-(3.8)

together with the additional data %,r* € (0, R). Numerical results illus-

trate that the market price for risk of interest rate A(7) by solving (3.1)-(3.8) do
not have enough accuracy. This is mainly due to the error of substituting %
with %. Therefore we constuct an iterative algorithm to improve the inversion
accuracy as follows:

step 1. For m=0, \,,,(7)=0, where m is the index of iteration;

step 2. Solve direct problem (3.1)-(3.4) to obtain V;

step 3. For the known V, solve the inverse source problem (3.5)-(3.8) to
obtain Ap,+1(7);

step 4. If

€ = Ant1(7) — A (7) ||

is small enough, stop the iteration; Otherwise, go to step 5;
step 5. Let m=m+1, go to step 2.

4 Numerical Tests and Results

In section 3, we construct the difference schemes and use iterative algorithm
to get improved results. Here, we give two specific numerical experiments, and
the computed results show that the method is effective. In computing, we can
obtain ideal accuracy by only few iterative times.

Example 1: The given model of market price for risk of interest rate is
A(t) = T — t. In computing, let K=100, 7 € [0,1],r € [0,1], Ar = A7 = 0.01,
and —y(r)r +d(r) = 0.5 — r,w(r) = r(1 — r). The error of the additional data
is 30%. Numerical results are shown in Fig.2.
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a:Risk price model A(#) =1 —1¢ b:The error of iteration
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FIG.2. Numerical results for example 1.

Example 2: The given model of market price for risk of interest rate is

A(t) = (T —t)3. The other variables are the same as the example 1. Numerical
results are shown in Fig.3.
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FIG.3. Numerical results for example 2.

FIG.2 FIG.3. (a) the market price for risk of interest rate in example; (b)
the error of the iteration, o: the error of the first iteration, +: the error of the
second iteration; (c) the inversion result of the first iteration; (d) the inversion

result

of the second itration.



5 Conclusions

By reducing the original inverse problem with unknown coefficient A(¢) to
an inverse source problem, we obtain an approximate solution, establish the
theorem for its existence and uniqueness and give its error estimation. The
iterative method proposed in section 3 remarkly improves the inversion accuracy.
From the numerical experiment, we see this method is efficient. However, we
must point out that we give a effective method to solve market price for risk of
interest rate which only depends on time t. If market price for risk of interest
rate is the function of interest rate r, we can obtain a Fredholm integral equation
of the first kind which, as anybody can see, generally, is very ill-posed, and it is
worse that the kernel is smooth. One will make little progress in solving inverse
problem of A(r) if not seeking a regularization method.
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