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1. Algebraic local cohomology.

All rings are assumed commutative and noetherian.

S : a ring; M(S): category of S-modules.

Σ ⊂ Spec S : specialization-stable, i.e. p′ ⊃ p ∈ Σ =⇒ p′ ∈ Σ.

U: the topology on S for which finite products of members of Σ form a
basis of neighborhoods of 0.

(Any topology on S for which addition and multiplication are continuous and the

square of an open ideal is open arises in this way, with Σ:= {all open primes}.)

Γ = ΓU: left-exact torsion subfunctor of 1M(S)

ΓM = { x ∈ M | for some open ideal J, Jx = 0 }.

D(S): derived category of S .

RΓ: D(S)→ D(S): right-derived Γ⇒ local (hyper)cohomology.
Deriving the inclusion Γ ↪→ 1, get functorial

ιU : RΓ→ 1
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Local cohomology and derived tensor product

⊗
=

= ⊗
=S denotes left-derived tensor product.

Proposition

There is a natural D(S)-map

RHom•S(G ,E )⊗
=
RΓG → RΓE

(
G ,E ∈ D(S)

)
.

For G = S this gives a functorial isomorphism

E ⊗
=
RΓS −→∼ RΓE .

Proof.

For the first assertion, can take G and E to be injective complexes, and
drop the Rs to get a simple statement about ordinary complexes.

The second follows, by Neeman, from the (not quite trivial) fact that
RΓ commutes with direct sums. Q.E.D.
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“Trivial” Local Duality

ϕ : R → S : ring homomorphism ((S ,U) as before.)

ϕ∗ : D(S)→ D(R): restriction-of-scalars functor.

RHom•ϕ(E ,F ) : D(S)op ×D(R)→ D(S): given by Hom•R(E , IF ) for
S-complexes E , R-complexes F and IF an injective resolution of F .

∃ natural identification

ϕ∗RHom
•
ϕ(E , F ) = RHom•R(ϕ∗E , F )

(
E ∈ D(S), F ∈ D(R)

)
.

∃ natural isomorphisms:

RHom•ϕ(RΓE ,F ) −→∼ RHom•ϕ(E ⊗
= S RΓS ,F )

−→∼ RHom•S(E ,RHom•ϕ(RΓS ,F )) =: RHom•S(E , ϕ#F )

Apply the functor H0ϕ∗ to get the local duality isomorphism

HomD(R)(ϕ∗RΓE ,F ) −→∼ HomD(S)(E , ϕ#F ),

an adjunction between the functors ϕ∗RΓ and ϕ#.
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“Nontrivial” Local Duality

“Nontrivial” versions of Duality convey more information about ϕ#.

Example

Suppose S J-adically topologized (J an S-ideal), module-finite over R.

Ŝ := J-adic completion of S .

F ∈ D(R) such that Hn(F ) finitely generated ∀n and 0 for n� 0.

Then:

ϕ#F := RHom•ϕ(RΓJ S ,F ) −→∼ RHom•S
(
RΓJ S ,RHom•ϕ(S ,F )

)
−→∼ RHom•ϕ(S ,F )⊗S Ŝ .

where the last isomorphism comes from Greenlees-May duality.
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Example (Ct’d)

For S = R, assumed local, J := maximal ideal m, and ϕ = id, get

id#F = F ⊗R R̂ .

If D is a normalized dualizing complex then ∃ natural isomorphisms,
with E ∈ D(R) and I an R-injective hull of R/m,

RHom•R(RΓmE ,D) ∼= RHom•R(RΓmE ,RΓmD) ∼= RHom•R(RΓmE , I )

The above “trivial” isomorphism

RHom•R(RΓmE ,D) −→∼ RHom•R(E , id#D)

gives then a nontrivial natural isomorphism

RHom•R(RΓmE, I ) −→∼ RHom•R(E , D ⊗R R̂ ).

When E ∈ Dc(R) has finitely-generated homology this is just
classical local duality, modulo Matlis dualization.
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Example (Concluded)

For a more familiar form, apply homology H−i to get the duality
isomorphism

HomR(Hi
mE , I) −→∼ Ext−iR (E ,F ⊗R R̂ ). (1)

If R is Cohen-Macaulay, then there is a derived-category isomorphism
F ∼= ω[d ] where ω := H−dF (a canonical module of R); and (1) becomes

HomR(Hi
mE , I) −→∼ Extd−iR (E , ω̂).

Joseph Lipman (Purdue University) Duality, Residues, Fundamental class May22, 2011 8 / 26



“Nontrivial” Local Duality (Ct’d)

Example

S = R[[t1, . . . , tm]], topologized by J := (t1, . . . , tm)S ; ϕ : R → S obvious.

ΩS/R : the universal finite relative differential module.

d : S → ΩS/R : the universal R-derivation.

ΩS/R is free over S , with basis (dt1, . . . , dtm).

Ωm
S/R := Λm

S ΩS/R , free with basis dt1 ∧ · · · ∧ dtm.

Using the standard calculation of local homology via the Čech complex
defined by (t1, . . . , tm), one finds that if the homology modules of
F ∈ D(R) are all finitely-generated then there is an isomorphism

ϕ#F ∼= F ⊗R Ωm
S/R [m].

In fact, ∃ a canonical such isomorphism, depending only on the topology
of the R-algebra S .
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Example

Let E be an S-module. Recall the trivial duality isomorphism

HomD(R)(ϕ∗RΓJE ,R ) −→∼ HomD(S)(E , ϕ#R ),

or equivalently, via the preceding ϕ#R ∼= Ωm
S/R [m],

HomD(R)(ϕ∗RΓJE ,R[−m]) −→∼ HomS(E ,Ωm
S/R).

J being m-generated, the Čech calculation gives H i
JE = 0 ∀i > m, whence

HomD(R)(ϕ∗RΓJE ,R[−m]) ∼= HomR(Hm
J E ,R).

Thus we have a functorial isomorphism,

HomR(Hm
J E ,R) −→∼ HomS(E ,Ωm

S/R),

making the identity map of Ωm
S/R correspond to a canonical residue map

resS/R : Hm
J Ωm

S/R → R.

And hence:

Theorem (Canonical local duality)

The functor HomR(Hm
J E ,R) of S-modules E is represented by

the pair (Ω̂m, resS/R).
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Concrete residues

Write Ωm for Ωm
S/R . The Čech complex is a lim−→ of Koszul complexes, hence ∃ iso

Hm
J Ωm ∼= lim

i
−→ Ωm/(t i1, . . . , t

i
m)Ωm

with maps in the direct system coming from multiplication by t1t2 · · · tm.

So can specify any element of Hm
J Ω̂m by a symbol (non-unique) of the form[

ν
tn1
1 , . . . , t

nm
m

]
:= κn1,...,nmπn1,...,nmν

for suitable ν ∈ Ω̂m and positive integers n1, . . . , nm, with π and κ the natural maps

πn1,...,nm : Ω̂m � Ωm/(tn1
1 , . . . , t

nm
m )Ωm,

κn1,...,nm : Ωm/(tn1
1 , . . . , t

nm
m )Ωm → Hm

J Ω̂m.

Then,

resS/R

[∑
ri1,...,imt i11 · · · t imm dt1 · · · dtm

tn1
1 , . . . , t

nm
m

]
= rn1−1,...,nm−1 .

Since it depends on choices, this formula is not a proper definition, but rather a

consequence thereof.
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3. Residue Theorem

The motivating result underlying this talk is the next theorem,
stated here for smooth varieties, but extendable to singular varieties
with Kunz’s regular differential m-forms in place of the usual ones.

(See Astérique 117, 1984.)

The theorem shows how differentials and residues give
a canonical realization of, and compatibility between,
local and global duality.
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Theorem

(i) (Globalization of residues) For each proper smooth m-dimensional variety V
over a perfect field k, with ωV the coherent sheaf of differential m-forms
relative to k, there exists a unique k-linear map∫

V
: Hm(V , ωV )→ k

such that for each closed point v ∈ V , γv : Hm
v (ωV,v )→ Hm(V , ωV/k) being the

map derived from the inclusion of the functor of sections supported at v into the
functor of all sections, the following diagram commutes:

Hm
v (ωV,v ) Hm(V , ωV )

k

γv

resv
∫
V

(ii) (Canonical global duality). The pair (ωV ,
∫
V

) is dualizing, i.e., for each
coherent OV -module E , the natural composition

HomOV
(E, ωV )→ Homk(Hm(V ,E ),Hm(V , ωV ))

via
R
V−−−−→ Homk(Hm(V ,E ), k)

is an isomorphism.

Remark. Part (i) can be reformulated as the sum over all v of the residues of

some global object is 0. When m = 1, that object is any meromorphic differential.
Joseph Lipman (Purdue University) Duality, Residues, Fundamental class May22, 2011 13 / 26



Explanation of what follows

The proof of this Residue Theorem in Asterique 117 is quite roundabout,
especially when V is not projective.
Likewise for a generalization to certain maps of noetherian schemes given by
Hübl and Sastry in Amer. J. Math. 115 (1993).

My dream, largely but not entirely realized, is

(A): To generalize to more-or-less arbitrary proper maps of formal schemes.

(B): To find a direct definition of integrals, and an a priori connection between
residues and integrals from which the generalized theorem can be deduced.

The strategy is based on a formalization of duality—outlined in the rest of
this talk—which applies not only to complete local rings but also to their
globalizations, i.e., formal schemes. It is this possibility of dealing simultaneously
with local and global situations that makes it desirable to work with formal,
rather than just ordinary, schemes.

That will be as far as the talk goes. But within this formal framework, one can
concoct a map which in the local situation is the residue map and in the global
situation is the integral; and from this the general theorem “should” result.
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Monoidal categories

(Symmetric) monoidal category (D,⊗,O):
• D a category,
• ⊗ : D×D→ D a functor (product)
• O a ⊗-unit (up to isomorphism): ∀E ∈ D, O ⊗ E ∼= E ⊗O ∼= E .

Product must be associative and commutative, up to isomorphism;
and the associativity, commutativity, and unit isomorphisms must interact
in natural ways.

Monoidal functor: ξ∗ : (D1,⊗1,O1)→ (D2,⊗2,O2) is a functor
ξ∗ : D1 → D2 together with two maps (the first functorial)

ξ∗E ⊗2 ξ∗F → ξ∗(E ⊗1 F ), O2 → ξ∗O1

compatible, in a natural sense, with the respective monoidal structures.
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Closed categories

Closed category: Monoidal category together with a functor (internal hom)

[−,−] : Dop ×D→ D

and a trifunctorial isomorphism (adjoint associativity)

HomD(E ⊗ F, G ) −→∼ HomD(E, [F,G ]).
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Examples of closed categories

Example (Modules over rings.)

R a ring, DR the category of R-modules, ⊗ the usual tensor product,
O := R, [E,F ] := HomR(E ,F ).

For any ring-homomorphism ξ : R → S , the restriction-of-scalars functor
ξ∗ : DS → DR is monoidal.

Example (Derived categories over ringed spaces.)

(X ,OX ) a ringed space. i.e., X is a topological space with a sheaf OX

of commutative rings.
DX the derived category of OX -modules, ⊗ the derived tensor product,
O := OX , [E,F ] := RHomX (E ,F ).

For any ringed-space map ξ : X → Y (continuous map, plus OX → ξ∗OY ),
the derived direct-image functor Rξ∗ : DS → DR is monoidal.
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Idempotent pairs in a monoidal category D

An idempotent pair (A, α) in D consists of an object A and a map
α : A→ O such that the two composite maps

A⊗ A
1⊗α−−−→ A⊗O −→∼ A, A⊗ A

α⊗1−−−→ O ⊗ A −→∼ A

are equal isomorphisms.

A map of idempotent pairs λ : (B, β)→ (A, α) is a D-morphism
λ : B → A making the following commute:

B A

O

λ

β α

B 4 A means that for some β and α there exists a map—necessarily
unique—of idempotent pairs (B, β)→ (A, α), a condition that is
independent of the choice of β and α.
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Examples of idempotent pairs

Example (Not quite trivial.)

D together with the identity map of O is an idempotent pair.

Example

Let S be a ring with a topology U, and let ιU(S) : RΓUS → S as before.
The pair

(
RΓUS , ιU(S)

)
is idempotent. (Needs proof)

One shows that this process gives a bijection

{topologies on S}↔{isomorphism classes of idempotent pairs in D(S)}.

If ψ : S → T is a ring-homomorphism, then (one checks) the derived
extension-of-scalars functor ψ∗ : D(R)→ D(S) takes idempotent pairs in
D(R) to idempotent pairs in D(S). Moreover,

For topologies U on S and V on T, ψ continuous ⇔ RΓVT 4 ψ∗RΓUS .

So, idempotents give a category-theoretic substitute for topologies.
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Torsion objects

Let (A, α) be an idempotent pair in D.
An (A, α)-torsion object E ∈ D is one such that the composition

E ⊗ A
1⊗α−−−→ E ⊗O −→∼ E

is an isomorphism.

These are the objects of a full subcategory DA ⊂ D, actually the essential
image of the functor −⊗ A (so DA doesn’t depend on the choice of α).

Example

For a topological ring (S ,U), with D := D(S) and A := RΓUS , it turns out
that the torsion objects are those S-complexes E such that each element
in each H i (E ) is annihilated by some open ideal.
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5. Formal foundations—duality setups

Given a category C, assign—

1. To each object X ∈ C a closed category DX , with unit object OX ,
together with a DX -idempotent pair (AX , αX ) in DX .

Notation: DAX
:= (DX)AX

, see above.

2. To each C-map ψ : X → Y a functor ψ∗ : DX → DY with monoidal
structure given by

e = eψ : ψ∗E ⊗ ψ∗E ′→ ψ∗(E ⊗ E ′)
(
E ,E ′ ∈ DX

)
νψ : OY→ ψ∗OX ,

such that:

If X = Y and ψ is the identity map then ψ∗ is the identity functor.

ψ∗ has a left adjoint ψ∗ such that the map µψ : ψ∗OY → OX

corresponding to νψ is an isomorphism, and such that
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for all F , G ∈ DY , the map corresponding to the natural composition

F ⊗ G → ψ∗ψ
∗F ⊗ ψ∗ψ∗G

e−→ ψ∗(ψ
∗F ⊗ ψ∗G )

is an isomorphism

d = dψ : ψ∗(F ⊗ G ) −→∼ ψ∗F ⊗ ψ∗G .

(Continuity) AX 4 ψ∗AY .

For all E ∈ DX and F ∈ DY the composite projection map

p1 : ψ∗E ⊗ F
natural−−−−→ ψ∗E ⊗ ψ∗ψ∗F

e−−→ ψ∗(E ⊗ ψ∗F )

is an isomorphism.

The functor ψ∗(−⊗ AX ) : DX → DY has a right adjoint ψ#.

So there is an abstract local duality isomorphism

HomDY
(ψ∗(E⊗AX ), F ) −→∼ HomDX

(E, ψ#F ) (E ∈ DX , F ∈ DY ).
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3. (Monoidal pseudofunctoriality) To each pair of C-maps X
ψ−→ Y

ϕ−→ Z
an isomorphism of monoidal functors

(ϕψ)∗ −→∼ ϕ∗ψ∗ ,

associative (up to isomorphism) vis-à-vis X
ψ−→ Y

ϕ−→ Z
χ−→W ,

and compatible in a natural way with the monoidal structure on the Ds.
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Local and Global examples

Example (Affine example)

C := the category opposite to that of topological rings.

A(S ,U) := D(S).

ψ∗ := restriction of scalars.

ψ∗ := derived extension of scalars.

ψ# := as in discussion of local duality.

Example (Formal schemes)

The affine example can be generalized to formal schemes X , the topology
U being replaced by a set Z ⊂ X closed under specialization, i.e., a union
of closed subsets.
The existence of ψ# is provided by a version of Grothendieck Duality which
holds on formal schemes. [See Contemporary Math. 244 (1999).]
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In conclusion

The “duality setup” formalism is very rich in consequences. It is the
foundation on which duality theory, with “supports,” can be erected.

In particular, it does enable a common definition (not given in this talk)
for local residues and global integrals, that presumably opens the way to
a satisfying proof (yet to be completed) of a general Residue Theorem.
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