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Abstract

This paper investigates the scattering of biharmonic waves by a one-dimensional
periodic array of cavities embedded in an infinite elastic thin plate. The trans-
parent boundary conditions are introduced to formulate the problem from an
unbounded domain to a bounded one. The well-posedness of the associated vari-
ational problem is demonstrated utilizing the Fredholm alternative theorem. The
perfectly matched layer (PML) method is employed to reformulate the original
scattering problem, transforming it from an unbounded domain to a bounded
one. The transparent boundary conditions for the PML problem are deduced,
and the well-posedness of its variational problem is established. Moreover, expo-
nential convergence is achieved between the solution of the PML problem and
that of the original scattering problem.
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1 Introduction

Scattering of flexural waves in an elastic thin plate, modeled by fourth-order bihar-
monic wave equations, holds broad engineering applications. These applications
span diverse fields, including the design of ultra-broadband elastic cloaking [1–3],
platonic crystals [4–6], and the exploration of acoustic black hole concepts [7]. Conse-
quently, ongoing research in theoretical analysis, numerical simulations, and industrial
manufacturing continues to draw considerable attention from both engineering and
mathematical communities.

Most works in the literature focus on the static problem in a bounded domain,
which is formulated by the bi-Laplacian equation. When addressing the fourth-order
problem using the finite element method, standardH2-conforming methods necessitate
C1-continuous piecewise polynomials on the mesh, a challenge in practical implemen-
tation. Alternatively, various nonconforming and discontinuous finite element methods
have emerged, such as the weak Galerkin finite element methods supplemented with
stabilizers [8–10]; the virtual element method, which requires no global C0 regularity
for the numerical solution [11, 12]; and the mixed element method, effectively reducing
the fourth-order problem to coupled second-order problems [13–16]. These methods
have undergone comprehensive analysis.

When compared with the results concerning the bi-Laplacian equation, the find-
ings are relatively limited for the biharmonic wave scattering problems in unbounded
domains. In [17], the initial theoretical analysis of the boundary integral equation
method was provided for solving the biharmonic wave equation. Through the intro-
duction of two auxiliary variables, the biharmonic wave equation was split into the
Helmholtz and modified Helmholtz equations. Subsequently, the Holmholtz and mod-
ified Helmholtz wave components were represented using the double- and single-layer
potentials. The well-posedness of the coupled boundary integral system was established
by applying the Riesz–Fredholm theory. If the exterior problem is approached using the
variational approach with transparent boundary conditions (TBCs), the studies con-
cerning waveguide and obstacle scattering problems were presented in [18, 19] under
various boundary conditions, including clamped, simply supported, roller-supported,
or free plate boundary conditions. Numerically, a mixed element method was proposed
in [20, 21] by introducing two auxiliary variables and decomposing the biharmonic
problem into the Helmholtz and modified Helmholtz equations. Subsequently, TBCs
were introduced for each equation. Particularly, the linear finite element method, incor-
porating interior penalty and boundary penalty, was proposed in [21] to effectively
reduce the oscillation of the bending moment.

The method of perfectly matched layer (PML) is a widely utilized domain trunca-
tion technique. In contrast to the nonlocal TBC method, the PML method generates
a local boundary condition on the outer surface of the layer by integrating an artificial
absorbing region around the domain of interest. The ease of handling the local bound-
ary condition has contributed to the widespread adoption of this method ever since
its inception by Bérenger [22] for solving the time-dependent Maxwell equations. It
has found extensive applications in solving various wave scattering problems, includ-
ing, for example, acoustic waves [23], electromagnetic waves [24–26], and elastic waves
[27, 28]. The PML method has also been utilized numerically in solving biharmonic

2



wave scattering problems [29–31], highlighting its convenience and accuracy. How-
ever, to our knowledge, a comprehensive discussion regarding the well-posedness of
the PML method and its convergence has not been documented in existing literature.
This paper aims to address these gaps.

In this paper, we investigate the scattering of flexural waves resulting from a plane
incident wave interacting with a one-dimensional periodic array of cavities within an
infinite elastic thin plate. The wave propagation is described by the fourth-order bihar-
monic wave equation. Because of the periodic characteristics of both the incident wave
and the cavities, the solution complies with quasi-periodic conditions, allowing us to
formulate the problem within a single periodic cell. The TBCs are derived by incorpo-
rating the bounded outgoing wave condition, utilizing the Fourier series expansion of
the solution in regions distant from the cavities. With the aid of the TBCs, the scat-
tering problem is equivalently transformed from an unbounded domain to a bounded
one. The corresponding variational problem is shown to satisfy G̊arding’s inequality,
and its well-posedness is established through the utilization of the Fredholm alterna-
tive theorem. To replace the nonlocal TBCs, the PML method is adopted through
the complex coordinate stretching scheme [32]. Alternatively, the unbounded domain
is truncated by imposing homogeneous boundary conditions on the wave field and its
normal derivative at the outer boundary of the PML region. Upon studying the Fourier
series expansion of the solution to the PML problem, we deduce equivalent TBCs to
reformulate the PML problem in the domain where the original scattering problem,
along with the TBC, is imposed. The well-posedness of the PML problem is con-
firmed through an examination of its variational formulation. Additionally, the PML
solution demonstrates exponential convergence concerning the thickness of the PML
regions towards the solution of the original scattering problem. For a comprehensive
account of related electromagnetic wave scattering problems in periodic structures, we
reference [33].

The paper is outlined as follows. Section 2 introduces the model equations. The
TBCs are derived in Section 3. Section 4 details the reduction of the scattering problem
to a bounded domain using the TBCs, along with the discussion on the well-posedness
of the variational problem. Section 5 addresses the PML problem, including inves-
tigations into its well-posedness and convergence. Finally, the paper concludes with
general remarks in Section 6.

2 Problem formulation

Let us examine the scattering phenomenon of an incident wave interacting with a one-
dimensional periodic array of cavities in an infinitely extending elastic thin plate, which
is characterized by the Kirchhoff–Love model and is depicted in Figure 1. Assume that
the alignment of the cavities coincides with the x1-axis, exhibiting a periodicity of Λ.
Consider an incident field represented as a time-harmonic plane wave given by

ui(x) = ei(αx1−βx2), x ∈ R2,

where α = κ sin θ, β = κ cos θ with κ > 0 and θ ∈
(
−π

2 ,
π
2

)
denoting the wavenumber

and the incident angle, respectively. It can be verified that the incident field ui satisfies
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Fig. 1 Schematic of the problem geometry.

the biharmonic wave equation

∆2ui − κ4ui = 0 in R2.

Due to the periodic nature of the geometry, the problem can be confined
to a single periodic cell. Denote by Ωc the cavity with a Lipschitz contin-
uous boundary Γc. Let R be a rectangular domain that is sufficiently large
to enclose the region Ωc. Without loss of generality, let R be defined as
R =

{
x ∈ R2 : 0 < x1 < Λ, h2 < x2 < h1

}
, where hk, k = 1, 2 are constants.

Additionally, define Γk =
{
x ∈ R2 : 0 < x1 < Λ, x2 = hk

}
for k = 1, 2, Γl ={

x ∈ R2 : x1 = 0, h2 < x2 < h1
}
, and Γr =

{
x ∈ R2 : x1 = Λ, h2 < x2 < h1

}
. Let Ω =

R \ Ωc. Define Ω1 and Ω2 as the regions above and below Γ1 and Γ2, respectively.
The out-of-plane displacement of the plate, denoted as u and referred to as the

total field, also satisfies the biharmonic wave equation

∆2u− κ4u = 0 in Ω. (1)

The total field is assumed to satisfy the Dirichlet boundary condition, known as the
clamped boundary condition, on Γc:

u = 0, ∂νu = 0, (2)

where ν denotes the unit normal vector on Γc. It is worth noting that other types of
boundary conditions, such as the Neumann boundary condition, often known as the
free plate boundary condition, can be similarly taken into account.

Given the periodic nature of both the structure and the incident wave, the solution
to (1)–(2) demonstrates quasi-periodicity. Specifically, if u is a solution to (1)–(2), then
u(x)e−iαx1 is a periodic function of x1 with a period of Λ. This characteristic gives
rise to the quasi-periodic boundary condition on Γl and Γr, i.e., u satisfies u(0, x2) =
e−iαΛu(Λ, x2). Furthermore, to ensure the well-posedness of the problem, it is essential
to impose a bounded outgoing wave condition on the scattered field us = u−ui in Ω1

and the total field u in Ω2.
We introduce notations and function spaces employed in this work. Denote by

H2(Ω) the standard Sobolev space, comprising functions with square-integrable values,
as well as square-integrable first and second partial derivatives. Let us define the
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quasi-periodic function space

H2
qp(Ω) =

{
u ∈ H2(Ω) : u(Λ, x2) = u(0, x2)e

iαΛ
}
,

along with its subspace

H2
qp,Γc

(Ω) =
{
u ∈ H2

qp(Ω) : u = 0, ∂νu = 0 on Γc

}
.

Clearly, H2
qp(Ω) and H2

qp,Γc
(Ω) are subspaces of H2(Ω) equipped with the standard

H2-norm.
Given a function u ∈ H2

qp(Ω), it allows for a Fourier expansion on Γk, k = 1, 2 :

u(x, hk) =
∑
n∈Z

u(n)(hk)e
iαnx1 ,

where

αn = α+ n

(
2π

Λ

)
, u(n)(hk) =

1

Λ

∫ Λ

0

u(x, hk)e
−iαnx1dx1.

The trace function space Hs(Γk), where s ∈ R, is defined as follows:

Hs(Γk) =
{
u ∈ L2(Γk) : ∥u∥Hs(Γk) <∞

}
,

with the norm given by

∥u∥Hs(Γk) =

(
Λ
∑
n∈Z

(
1 + α2

n

)s |u(n)(hk)|2)1/2

.

In this paper, whenever a ≲ b is used, it denotes a ≤ Cb, with C representing a
positive constant. In this context, the values of the constants cj are positive and may
vary in different steps of the proof. Although the specific values of C and cj are not
explicitly stated, their dependence should be apparent from the context.

3 Transparent boundary conditions

In this section, we address the challenge posed by formulating the problem in an
unbounded domain. To overcome this obstacle, we propose introducing an equiva-
lent transparent boundary condition (TBC) on Γk, k = 1, 2 with the objective of
transforming the problem into the bounded domain Ω.

Let ν = (ν1, ν2) and τ = (τ1, τ2) be the unit normal and tangent vectors, respec-
tively, to the boundary of Ω. Clearly, we have τ1 = −ν2 and τ2 = ν1. Define the normal
and tangential derivatives

∂ν := ν1∂x1 + ν2∂x2 , ∂τ := −ν2∂x1 + ν1∂x2 .
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For 0 ≤ µ < 1, referred to as the Poisson ratio, define the surface differential operators
(cf. [34]):

Mu := µ∆u+ (1− µ)M0u, Nu := −∂ν∆u− (1− µ)∂τN0u, (3)

where M0 and N0 are explicitly given by
M0u := ν21

∂2u

∂x21
+ 2ν1ν2

∂2u

∂x1∂x2
+ ν22

∂2u

∂x22
,

N0u :=
(
ν21 − ν22

) ∂2u

∂x1∂x2
− ν1ν2

(
∂2u

∂x21
− ∂2u

∂x22

)
.

First, we derive the TBC on Γ1. Based on the bounded outgoing wave condition,
it is shown in [20] that the scattered field us can be represented by a Fourier series
expansion in the domain Ω1:

us(x1, x2) =
∑
n∈Z

H
(n)
1 eiαnx1+iβn(x2−h1) +

∑
n∈Z

U
(n)
1 eiαnx1−γn(x2−h1), (4)

where H
(n)
1 , U

(n)
1 ∈ C are the Fourier coefficients, and

βn =

{
(κ2 − α2

n)
1/2 if κ > |αn|,

i(α2
n − κ2)1/2 if κ < |αn|,

γn = (κ2 + α2
n)

1/2. (5)

Here, we assume that βn ̸= 0 for all n ∈ Z to rule out the occurrence of resonances.
Let (u, ∂νu) = (f1, g1) and (us, ∂νu

s) = (f̂1, ĝ1) be the Dirichlet data for the total
and scattered fields on Γ1, respectively. It is clear to note that these data satisfy the
relations

f1(x1) = f̂1(x1) + ei(αx1−βh1), g1(x1) = ĝ1(x1)− iβei(αx1−βh1).

Being quasi-periodic functions, f̂1 and ĝ1 admit the Fourier series expansions

us(x1, h) = f̂1(x1) =
∑
n∈Z

f̂
(n)
1 eiαnx1 , ∂νu

s(x1, h1) = ĝ1(x1) =
∑
n∈Z

ĝ
(n)
1 eiαnx1 ,

where f̂
(n)
1 , ĝ

(n)
1 ∈ C are the Fourier coefficients.

On the other hand, evaluating the scattered field us, as defined in (4), and its
normal derivative ∂x2

us on Γ1, we obtain
us(x1, h1) =

∑
n∈Z

H
(n)
1 eiαnx1 +

∑
n∈Z

U
(n)
1 eiαnx1 ,

∂x2
us(x1, h1) =

∑
n∈Z

iβnH
(n)
1 eiαnx1 −

∑
n∈Z

γnU
(n)
1 eiαnx1 .
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Combining the above equations, we have from straightforward calculations that the
scattered field us in domain Ω1 can be expressed as

us(x1, x2) =
∑
n∈Z

(
γnf̂

(n)
1 + ĝ

(n)
1

γn + iβn

)
eiαnx1+iβn(x2−h1)

+
∑
n∈Z

(
iβnf̂

(n)
1 − ĝ

(n)
1

γn + iβn

)
eiαnx1−γn(x2−h1). (6)

On Γ1, the surface differential operatorsM and N given in (3) can be simplified to

N1u = −(2− µ)
∂3u

∂x21∂x2
− ∂3u

∂x32
, M1u = µ

∂2u

∂x21
+
∂2u

∂x22
. (7)

Substituting (6) into (7) yields the TBC of the scattered field us on Γ1:

N1u
s = T

(1)
11 f̂1 + T

(1)
12 ĝ1, M1u

s = T
(1)
21 f̂1 + T

(1)
22 ĝ1.

Here, the Dirichlet-to-Neumann (DtN) operators T
(1)
ij , i, j = 1, 2 are given by

(T
(1)
11 f)(x1) =

∑
n∈Z

iβnγn (γn − iβn) f
(n)eiαnx1 ,

(T
(1)
21 f)(x1) = −

∑
n∈Z

(
µα2

n − iβnγn
)
f (n)eiαnx1 ,

(T
(1)
12 g)(x1) = −

∑
n∈Z

(
µα2

n − iβnγn
)
g(n)eiαnx1 ,

(T
(1)
22 g)(x1) = −

∑
n∈Z

(γn − iβn) g
(n)eiαnx1 ,

(8)

where f (n) and g(n) are the Fourier coefficients of f and g, respectively. Noting u =
us + ui, we deduce the TBC for the total field u on Γ1:

N1u = T
(1)
11 f1 + T

(1)
12 g1 + p1, M1u = T

(1)
21 f1 + T

(1)
22 g1 + p2. (9)

where

p1(x1) = −
(
2iβα2 + 2β2γ

)
ei(αx1−βh1), p2(x1) = −(2β2 + 2iβγ)ei(αx1−βh1). (10)

Given the similarity in the derivation process of the TBC to that of Γ2, we provide
a brief overview of the procedure and present the resulting TBC. In accordance with
the bounded outgoing wave condition, the total field u exhibits the Fourier series
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expansion in Ω2:

u(x1, x2) =
∑
n∈Z

H
(n)
2 eiαnx1−iβn(x2−h2) +

∑
n∈Z

U
(n)
2 eiαnx1+γn(x2−h2). (11)

Evaluating (11) and its normal derivative on Γ2, we obtain
u(x1, h2) =

∑
n∈Z

H
(n)
2 eiαnx1 +

∑
n∈Z

U
(n)
2 eiαnx1 =

∑
n∈Z

f
(n)
2 eiαnx1 ,

∂νu(x1, h2) =
∑
n∈Z

iβnH
(n)
2 eiαnx1 −

∑
n∈Z

γnU
(n)
2 eiαnx1 =

∑
n∈Z

g
(n)
2 eiαnx1 ,

(12)

where (u, ∂νu) = (f2, g2) are the Dirichlet data on Γ2 and have the Fourier series
expansions

f2(x1) =
∑
n∈Z

f
(n)
2 eiαnx1 , g2(x1) =

∑
n∈Z

g
(n)
2 eiαnx1 .

By solving the system (12), we deduce that the total field u in Ω2 admits the
Fourier series expansion

u(x1, x2) =
∑
n∈Z

(
γnf

(n)
2 + g

(n)
2

γn + iβn

)
eiαnx1−iβn(x2−h2)

+
∑
n∈Z

(
iβnf

(n)
2 − g

(n)
2

γn + iβn

)
eiαnx1+γn(x2−h2). (13)

Noting that the surface differential operator M and N on Γ2 can be simplified to

N2u = (2− µ)
∂3u

∂x21∂x2
+
∂3u

∂x32
, M2u = µ

∂2u

∂x21
+
∂2u

∂x22
, (14)

we substitute (13) into (14) and obtain the TBC of the total field u on Γ2:

N2u = T
(2)
11 f2 + T

(2)
12 g2, M2u = T

(2)
21 f2 + T

(2)
22 g2, (15)

where the DTN operators T
(2)
ij , i, j = 1, 2 are defined as

(T
(2)
11 f)(x1) =

∑
n∈Z

iβnγn (γn − iβn) f
(n)
2 eiαnx1 ,

(T
(2)
21 f)(x1) = −

∑
n∈Z

(
µα2

n − iβnγn
)
f
(n)
2 eiαnx1 ,

(T
(2)
12 g)(x1) = −

∑
n∈Z

(
µα2

n − iβnγn
)
g
(n)
2 eiαnx1 ,

(T
(2)
22 g)(x1) = −

∑
n∈Z

(γn − iβn) g
(n)
2 eiαnx1 .
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The following result concerns the properties of the DtN operators T
(1)
ij and T

(2)
ij ,

where i, j = 1, 2.

Lemma 1. For k = 1, 2, the DtN operators T
(k)
11 : H3/2(Γk) → H−3/2(Γk), T

(k)
12 :

H1/2(Γk) → H−3/2(Γk), T
(k)
21 : H3/2(Γk) → H−1/2(Γk), and T

(k)
22 : H1/2(Γk) →

H−1/2(Γk) are bounded.

Proof. We only prove the results for the operators T
(1)
ij , as the corresponding properties

for the operators T
(2)
ij can be obtained in the same manner. It is clear to note from

(5) that

lim
|n|→∞

|βn|
|αn|

= 1, lim
|n|→∞

|γn|
|αn|

= 1. (16)

For a given f ∈ H3/2(Γ1), we have from (8) and (16) that

∥T (1)
11 f∥2H−3/2(Γ1)

= Λ
∑
n∈Z

(
1 + α2

n

)−3/2 ∣∣iβnγn (γn − iβn) f
(n)
∣∣2

≲
∑
n∈Z

(1 + α2
n)

3/2|f (n)|2 ≲ ∥f∥2H3/2(Γ1)
,

and

∥T (1)
21 f∥2H−1/2(Γ1)

= Λ
∑
n∈Z

(
1 + α2

n

)−1/2 ∣∣ (µα2
n − iβnγn

)
f (n)

∣∣2
≲
∑
n∈Z

(1 + α2
n)

3/2|f (n)|2 ≲ ∥f∥2H3/2(Γ1)
.

Similarly, for any function f ∈ H1/2(Γ1), we deduce from (8) and (16) that

∥T (1)
12 f∥2H−3/2(Γ1)

= Λ
∑
n∈Z

(
1 + α2

n

)−3/2 ∣∣ (µα2
n − iβnγn

)
g(n)

∣∣2
≲
∑
n∈Z

(1 + α2
n)

1/2|f (n)|2 ≲ ∥f∥2H1/2(Γ1)
,

and

∥T (1)
22 f∥2H−1/2(Γ1)

= Λ
∑
n∈Z

(
1 + α2

n

)−1/2 ∣∣ (γn − iβn) f
(n)
∣∣2

≲
∑
n∈Z

(1 + α2
n)

1/2|f (n)|2 ≲ ∥f∥2H1/2(Γ1)
,

thus completing the proof.

Lemma 2. If |n| is sufficiently large, then the following inequality holds for any
complex values f and g:

ℜ
{
− iβnγn (γn − iβn) |f |2 +

(
µα2

n − iβnγn
)
gf̄

9



+
(
µα2

n − iβnγn
)
fḡ + (γn − iβn) |g|2

}
≥ 0.

Proof. By the definitions of γn and βn given in (5), a straightforward calculation shows
that for sufficiently large |n|

−iβnγn (γn − iβn) > 0, µα2
n − iβnγn > 0, γn − iβn > 0.

It suffices to demonstrate for sufficiently large |n| that

−iβnγn (γn − iβn) |f |2 − 2
(
µα2

n − iβnγn
)
|f ||g|+ (γn − iβn) |g|2 ≥ 0.

Utilizing the Cauchy inequality, we deduce from a simple calculation that(
(−iβnγn)

1/2 (γn − iβn)
)2 − (µα2

n − iβnγn
)2

= −γ2nβ2
n − µα4

n − 2i(1− µ)γnβnα
2
n

= α4
n − κ4 − µα4

n − 2i(1− µ)γnβnα
2
n

= (1− µ)
(
α4
n − 2iγnβnα

2
n

)
− κ4,

which is positive for sufficiently large |n| by noting that µ < 1 and α4
n−2iγnβnα

2
n → ∞

as |n| → ∞.

Lemma 3. For any f ∈ H3/2(Γk) and g ∈ H1/2(Γk) with k = 1, 2, there exists a
positive constant C such that

−ℜ
{∫

Γk

(
T

(k)
11 |f |2 + T

(k)
12 gf̄ + T

(k)
21 fḡ + T

(k)
22 |g|2

)
ds

}
≥ −C

(
∥f∥2L2(Γk)

+ ∥g∥2L2(Γk)

)
.

Proof. We prove the result for k = 1, as the result for k = 2 can be obtained similarly.

By the definitions of T
(1)
ij and Lemma 2, we have

−ℜ
∫
Γ1

(
T

(1)
11 |f |2 + T

(1)
12 gf̄ + T

(1)
21 fḡ + T

(1)
22 |g|2

)
ds

= Λ
∑

|n|≤n0

ℜ
{
− iβnγn (γn − iβn) |f (n)|2 +

(
µα2

n − iβnγn
)
g(n)f (n)

+
(
µα2

n − iβnγn
)
f (n)g(n) + (γn − iβn) |g(n)|2

}
+ Λ

∑
|n|>n0

ℜ
{
− iβnγn (γn − iβn) |f (n)|2

+
(
µα2

n − iβnγn
)
g(n)f (n) +

(
µα2

n − iβnγn
)
f (n)g(n) + (γn − iβn) |g(n)|2

}
≥ Λ

∑
|n|≤n0

ℜ
{
− iβnγn (γn − iβn) |f (n)|2 +

(
µα2

n − iβnγn
)
g(n)f (n)

10



+
(
µα2

n − iβnγn
)
f (n)g(n) + (γn − iβn) |g(n)|2

}
≥ −C

(
∥f∥2L2(Γ1)

+ ∥g∥2L2(Γ1)

)
,

where n0 is the smallest integer such that Lemma 2 holds.

Utilizing the TBCs given by (9) and (15), we transform the original problem (1)–(2)
from an unbounded domain into the bounded domain Ω, which is to find a quasi-
periodic function u satisfying

∆2u− κ4u = 0 in Ω,

u = 0, ∂νu = 0 on Γc,

N1u = T
(1)
11 f1 + T

(1)
12 g1 + p1 on Γ1,

M1u = T
(1)
21 f1 + T

(1)
22 g1 + p2 on Γ1,

N2u = T
(2)
11 f2 + T

(2)
12 g2 on Γ2,

M2u = T
(2)
21 f2 + T

(2)
22 g2 on Γ2,

(17)

where p1 and p2 are defined in (10), and (fk, gk) are the Dirichlet data of the total field
u on Γk for k = 1, 2. The objective of this study is to examine the PML formulation
applied to the boundary value problem (17) and to establish the convergence of the
PML solution.

4 The variational problem

In this section, we present a variational formulation for the boundary value problem
(17) and examine its well-posedness.

Observing that the bi-Laplacian can be expressed in terms of the Poisson ratio, as
demonstrated in [34], we have

∆2u− κ4u =
∂2

∂x21

(
∂2u

∂x21
+ µ

∂2u

∂x22

)
+ 2(1− µ)

∂2

∂x1∂x2

(
∂2u

∂x1∂x2

)
+

∂2

∂x22

(
∂2u

∂x22
+ µ

∂2u

∂x21

)
− κ4u.

Multipling both sides of the above equation with a test function v ∈ H2
qp,Γc

(Ω),
integrating across the domain Ω, and applying integration by parts, we obtain

∫
Ω

[
µ∆u∆v̄ + (1− µ)

2∑
i,j=1

∂2u

∂xi∂xj

∂2v̄

∂xi∂xj
− κ4uv̄

]
dx

−
2∑

k=1

∫
Γk

(v̄Nku+ ∂ν v̄Mku) ds = 0. (18)

11



Substituting the TBCs on Γk, k = 1, 2 into (18), we arrive at the variational problem:
find u ∈ H2

qp,Γc
(Ω) such that

a(u, v) =

∫
Γ1

(p1v̄ + p2∂ν v̄) ds ∀ v ∈ H2
qp,Γc

(Ω), (19)

where the sesquilinear form a(u, v) : H2
qp,Γc

(Ω)×H2
qp,Γc

(Ω) → C is defined as

a(u, v) =

∫
Ω

[
µ∆u∆v̄ + (1− µ)

2∑
i,j=1

∂2u

∂xi∂xj

∂2v̄

∂xi∂xj
− κ4uv̄

]
dx

−
2∑

k=1

∫
Γk

(T(k)u) · vds (20)

with u,v, and T(k) given by

u =

[
u
∂νu

]
, v =

[
v
∂νv

]
, T(k) =

[
T

(k)
11 T

(k)
12

T
(k)
21 T

(k)
22

]
.

The following trace theorem can be found in [35, Theorem 1.1.6].
Lemma 4. Let Ω be a Lipschitz domain. Then, there is a positive constant C for
which

∥u∥L2(∂Ω) ≤ C∥u∥1/2L2(Ω)∥u∥
1/2
H1(Ω) ∀u ∈ H1(Ω).

Theorem 1. The variational problem (19) has a unique weak solution u ∈ H2
qp,Γc

(Ω)
except for a discrete set of wavenumbers κ.

Proof. It follows from Lemma 1 and the trace theorem (cf. [36, Lemmas 2.2 and 2.3])
that the continuity of the sesquilinear form (20) is evident. It can be shown from [18]
that there exist positive constants c1 and c2 such that

∫
Ω

[
µ|∆u|2 + (1− µ)

2∑
i,j=1

∣∣∣∣ ∂2u

∂xi∂xj

∣∣∣∣2 − κ4|u|2
]
dx ≥ c1∥u∥2H2(Ω) − c2∥u∥2L2(Ω). (21)

By combining Lemmas 1, 3, and 4 with the Cauchy inequality, we deduce

−ℜ
2∑

k=1

∫
Γk

(T(k)u) · uds ≥ −c3
(
∥u∥2L2(Γ1∪Γ2)

+ ∥∂x2u∥2L2(Γ1∪Γ2)

)
≥ −c4

(
∥u∥L2(Ω)∥u∥H1(Ω) + ∥∇u∥L2(Ω)∥∇u∥H1(Ω)

)
≥ −c5∥u∥2H1(Ω) − c6∥u∥2H2(Ω),

12
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Fig. 2 The schematic of the PML problem.

where c6 > 0 is sufficiently small. Combining the above inequality with (21), we verify
that the sesquilinear form (20) satisfies the G̊arding inequality

ℜa(u, u) ≥ c7∥u∥H2(Ω) − c8∥u∥H1(Ω),

which completes the proof by applying the Fredholm alternative theorem.

5 The PML problem

This section focuses on the PML problem, aiming to establish its well-posedness while
also providing a convergence analysis of the PML solution.

5.1 The PML formulation

Denote by ΩPML
k , for k = 1, 2, the PML regions above and below the interfaces Γk,

respectively. Assume that the thickness of each region is δk and denote the outer
boundary of ΩPML

k by ΓPML
k . Let ΩPML = Ω ∪ ΩPML

1 ∪ ΩPML
2 be the domain in which

the PML problem is formulated. The schematic of the PML problem is depicted in
Figure 2.

The PML parameters in ΩPML
k are introduced by the complex coordinate stretching

(cf. [32]):

x̃2 = φ(x2) =

∫ x2

0

s(t)dt, s(t) =



1 if h2 ≤ t ≤ h1,

1 + iσ0

(
t− h1
δ1

)m

if t > h1,

1 + iσ0

(
h2 − t

δ2

)m

if t < h2,

where σ0 is a positive constant, and m ≥ 2 is an integer.

13



Let ũ be the solution of the total field for the PML problem in the complex
coordinates x̃ = (x1, x̃2). It satisfies

∆̃2ũ− κ4ũ = w in ΩPML,

ũ = ui, ∂ν ũ = ∂νu
i on ΓPML

1 ,

ũ = 0, ∂ν ũ = 0 on ΓPML
2 ,

(22)

where ∆̃ is the Laplacian operator in the complex coordinates and is given by

∆̃ũ =
∂2ũ

∂x21
+
∂2ũ

∂x̃22
,

and

w(x̃) =

{
∆̃2ui − κ4ui in ΩPML

1 ,

0 in Ω \ ΩPML
1 .

Here, the complex coordinate variable x̃ = (x1, x̃2) is considered to be in ΩPML
k or

on ΓPML
k if x = (x1, ψ(x̃2)) is in ΩPML

k or on ΓPML
k , where ψ is the inverse function of

φ, i.e., x2 = ψ(x̃2) = φ−1(x̃2).

5.2 TBC for the PML problem

To equivalently formulate the PML problem from the domain ΩPML to the domain Ω,
we investigate the TBCs of the PML problem (22) on the interfaces Γk.

First, we deduce the TBC on Γ1. Consider the scattered field

ũs(x1, φ(x2)) = ũ(x1, φ(x2))− ui(x1, x2).

It follows from (22) that the scattered field ũs satisfies
∆̃ũs − κ4ũs = 0 in ΩPML

1 ,

ũs = f̂1, ∂ν ũ
s = ĝ1 on Γ1,

ũs = 0, ∂ν ũ
s = 0 on ΓPML

1 ,

(23)

where (ũs, ∂ν ũ
s) = (f̂1, ĝ1) are the Dirichlet data for the scattered field ũs on Γ1. As

f̂1 and ĝ1 are quasi-periodic functions of x1 with a period Λ, they have the Fourier
series expansions

f̂1(x1) =
∑
n∈Z

f̂
(n)
1 eiαnx1 , ĝ1(x1) =

∑
n∈Z

ĝ
(n)
1 eiαnx1 .
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Since the scattered field ũs satisfies ∆̃ũs − κ4ũs = 0 in ΩPML
1 , we can verify that

ũs admits the following analytical expression in ΩPML
1 :

ũs(x1, x̃2) =
∑
n∈Z

[
W

(n)
1 e−iβn(x̃2−h1) + V

(n)
1 eiβn(x̃2−h1)

+X
(n)
1 eγn(x̃2−h1) + Y

(n)
1 e−γn(x̃2−h1)

]
eiαnx1 . (24)

Substituting (24) into the boundary conditions in (23), we obtain a linear system of

algebraic equations for the Fourier coefficients W
(n)
1 , V

(n)
1 , X

(n)
1 , and Y

(n)
1 :

W
(n)
1 + V

(n)
1 +X

(n)
1 + Y

(n)
1 = f̂

(n)
1 ,

− iβnW
(n)
1 + iβnV

(n)
1 + γnX

(n)
1 − γnY

(n)
1 = ĝ

(n)
1 ,

W
(n)
1 e−iβnh̃1 + V

(n)
1 eiβnh̃1 +X

(n)
1 eγnh̃1 + Y

(n)
1 e−γnh̃1 = 0,

− iβnW
(n)
1 e−iβnh̃1 + iβnV

(n)
1 eiβnh̃1 + γnX

(n)
1 eγnh̃1 − γnY

(n)
1 e−γnh̃1 = 0,

(25)

where

h̃1 = φ(h1 + δ1)− h1 =

∫ h1+δ1

0

s(t)dt− h1 = δ1

(
1 +

iσ0
m+ 1

)
. (26)

Through tedious yet straightforward calculations, we solve the linear system (25)
and obtain the solutions for the Fourier coefficients:

W
(n)
1 =

1

D
(n)
1

{
f̂
(n)
1

[ (
γnβn − iγ2n

)
e2iβnh̃1 − 2βnγne

(iβn+γn)h̃1

+
(
γnβn + iγ2n

)
e2(iβn+γn)h̃1

]
− ĝ

(n)
1

[
(βn − iγn) e

2iβnh̃1

+ 2iγne
(iβn+γn)h̃1 − (iγn + βn) e

2(iβn+γn)h̃1

]}
,

V
(n)
1 =

1

D
(n)
1

{
f̂
(n)
1

[(
βnγn + iγ2n

)
+
(
γnβn − iγ2n

)
e2γnh̃1 − 2βnγne

(iβn+γn)h̃1

]
− ĝ

(n)
1

[
(βn + iγn)− (βn − iγn) e

2γnh̃1 − 2iγne
(iβn+γn)h̃1

]}
,

X
(n)
1 =

1

D
(n)
1

{
f̂
(n)
1

[
(βnγn − iβ2

n) +
(
iβ2

n + βnγn
)
e2iβnh̃1 − 2βnγne

(iβn+γn)h̃1

]
− ĝ

(n)
1

[
− (βn + iγn)− (βn − iγn) e

2iβnh̃1 + 2βne
(iβn+γn)h̃1

]}
,

Y
(n)
1 =

1

D
(n)
1

{
f̂
(n)
1

[ (
iβ2

n + βnγn
)
e2γnh̃1 − 2βnγne

(iβn+γn)h̃1

+
(
βnγn − iβ2

n

)
e2(iβn+γn)h̃1

]
− ĝ

(n)
1

[
(βn − iγn) e

2γnh̃1
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− 2βne
(iβn+γn)h̃1 + (iγn + βn) e

2(iβn+γn)h̃1

]}
,

where the denominator D
(n)
1 is defined as

D
(n)
1 = −8βnγne

(iβn+γn)h̃1 +
(
−iβ2

n + iγ2n + 2βnγn
) (

1 + e2(iβn+γn)h̃1
)

+
(
iβ2

n − iγ2n + 2βnγn
) (
e2iβnh̃1 + e2γnh̃1

)
. (27)

It is clear to note from (26) that both of the real and imaginary parts of h̃1 are
positive. If the thickness of the layer δ1 is sufficiently large, i.e., ℜh̃1 = δ1 is sufficiently

large, then the leading term in (27) is the one containing e2γnh̃1 . A simple calculations
yields ∣∣iβ2

n − iγ2n + 2βnγn
∣∣2 = |γn + iβn|4 ̸= 0 ∀n ∈ Z,

which ensures that D
(n)
1 is non-zero for sufficiently large δ1.

Substituting (24) into (7), we obtain the TBC of the scattered field ũs for the PML
problem on Γ1:

N1ũ
s = T̂

(1)
11 f̂1 + T̂

(1)
12 ĝ1, M1ũ

s = T̂
(1)
21 f̂1 + T̂

(1)
22 ĝ1, (28)

where the DtN operators T̂
(1)
ij , i, j = 1, 2 are given by

(T̂
(1)
11 f̂1)(x1) = −

∑
n∈Z

eiαnx1

D
(n)
1

f̂
(n)
1

{
−
(
iβ4

nγn − β3
nγ

2
n + iβ2

nγ
3
n − βnγ

4
n

)
+
(
iβ4

nγn + β3
nγ

2
n + iβ2

nγ
3
n + βnγ

4
n

)
e2iβnh̃1

−
(
iβ4

nγn + β3
nγ

2
n + iβ2

nγ
3
nβnγ

4
n

)
e2γnh̃1

+
(
iβ4

nγn − β3
nγ

2
n + iβ2

nγ
3
n − βnγ

4
n

)
e2(iβn+γn)h̃1

}
,

(T̂
(1)
12 ĝ1)(x1) = −

∑
n∈Z

eiαnx1

D
(n)
1

ĝ
(n)
1

{( i

2
µβ4

n + (1− µ)β3
nγn + (2− µ)iβ2

nγ
2
n

− (1− µ)βnγ
3
n +

µ

2
iγ4n

)
+
(
− i

2
µβ4

n + (1− µ)β3
nγn − (2− µ)iβ2

nγ
2
n

− (1− µ)βnγ
3
n − i

2
µγ4n

)
e2iβnh̃1 +

(
− i

2
µβ4

n + (1− µ)β3
nγn

− (2− µ)iβ2
nγ

2
n − (1− µ)βnγ

3
n − i

2
µγ4n

)
e2γnh̃1

+ (4− 4µ)
(
βnγ

3
n − β3

nγn
)
e(iβn+γn)h̃1 +

( i

2
µβ4

n + (1− µ)β3
nγn

+ (2− µ)iβ2
nγ

2
n − (1− µ)βnγ

3
n +

µ

2
iγ4n

)
e2(iβn+γn)h̃1

}
,
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(T̂
(1)
21 f̂1)(x1) = −

∑
n∈Z

eiαnx1

D
(n)
1

f̂
(n)
1

{( i

2
µβ4

n + (1− µ)β3
nγn + (2− µ)iβ2

nγ
2
n

− (1− µ)βnγ
3
n +

i

2
µγ4n

)
+
(
− i

2
µβ4

n + (1− µ)β3
nγn − (2− µ)iβ2

nγ
2
n

− (1− µ)βnγ
3
n − i

2
µγ4n

)
e2iβnh̃1 +

(
− i

2
µβ4

n + (1− µ)β3
nγn

− (2− µ)iβ2
nγ

2
n − (1− µ)βnγ

3
n − i

2
µγ4n

)
e2γnh̃1

+ (4− 4µ)
(
γ3nβn − β3

nγn
)
e(iβn+γn)h̃1 +

( i

2
µβ4

n + (1− µ)β3
nγn

+ (2− µ)iβ2
nγ

2
n − (1− µ)βnγ

3
n +

i

2
µγ4n

)
e2(iβn+γn)h̃1

}
,

and

(T̂
(1)
22 ĝ1)(x1) = −

∑
n∈Z

eiαnx1

D
(n)
1

ĝ
(n)
1

{
−
(
β3
n + iβ2

nγn + βnγ
2
n + iγ3n

)
−
(
β3
n − iβ2

nγn + βnγ
2
n − iγ3n

)
e2iβnh̃1

+
(
β3
n − iβ2

nγn + βnγ
2
n − iγ3n

)
e2γnh̃1

+
(
β3
n + iβ2

nγn + βnγ
2
n + iγ3n

)
e2(iβn+γn)h̃1

}
.

Let (ũ, ∂ν ũ) = (f1, g1) be the Dirichlet data of the total field ũ on Γ1. Utilizing

(28) and noting f1 = f̂1 + ui and g1 = ĝ1 + ∂x2
ui, the TBC for the total field ũ on Γ1

can be formulated as

N1ũ = T̂
(1)
11 f1 + T̂

(1)
12 g1 + p̂1, M1ũ = T̂

(1)
21 f1 + T̂

(1)
22 g1 + p̂2, (29)

where

p̂1(x1) = N1u
i − T̂

(1)
11 u

i − T̂
(1)
12 ∂x2

ui, p̂2(x1) =M1u
i − T̂

(1)
21 u

i − T̂
(1)
22 ∂x2

ui. (30)

The TBC can be similarly deduced on Γ2. Derived from the biharmonic wave
equation in (22), the PML solution ũ exhibits the following analytical expansion in
ΩPML

2 :

ũ(x1, x̃2) =
∑
n∈Z

[
W

(n)
2 e−iβn(x̃2−h2) + V

(n)
2 eiβn(x̃2−h2)

+X
(n)
2 eγn(x̃2−h2) + Y

(n)
2 e−γn(x̃2−h2)

]
eiαnx1 . (31)
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Substituting (31) into the boundary conditions in (22), we obtain a linear system for

the Fourier coefficients W
(n)
2 , V

(n)
2 , X

(n)
2 , and Y

(n)
2 :

W
(n)
2 + V

(n)
2 +X

(n)
2 + Y

(n)
2 = f

(n)
2 ,

− iβnW
(n)
2 + iβnV

(n)
2 + γnX

(n)
2 − γnY

(n)
2 = −g(n)2 ,

W
(n)
2 e−iβnh̃2 + V

(n)
2 eiβnh̃2 +X

(n)
2 eγnh̃2 + Y

(n)
2 e−γnh̃2 = 0,

− iβnW
(n)
2 e−iβnh̃2 + iβnV

(n)
2 eiβnh̃2 + γnX

(n)
2 eγnh̃2 − γnY

(n)
2 e−γnh̃2 = 0,

(32)

where (ũ, ∂ν ũ) = (f2, g2) represent the Dirichlet data of the total field on Γ2 and have
the Fourier series expansions

f2 =
∑
n∈Z

f
(n)
2 eiαnx1 , g2 =

∑
n∈Z

g
(n)
2 eiαnx1 ,

and

h̃2 := φ(h2 − δ2)− h2 =

∫ h2−δ2

0

s(t)dt− h2 = −δ2
(
1 +

iσ0
m+ 1

)
. (33)

Upon solving the linear system (32), we have

W
(n)
2 =

1

D
(n)
2

{
f
(n)
2

[ (
γnβn − iγ2n

)
e2iβnh̃2 − 2βnγne

(iβn+γn)h̃2

+
(
γnβn + iγ2n

)
e2(iβn+γn)h̃2

]
+ g

(n)
2

[
(βn − iγn) e

2iβnh̃2

+ 2iγne
(iβn+γn)h̃2 − (iγn + βn) e

2(iβn+γn)h̃2

]}
,

V
(n)
2 =

1

D
(n)
2

{
f
(n)
2

[(
βnγn + iγ2n

)
+
(
γnβn − iγ2n

)
e2γnh̃2 − 2βnγne

(iβn+γn)h̃2

]
+ g

(n)
2

[
(βn + iγn)− (βn − iγn) e

2γnh̃2 − 2iγne
(iβn+γn)h̃2

]}
,

X
(n)
2 =

1

D
(n)
2

{
f
(n)
2

[(
βnγn − iβ2

n

)
+
(
iβ2

n + βnγn
)
e2iβnh̃2 − 2βnγne

(iβn+γn)h̃2

]
+ g

(n)
2

[
− (βn + iγn)− (βn − iγn) e

2iβnh̃2 + 2βne
(iβn+γn)h̃2

]}
,

Y
(n)
2 =

1

D
(n)
2

{
f
(n)
2

[ (
iβ2

n + βnγn
)
e2γnh̃2 − 2βnγne

(iβn+γn)h̃2
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+
(
βnγn − iβ2

n

)
e2(iβn+γn)h̃2

]
+ g

(n)
2

[
(βn − iγn) e

2γnh̃2

− 2βne
(iβn+γn)h̃2 + (iγn + βn) e

2(iβn+γn)h̃2

]}
,

where the denominator D
(n)
2 is given by

D
(n)
2 = −8βnγne

(iβn+γn)h̃2 +
(
−iβ2

n + iγ2n + 2βnγn
) (

1 + e2(iβn+γn)h̃2
)

+
(
iβ2

n − iγ2n + 2βnγn
) (
e2iβnh̃2 + e2γnh̃2

)
. (34)

By (33), both of the real and imaginary parts of h̃2 are negative. If the thickness
of the layer δ2 is sufficiently large, i.e., −ℜh̃2 = δ2 is sufficiently large, then the

leading term in (34) is the one containing e2iβnh̃2 . Observing |iβ2
n − iγ2n + 2βnγn|2 =

|γn + iβn|4 ̸= 0 for any n ∈ Z, we deduce that the denominator D
(2)
n in non-zero for

sufficiently large δ2.
Substituting (31) into (14), we obtain the TBC for the PML problem on Γ2:

N2ũ = T̂
(2)
11 f2 + T̂

(2)
12 g2, M2ũ = T̂

(2)
21 f2 + T̂

(2)
22 g2, (35)

where the DtN operators T̂
(2)
ij , i, j = 1, 2 are defined as

(T̂
(2)
11 f2)(x1) = −

∑
n∈Z

eiαnx1

D
(2)
n

f
(n)
2

{(
iβ4

nγn − β3
nγ

2
n + iβ2

nγ
3
n − βnγ

4
n

)
−
(
iβ4

nγn + β3
nγ

2
n + iβ2

nγ
3
n + βnγ

4
n

)
e2iβnh̃2

+
(
iβ4

nγn + β3
nγ

2
n + iβ2

nγ
3
n + βnγ

4
n

)
e2γnh̃2

−
(
iβ4

nγn − β3
nγ

2
n + iβ2

nγ
3
n − βnγ

4
n

)
e2(iβn+γn)h̃2

}
,

(T̂
(2)
12 g2)(x1) = −

∑
n∈Z

eiαnx1

D
(2)
n

g
(n)
2

{( i

2
µβ4

n + (1− µ)β3
nγn + (2− µ)iβ2

nγ
2
n

− (1− µ)βnγ
3
n +

µ

2
iγ4n

)
+
(
− i

2
µβ4

n + (1− µ)β3
nγn − (2− µ)iβ2

nγ
2
n

− (1− µ)βnγ
3
n − i

2
µγ4n

)
e2iβnh̃2 +

(
− i

2
µβ4

n + (1− µ)β3
nγn

− (2− µ)iβ2
nγ

2
n − (1− µ)βnγ

3
n − i

2
µγ4n

)
e2γnh̃2

+ (4− 4µ)
(
βnγ

3
n − β3

nγn
)
e(iβn+γn)h̃2 +

( i

2
µβ4

n + (1− µ)β3
nγn

+ (2− µ)iβ2
nγ

2
n − (1− µ)βnγ

3
n +

µ

2
iγ4n

)
e2(iβn+γn)h̃2

}
,
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(T̂
(2)
21 (n)f2)(x1) = −

∑
n∈Z

eiαnx1

D
(2)
n

f
(n)
2

{( i

2
µβ4

n + (1− µ)β3
nγn + (2− µ)iβ2

nγ
2
n

− (1− µ)βnγ
3
n +

i

2
µγ4n

)
+
(
− i

2
µβ4

n + (1− µ)β3
nγn − (2− µ)iβ2

nγ
2
n

− (1− µ)βnγ
3
n − i

2
µγ4n

)
e2iβnh̃2 +

(
− i

2
µβ4

n + (1− µ)β3
nγn

− (2− µ)iβ2
nγ

2
n − (1− µ)βnγ

3
n − i

2
µγ4n

)
e2γnh̃2

+ (4− 4µ)
(
γ3nβn − β3

nγn
)
e(iβn+γn)h̃2 +

( i

2
µβ4

n + (1− µ)β3
nγn

+ (2− µ)iβ2
nγ

2
n − (1− µ)βnγ

3
n +

i

2
µγ4n

)
e2(iβn+γn)h̃2

}
,

and

(T̂
(2)
22 (n)g2)(x1) = −

∑
n∈Z

eiαnx1

D
(2)
n

g
(n)
2

{(
β3
n + iβ2

nγn + βnγ
2
n + iγ3n

)
+
(
β3
n − iβ2

nγn + βnγ
2
n − iγ3n

)
e2iβnh̃2

−
(
β3
n − iβ2

nγn + βnγ
2
n − iγ3n

)
e2γnh̃2

−
(
β3
n + iβ2

nγn + βnγ
2
n + iγ3n

)
e2(iβn+γn)h̃2

}
.

Lemma 5. Assuming that the thickness of the PML layers δk for k = 1, 2 are suf-

ficiently large, the DtN operators T̂
(k)
11 : H3/2(Γk) → H−3/2(Γk), T̂

(k)
12 : H1/2(Γk) →

H−3/2(Γk), T̂
(k)
21 : H3/2(Γk) → H−1/2(Γk), and T̂

(k)
22 : H1/2(Γk) → H−1/2(Γk) are

bounded.

Proof. It is sufficient to present the results for the DtN operators on Γ1, as the
corresponding outcomes can be similarly established for the DtN operators on Γ2.

As demonstrated in the derivation of the TBC on Γ1, when the thickness of the

PML region is sufficiently large, the term containing e2γnh̃1 is dominant in both the
denominator and the numerator. Noting (16), i.e., βn ∼ αn and γn ∼ αn as n → ∞,
we assert that for any function f ∈ H3/2(Γ1)

∥T̂ (1)
11 f∥2H−3/2(Γ1)

≲
∑
n∈Z

(1 + α2
n)

−3/2

∣∣∣∣∣ f (n)D
(n)
1

(
iβ4

nγn + β3
nγ

2
n + iβ2

nγ
3
n + βnγ

4
n

)
e2γnh̃1

∣∣∣∣∣
2

≲
∑
n∈Z

(1 + α2
n)

−3/2

∣∣∣∣∣
(
iβ4

nγn + β3
nγ

2
n + iβ2

nγ
3
n + βnγ

4
n

)
e2γnh̃1

(iβ2
n − iγ2n + 2βnγn) e2γnh̃1

∣∣∣∣∣
2

|f (n)|2

≲
∑
n∈Z

(1 + α2
n)

3/2|f (n)|2 = ∥f∥2H3/2(Γ1)
,
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and

∥T̂ (1)
21 f∥2H−1/2(Γ1)

≲
∑
n∈Z

(1 + α2
n)

−1/2

×

∣∣∣∣∣ f (n)D
(n)
1

(
− i

2
µβ4

n + (1− µ)β3
nγn − (2− µ)iβ2

nγ
2
n − (1− µ)βnγ

3
n − i

2
µγ4n

)
e2γnh̃1

∣∣∣∣∣
2

≲
∑
n∈Z

(1 + α2
n)

−1/2

×

∣∣∣∣∣− i
2µβ

4
n + (1− µ)β3

nγn − (2− µ)iβ2
nγ

2
n − (1− µ)βnγ

3
n − i

2µγ
4
n

iβ2
n − iγ2n + 2βnγn

∣∣∣∣∣
2

|f (n)|2

≲
∑
n∈Z

(1 + α2
n)

3/2|f (n)|2 = ∥f∥2H3/2(Γ1)
.

Similarly, we have that for any function f ∈ H1/2(Γ1)

∥T̂ (1)
12 f∥2H−3/2(Γ1)

≲
∑
n∈Z

(1 + α2
n)

−3/2

×

∣∣∣∣∣ f (n)D
(n)
1

(
− i

2
µβ4

n + (1− µ)β3
nγn − (2− µ)iβ2

nγ
2
n − (1− µ)βnγ

3
n − i

2
µγ4n

)
e2γnh̃1

∣∣∣∣∣
2

≲
∑
n∈Z

(1 + α2
n)

−3/2

×

∣∣∣∣∣− i
2µβ

4
n + (1− µ)β3

nγn − (2− µ)iβ2
nγ

2
n − (1− µ)βnγ

3
n − i

2µγ
4
n

iβ2
n − iγ2n + 2βnγn

∣∣∣∣∣
2

|f (n)|2

≲
∑
n∈Z

(1 + α2
n)

1/2|f (n)|2 = ∥f∥2H1/2(Γ1)
,

and

∥T̂ (1)
22 f∥2H−1/2(Γ1)

≲
∑
n∈Z

(1 + α2
n)

−1/2

∣∣∣∣∣ f (n)D
(n)
1

(
β3
n − iβ2

nγn + βnγ
2
n − iγ3n

)
e2γnh̃1

∣∣∣∣∣
2

≲
∑
n∈Z

(1 + α2
n)

−1/2

∣∣∣∣∣
(
β3
n − iβ2

nγn + βnγ
2
n − iγ3n

)
e2γnh̃1

(iβ2
n − iγ2n + 2βnγn) e2γnh̃1

∣∣∣∣∣
2

|f (n)|2

≲
∑
n∈Z

(1 + α2
n)

1/2|f (n)|2 = ∥f∥2H1/2(Γ1)
,

which complete the proof.

The following lemma addresses the error estimates of the DtN operators between
the PML problem and the original scattering problem.
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Lemma 6. Let

∆− = min
n∈Z

{ℜ(βn) > 0} , ∆+ = min
n∈Z

{ℑ(βn) > 0} .

For k = 1, 2, if the thickness of the PML region δk is sufficiently large, then the
following estimates hold for any f ∈ H3/2(Γk):

∥(T̂ (k)
11 − T

(k)
11 )f∥H−3/2(Γk) ≲ Θ∥f∥H3/2(Γk),

∥(T̂ (k)
21 − T

(k)
21 )f∥H−1/2(Γk) ≲ Θ∥f∥H3/2(Γk),

and the following estimates hold for any f ∈ H1/2(Γk):

∥(T̂ (k)
12 − T

(k)
12 )f∥H−3/2(Γk) ≲ Θ∥f∥H1/2(Γk),

∥(T̂ (k)
22 − T

(k)
22 )f∥H−1/2(Γk) ≲ Θ∥f∥H1/2(Γk),

where
Θ = max

{
e−

2δkσ0
m+1 ∆−

, e−2δk(κ
2+α2)1/2 , e−2δk∆

+
}
. (36)

Proof. Given the similarity in proof, we only present the details of the error estimate

between T̂
(1)
11 and T

(1)
11 , with the understanding that the results for the other operators

can be obtained in the same manner.
It follows from (28) and (8) that

(T
(1)
11 − T̂

(1)
11 )f =

∑
n∈Z

eiαnx

D
(n)
1

f
(n)
1

{(
−2iβ4

nγn + 4β3
nγ

2
n + 2iβ2

nγ
3
n

)
+
(
2iβ4

nγn + 2β3
nγ

2
n + 2iβ2

nγ
3
n + 2βnγ

4
n

)
e2iβnh̃1 −

(
8iβ2

nγ
3
n + β3

nγ
2
n

)
e(iβn+γn)h̃1

+
(
2β3

nγ
2
n + 4iβ2

nγ
3
n − 2βnγ

4
n

)
e2(iβn+γn)h̃1

}
.

When δ1 is sufficiently large, the dominant term in the denominator is the one involv-

ing e2γnh̃1 , which has a coefficient of iβ2
n − iγ2n + 2βnγn. The dominant terms in the

numerator are either the constant term or the one that contains e2(iβn+γn)h̃1 . By the
choice of PML parameters given in (26), a straightforward calculation yields

2γhh̃1 = 2δ1

(
1 +

iσ0
m+ 1

)
(κ2 + α2

n)
1/2 = 2δ1(κ

2 + α2
n)

1/2 +
2iδ1σ0
m+ 1

(κ2 + α2
n)

1/2,
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and

2iβnh̃1 =



2iδ1

(
1 +

iσ0
m+ 1

)
(κ2 − α2

n)
1/2

= − 2δ1σ0
m+ 1

(κ2 − α2
n)

1/2 + 2iδ1(κ
2 − α2

n)
1/2 if |αn| < κ,

− 2δ1

(
1 +

iσ0
m+ 1

)
(α2

n − κ2)1/2

= −2δ1(α
2
n − κ2)1/2 − 2iδ1σ0

m+ 1
(α2

n − κ2)1/2 if |αn| > κ.

Then we obtain

∥(T (1)
11 − T̂

(1)
11 )f∥2H−3/2(Γ1)

≲
∑
n∈Z

(1 + α2
n)

−3/2

(∣∣∣∣−2iβ4
nγn + 4β3

nγ
2
n + 2iβ2

nγ
3
n

(iβ2
n − iγ2n + 2βnγn) e2γnh̃1

∣∣∣∣2

+

∣∣∣∣
(
2β3

nγ
2
n + 4iβ2

nγ
3
n − 2βnγ

4
n

)
e2(iβn+γn)h̃1

(iβ2
n − iγ2n + 2βnγn) e2γnh̃1

∣∣∣∣2
)
|f (n)1 |2

≲
∑
n∈Z

(1 + α2
n)

3/2
(
e−4δ1(κ

2+α2
n)

1/2

+ e−
4δ1σ0
m+1 |κ2−α2

n|
1/2

+ e−4δ1|α2
n−κ2|1/2

)
|f (n)1 |2

≲ Θ∥f∥H3/2(Γ1),

which completes the proof.

It is evident from Lemma 6 that the DtN operators of the PML problem exhibit
exponential convergence in the operator norm to the DtN operators of the original
scattering problem. This convergence is a crucial factor contributing to the exponen-
tial convergence of the PML solution towards the solution of the original scattering
problem.

5.3 Convergence analysis

By employing the TBCs for the PML problem as given in (29) and (35), the PML
problem (22) can be reformulated equivalently in the domain Ω:

∆2uPML − κ4uPML = 0 in Ω,

uPML = 0, ∂νu
PML = 0 on Γc,

N1u
PML = T̂

(1)
11 f1 + T̂

(1)
12 g1 + p̂1 on Γ1,

M1u
PML = T̂

(1)
21 f1 + T̂

(1)
22 g1 + p̂2 on Γ1,

N2u
PML = T̂

(2)
11 f2 + T̂

(2)
12 g2 on Γ2,

M2u
PML = T̂

(2)
21 f2 + T̂

(2)
22 g2 on Γ2,

(37)
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where p̂1 and p̂2 are given in (30), (fk, gk) represent the Dirichlet data of the total
field uPML on Γk for k = 1, 2.

The variational problem of (37) is to find uPML ∈ H2
qp,Γc

(Ω) such that

aPML(uPML, v) =

∫
Γ1

(p̂1v̄ + p̂2∂ν v̄) ds ∀ v ∈ H2
qp,Γc

(Ω), (38)

where the sesquilinear form aPML(u, v) : H2
qp,Γc

(Ω)×H2
qp,Γc

(Ω) → C is defined as

aPML(u, v) =

∫
Ω

[
µ∆u∆v̄ + (1− µ)

2∑
i,j=1

∂2u

∂xi∂xj

∂2v̄

∂xi∂xj
− κ4uv̄

]
dx

−
2∑

k=1

∫
Γk

(T̂(k)u) · vds. (39)

with u,v, and T̂(k) given by

u =

[
u
∂νu

]
, v =

[
v
∂νv

]
, T̂(k) =

[
T̂

(k)
11 T̂

(k)
12

T̂
(k)
21 T̂

(k)
22

]
.

Theorem 2. Assuming that the thickness of the PML regions is sufficiently large, the
variational problem (38) has a unique weak solution uPML ∈ H2

qp,Γc
(Ω) except for a

discrete set of wavenumbers κ. Moreover, the solution satisfies the error estimate

∥u− uPML∥H2(Ω) ≲ Θ∥ui∥H2(Ω), (40)

where ui is the incident field and u is the solution of the variational problem (19).

Proof. First, we demonstrate that the sesquilinear form (39) satisfies the G̊arding
inequality. It follows from Lemmas 3, 4, 5–6 and the trace theorem that

ℜaPML(u, u) = ℜa(u, u) + ℜ

{
2∑

k=1

∫
Γk

(
(T(k) − T̂(k))u

)
· uds

}
≥ c1∥u∥2H2(Ω) − c2∥u∥2H1(Ω) −Θ

(
c3∥u∥2H3/2(Γ1∪Γ2)

+ c4∥u∥2H1/2(Γ1∪Γ2)

)
≥ c1∥u∥2H2(Ω) − c2∥u∥2H1(Ω) − c5Θ∥u∥2H2(Ω).

Given the exponential decay of Θ concerning δk, we can choose δk to be sufficiently
large to ensure c1 − c5Θ > 0. For all but a possibly discrete set of wavenumbers κ, it
follows from the Fredholm alternative theorem that the variational problem is well-
posed. Consequently, there is a positive constant γ for which the subsequent inf-sup
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condition is satisfied:

sup
0̸=v∈H2

qp,Γc
(Ω)

|aPML(u, v)|
∥v∥H2(Ω)

≥ γ∥u∥H2(Ω) ∀u ∈ H2
qp,Γc

(Ω).

Moreover, the PML solution uPML satisfies the stability estimate

∥uPML∥H2(Ω) ≲ ∥uinc∥H2(Ω). (41)

It remains to prove the error estimate (40). Denote by e = uPML − u the error
between the PML solution and the solution to the original scattering problem. Upon
a straightforward calculation, we obtain∫

Γ1

((p̂1 − p1) v̄ + (p̂2 − p2) ∂ν v̄) ds

= aPML(uPML, v)− a(u, v)

= a(e, v) +

2∑
k=1

∫
Γk

(
(T(k) − T̂(k))uPML

)
· vds,

where uPML = [uPML, ∂νu
PML]⊤. Hence we have

aPML(e, v) = −
2∑

k=1

∫
Γk

(
(T(k) − T̂(k))uPML

)
· vds−

∫
Γ1

(
(T(1) − T̂(1))ui

)
· vds,

where ui = [ui, ∂νu
i]⊤. By utilizing the continuity of the sesquilinear form (20), the

stability estimate (41), and Lemma 6, we obtain

∥e∥H2(Ω) ≲ sup
0̸=v∈H2

qp,Γc
(Ω)

|aPML(e, v)|
∥v∥H2(Ω)

≲ Θ
(
∥uPML∥H2(Ω) + ∥ui∥H2(Ω)

)
≲ Θ∥ui∥H2(Ω),

which completes the proof.

It is apparent from Theorem 2 and the definition of Θ in (36) that as the thickness
of the PML regions increases, the PML solution uPML exhibits exponential convergence
towards the solution of the original scattering problem u.

6 Conclusion

In this paper, we have investigated the scattering of flexural waves by a one-
dimensional periodic array of cavities embedded in an infinite elastic thin plate.
The problem is formulated using the biharmonic wave equation in an unbounded
domain. Initially, TBCs are introduced to reduce the scattering problem into a
bounded domain, and the well-posedness of the associated variational problem is exam-
ined. Subsequently, the PML method is employed to transform the problem from an
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unbounded domain to a bounded one. The corresponding TBCs are derived, and the
well-posedness of the PML problem is established. Notably, exponential convergence is
achieved between the PML solution and the solution to the original scattering problem.

This work is centered on formulating and analyzing the biharmonic wave scat-
tering problem in one-dimensional periodic structures. Currently, we are developing
numerical methods, including the finite element method, to solve the PML problem.
The progress and results of this ongoing development will be detailed in a forthcoming
publication.
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