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Pseudofunctorial behavior of Cousin complexes
on formal schemes

Joseph Lipman, Suresh Nayak, and Pramathanath Sastry

ABSTRACT. On a suitable category of formal schemes equipped with codimen-
sion functions we construct a canonical pseudofunctor (—)! taking values in
the corresponding categories of Cousin compleres. Cousin complexes on such
a formal scheme X functorially represent derived-category objects F by the
local cohomologies H;Odim(x)f (z € X) together with “residue maps” from
the cohomology at x to that at each immediate specialization of x; this rep-
resentation is faithful when restricted to F which are Cohen-Macaulay (CM),
i.e., HL.F = 0 whenever i # codim(z). Formal schemes provide a framework for
treating local and global duality as aspects of a single theory. One motivation
has been to gain a better understanding of the close relation between local
properties of residues and global variance properties of dualizing complexes
(which are CM). Our construction, depending heavily on local phenomena,
is inspired by, but generalizes and makes more concrete, that of the classical
pseudofunctor (—)A taking values in residual complexes, on which the proof
of Grothendieck’s (global) Duality Theorem in Hartshorne’s “Residues and
Duality” is based. Indeed, it is shown in the following paper by Sastry that
(—)Ij is a good “concrete approximation” to the fundamental duality pseudo-
functor (—)'. The pseudofunctor (—)# takes residual complexes to residual
complexes, so contains a canonical representative of (—)A; and it generalizes
as well several other functorial (but not pseudofunctorial) constructions of
residual complexes which appeared in the 1990s.
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1. Introduction and main results

1.1. Introduction. At the heart of the foundations of Grothendieck Duality
lies the duality pseudofunctor (—)' described in the Preface. As indicated in §0.6,
under suitable hypotheses on the map f: X — Y of noetherian formal schemes,
the functor f*: D (Y) — DS, (X) can be realized in terms of dualizing complezes
on X and Y. Anyway, the study of dualizing complexes has its own importance, for
example as a natural generalization of the oft-appearing notion of dualizing sheaf.
Concrete models for dualizing complexes—the residual complexes—are found in
the category of Cousin complexes. This category, which, among other virtues, is
an abelian subcategory of the usual category of complexes, provides fertile ground
for a concrete pseudofunctorial (or “variance”) theory modeled after that of (—)".

Our purpose here is to develop such a canonical pseudofunctorial construction
of Cousin complexes over a suitably general category of formal schemes. (The no-
tion of “pseudofunctor” is recalled at the beginning of §d) The construction is
motivated by well-known concrete realizations of the duality pseudofunctor (—)',
and indeed, is shown in [24] to provide a “concrete approximation” to (—)".

Before stating the main result (in §L3), we highlight some of its salient features,
and relate it to some results in the literature on Cousin complexes.

First, the underlying category F on which we work is that of morphisms of
noetherian formal schemes with additional mild hypotheses specified below in §C2
In particular F contains many ordinary schemes, which can be regarded as formal
schemes whose structure sheaf (of topological rings) has the discrete topology. Also,
F contains the opposite category of the category € of those local homomorphisms of
complete noetherian local rings which induce a finitely generated extension at the
residue fields. A key advantage of working in a category of formal schemes is that it
offers a framework for treating local and global duality as aspects of a single theory,
see, e.g., [2, §2]. This paper continues efforts to generalize all of Grothendieck’s
duality theory to the context of formal schemes.

Second, while originally inspired by a study of the classical construction in
[Tl Chap. 6] of a pseudofunctor on residual complexes over schemes (see also [5]
Chap. 3]), we work more generally with Cousin complexes, the only restriction
being that the underlying modules be quasi-coherent and torsion. (Over ordinary
schemes the “torsion” condition is vacuous.) The pseudofunctor we construct does
however take residual complexes to residual complexes (Proposition [LZ2). So our
construction generalizes the one in [I1].

Our construction is based on the canonical pseudofunctor of Huang ([13]),
which is defined over €. This pseudofunctor expands readily to one with values
in the category of graded objects underlying Cousin complexes, that is, Cousin
complexes with vanishing differentials. Most of our effort lies in working out what
to do with nontrivial differentials.

Many details are thus already absorbed into the local theory of residues, through
its basic role in Huang’s work. In fact much of what we do in this paper comes
down ultimately to the relation between local operations involving residues and
global operations on Cousin complexes.

Finally, we note that several canonical constructions of residual complexes came
out during the 1990s, see [14], [15], [27], [23] (some of which also use [13]). These
constructions—functorial, but not pseudofunctorial—lead by various methods to
special cases of our result.
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1.2. Terminology and remarks on basic issues. The main theorem of this
paper is stated in JL3 To prepare the way, we first describe various underlying
notions, referring to later sections for precise definitions; and give a preliminary
discussion of some of the basic issues involved.

Consider the category F whose objects are all (in some universe) the noetherian
universally catenary formal schemes admitting a codimension function and whose
morphisms X’ — X are all those formal-scheme maps which are essentially of
pseudo-finite type (§2I0). We will usually work with the refined category F. whose
objects are pairs (X, A) with X in F and A a codimension function on X, and whose
morphisms (X', A") — (X, A) are those F-maps f: X’ — X such that for any 2’ € X’
and z:= f(2'), A(z) — A’(2’) is the transcendence degree of the residue field exten-
sion k(a’)/k(z) (k(z) being the residue field of the local ring Ox ;. . ., see EZZI2).

Let (X,A) € F.. A Cousin complex on (X,A), or a A-Cousin complez on X,
is an Oyx-complex M*® such that for each n € Z, M™ is the direct sum of a family
of Ox-submodules (iyM.)zex, A(z)=n, Where M, is an Ox ,-module and i, M, is
the extension by 0 of the constant sheaf M, on the closure {x} such that for all
nonempty open subsets V of {z}, M, (V) is the O{T}(V)—module M, (see §82). For
such an M*®, and any = € X, i, M, is uniquely determined: i, M, = ZET}MA(I),

where IE?} is the subfunctor of the identity functor taking any Ox-module to its

sheaf of sections supported in {z}. Thus M,, which is (i,M,)(U) for any open
neighborhood U of z, is determined by M* and «, and so we denote it by M*(z).

Let Coza(X) be the full subcategory of the category of Ox-complexes with
objects those A-Cousin Ox-complexes M*® whose underlying graded modules are
quasi-coherent torsion Ox-modules (22, 23). By 231 this last condition on M*
means simply that for any x € X, each element of M*®(z) is annihilated by some
power of the maximal ideal my, of Ox ., or, as we will say, M*(z) is a zero-
dimensional Oy, ,-module. Thus we can, and will, view M*(x) as a zero-dimensional
module over the m,-adic completion (73:,3 The category of such modules will be
denoted by (Oy) .

Let Coz (X) be the full subcategory of Coza (X) with objects those complexes
whose differentials are all zero. For any Oy-module F the natural map

Homo, (F, i, M) — Homo, , (Fo, M)
is easily seen to be bijective (i.e., i, is right-adjoint to the functor F — F,). Hence
[Homoy (iy My, i: M) # 0] = [(i,M,). # 0] = [z € {y}].
Consequently, a morphism ¢: M® — N in Coz) (X) is the same thing as a family
of @-homomorphisms (¢(z): M*(z) = N*(2)),cx. It follows that Coz (X) is
naturally equivalent to the disjoint union of the family of categories ((O.))
(It also follows that the category Coza(X) is abelian.)

The forgetful functor Fgt(X): Coza(X) — Cozi (X) sends a complex to its
underlying graded module, and a map of complexes to itself.

zeX"

EXAMPLE 1.2.1. The scheme X = Spec(Z) is an affine formal scheme with (0) as an
ideal of definition. Every Ox-module is a torsion module. Let A be the codimension
function sending the generic point to 0 and all other points to 1.

The natural surjection Q - Q/Z = @, (Q/Zpz) (with p ranging over the positive
primes, so that pZ ranges over all nonzero prime ideals) may be viewed as a Z-complex
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concentrated in degrees 0 and 1. Application of the sheafification functor ~ produces a
complex in Coza (X)

Q* — @ (Q/Z)".

This is a residual complex, with homology Ox concentrated in degree 0.

Analogous statements hold for any Dedekind domain and its fraction field. For a
generalization to any irreducible regular scheme, with the codimension function which
sends the generic point to 0, see [I1], p. 304, Example].

By a Coz-valued (resp. Cozo-valued) pseudofunctor on F, we shall always mean
a contravariant pseudofunctor (see §l) on the category F. which assigns to any
(X, A) in F, the category Coza(X) (resp. Coz (X)).

We aim to construct a canonical Coz-valued pseudofunctor on F., one which,
when restricted to pseudo-proper maps will be shown in [24] to be right adjoint
to the direct image functor of Cousin complexes, and further, to be a “concrete
approximation” to the basic duality pseudofunctor (—)'. Let us discuss briefly
some of the issues involved.

To begin with, the following examples serve as inspiration for our construction.
These are generalized Cousin versions of well-known concrete realizations of (—)*
on ordinary schemes.

EXAMPLE 1.2.2. Let f: (X, A1) — (Y, A) be an F.-map and M*® € Coza (Y).

(i) If f is smooth, with relative dimension d (a locally constant function, see
222 262), then the complex Ea, RIY(f*M?® ®x wy[d]) is in Coza, (X) (see ZEA
and §5.0)), where:

—FEAa, is the Cousin functor corresponding to the filtration of X induced by A;
(see $32);

—I3 is the subfunctor of the identity functor on Ox-modules associating to any
such module the largest submodule each section of which, over any open set U, is
annihilated by some open Oy-ideal (see §3), and RIY is the right-derived functor
of I¥;

—uwy is the d-th exterior power of the complete differential module of X over Y (see
20 26T Z64); and [d] is the usual translation operator on complexes, where
both instances of “d” should be replaced separately on each connected component
of X by the value of d on that component.

Thus we get a functor Ey: Coza(Y) — Coza,(X). In §5 we expand this func-
tor to a pseudofunctor on smooth maps. This expansion is canonical in that it
involves no choices other than the sign convention fixed in §LAl@) to handle the
relation between ® and translation of complexes. For open immersions f, Ey is
then canonically pseudofunctorially isomorphic to the usual restriction functor f*.

(ii) If f is a closed immersion (|10} p. 442]), the complex f~YHomy(f.Ox, M?*)
is in Coza, (X) (see ELTI).

Thus we get a functor f°: Coza(Y) — Coza,(X). In §6 we canonically expand
this functor to a pseudofunctor on closed immersions. For open-and-closed im-
mersions f, f° is canonically pseudofunctorially isomorphic to the usual restriction
functor f*.
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What we want is to glue these examples together, i.e., to get a Coz-valued
pseudofunctor (—)* on F. whose restriction to smooth maps (resp. closed immer-
sions) is isomorphic to E(_y (resp. (—)”). The result should be canonical, i.e., unique
up to unique isomorphism, as explicated in the Main Theorem in §3

For this we need concrete descriptions of a number of “glueing” isomorphisms
involving E(_ and (—)b, associated to various compositions of smooth maps and
closed immersions. For instance, suppose f and M* are as in [LZ2 and assume
further that f admits factorizations f = hqi; and f = hois where hq, ho are smooth
maps in F. and 41, i3 are closed immersions. (A map g will be called factorizable
if g = hi with h a smooth map in F, and 7 a closed immersion.) Then, at the least,
there has to be a canonical functorial isomorphism i} E;, == i5Ey,,.

Moreover, for a general map ¢ in F., one that is not factorizable, it is not
immediately obvious how to define g, canonically or otherwise. This issue is related
to the previous one in that if one somehow obtains a good definition of f* for
any factorizable f, then for general g one could use local factorizations ([ZZ4) to
canonically define (g|ux)ﬁ for a suitable open cover {Uy} of X, and, having noted
that E¢ for f an open immersion “is” the restriction functor f*, anticipate further
that canonicity would enable pasting the various g‘uA )% together to form a global g*.

Thus the issue of canonicity is basic. One must specify with care all the maps
that go into the construction, and relations between them, and in particular, pay
close attention to signs.

We now briefly describe our construction of (—)f. One can think of a Cousin
complex as comprising two parts, its underlying graded object and its differential;
and accordingly the problem of canonicity is addressed in two stages. We start with
a pseudofunctor (—)% on graded objects only—in other words, (—)? is a Coz"-valued
pseudofunctor on F.. The idea is to use Huang’s work ([I3} Chap.6]) wherein he
constructs a canonical pseudofunctor (—)z which takes values in categories Ry
of zero-dimensional modules over local rings (R, m) in the previously-mentioned
category €, that is, modules such that each element is annihilated by some power
of the maximal ideal m. A map f: X — Y such as 1nprov1des foreachz € X, a
map f in €, namely, the naturally induced map (’)y Flx) = (@ We can therefore
define f* by using Huang’s (— )4, pointwise; and furthermore define (—)% as a
pseudofunctor in a similar manner. (Actually, we will need to impose a subsequently
important sign modification on (—)x, see proof of EE311)

Then we upgrade the pseudofunctor (—)% to a pseudofunctor (—)* at the level
of complexes. This means setting up a canonical differential on every ffM®. For
that purpose we show that in each case, (i) or (ii), of [[ZZZ the complex obtained
in Coza, (X) is, at the graded level, canonically isomorphic to fiM?®. (See §9811
and B2) So we can transfer the differential from E;M® (resp. f°) to foM?* when
f is smooth (resp. a closed immersion). The important step, the one lying at the
heart of this paper, is to show that if f is a factorizable map, then the differen-
tials for fPM® so obtained via different factorizations of f are the same. This is
accomplished in Proposition So we have a canonical differential for fiM®
whenever f is factorizable. As mentioned before, a definition of the differential in
the general case, indeed a canonical one, then follows easily, see 84 Upgrading of
the remaining data of (—)? is straightforward.
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We can summarize as follows. Let us say that a Coz or Coz” functor is canonical
if it satisfies the appropriate analogs of the conditions on pages 319-321 of [I1],
with “finite morphism” replaced by “closed immersion”. (Some of these conditions
spell out what we have said above about pasting the basic examples together; and
the others say that this pasting should be compatible with certain base-change and
residue isomorphisms, as explained in detail in §86 and 7 below.) In addition, the
pseudofunctor should commute with restriction to open subsets. Any two canonical
pseudofunctors are canonically isomorphic. What is accomplished in §§5-7 is, in
essence, showing that the Coz’-valued pseudofunctor derived as above from Huang’s
zero-dimensional pseudofunctor is, modulo some sign modifications, canonical; and
what is done in §8 shows, in essence, that any canonical Coz’-valued pseudofunctor
can be upgraded to a canonical Coz-valued pseudofunctor.

1.3. Outline of construction of (—)*. In more detail, our construction
of (—)* is realized through the steps (A)-(D) below. The main theorem is stated
after (C). Step (D) occupies the bulk of this paper.

(A) We start with the punctual case, i.e., we (temporarily) restrict attention
to the full subcategory Fy; C . with objects those (X, A) such that the underly-
ing space of X is a single point—so that A can be identified with a single integer.
Associating to each such (X, A) the complete local ring Ax := Ox(X) leads to
an antiequivalence from F? to the category of pairs (A4,n) with A € € (see gL
and n € Z, a morphism (A,n) — (B, m) being a €-map A — B of residual tran-
scendence degree n — m. The category Coza(X) is isomorphic to the category of
zero-dimensional Ax-modules. In effect, then, the punctual case is covered by [13],
wherein Huang constructs a canonical covariant pseudofunctor (—)x on € taking
values in zero-dimensional modules.

For our purposes a variant (—)y of Huang’s pseudofunctor (—)4 is more con-
venient. The changes made are just to multiply the comparison isomorphisms
of (=) by a suitable &+ factor, and to reverse the order in which modules appear
in certain tensor products. The description of (—)y begins with the following data,
cf. Example

(i) For any formally smooth €-map ¢: R — S with r:= dimension of S/myS

and t:= residual transcendence degree, and wg/p:= QTS';E, the (r 4+ t)-th
exterior power of the complete module of R-differentials of S, and for any

zero-dimensional R-module M, a specific isomorphism
d)ﬁM AN H:;s(M Rnr wS/R).

(ii) For any surjective €-map ¢: R — S and zero-dimensional R-module M,
a specific isomorphism

¢yM —> Homp(S, M).

The full characterization of (—); in EZ3dl also involves concrete descriptions of some
special comparison maps via the specific isomorphisms in (i) and (ii).

(B) Using (—)y, we construct a Coz’-valued pseudofunctor (—)f on F. as fol-
lows. For any Fe-map (X, A;) N (Y,A) and points z € X, y := f(z) € Y,
the natural induced map of complete local rings f,: Oy, — Ox , (completions
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being along the respective maximal ideals) is in €. For M*® € Coz (Y) the Oy ,-
module M*(y), being a zero-dimensional Oy ,-module, is also naturally an @;—
module, from which we get the zero-dimensional Ox ;-module fw(M'(y)) We now
let f2M® be the unique object in COZOA1 (X) given by

(1) (fAM)(2) = [, (M*(y)  (z€X, y=f(x)).

Then f%is a Coz’-valued functor. Furthermore, pseudofunctoriality of (—)4 induces
a pseudofunctor (—)f in an obvious manner.

(C) The upgrading of the Coz’-valued pseudofunctor (—) to a Coz-valued
one (—)! is carried out over two subcategories of F., namely, the subcategory of
smooth maps and the subcategory of closed immersions. (Dealing with the smooth
subcategory is not at all straightforward, see Proposition lZ1l but dealing with
closed immersions is, see Proposition T2 )

Let us elaborate. Notation remains as in (B), but now M* € Coza(Y).

Suppose f is smooth. Assume f has constant relative dimension d. (This can
be arranged by restricting to connected components if necessary). Then we specify
a natural graded isomorphism (see ([ZG))

(2) th. - EA1RFDé(f*M. Xy wf[d])'

The inputs into the definition of () can be organized into two parts. The first
involves a specific isomorphism (§5.1)), with r = dim(Ox, /My Ox,z), M := M*(y):
(Ba,RIX(f*M® @y wyld]))(z) = Hy, (M ®y (wy)z).

The second involves an isomorphism
iy, (M @y (w7)e) = fogM = (FFM)(@)

given up to a sign by completion and the isomorphism of case (i) in step (A) above.
If f is a closed immersion, then we specify a natural graded isomorphism

(3) fIM® =5 Y Homy(f,Ox, M®).

As with @), the inputs used in defining @) can be organized into two parts, one
consisting of a specific natural isomorphism (with M = M*(y))

(f Y Homy(f.Ox, M®*))(z) == Homoe, , (Ox,z, M)
and the other of an isomorphism
Homo, ,(Ox,o. M) == [, M = (f*M®)(x)

given by completion and the isomorphism of case (ii) in step (A) above.

The graded isomorphisms in @) and (B]) are canonical, so we have a canonical
choice for a differential on f9M® whenever f is a smooth F.-map or a closed immer-
sion, namely the unique one such that @) or @) (as the case may be) underlies an
isomorphism of complexes. (When f is a smooth closed immersion the two possible
differentials coincide, see BZ1l) Thus we have a canonical choice for a Coz-valued
functor f* for all f in either of the two subcategories under consideration.

We are now in a position to state our main result. The notation remains
as in steps (A)—(C) above. Refer to the beginning of § for the notations C#
(for comparison isomorphism) and ¢# (for unit isomorphism) used in the defini-
tion of “pseudofunctor.” Recall that for any (X,A) € F., the forgetful functor
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Fgt o (X): Coza(X) — Coz) (X) operates by forgetting the differential on a Cousin
complex. For convenience, we shall abuse notation and use only the symbol Fgt,
the rest being clear from the context.

MAIN THEOREM. There ezists a unique Coz-valued pseudofunctor (—)¥ on F,
satisfying the following conditions.
(i) The forgetful functor Fgt makes (—)* into the above pseudofunctor (—).
In other words:
(a) For any Fe-morphism f, we have Fgto ff = fioFgt.
(b) For any F.-morphisms f,g such that the composition gf is defined
it holds that, via (a), th(Cfcyg(—)) = C;‘7g(th(_))'
(c) For any (X, A) € F, it holds that, via (a), Fgt (% (—)) = 0% (Fgt(-)).
(i) If the Fe-morphism f: (X, A1) — (Y, A) is smooth (resp. a closed immer-
sion) then for M® € Coza(Y) the differential on f*M® is the unique one
such that the graded isomorphism in @) (resp. @) underlies an isomor-
phism of complezes (see (i)(a)).
(ili) If (X, A) € F, 1y is the identity map of X, and u: U — X is the inclusion
map of an open subset of X, then for any M® € Coza(X), u* M*® is the
restriction to U of the complex lﬂx./\/l'.

Remark. The functor from Ox-modules to Oy-modules given by “restriction
to U,” being left-adjoint to the direct image functor u., can be identified with u*.
When this is done, the condition in (iii) becomes
(iii)’ uf = u*olk.

And then if the functor (—)* is replaced by its normalization (see §), the condition
becomes simply that uf = u*.

The uniqueness part of the theorem is easy to prove. Indeed if (—)* and (—)ﬁ/ are
pseudofunctors satisfying conditions (i) and (ii) of the theorem, then for f,X, Y, M*®
as in (ii) of the theorem, by (i)(a) we have fiM® = fﬁ/./\/l' as graded torsion
modules. It suffices to check locally on X that the differentials on these graded
objects agree, i.e., that for u and 1y as in (iii), u*f*fM® = uw*f¥ M® as complexes.
A straightforward check of definitions shows that the functorial composition

(fu)t == ufft (i)’ u*lgcfﬁ N L
ct . e
is the identity. (In other words, for every M*® and x € U, the composition induces
the identity map of [(fu)*M®](z) = J/“;u(./\/l'(f(:z))) = [u*f*M?*](z).) This can also
be stated via “restriction” as
(flw)f = Pl

The same holds for (—)!'. Hence we can replace f by fu, and so by EZZ4 we may
assume without loss of generality that f factors as f = hi where h is a smooth
Fe-map and i is a closed immersion. By (i), h* = h¥ and i = i¥. By (i)(b) it
follows that ffM® = f¥ M* as complexes too, q.e.d.

Existence, which is the final step of our construction, is the difficult part of the
Theorem. For instance, though we have obtained, in step (C), a definition for f*
over the subcategory of smooth F.-maps, it is not at all obvious that (—)* is a
pseudofunctor on that subcategory. Even the seemingly simple condition (iii) is
not trivial to verify, see Proposition BTl
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(D) First suppose the F.-map f admits a factorization f = hi where h is a
separated smooth F.-map and i is a closed immersion. Then, using step (C) twice,
we get a differential on k%% M®. The graded comparison Cih: RAEMS = fAMS
then induces a differential dj, ; on fiM®. A necessary condition for the existence
of (—)* in the Main Theorem is that this differential on ff*M® not depend on the
choice of factorization f = hi. In other words, if there is another factorization
f = h'i with b’ smooth and ¢’ a closed immersion then one must have dp ; = dp .

In Proposition we prove that this necessary condition holds. The key
inputs are B2 T2 and Since F.-maps all have local factorizations
as above, the canonical nature of our construction makes it fairly easy to patch the
resulting local pseudofunctors together to a global one, see §841

In §9 we discuss residual complexes. We end in §I0 with some results on (—)*
for étale maps and on certain Cohen-Macaulay complexes that we encounter while
constructing (—)* over smooth maps.

1.4. Conventions. We use the following notation and conventions in this pa-
per. The Bourbaki dangerous-bend symbol indicates potential sources of ambiguity
or conflict with some other convention.

(i) Let A be an abelian category. Set

C(A) :=the category of A-complexes,

K (A) :=the corresponding homotopy category,

D(A) :=the corresponding derived category.

The differential d¢. in a complex C* is always understood to increase
degree: d7 maps C" to C"T! for all n € Z.
(ii) Let (X, Ox) be a ringed space, and x € X. Set

A(X) :=the abelian category of Ox-modules,

Aqe(X) (resp. Ac(X), resp. Az(X)) := the full subcategory of A(X)
whose objects are the quasi-coherent (resp. coherent, resp. lim’s of co-
herent) Ox-modules,

&€ ®x JF := the tensor product of the Ox-modules &, F,

E ®, F:= the tensor product of the Ox ,-modules E, F,

C(X):=C(A(X)), K(X):=K(AX)), D(X):=D(AX)).

For any full subcategory A-(X) of A(X), let D»(X) C D(X) be the full
subcategory of D-(X) whose objects are the complexes F* with homology
H™(F*) in A7(X), and DF (X) C D7(X) (resp. D; (X) C D7(X)) the
full subcategory whose objects are the complexes F* € D-(X) such that
H™(F*) vanishes for all m <« 0 (resp. m > 0).

Z (iii) For a formally smooth local homomorphism ¢: (A, m4) — (B, mp) of noe-
therian complete local rings, the usual definition of the relative dimension
of ¢, viz., dim(B/m4B), is inconsistent with the definition in of
relative dimension for the induced formal scheme-map Spf(B) — Spf(A).
The meaning of the term ‘relative dimension’ will therefore depend on
whether the map under consideration is in the category of local rings or
that of formal schemes.

(iv) We adopt the usual sign convention for the differential d in the tensor
product of two complexes A®, B*® (over rings, ringed spaces, etc.), ex-
pressed symbolically by

d'(AP@B"P)=dl @1+ (-1)Pody *.
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(vi)

(vii)

(x)
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By way of convention for how to connect ® = ®x with the translation
functor on complexes, noting that AP*?® BIt7 occurs as a direct summand
in degree p 4 ¢ of both A*[i] ® B*[j] and (A® ® B®)[i + j|, we choose the
unique isomorphism of complexes

0=0": A%fi]®@ B*[j] = (A*@B*)[i+j] (i,j€Z)
such that for any p,q € Z,
0;;](AP*" ® B9%7) = multiplication by (—1)" .

In particular, (@) applies when A® and B® are concentrated in degree 0.
Thus when A and B are Ox-modules, our choice for a natural isomorphism
of complexes Afi] ® B[j] = (A ® B)[i + j] is given in degree —i — j by
(—1)¥ times the identity map of A ® B. (In (iv), take p = —i, ¢ = —j.)
Recall that a d-functor between two triangulated categories D1, Do, with
translation functors T4, T respectively, is a pair (F, ©) consisting of an ad-
ditive functor F': D; — D5 and a natural isomorphism ©: FT; == ToF
such that for any triangle A — B - C' — Ty A in Dy, the correspond-
ing diagram

FALL BN o 22 ypA
is a triangle in Ds. Explicit reference to © is frequently suppressed once
© has been specified.
With notation as in (), for a fixed B®* € C(X) where B® consists of flat
Ox-modules, the functor sending A® to A®* ® B*® induces a functor from
D(X) to itself, thus yielding a d-functor (see (l)) where © is given by the
identity map = 610 from (&). Similarly, if we fix A® as a complex of flat
Ox-modules then the functor sending B® to A®* ® B*®, induces a functor
from D(X) to itself which also upgrades to a d-functor. However in this
case © = 01 is not the identity map.
For a complex F* € C(A) (see (i)), we have (F*[n])! = F*" and we
can identify the submodule of i-cocycles in F*®[n] with that of i + n-
cocycles in F*, and similarly for coboundaries. Accordingly, we make the
identification H*(F*[n]) = H**"(F*) without introducing any signs.
Let A be an abelian category. For an exact sequence of A-complexes

0— A*— B* — (C*—0,

the connecting homomorphism H'C® — H'*'A® is the usual one de-
scribed via “chasing elements.” This connecting map, modulo the identi-
fication H(A®[1]) = H't1A® is (—1) times the map obtained by apply-
ing H* to the derived category map C* — A®[1] in the triangle associated
to the above exact sequence.

For a complex F* we use the following truncation operators

o>pFti= - — 0 — FP — FPTL o PR,
O<pFSi= oo — FPL FP — 0 — 0 —
TopF o= - — 0 — coker P71 — FPTL . FEtZ ...
T<pF®i= o — FPTL ker dP — 0 — 0 —

where d°® is the differential in F*; and 05 p:= 0>pt1, O<pi= 0<pt1, €tc.
These operators induce functors D(A) — D(A).
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2. Preliminaries on formal schemes

In this section we recall and develop some subsequently-needed basic notions
pertaining to formal schemes, their morphisms, and their (sheaves of) modules.
For definitions and properties of formal schemes, see [10, §10]. Unless otherwise
indicated, all formal schemes will be understood to be noetherian.

In 2Tl we define essentially pseudo-finite-type maps of formal schemes, a mild
generalization of the notion of pseudo-finite-type maps treated in [2] and [27]; and
we discuss the behavior of codimension functions. In 22 we discuss quasi-coherent
modules over formal schemes, especially in relation to modules over noetherian
adic rings. In §23 we discuss torsion modules over formal schemes, an important
class which includes arbitrary modules over an ordinary scheme. In 27 we discuss
smooth maps—those which are formally smooth and essentially of pseudo-finite
type. A key property [ZZ4) of essentially pseudo-finite-type maps is that they
factor locally as (smooth)o (closed immersion). In the remaining two subsections
we discuss modules of continuous differentials relative to essentially pseudo-finite-
type maps, first of noetherian adic rings, and then of formal schemes.

2.1. Codimension functions and maps of formal schemes. A topological
ring R is adic if there exists an R-ideal I whose powers form a base of neighbor-
hoods of (0), and if R is complete and Hausdorff. Any such [ is called an ideal of
definition of R (or a defining ideal of R). If (X, Ox) is a formal scheme then there
exists a coherent O-ideal J whose sections over any affine open set U of X form a
defining ideal for the adic ring T'(U, Ox); any such J is called an ideal of definition of
(X, Ox) (or simply of X) (J10} §§10.5, 10.10]). The ringed space (X, Oy /J) is then
a noetherian ordinary scheme, that is, a noetherian formal scheme with discretely
topologized structure sheaf, or equivalently, with (0) as a defining ideal.

The notion in [I0, §10.13] of finite-type maps of formal schemes is not adequate
for our purposes, and instead we consider a slight generalization of the notion in [2]
and |27 of pseudo-finite type maps. A homomorphism f: A — B of noetherian
adic rings is (essentially) of pseudo-finite type if it is continuous and if for one—
hence any—defining ideal b C B the composition A — B — B/b is (essentially) of
finite type, i.e., B/b is (a localization of) a finite-type A-algebra.

A map of not-necessarily-noetherian ordinary schemes fo: X — Y is essentially
of finite type if every y € Y has an affine open neighborhood V' = Spec(A) such
that f; 'V can be covered by finitely many affine open U; = Spec(C;) such that
the corresponding maps A — C; are essentially of finite type. For any morphism of
formal schemes f: (X, Ox) — (Y, Oy), there exist ideals of definition J C Ox and
J C Oy satisfying JOx C J ([I0, 10.6.10]); and correspondingly there is an induced
map of ordinary schemes fo: (X,0x/3) — (Y,0y/3) ([I0, 10.5.6]). We say f is
(essentially) of pseudo-finite type if fo is (essentially) of finite type.

This property of maps is independent of the choice of defining ideals J, J. It be-
haves well with respect to composition and base change: if f: X - Yandg: Y — 2
are formal-scheme maps, and if both f and g are essentially of pseudo-finite type,
then so is the composition gf; and if gf and g are essentially of pseudo-finite type
then so is f; moreover, if f: X — Y is essentially of pseudo-finite type and ¥ — Y
is any map of formal schemes, then X':= Y’ xy X is noetherian and the projection
X' — Y is essentially of pseudo-finite type (cf. proof of EZT.3).
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We don’t know for an arbitrary formal-scheme map U = Spf(B) — V = Spf(A)
that is essentially of pseudo-finite type, whether the corresponding g A — B is
essentially of pseudo-finite type.

A formal scheme (X, Ox) is called (universally) catenary if there exists one
defining ideal J such that the scheme (X, Ox/J) is (universally) catenary. This
implies that for any defining ideal § C Oy the scheme (X, Ox/J) is (universally)
catenary—an easy consequence of the fact that on a formal scheme, for any two
defining ideals J; and Ja there exists an integer n such that I C Js.

A codimension function on the underlying topological space X of a formal
scheme is a function A: X — Z such that A(z') = A(x) + 1 for every immedi-
ate specialization z ~ x’ of points in X[ 1f X admits a codimension function, then
X has to be catenary. When X is connected and noetherian, any two codimension
functions on X differ by a constant.

ExamPLE 2.1.1. If X is catenary and irreducible, then for any integer n there
is a unique codimension function on X assigning n to the generic point. If X is
catenary and biequidimensional (|8, 14.3.3]) then we can assign one fixed integer
to all the closed points of X, and this extends uniquely to a codimension function.

EXAMPLE 2.1.2. Let f: X — Y be a map of formal schemes that is essentially
of pseudo-finite type. If Y is universally catenary then so is X. Furthermore, if Y
admits a codimension function A then the function f*A on X such that

(F1A)(x) = A(y) — tr.deg.yyk(z)  (z€X, yi= f(x))

(where tr.deg.k(y)k(;v) is the transcendence degree of the residue field extension

k(x)/k(y)) is a codimension function on X, as follows from the dimension formula
(B8, 5.6.2]).

In particular, from EZT we see that any formal scheme that is essentially
of pseudo-finite type over a field k admits a codimension function. Furthermore
if f: X — Spec(k) is essentially of pseudo-finite type and if A is the function
on Spec(k) sending the unique point to 0 then f*A(z) = 0 if and only if z is a
closed point of X.

Let F be the category whose objects are the (noetherian) universally catenary
formal schemes admitting a codimension function, and whose morphisms are the
formal-scheme maps which are essentially of pseudo-finite type. Let F. be the cat-
egory whose objects are the pairs (X, A) with X € F and A a codimension function
on X, and whose morphisms (X', A’) — (X,A) are the F-morphisms f: X' — X
such that A’ = f*A. (Note that the formula in behaves well with respect to
compositions in F.) The next Lemma is about fiber products in these categories.
(See [I0, 10.7.3] for the construction of fiber products of formal schemes).

LEmMMA 2.1.3. (a) If f: X — Z, g: Y — Z are F-morphisms and W:= X x 2 Y,
with projections W 2 X, W L Y, then (W, p,q) is an F-fiber product of f and g.

(b) Moreover, if A is a codimension function on Z, then pfiA = ¢igfA =
say) A, and ((W,AX),p,q) is an Fe-fiber product of f: (X, f*A) — (Z,A) and
g: (Y,9*A) — (Z,A).

1A specialization z ~» 2'—i.e., 2’ is in the closure of {z}—is called immediate if z # =’ and
there are no specializations = ~» 2/’ ~ z’ with z # z' # 2/.
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ProoF. Let 7,7, K be defining ideals for X,Y,Z respectively, so that W has
the defining ideal £ := JOw + JOw. If Xo, Yo, 2o, Wy are the schemes obtained
from X,Y,Z, W by going modulo the corresponding defining ideals J, J, K, £, then
Wo = Xo X2, Yo. The natural map Wy — Yo is essentially of finite type, so
the induced map gq: W — Y is essentially of pseudo-finite type. Moreover Wy is
noetherian, hence so is W ([I0, 10.6.4]). Now ZI2 shows that W € F, and the rest
is straightforward. O

2.2. Quasi-coherent modules. We recall some basic facts about modules
over formal schemes (assumed, as always, to be noetherian). Proofs can be found
in |27, §3], or |2 §3].

Let A be a noetherian adic ring and U := Spf(A) the corresponding affine
formal scheme. Let Mod(A) (resp. Mods(A)) denote the category of A-modules
(resp. finitely generated A-modules). For any A-module M, consider the presheaf
that assigns to any open set V, the module I'(V, Oy )®4 M. Let M~4 (or M~ when
there is no cause for confusion) denote the associated sheaf. This defines a functor
~a: Mod(A) — A(U) (see () of gLA).

In fact, if Kk = k4: U — U:= Spec(A) is the canonical map, and M is the sheaf
over Spec(A) corresponding to M, then there is a functorial isomorphism

M~ = K*M.
In other words, M~ represents the functor Hom@U(M ,k+G) of Oy-modules G.
Indeed, an Oy-homomorphism of sheaves M~ — G corresponds naturally to an
Oy-homomorphism of presheaves I'(V, Oy )®@a M — T'(V,G), which is determined

by the single A-homomorphism M — T'(U, G) obtained by taking V = U, and thus,
in view of [I0] p.213, Cor. (1.7.4)], we have natural isomorphisms

Homo, (M, G) 2 Homa(M,T'(U,G)) = Homo,, (M, £.G).

The first of these isomorphisms shows, moreover, that the functor ~ 4 is left-adjoint
to the functor T'(U, —) of Ou-modulesf

ProrosiTION 2.2.1 (27| p.874, Prop.3.2], [2, p.31, Prop.3.1.1]). With the
preceding notation, and ~:= ~4,

(i) The functor ~ is exact and commutes with direct limits.

(ii) For any A-module M, M~ € Az(U) and is quasi-coherent.

(iii) The functor ~ is an equivalence of categories between Mod(A) and Az(U),
with quasi-inverse T'(U, —): Az(U) — Mod(A). These quasi-inverse equiva-
lences restrict to quasi-inverse equivalences between Mods(A) and As(U).

(iv) For any affine open V C U and any A-module M, the natural map is an
isomorphism

T'(V,00) @4 M = T(V,M™).

2These considerations hold for any map of ringed spaces »: X — Spec(A). In that generality,
EZTE) below (with ¢ meaning “lim of finitely-presented”) and EZZZ (with f replaced by s¢) hold;
and if s is flat then so do EEZII(l), remark (a) following EZZTl and What distinguishes
from the horde is EZZI().
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Remarks. (a) We can (and will) identify A~ with Oy; and for any A-ideal T we
can (and will) identify I~ with its natural image in A™, so that I~ will be regarded
as an Oy-ideal. In view of (), we will also identify (A/I)~ with Oy /I™.

(b) If I is a defining ideal of the adic ring A then I"™ is a defining ideal of U.

(¢) For any formal scheme X, (ii) and (iii) in 22Tl imply that Az(X) C Aqc(X),
as it is enough to check this locally. Equality holds if X is an ordinary scheme.

(d) When M is finitely generated, M~ is the same as M in [I0 §10.10], so
the second part of (iii) is identical with loc. cit., Thm. (10.10.2).

(e) Note that (iv) follows from (iii), because with B := I'(V,Oy) we have
(B@a M)~ = M~y

ProPOSITION 2.2.2 (27, p.875, Cor.3.4], or [2 p.32, Cor.3.1.4]). Let X be
a formal scheme and x € X. For any quasi-coherent Ox-module M there exists
an affine open neighborhood W := Spf(A) of x such that the natural map is an
isomorphism T(W, M)~ == M|,

LEMMA 2.2.3. Let U := Spf(A) be an affine formal scheme and let M, N be
A-modules. Set ~:= ~y .

(i) If N is finitely generated then the map ¢ corresponding to the natural
map Homu (N, M) — Home, (N, M™) is an isomorphism

Homy (N, M)~ =5 Homo, (N~,M"™).
(ii) The map corresponding to the natural map
M®aN =M (U)o N~ (U) — (M~ @0, N7)(U)
is an isomorphism
(M®4s N~ = M~ ®0,N™.

(iii) For any A-ideals I,J the Oy-ideals (IJ)~ and I™J™ coincide.
(iv) For any m > 0 the natural map is an isomorphism

(/}M)” =, Z\MN.

PROOF. (i). Let A* — A7 — N — 0 be a presentation of N. In the following
natural commutative diagram

0 —— Homa(N,M)~ ——— Homa(A), M)~ ——— Homa(A,, M)~

% F F
0 ——— Homoy (N~,M~) ——— Homoy (A7, M~) ——— Homo, (A", M")

the rows are exact by BZ2ZJ1(i). Since ~ commutes with direct sums, the functors
Homy and Home, commute with finite direct sums, and since the natural map
Hom 4 (A, M)~ — Homo, (A~, M) is an isomorphism, the two vertical arrows on
the right are isomorphisms, whence so is .

(ii). Proceed as in (i), using a presentation of N; or simply use that with
Q = M or N, one has Q™ = n*(@)
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(iii). Since ~ is exact, and so “commutes with image,” the assertion amounts
to equality of the images of the natural maps p and fi in the following diagram:

(Toad)> — s A

do |

I~ ®Ou JN T Ou

It is clear that the diagram commutes, whence the conclusion.
(iv) The assertion results, upon passage to associated sheaves, from the natural
presheaf isomorphisms (for affine open V C U):

m

L(V,0u) @4 AM =\ (D(V,00) ®a4 M)IZZLIIE ) N (T, M™)).

d

LEMMA 2.2.4. Let V := Spf(B) Jou= Spf(A) be a map of formal schemes.
Then for any A-module M, the map ¢ corresponding to the natural composition

M®sB = T(U,M™)®4 B - T(U, fof*"(M™))®4 B
=TV, [*(M™)) ®a B — T'(V, f*(M™))

is an tsomorphism
(M ©®aB)™ = f*(M™).

PrOOF. Let AT — A7 — M — 0 be a presentation of M. In the following
diagram of natural induced maps, the top row is obtained by applying (—®4 B)~5
to the presentation of M while the bottom row is obtained by applying f*(—"4).

(B e —— (BY)" —— (M@aB)™® —— 0

1 !
frAns —— AN —— M —— 0
The rows are exact, by ZZTI(i). Since ~4, ~p and f* commute with direct sums,
and the natural map (A ®4 B)~2 — f*(A™4) is an isomorphism, the vertical
maps on the left are isomorphisms and hence so is ¢.

Alternatively, since f* is left-adjoint to f. one can extract the assertion from
the sequence of natural isomorphisms (with G € A(V))

Homo, ((M ®4 B)~?,G) = Homp(M ®4 B,T'(V,G))

> Homu (M, T(U, f.G)) = Homoe, (M™, f.G).
O

Following [I7, (1.9.1)], we say that a subcategory A-(X) C A(X) is plump if
it is full and if for every exact sequence My — My — M — M3 — My in A(X)
with M1, Mo, M3 and My in A7 (X), M is in A2(X) too. Then A>(X) is an abelian
subcategory of A(X). Moreover, D-(X) is a triangulated subcategory of D(X).

(However, the natural functor D(A7(X)) — D»(X) need not be an equivalence.)
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PROPOSITION 2.2.5 (|2 p.34, Prop.3.2.2]). For any formal scheme X, the
subcategories Az(X) and Aqc(X) of A(X) are plump.

Let U = Spf(A) be an affine formal scheme and z a point in U. Let p be
the open prime ideal in the adic ring A corresponding to = and let m, denote the
maximal ideal of the local ring Oy ;. Let a be a defining ideal in A and J:= a™4
the corresponding defining ideal in Oy. Recall that Oy, is a direct limit of the
rings Ay for f ¢ p where Agyy is the completion of Ay along ay. In particular
there is a natural map A, — Oy ,. For any open ideal J in A, with J:= J~4,
the natural induced map A,/J, — Ouy,»/ds is an isomorphism. Since any power
of J,J is open, there results a canonical isomorphism (Ap,Jp) == (O, ds) -
In particular, we can associate canonically to z € U the following faithfully flat
inclusions of noetherian local rings

Ap — Oye — B — C,

where B = (Ap, aAp)A% (Ou,m,Jm)Aand C= (Ap,pAp)A% (Ouym,mm)A% (B,mp)

2.3. Torsion modules. Let A be a ring, a an A-ideal. For any A-module M,
let I, M be the submodule consisting of those elements which are annihilated by a
power of a. Note that I; M is naturally isomorphic to lim , Homa(A/a", M). We
say that M is an a-torsion module if I, M = M. If A is a topological ring whose
topology is defined by powers of a then an a-torsion module is referred to simply
as a torston module.

LEMMA 2.3.1. Let A be a noetherian adic ring and M a torsion A-module.
For any multiplicatively closed set S C A let A{S™1'} be the completion of the
localization Ag along a defining A-ideal. Then the natural map is an isomorphism

Mg = M ®4 A{S™'}.

PRrROOF. Let N be a finitely generated submodule of M. Then the torsion
module N is annihilated by some defining ideal, say a, in A. Hence we have the
following isomorphisms

Ng = N®4 As/(a) = N®4 A{S7'}/(a) <& N®4 A{ST'}.

Taking direct limit over all finitely-generated submodules of M gives the result. [

Let (X,Ox) be a ringed space. For any Ox-ideal J and any M € A(X), set
Is M = h_m) Homoy (Ox /I, M).

We regard I as a subfunctor of the identity functor on Ox-modules. As such it is
idempotent and left exact. Since taking direct limits commutes with restriction to
open U C X, therefore (I3 M)[y = Iy, (Mly).

For a formal scheme X with ideal of definition J, we set Iy := I, this definition
being independent of the choice of the defining ideal J. We call M € A(X) a torsion
Ox-module if IYM = M. Thus for any N' € A(X), IyN is the largest torsion
submodule of . Note that A is a torsion Oyx-module if and only if there is an
open cover {U;} of X for which each NV is a torsion Oy,-module.
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LEMMA 2.3.2. Let X be a formal scheme. For any injective A(X)-module L,
INL is a flasque sheaf.

PRrROOF. For any defining ideal J of Oy, I3 L is a direct limit over the noetherian
space X of the flasque sheaves Hom (O /I", L), and so is flasque. O

LEMMA 2.3.3. Let U = Spf(A) be an affine formal scheme, and let M be an
A-module. Let I be an A-ideal and J:= I~ the corresponding Oy -ideal. Then there
s a natural isomorphism

I3 M™ = (I} M)"~,
whose composition with the natural injection j: (I} M)~ — M™ is the inclusion
i: Iy M~ — M~. In particular, M is a torsion A-module <= M~ is a torsion
Oy -module.

PRrROOF. By remark (a) following ZZ1l and by EZZ3(iii), one can identify
(A/I™)~ and Oy /T™. One checks then that the composed isomorphism

1M = lim Homo, (O /", M) = lim Homa (A/1", M)~
= (lim Homux(A/I", M)~ = (I; M)~
oy (. Homa(A/I", M))™ = (I} M)

has the required properties. In particular, 7 is an isomorphism iff j is.

Taking I to be an ideal of definition in A, so that J is an ideal of definition in Oy
(remark (b) following ZZTl), one has that ¢ is an isomorphism iff M™ is a torsion
Oy-module, and by ZZZTI(iii), j is an isomorphism iff M is a torsion A-module. The
last assertion results. (]

For a formal scheme X, Ay(X) denotes the full subcategory of A(X) whose
objects are the torsion modules; and Aqe(X) = Aqe(X) N A(X) (respectively
Act(X) 1= Ac(X) N A(X)) denotes the full subcategory of A(X) whose objects are
the quasi-coherent torsion modules (resp. coherent torsion modules).

If X is an ordinary scheme (i.e., (0) is a defining ideal), then A¢(X) = A(X)
and Aqee(X) = Aqe(X) = Az(X).

PROPOSITION 2.3.4. With the preceding notation:
(i) For any M € Aqc(X), it holds that Iz M € Aget(X).
(ii) The subcategories Ay(X) and Aqet(X) of A(X) are plump, and hence are
abelian categories.
(ill) Aget(X) C Az(X). So if X is affine, say X = Spf(4), and M € Aye(X)
then by ZZN(iii), the natural map is an isomorphism T'(U, M)~ = M.

PROOF. See [2, §5.1]. O

We consider next a class of torsion modules that includes the injectives in the
categories Aqet(X) and A¢(X). These torsion modules will be the building blocks
of the objects of main concern to us, viz., Cousin complexes.

For an abelian group G and a point z of the formal scheme X, let ix G (or
simply i, G if no confusion results) be the sheaf whose sections over any open U C X
are the elements of G if z € U and (0) otherwise (restriction maps being the obvious
ones). For an Oy z-module M the sheaf i, M has a natural Oyx-module structure.
Our interest lies in the situation where M is a zero-dimensional Ox z-module.
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LEMMA 2.3.5. Let X be a formal scheme, v € X, m, the mazimal ideal of Ox 5
and M an Ox z-module. The following are equivalent.

(i) M is a zero-dimensional Ox z-module, i.e., M is my-torsion.
(ii) 1M € Aqet(X).
(iii) For every affine open neighborhood U = Spf(A) of x, iz My € Aget(U).
Moreover, M being an A-module via the natural map A — Ox ., there is
a natural isomorphism i, M|y —=> M™.
(iv) There is an affine open neighborhood U of x such that iz My € Aqet(U).

PRrROOF. We show that (i) = (iii) <= (ii), and (iii) = (iv) = (i).

(i) = (ili). Let U = Spf(A) be an affine open neighborhood of z, and for
any f € A, Uy C U the open subset Spf(Asy). We claim that if = ¢ Uy then
LUy, M™) = 0, and if * € Uy then the natural map M — T'(Up, M™) is an
isomorphism. Indeed, since the open prime ideal p in A corresponding to x is taken
into m, by the natural map A — Ox, ,, therefore M is p-torsion. Thus M is a
torsion A-module, and so there are natural isomorphisms

M = M®®isA = T(Us, M™);
ez gy T M M)

and if ¢ Uy then f € p, so M is (f)-torsion, i.e., My = 0. If z € Uy then f ¢ p,
so f maps to a unit in Oy ,, and the natural map M — My is an isomorphism.
The claim results.

Any open subset V C U is a union of open subsets of the type U, and it follows
that if x ¢ V then M~ (V) = 0, and that if 2 € V then the natural map M — M~ (V)
is an isomorphism. Thus there is a natural isomorphism ¢, M|y =~ M™. Since
M~ € Agee(U) (by ZZZT(i1) and EZZ3), therefore i, M|y € Aqee(U).

(iii) = (ii). The property of being quasi-coherent and torsion is local. If V
is an open set not containing x then i, M restricts to the zero sheaf and hence is
in Aqe4(V). The implication follows.

(i) = (iii) follows easily from EEZA(iii); and (iii) = (iv) is obvious.

(iv) = (i). With U = Spf(A) as in (iv), EZA(ii1) gives M~ = i, M|y € Aget(U),
so by 2233, M is a torsion A-module. Let p be the open prime A-ideal corresponding
to x € U. For any f € p, we have x ¢ Uy := Spf(Ayy;), whence, as above, there are
natural isomorphisms

M; s M@a A = TUp, M™) =5 T(Us, iy M) =0,
o) gy T W) (g i M)

so that M is (f)-torsion. As p is finitely generated, M must be p-torsion; and since
mg =lim p, . = pOx,o ([0, p. 186, proof of (7.6.17)]), M is my-torsion. O
fép

Let X be a noetherian formal scheme. For z € X, let J(z) denote the injective
hull of the residue field k(x) over the local ring Ox .. It is easily checked that
izJ () is an injective object in A(X) ([I1J, page 123]). By Z3H i, J () € Aget(X).

Recall that in a locally noetherian category a direct sum of injectives is also an
injective.

PROPOSITION 2.3.6. Let X be a noetherian formal scheme.

(i) The categories Ay(X) and Aqct(X) are locally noetherian and have enough
injectives.
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(ii) The indecomposable injectives of Aqct(X) are those of the form iyJ(z)
defined above. In particular, any injective object T of Aqct(X) is a direct
sum of injectives of the form iy J(x) and hence is injective in Ai(X) too.

(ili) For any M € Ay (X)UAA(X) and for any injective T in Aqei(X), the sheaf
Homo, (M, T) is flasque.

(iv) For any injective T in Aqet(X), and x € X, the Ox z-module I, is injec-
tive.

PRrROOF. For proofs of (i), (ii) and (iii), we refer to [27], p.876].

For (iv), we may assume, by (ii), that Z = i,/ J(2’) for suitable z’. If 2’ doesn’t
specialize to x then Z, = 0. It remains to show that if z’ specializes to x then
J(z') is an injective Ox z-module. For this it suffices, with Oy := Oy, (y € Y),
that O, = @ for some prime p in O,, since then the injective hull J(z') of the
residue field k(z") over O,, being injective over the local ring O, t00, is injective
over @, and hence over O,.

Let U = Spf(A) be an open neighborhood of z. Recalling that O, is noetherian
for all y € U [10, p.403, (10.1.6)], one deduces from [T0] p.184, (7.6.9)] that if a
is an open A-ideal and q = g, is the open prime A-ideal corresponding to y, then
Ox,y/00, = Aq/aAy. So if p:= q C qy then p,:= pO, is prime, and for all s > 0,
(Oy)e, /94, (Oy), is isomorphic to the localization of the A-module Aq/p‘A, at the

prime ideal p, i.e., to A,/p’A,. Hence for all y in the closure of 2/, (@)\m = //1;.
Taking y = 2’ and z respectively, one gets Ox v = (Oy),, , as desired. ([l

2.4. Smooth maps. A homomorphism of topological rings ¢: A — B is
formally smooth if ¢ is continuous and if for every discrete topological A-algebra C
and every nilpotent ideal I of C, any continuous A-homomorphism B — C/I factors
as B % C — C/I with v a continuous A-homomorphism ([8, 19.3.1]).

A morphism of formal schemes f: X — Y is said to be formally smooth if for
any morphism Z — Y where Z = Spec(C) is an affine scheme, and for any closed
subscheme Zy C Z defined by a nilpotent ideal in C, every Y-morphism Zyz — X
extends to a Y-morphism Z — X (cf. 9], §17.1]).

EXAMPLES 2.4.1. We recall some of the elementary properties and standard ex-
amples of formally smooth maps. These will often be used without explicit mention.
For proofs cf. [9, §17.1] and [8] §19.3].

(i) An open immersion is a formally smooth map. A composition of formally
smooth maps is formally smooth. Formal smoothness is preserved under
base change.

(ii) A map of affine formal schemes Spf(B) — Spf(A) is formally smooth if
and only if the corresponding homomorphism of topological rings A — B
is formally smooth.

(iii) For a discrete ring A, any polynomial algebra under the discrete topology
is formally smooth over A.

(iv) If ¢: A — B is a formally smooth map of topological rings then for any
multiplicative sets S C A and T C B such that ¢(S) C T, the induced
map S™'A — T~!B is formally smooth.

(v) A map of topological rings A — B is formally smooth if and only if the
induced map of respective completions A— Bis formally smooth.
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(vi) Let ¢: A — B be a formally smooth map of topological rings. Then for
any choice of coarser topologies on A, B for which the square of any open
B-ideal is open and for which ¢ remains continuous, ¢ is formally smooth
under the coarser topologies too.

DEFINITION 2.4.2. A continuous homomorphism ¢: A — B of noetherian adic
rings (resp. a map f: X — Y of noetherian formal schemes) is smooth if it is
essentially of pseudo-finite type and formally smooth.

Recall that a homomorphism ¢: R — S of noetherian adic rings is adic if for
one (hence for every) defining ideal I of R, ¢(I) is a defining ideal of S.

LEMMA 2.4.3. Let ¢: A — B be an essentially pseudo-finite type homomor-
phism of noetherian adic rings. Then ¢ factors as A < C <= B where o is a
smooth map and 7 is a surjective adic homomorphism. More specifically, C' can
be obtained as the completion of a localization of a polynomial algebra over A—say
(A[X1,...,X,))s—along an ideal I that contracts to an open A-ideal.

PROOF. Let a,b be defining ideals of A, B, respectively, such that ¢(a) C b.
By hypothesis there exists a finitely generated A-algebra D and a multiplicative
set T in D such that B/b6 = Dp. Then there is a surjection from a polynomial ring
P:= A[Xq,...,X,] to D which maps {X;} to a set of generators of D. Let S be
the inverse image of T in P. The composition P - D — Dp = B/b lifts to an
A-homomorphism ¢: P — B. Any element of ¢(S) maps to a unit in Dy = B/b.
Since b, being a defining ideal of B, is in the Jacobson radical, it follows that ¥(.S)
consists of units of B and so we obtain an induced map ¥g: Ps — B.

Let my: Q = Ps[X,41,...,X,] — B be a map extending 1s and taking the in-
determinates X, y1,..., X, to a generating set of the B-ideal b. Let I be the -ideal
generated by a and X,41,...,X,. Then 7, is continuous for the I-adic topology
on @ and hence extends to a map 7, clearly adic, from the I-adic completion C':= @
to B. Since IB = b, therefore B is an f—adically separated C-module and C surjects
onto B/(IB). It follows from [T9, Theorem 8.4] that  is surjective. O

COROLLARY 2.4.4. If f: X — Y is an essentially pseudo-finite type map of
formal schemes then any neighborhood of a point x € X contains an affine open
neighborhood W such that f|, = hi where for some formal scheme Z, i: W — Z is
a closed immersion and h: Z — Y is smooth.

Let A -2 B be a continuous homomorphism of noetherian adic rings and

let U := Spf(B) Lov.= Spf(A) be the induced map of formal schemes. Let
x € Uand y:= f(z). Let k(z) and k(y) denote the residue fields of the local rings
O, and Ov , respectively. We regard these local rings as being topologized by
the powers of the stalks of defining ideals on U and V respectively. Thus if a,b
are defining ideals of A, B then aOy 5, bOy, , are defining ideals of Oy ., Ov,y,
respectively.

PROPOSITION 2.4.5. In the preceding situation we have:

(i) If ¢ is essentially of pseudo-finite type then k(x) is a finitely generated
field extension of k(y).
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(ii) If ¢ is formally smooth, then ¢ is flat. Furthermore, the induced map
of topological rings Ov,y — Oy is also formally smooth and flat. In
particular, f: U —V is a flat map of formal schemes.

PROOF. (i). Let b be a defining ideal in B and a C ¢~'b a defining ideal
in A. Then A/a — B/b is essentially of finite type. As in the proof of EZ3H(iv),
Oy, /a0y, and Oy 5/bOy , are localizations of A/a and B/b respectively. There-
fore the induced map k(z) — k(y) is essentially of finite type, whence the result.

(ii). Let n be a maximal B-ideal and m = ¢~'n. Let b be a defining ideal in B
and a C ¢~ 'b a defining ideal in A. Then the induced map Ay, — B, is formally
smooth under the a-adic and b-adic topologies respectively. The map Ay — By is
also continuous for the coarser m-adic and n-adic topologies respectively. Therefore
Am — By, is formally smooth for the coarser topologies too. By [8l, 19.7.1], B, is
flat over A, hence over A. This being so for any n, B is flat over A.

For the final part, let p C B (resp. ¢ C A) be the open prime corresponding
to the point = (resp. y). As in the proof of EZZH(iv), the completion of Oy,
(resp. Ovy,y) along the ideal bOy, (resp. aOy, ) is isomorphic to the completion
of By, (resp. Aq) along the ideal by (resp, aq). Therefore [A — B formally smooth]
= [Aq — B, formally smooth] = [Zl\q — B\p formally smooth] = [Ov,, — Oy,
formally smooth] ([8, 19.3.5, (iv)], [8 19.3.6]). Again, by [8l 19.7.1], Oy , — Oy,
is flat. O

2.5. Differentials on topological rings. We now describe various elemen-
tary properties of the module of relative differentials for a map of topological rings,
and its behavior under smooth maps. Let A — B be a continuous homomorphism
of adic rings. Let b be any defining ideal in B. Let Q}B /A be the relative B-module
of differentials and /A its m-th exterior power (m > 0), b-adically topologized

cf. [8, 20.4.5]). Set B;:= B/b*t! and
(cf. | 1)

QF 0:=1im (QF,, @B Bi),

the b-adic completion of Q27 e Also, set

QSBE;)A = QlB/A/(mibiQ}B/A)v

the universal separated module of differentials of B/A. These definitions do not
depend on the choice of b. Indeed, the canonical A-derivation dg/s: B — Q}g /A

induces derivations d?}) W B— QSE?I/) ', and dg /a: B — QL /4 Which are universal for
continuous A-derivations of B into separated (resp. complete separated) B-modules.

Recall that for any topological B-module N, composition with dp,4 gives an
isomorphism Hom% (0} sa: V) == Der (B, N), where the superscript “c” signi-
fies, respectively, continuous homomorphisms and derivations (see [8, 20.4.8.2]).
Let b be a defining ideal of B. If the topology on N is b-adic and N is separated

(e.g., if N is finitely generated) then we also have the following relations.
Der, (B, N) = Der4(B, N),

Hom(Qp 4, N) < Hom§(Q5h,, N) = Homp(Qg),, N) > Homp(Qp/4, N).
All these relations are easily verified. For example, the first one holds because for

any § € Ders (B, N) we have §(b""'B) C b N.
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PROPOSITION 2.5.1. Let f: A — B be an essentially pseudo-finite type map of
noetherian adic rings. Let b be a defining B-ideal and B;:= B/b"1. Let m > 0.
Then:

i) The B-module Qbe is finitely generated and complete; and there is a
B/A

natural isomorphism QB/A - QB/A'
(ii) There are natural isomorphisms

/\QlB/A - QE/A - 4112 QE/A'
B 3

In particular, Q/Z s a ﬁmtely generated B-module.

(iii) If f is smooth then Q B/A s a projective B-module.

(iv) If b is a defining ideal of B, b C b, and B':= B with b’-adic topology
(also an adic ring) is essentially of pseudo-finite type over A, then the
natural map is an isomorphism

QlB’/A — QB/A

PROOF. By is essentially of finite type over A, so Q}SD /A is a finitely generated
By-module and hence a finitely generated B-module. Then the instance ¢ = 0 of
the natural exact sequences

(4) b”l/b”Qm Qpa®8Bi— Qp 0 — 0 (120)
shows that Q}g /4 OB By is a finitely generated B-module, so that the B-module

QSE?]/)A ®p By = QB/A ®p By is finitely generated. By [T9, Thm. 8.4] it follows that

the B-module Q?? ', is finitely generated, hence complete; and so Q5 / 0= Q B/A"

Furthermore, the exact sequence (@) gives that the kernel k; of the natural
surjection Q}B/A — Q}Bv/A satisfies
b QL 4 C ki =010, +d(0) C bR,
giving rise to a sequence
C— QlBi+1/A — QlB/A ®p B; — Q}Bi/A — QlB/A ®p Bi—-1 — -+,
from which follows, upon application of A5, a natural sequence

.—>Q7§i+l/A—>Q7§/A®BBi—>Qgi/A—>Q7E/A®BBi_1 —_—
and hence a natural isomorphism Q’g /A hm 0%, /A

By part (i), A" Q B/A is a finitely gcnoratod B-module and hence is complete.
With B;:= B/b'™! there are natural isomorphisms

/\QB/A ®p B; = \(Q%,4 ®8 Bi) = \(Qp/a @8 Bi) = (\ Q1) @5 Bi.
Taking inverse limit over i we conclude that \™ Q/\A ~Qm B proving (ii).
Now suppose f is smooth. By [8, Cor. 20.4.10], Q/E;; ®p B; is a projective

B;-module for each i. Hence by [19] Thm. 22.1], QlB/A is a projective B-module.
Taking exterior powers and using (ii), we deduce (iii).
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The natural map in (iv) is the obvious one from the completion of a module to
the completion of the same module with coarser topology. That it is an isomorphism
follows from the fact that every finitely-generated B-module is b- and b’-complete

and separated, whence the canonical derivations d: B — Q! B/A andd': B — Q1 B/A
are both universal for A-derivations of B into finitely-generated B-modules. O

From now on, for any continuous homomorphism A — B that is essentially of

by Qm

pseudo-finite type we shall denote Qo Bra-

B/A

LEMMA 2.5.2. Let A 4= B 25 C be essentially pseudo-finite-type homo-
morphisms of noetherian adic rings. Then there is a matural exact sequence of
continuous C-module maps

QlB/A XB C — QIC/A — Qé/B — 0.
If, moreover, g is smooth [ZZ2) then this sequence is part of a split exact sequence

PROOF. The map Q}a/A ®p C — (AZIC/A corresponds to the continuous A-
derivation B — C —% QlC/A (Note here that by EZBII(i), (AZlB/A is a finitely
generated B-module, so that QB/A ®pC = Q}B/A(X)B C (see [I0, p. 189, 7.7.9]); and
that QC /40 bemg finitely generated over C, is a complete separated B-module.) The

map QC /A~ QC /B corresponds to the continuous A-derivation dc /- Exactness
follows from that of the dual sequence—for any separated complete C-module N:

Der$ (B, N) « Der% (C, N) « Der;(C,N) < 0.

(See also [l p.152, 20.7.17.3].) For smooth g one can then apply [8, 20.7.18], in
view of ibid., p. 114, Definition 19.9.1. (In fact, arguing as in the proof of loc. cit.,
one sees that Der$ (C, N) — Der (B, N) is surjective.) O

LEMMA 2.5.3. Let A, B, C, be noetherian adic rings, let f: A — B be a
homomorphism essentially of pseudo-finite type, and let m: B — C' be a continuous
surjection, with kernel I. Suppose that the topological quotient algebra B/I is
smooth over A. Then there is a split exact sequence

0—)[/]2—>§13/A®BO—>§10/A—>0.

PrROOF. In view of EERl(iv), one may assume that C = B/I. Let b be a
defining B-ideal. Consider the diagram

0 —— (Nib'Qy,,) ®C —— N b°QG

| ! !

/P —— Qp,08C —— Qp,

wherein the bottom row consists of usual natural maps, the top row is induced by
the bottom row, and the vertical maps are the natural ones. The diagram clearly
commutes and so the cokernels of the vertical maps lie in a sequence

E*: 0—I/I*— — Q5), ®C — Qg), — 0.
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By ZAKi) every module in E*® is finitely generated over C, so for E® to be split
exact it suffices that for any finitely generated C-module N the induced sequence
Home(E*®, N) is exact. Rewriting Home(E®, N) as

0 — Ders(C,N) — Dera(B, N) % Homg (I/I?,N) — 0

one sees that the only nontrivial thing to show is surjectivity of w.

Since the kernel I/I? of the natural surjection 7: B/I?> — C is nilpotent
and closed, and C is smooth over A, therefore the identity map of C lifts to an
A-homomorphism I: C' — B/I? |8, p.84, 19.3.10]. Then

o:=1-1I7: B/I? - I/I*
is an A-derivation: for all =,y € B/I?,

o(zy) = vy —I7(zy) = vy —I7(x)l7(y) = 2y —(x—0(2))(y —0(y)) = 20 (y)+yo(x).

So for any 6 € Home(I/1%,N), 60 € Ders(B/I?, N) = Ders(B, N) and u(éo) = 4.
This proves surjectivity of u, and hence split-exactness of E°. O

EXAaMPLE 2.5.4. Let B be a noetherian adic ring, S a multiplicative set in B
and I an open ideal in B. Set C:= B{S~!}, the completion of Bg along Is. Then
the induced map B — C' is smooth.

Any continuous B-derivation from C into a topological C-module vanishes
on Bg, hence, by continuity, on C. Therefore, (AZ}J/B = 0.

Any continuous A-derivation from B into a complete separated C-module ex-
tends uniquely to C. Hence (or by ZR2) there is a natural isomorphism

Qpya ©5 B{S™'} = Qprs-1y/a-

EXAMPLE 2.5.5. Let A be a noetherian adic ring and P = A[Xy,...,X,] a
polynomial ring over A. Let I be an ideal in P such that I N A is open in A, and
let C be the completion of P along I. Then the natural map A — C is smooth.
As any A-derivation of P into an [-adically complete separated C-module extends
uniquely to C', one sees that the C-module (AZlC/A is free, with basis dX1,...,dX,.

PROPOSITION 2.5.6. Let A — B and A — C' be continuous maps of adic rings.
Set D:= B®4 C. Then there exists a natural isomorphism QlB/A @D =5 Q}D/C.

PROOF. (i) Via the universal properties of Q! and of extension of scalars (from
B to D), the Proposition amounts to the statement that for any complete separated
D-module L, “restriction” induces a bijection Derg:(D, L) = Der% (B, L). But if
we give the D-algebra D:= D@ L (where L?>=0) the product topology, under which
it is complete and separated, then the standard correspondence between derivations
into L and ring homomorphisms into D [8] p. 118, 20.1.5] respects continuity, and
so transforms the statement into bijectivity of the restriction map from continuous
C-homomorphisms D — D to continuous A-homomorphisms B — D, which is
easily seen to hold, by the universal property of complete tensor products. ([l

Remark. When A and B are noetherian and A — B is essentially of pseudo-
finite type, one can replace the ® in EER.0 by ®, see proof of Moreover, in
view of EZ5I(ii), one can replace Q' by Q™ for any m > 0.
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2.6. Differentials on formal schemes. Let f: X — Y be a morphism of
noetherian formal schemes. Suppose J C Ox and J C Oy are defining ideals such
that JOx C J. There result morphisms of ordinary schemes

Xpi= (X, 0x /3" L2 (Y, 0y /g = Y, (n>0).

Let jn: Xn < X be the canonical closed immersion. For (m = 0) let Q% .
be the m-th exterior power of the sheaf of relative differentials on X, and set
Qf = QX/y = @ j”*QXn/Yn This Q’fn is independent of the choice of J, {.
For every n therenis a natural sheaf homomorphism Ox, — Q} X /Yo and hence
applying j,. and taking inverse limits results in a natural sheaf homomorphism
sz/y = d}: Oy — ﬁ&/y.

Let Spf(B) = U C X and Spf(A) = V C Y be affine open subschemes with

f(W) € V. Let Spec(4,,) = U, C U and Spec(B,,) = V,, CV be defined as above.
Then for each m > 0 there are natural isomorphisms

', QSJC/y) (U, (hﬂ jn*an/Yn) = (hﬂ ', jn*Qﬁn/Yn)

(5) = lim T(Uy, O, y,) = lim D(Un, QO v,)

=lim Qf 4, =lim QF /4 I?E%[k ?/AH

PROPOSITION 2.6.1. Let f: X — Y be an essentially pseudo-finite type map of
noetherian formal schemes. Then for m > 0, the natural map is an isomorphism

/\QJC/y — hm /\]n*QX A Qx/ya

Ox
and ﬁg’g/y is a coherent Ox-module. Moreover, if U = Spf(B) and V = Spf(A) are
as above, and if the induced map A — B is essentially of pseudo-finite type, then,
with ~ = ~p, there are natural isomorphisms

(5/4)7 == Qv == Qpylye
Furthermore, if f is smooth then f is flat and me is locally free of finite rank.

PRrROOF. All the assertions are local, so we may assume that X =U and Y = V.
For any affine open subset U = Spf(By;;) C U we have the natural isomorphisms

T(Un, py) = OB, 14 = QB ©5 Broy =T (U, (U5/4)"),

where the second isomorphism comes from EZ54 and the third from E:Zﬂ(iv)
follows that the map correspondlng to the 1som0rphlsm Q Ba S =~ T'(U, Qu /v) of (El)
is itself an 1somorphlsrr/1\ (QB/A)N = Qu/v Since Q B/A is a ﬁnltely generated B-
module (see ZET(ii)), 1y 1s coherent; and the 1som0rphlsm A" Qx/y -~ Qx/y
results from EE5TN(ii) and EZZ3(iv).

The assertions concerning smooth maps follow from EZZH(ii) and ERTI(iii). O

3The hypothesis in EERdl that B be essentially of pseudo-finite type over A is not used in the
proof of this last isomorphism.
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DEFINITION 2.6.2. Let f: X — Y be a smooth morphism of noetherian for-
mal schemes. The relative dimension of f is the function—constant on connected
components of X—taking z € X to the rank of Ql at x.

When the relative dimension is constant on all of X, we may identify it with
its value (a nonnegative integer).

EXAMPLE 2.6.3. An open immersion is smooth of relative dimension 0 ([Z53).
The map Spf(C) — Spf(A) obtained from EZhH is smooth of relative dimension r.

DEFINITION 2.6.4. Let f: X — Y be a smooth morphism of noetherian formal
schemes. With d; the relative dimension of f on the connected component X; of X,
we denote by wy the invertible Ox-module whose restriction to X; is leg Yy

PROPOSITION 2.6.5. Let f: X — Y and g: Y — Z be smooth maps of relative
dimensions d and e respectively. Then gf is smooth of relative dimension d + e
and there is a canonical isomorphism

ffwg ®oy wf = wgs.

PrOOF. The question is local on X, so we may assume that X, Y, and Z are
connected, and that d and e are integers.
Let J,d, X be defining ideals in O, Oy, Oy respectively such that JOyx C J and

KOy C J. Reducing modulo the n-th powers of these defining ideals we get maps

of schemes X, j—> —— Z, and hence a sequence

0— anyn/zn - an/zn - an/Yn — 0.
Let j,: X, — X be the canonical immersion. Applying j,. and taking inverse
limits we obtain a sequence

0 = lim jn 70, /2, = Qhjz = Ay — 0.
Let iy, : Y, — Y be the canonical immersion. There are natural maps

frlim ipe — lim fYip. — Hm ju. fo.
n n n

Hence there is a natural map
I Qy/z = f*}ﬂ in*Q%/n/Zn - }ﬂ jn*f;:Q%/n/Zna
and so we have a natural sequence
Ol ol ol

One checks, using 24 that if X = Spf(C), Y = Spf(B), and Z = Spf(A) are
affine and if the induced maps A — B — C are essentially of pseudo-finite type,
then this sequence is the same as the one obtained by sheafifying, via ~¢, a split
exact sequence as in Exactness being a local property, we have therefore
constructed, in the general case, an exact sequence of locally free sheaves (see

EZ5T). It follows that the rank of ﬁflx /2 18 d + e, and that there is a canonical

isomorphism
d+e

/\ Qx/z = /\ £y, ® /\Qx/y

Since f* commutes with exterlor powers, the Lemma results. ([l
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PROPOSITION 2.6.6. Let f: X — Z and g:Y — Z be formal-scheme maps,
with f essentially of pseudo-finite type, so that the projection qg: W:=X xzY — Y
is also essentially of pseudo-finite type (cf. proof of EZI13):

:X:XZH:WL)H

| s

Then for the projection p: W — X there is a natural isomorphism
*)1 ~. 0Ol
Proor. This is just a globalization of the noetherian case of m and can
be proved similarly (or reduced, via pasting of local maps, to loc. cit., see ZZ2Z7).

Indeed, since both p Qx /2 and Q w/y are coherent Ow-modules (see E:G:I]), it
suffices to find a natural isomorphism, functorial in the coherent Oyy-module N,

Homo,, (ﬁ%,v/y,/\/') -~ Homgp,, (p*ﬁ%c/z,/\/'),

which can be done, as in the proof of 256, via restriction of (sheafified) derivations.
Details are left to the reader. (]

COROLLARY 2.6.7. With hypotheses as in 260, assume further that f is
smooth of constant relative dimension d € N. Then q is also smooth of relative
dimension d. Furthermore there exists a natural isomorphism p*wy —= wy.

PROPOSITION 2.6.8. Let 2 —— X - Y be maps of formal schemes where i is
a closed immersion, h is essentially of pseudo-finite type and hi is smooth. Let J
be the coherent ideal in Oy corresponding to i. Then there is an exact sequence of
Oz -modules

2 e ol
0—173/7 ’Z — " Qe py — Qg y — 0.

PROOF. The natural map ¢ Qx/y — Qz/y is defined in the same manner as

the map f* QWZ — Qx/z is defined in the proof of ZEH Consider the natural

sheaf homomorphism

: = Ox Lﬁm — O )y ®ox Ox/I.

Let U = Spf(B) C X, V = Spf(A4) C Y be affine open subsets such that h(U) C V
and the induced map A — B is essentially of pseudo-finite type. Let I = J(U), so
that via EEZIKiii) (see also Remark (a)), I~ = J. By EZ3(iii) I? = J?(U), and
by (i) and (iii) of ZZT I/I* = (3/7%)(U). Using EZ61] and B ZZ3(ii), we see that
1 induces over U, the obvious natural map ¥(U): I — QB/A — QB/A ®p B/I.
Now 1 (U) sends I? to 0 and the induced map /1% — Ql p/a ©B B/1is B/I-linear.
Since U,V can be chosen to be arbitrarily small, it follows that 1) sends J2 to 0 and
that the induced sheaf homomorphism J/ 32‘ 5 = z*ﬁ}x sy 1s Oz-linear. We therefore

have a sequence of Oz-modules
(%) 0———»3/32‘2———>i*9:1x/y ———>Q§/y — 0.
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Exactness of (x) is a local property. If Z = Spf(C), X = Spf(B), Y = Spf(A) are
affine, then the sequence () is the same as the one obtained by sheafifying, via ~¢,
the exact sequence in ZZh3 Therefore (%) is also exact. O

For the next result we use the following fact. If W = Spf(C) is an affine

formal scheme, then for any w € W, the complete local ring D := (Ow,y, M)
is isomorphic to (Cp,pC'p)A where p is the open prime in C' corresponding to w
(see proof of B30 iv)). Therefore the natural map C' — D is smooth of relative
dimension 0 (see 2ZZ5.4).

PROPOSITION 2.6.9. Let f: X — Y be an essentially-pseudo-finite- type map of
formal schemes. Let x € X, set B:= Ox .z, A:= Oy yu), and let B A be the
completions of B, A along their respective mazimal ideals. Then, with Q
stalk of (AZ}” at x, there are natural isomorphisms

7, ®p B QB/A (m >0).

Proor. Let U = Spf(S),V = Spf(R) be affine neighborhoods of z,y respec-
tively, such that f£(U) C V. ByEZEI, Q7| = (25)~¢, whence Q7' = Q% @5 B.
There are then natural isomorphisms

. S 5 &m
7. @B > (), ®s B)®p B > QS/R®SB___’QB/R—>QB/A7

where « is the isomorphism which follows from EZ52 applied to the sequence
R— S — B (by the remark preceding ZEd S — B is smooth), while § is
the isomorphism obtained similarly from the sequence R — A — B. O

COROLLARY 2.6.10. With notation and assumptions as in LG9 assume further
that f: (X, A1) — (Y,A) is a smooth map in F. (see section ZI). Let d be the
relative dimension of f at x, p:= Ai(x), and q:= A(y). Let ma be the mazimal
ideal of A. Then

dim(B/maB)=p+d—q.

Proor. By ZZH(ii), B is a formally smooth A- algebra and so by(v) and (vi)
of ZZT1 Bisa formally smooth A- algebra. By 260, QA ;s free of rank d, and
by definition of Fg,

q—p=A(y) — Ar(z) = tr.deg.,(, k().
So by ([13, Lemma 3.9]),
dim(B/maB) = dim(B/maB) = d — (q — p).
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3. Local cohomology and Cousin complexes

In §87] we recall some basic facts about local cohomology modules and about
various relations between different definitions of local cohomology in the presence
of quasi-coherence and torsionness conditions. In §82 we review basic definitions
and properties of Cousin complexes, and of the Cousin functor E from the derived
category to Cousin complexes. (For smooth formal-scheme maps X — Y, E will
play an important role in the construction of a functor from Cousin complexes
over Y to Cousin complexes over X.) The final subsection is on Cohen-Macaulay
complexes, the derived category counterparts of Cousin complexes. The results
there are based on Suominen’s work [25], in which it is shown that FE induces an
equivalence of categories from the category of Cohen-Macaulay complexes to the
category of Cousin complexes (where the latter, and hence the former, is abelian).

3.1. Local cohomology. Let X be a topological space, Z a closed subset,
and F an abelian sheaf on X. We denote by I,F the subsheaf of 7 whose sections
over any open U C X are those elements of F(U) whose support lies in Z. Recall
further, from 23 the definition of the functor Ij for a ringed space (X, Ox) and
an Ox-ideal J, and of the functor I for an ideal a in a ring A.

LEmMA 3.1.1. Let (X,Ox) be a ringed space, F an Ox-module, and x € X a
point. If the Ox-ideal J is locally finitely-generated, then (I3 F), = I F., where
each side of the equality has been identified naturally with an Ox ,-submodule of F.

PROOF. The equality results from the natural isomorphisms

(@ Homo,(Ox /I7, .7:))1 = @ (HomoX(OX/f]", .7:))

x

-~ m Homoxym(OX,m/J& Fa)s

n

the second isomorphism holding because locally, Ox /I™ has finite presentation. O

It follows that if Z is the support of Ox/J then for any F € A(X) there is a
natural inclusion Iy F C I, F. In general, this inclusion is not an equality.

LEMMA 3.1.2. Let (X, Ox) be a noetherian formal scheme and Z C X a closed
subset. Let J be an open coherent Ox-ideal such that the support of Ox/J is Z.
Then for any F € Aqet(X) we have

LF =1I,7F.

PROOF. It suffices to show that for any affine open subset U:= Spf(A) we have
(IF)U) C (I; F)(U), the opposite containment having been noted above. Set
F=FU) and I =J(U). By EZZAiii), F € Az(X) and F| = F~, whence by EZ33
and ZZiv), (I; F)(U) = I} F. In particular, since F is a torsion Ox-module,
this equality for an ideal of definition shows that F' is a torsion A-module. So
by EZTiv) and EZ3T for any s € A, with U, := Spf(Ay,)) we have F(U,) = F.
If s € I, then Us N Z = (0, so the image in F, of any f € (I,F)(U) is zero, i.e., any
such f is annihilated by a power of s, and hence, I being finitely generated, by a
power of I. Thus (I,F)(U) C I} F = (I3 F)(U), as desired. O

For an abelian sheaf F on a topological_space X,and x € X, let I, F C F; be
the stalk at = of the sheaf I, F with Z:= {z}, the closure in X of the set {z}.
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COROLLARY 3.1.3. Let X be a noetherian formal scheme, and F € Aqet(X).
For any x € X let my be the mazimal ideal of the local ring Ox, 5. Then

L, Fo=I,F CFu.

My

PROOF. Let J be the largest coherent ideal defining Z = m Then J is an
open ideal and the stalk of J at z is m, (since this holds true over the scheme
obtained by reducing modulo an ideal of definition of X). By Bl and we
have I, Fo = (I3 F)e = (I3 F)s. O

The functors I; defined above are all left exact. We denote by RI; the cor-
responding right-derived functors and by H{ := H'RI, the corresponding i-th
right-derived functors.

For a complex F* on a ringed space (X,0Ox), HiF® := H'RI; F*® is the
abelian group sometimes referred to in the literature as “local hypercohomology
with supports in ?” and sometimes denoted “H'...” The symbol “ H{F*” might
also, conceivably, denote the complez whose n-th term is H;F", differentials being
the natural induced ones; in this paper, that will never be so.

We now review the construction of local cohomology via “direct-limit Koszul
complexes”. Let (X, Ox) be aringed space. For an element ¢t € T'(X, Ox), let K*(t)
be the complex which in degrees 0 and 1 is multiplication by ¢ from K°(t):= Ox
to K1 (t):= Ox, and is zero elsewhere. For 0 < r < s, there is a map of complexes
K*(t") — K*(¢°) which is identity in degree 0 and multiplication by ¢*~" in degree 1.
Thus we get a direct system of complexes, whose direct limit we denote by K2 ().
For any sequence t = (t1,...,t,) of elements in I'(X, Ox) we set (with ® = ®o, )

Ko (t):=K2(t1) ® ... @ K3 (tn);
and for any complex F* of Ox modules set K2 (t, F*):= K2 (t) @ F*. With J the
Ox-ideal generated by the sequence t, there are natural identifications
L7 =ker (Ko (6, F7) = Koo (6, 77)) - (5 €2),

yielding a map of complexes IJ F* — K2 (t,F*), whose composition with the
natural map K2 (t,F°®) = K3 (t) ® F* — K% (t) ® F* = F* is the inclusion
I F* — F°*. Note that the stalk of K3 (t) at any point x € X looks like the
localization map Ox , — Ox z[1/t]. It follows that K2 (t) is a complex of flat Ox-
modules. In particular, K8 (t,—) takes quasi-isomorphisms to quasi-isomorphisms
and hence induces a functor D(X) — D(X), also denoted by K2 (t,—). In fact
K2 (t, —) is a d-functor (see LA &), with ©: L2 (t, F°[1]) == (K (t,F*))[1]
given in degree p + g by (—1)? times the identity map of K2 (t) @ F9TL.

PROPOSITION 3.1.4. Let (X, Ox) be a noetherian formal scheme, and t a finite
sequence in T'(X, Ox). Let J be the Ox-ideal generated by t. Then for any complex
of A(X)-injectives L®, the natural map I L* — K2 (t, L®) is a quasi-isomorphism.
Moreover, the induced natural isomorphism of functors

RI; = K2, (t,—)
is an isomorphism of §-functors. Hence there is a -functorial isomorphism
RI; F* = RIOx ®o, F* (F* e D(X))

whose composition with the natural map RI; Ox @0, F* — Ox Qo F* = F* is
the natural map RI; F® — F°.
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PRrROOF. See [Tl Lemma 3.1.1, (1) = (2) ]. Verification of the d-part is straight-
forward. (The natural d-structure on RI; can be extracted from [I7, Example
2.2.4].) The rest is left to the reader. (]

Before stating some consequences of BZIL4l we note that the constructions above
have obvious analogs over rings. For a ring A and a sequence t in A, the direct-
limit Koszul complex K3 (t) of A-modules is defined in a manner similar to the
above. If A is noetherian and I*® a complex of A-injectives, then the natural map
I I° — K3 (t,1°) is a quasi-isomorphism.

LEMMA 3.1.5. Let (X,Ox) be a noetherian formal scheme.
(i) For any coherent Ox-ideals J,d, the natural map Rlj, 4 — RIgRI; is
an isomorphism.
(ii) For any sequences t,s in G := I'(X,Ox) such that sG C VtG, and for
any complex F* € C(X), the map (with ® = Qp.)

K t) @K (s) @ F* — K3 (t) @ F*

induced by the natural map K2 (s) — Ox is a quasi-isomorphism.
(iii) For any x € X and F* € D(X) the natural map (RI3F*®), — RIj F2 is
a D(Ox,,)-isomorphism.

PROOF. (i). One argument is given in the last four lines on page 25 of [].
Another is that the map in question is the canonical isomorphism resulting from
the fact that both source and target are right adjoints of the inclusion into D(X) of
the full subcategory whose objects are complexes whose homology is (J+ J)-torsion,
see |2, p.49, Prop.5.2.1(c)]. One can also use B4 as follows.

The assertion being local, we may assume that X is affine, so that there are
sequences t,s in I'(X, Ox) generating J,J respectively. For any F* € D(X), we
claim that the following natural diagram commutes:

R, ,F* ——  RLRLF*

! l
Koo(t,s) © F* —— K3(t) © K3 (s) @ F°

The bottom map is an isomorphism, as are the vertical maps (by B2, and the
assertion results.

Verification of commutativity is straightforward once the diagram is expanded
as in BTHA1) below—where F* is assumed, w.l.o.g., to be K-injective, Kt is an
abbreviation for K2 (t), etc., and g ® F* — £° is a K-injective resolution (see [,
p. 19, proof of (2)' = (2)]).

(ii). Let J,J be the Ox-ideals generated by (t), (t,s) respectively. Note that
Iy =1I;. Let L* be a K-injective resolution of 7*. In the commutative diagram

KS(t) @ K3 (s) @ F® ——— K3, (t) @ K3, (s) @ L® —— [5L*

| | H
K2 (t) ® F* — KLt L —— nc

the horizontal maps are quasi-isomorphisms, and the result follows.
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@IR1)

1;_,’_3.7:. fr—— 1;1;’.7:. — RI&IZ’]]:.

RI;, ,F* R RI;F*

LLF —— L(K®FY) —— L&

Kes @ F*® Kis @F® —— Kt @K@ F® «——— Kt ®E®

(iii). The assertion being local, we may assume that X is affine, so that there is a
sequence t in (X, Ox) generating J. We may assume further that F* is K-injective.
The following natural D(Ox ;)-diagram—where K3 (t) is the direct-limit Koszul
complex on t over Oy ., K¢ is an abbreviation for K2 (t), etc., and F2 — E® is a
K-injective Ox ;-resolution—commutes:

| | !
(Kt @0, F*)x —— Ky ®oy, Fy —— K¢Qoy, E*

The maps in the bottom row are isomorphisms, as are the outside vertical maps
(by BLdl and its analog over rings), and the assertion results. d

LEMMA 3.1.6. Let f: X — Y be a map of noetherian formal schemes, G* € D(Y)
and L* € D(X). Let 3,7 be coherent ideals in Ox, Oy respectively with JOx C J.
Then the natural map s an isomorphism

RI; (LI RIGG* @y £*) = RI (Lf*G" @x L°).

Proor. Using BTA and commutativity of Lf* and ® we reduce to showing

that the natural map is an isomorphism RIj (Lf*RI;Oy) = RI; (Ox). By [2,
p-53, Prop.5.2.8(b)], the map Lf*RIjOy — Ox factors naturally as

Lf*RI; Oy = RlIjp, Ox — Ox
(the first map an isomorphism). The conclusion follows then from BIEi). O

LEMMA 3.1.7. In the situation of let I° be a complex of Aget(X)-
injectives. Then the natural map I;T® — K2 (t,Z°%) is a quasi-isomorphism.
In particular, for any quasi-isomorphism I® — L* with L* a complex of A(X)-
injectives, the natural map I3Z* — Ij L* is a quasi-isomorphism.
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PROOF. (Sketch) Since it suffices to check that over affine open subsets of X
the natural map ¥: IJZ* — K2 (t,Z°) is a quasi-isomorphism, we may assume
that X = U = Spf(A) for some noetherian adic ring A. Note that ¥ is obtained by
applying the functor ~ of EZZTl to the natural map ¢: I} ,I®* — K2 (t,1°) where
I* =T(U,Z°*). Since Z* consists of Aqci(U)-injectives, and so by EZZ0I(ii) is a direct
sum of sheaves of the form i,.J, = J (see proof of X0 (i)==(iii) ), therefore I*® is
a direct sum of A-modules of the form J,,, hence consists of A-injectives. Thus, by
the ring-theoretic version of B4, v is a quasi-isomorphism, whence so is ¥ . [

An alternate way of proving the above lemma is as follows. By EZ30(ii), any
indecomposable injective 7 in Aqt(X) is an A(X)-injective, and so by B4 the
natural map ¥: IJZ — K2 (t,Z) is a quasi-isomorphism. Since ¥ behaves well
with respect to direct sums (O /I™ being coherent, the functor Home, (Ox/I™, —)
commutes with direct sums) therefore we can extend the result to any Agct(X)-
injective Z (see again EZZH(ii)). Finally using way-out type arguments we extend
the result to any complex Z°® of Age(X)-injectives (cf. [I p. 22]).

PROPOSITION 3.1.8. Let X be a noetherian formal scheme.
(i) For any F* € Dqc(X), we have RIZF*® € Dyet(X). For any F* € Dy(X),

the canonical map RIZF® — F* is an isomorphism.

(i) The natural functors D (Aget (X)) — D(;LC(At(DCJ)r) — DJ,

et (X) ds isomorphic to a

(X) are equiva-
lences of categories. In particular, any F* € D
bounded below complex of Aqet(X)-injectives.

PrOOF. For (i) see [1l, p. 49, 5.2.1]. For (ii), see |27, Theorem 4.8] (or |2} p. 57,
5.3.1] for an unbounded version). O

PROPOSITION 3.1.9. Let X be a noetherian formal scheme. Let Z be a closed
subset of X and I an open coherent Ox-ideal such that Z = Supp(Ox /7).
(i) For F* e DS, (X) the natural map is an isomorphism RI; F* = RI,F*.
(ii) For any F* € DJ.(X), the natural maps are isomorphisms

R F* <~ RILRIIF* = RIRIIF".

Proor. (i). By BL(ii), we may assume that F* is a bounded-below complex
of Aqcr-injectives. Let F* — L°® be an A(X)-injective resolution of F°. In the
commutative D(X)-diagram

a

LF* —— L L*~RILF®

| |

[,F* —— [,L*=RI,F*

the map a is an isomorphism by B4 b is an isomorphism by B2 and c¢ is
an isomorphism because F*® consists of flasque sheaves (see EE30(iii)), which are
I,-acyclic. Hence d is an isomorphism.

(ii). Since J is open, the first isomorphism is given by BZIH(i). By BIR(i),

RIJF* € D;Et(DC), and so the second isomorphism is given by (i).
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Let X be a noetherian formal scheme and F* € DS (X). For any = € X, set
Z = {x} and let J be the largest coherent ideal defining Z, so that J is open and
the stalk J, of J at x is the maximal ideal my of Ox ;. Then BITO(ii) and BTH(iii)
give natural isomorphisms

(6) RILRINF® = (RIRIYF®), = (RI; F*), 2RI, F:.

LEMMA 3.1.10. Let f: X — Y be a map of noetherian formal schemes. Then:
(1) f*(Aqe(¥)) C Age(X).

(ii) The category Aqc(X) is closed under tensor products.

(iii) For any sequence t in T'(X,Ox), and j > 0, we have KI_(t) € Az(X).

PROOF. (i) holds for any map of ringed spaces.
(ii) holds over any ringed space.
(iii) holds because K/ (t) is a lim of finitely-generated free Ox-modules. O

LEMMA 3.1.11. Let f: X — Y be a map of noetherian formal schemes, y € Y,
and M a zero-dimensional Oy ,-module. Let M =i,M be the corresponding Oy-
module Z3H). Suppose G € Aqc(X). Then for any x € X such that f(x) # y, and
any j >0,

HIRI(f*M®x G) =0=Hl, (f*MoxG)..

PROOF. Set F:= f*M ®x G. By EZ3, M € Aq(X), and hence by parts (i)
and (ii) of BTT0, F € Aqc(X). By (@), there is an isomorphism HJRIYF = H}, F,
with m,the maximal ideal of Oy ,. We consider two cases:

(a) When f(z) ¢ {y}, the stalk of M at f(z) is 0, so (f*M), =0, F, = 0, and
Hj, F,=0.

(b) When f(z) € {y}, there exists a non-unit t € Oy, f(z) Whose image under
the natural map Oy ¢) — Oy, is a unit in Oy ,. Then ¢ acts invertibly on M
(since M is an Oy ,-module) and hence on F, and hence on H) F,. But the
image of ¢t under the natural local homomorphism Oy)f(m) — Ox , lies in m, and
therefore every element of the m,-torsion module H}, F, is annihilated by a power
of t. Thus H}, F, =0. O

3.2. Cousin complexes. We will use the notion of Cousin complex as in [T1],
Chap.IV]. (Additional properties in a more general context may be found in [25].)
We first review the relevant definitions.

Throughout this subsection X denotes a noetherian topological space in which
every irreducible closed subset has a unique generic point; and X is assumed to be
equipped with a filtration

(7) Z*: -..Dzplozr D zPth... (ZP C X)

satisfying the following conditions (cf. [1T] p. 240]):

(a) It is strictly exhaustive, i.e., ZP = X for some p € Z.

(b) It is separated, i.e., (),27 = 0.

(c) Each ZP is stable under specialization.

(d) For any p, if  ~ 2’ is a specialization and z,2’ € ZP \ ZPT! then z = 2’
Corresponding to the filtration Z® there is a filtration by subfunctors of the identity

functor:
F.: "'QFZT’*12FZ1”2FZT’+1"'
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Recall that for Z C X and F an abelian sheaf on X, I, F is the sheaf of sections of F
with support in Z, so that I, is an idempotent left exact functor. Recall also that
for x € X, I, F is the stalk at x of 1}7}_7:. One sets sz/zpﬂ]::: I, Fll,, . F.

In [Tl p.226] there is defined, for any flasque abelian sheaf F on X, an iso-
morphism (with i, as in Z3H)

(8) Iyw goin 7' — @ ix (L, F).

zeZr\Zr+1
This isomorphism arises thus: for any open U C X and ¢ € (I, F)(U), the support
of £, a closed subset of ZP N U, contains only finitely many z € ZP \ ZP*!; hence
the stalk of I,, F at any such z is I, F, and the resulting natural map

LnF— ] iF)
xeZP\ZP+t
has kernel I, F and image @y zv\ zp+1} 12 (1 F).

As homology commutes with direct sums (X being noetherian), and i, is an
exact functor, we can replace any homologically bounded-below abelian complex F*
on X by a flasque resolution] and deduce a canonical functorial isomorphism
(H) ng/zp+lf.:: HnRFZp/ZP+1f. - @ ’LI(H;l]:.)

zeZr\Zr+l

An abelian sheaf G is said to lie on the ZP/ZPT!—skeleton of X if either of the
following two equivalent conditions are satisfied ([I1I, p. 231]):

e There is a family of abelian groups (G,) (z € ZP \ ZP*!) and an isomor-
phism G ¥ ®i,.G,.
e The natural maps G «— [,,G — H%p/zpﬂg are isomorphisms.

Thus for F* as above, the sheaf H7, .., F* lies on the 7P | ZPT1-gkeleton of X.

A complex of abelian sheaves G®* on X is called a Z°-Cousin complez if for
each p € Z, GP lies on the ZP/ZP*1-skeleton of X. The reference to Z* is dropped
in case of no ambiguity. Since Z? = X for some p, a Cousin complex is necessarily
bounded below. The individual graded pieces GP, being direct sums of flasque
sheaves, are themselves flasque.

By definition, the underlying graded object of a Cousin complex G® on X
admits a decomposition parametrized by the points of X, and this decomposition is
finer than the usual Z-graded decomposition of G® as a complex. Specifically, one
can associate to each € X the abelian group G*(z) underlying I, G*; and since
for any group G, I, (i,G) = 0 whenever = # y, the complex I, G® vanishes in all
degrees other than that p = p(z) such that z € ZP \ ZP*! so G*(z) = I, G"®). In
particular, there is a canonical isomorphism

¢: " = P i.(Gw),
zeZp\Zr+1
uniquely determined by the property that for any z € ZP \ ZPT!, the natural map
G*(z)=1.G? L@, G*(z) is the identity map.
Let G® be a Cousin complex of abelian sheaves on X, and let Ox be a sheaf
of commutative rings on X. If each G*(x) has an Ox_ z-module structure then all

4The necessary I -acyclicity properties of flasque sheaves are given in |11}, Chap.IV, §1].
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the component sheaves GP have natural Ox-module structures. Thus specifying
a Cousin complex G* of Ox-modules with Ox-linear differentials is equivalent to
specifying the following data:

e for each € X, an Ox ,-module G*(z);
o for each immediate specialization z ~» y in X, an Oxy-linear map
Ouy: G°(2) — G*(y);
subject to the following conditions:
e for each ¢ € G*(x), 64,4(€) = 0 for all but finitely many y;

e if ¥ ~» 2z is a specialization with € Z? and z € ZPT2, then ¥, 8, .0, = 0
where y ranges over the set of all intermediate specializations x ~ y ~» z

with x # y # z.

Let X, Ox and Z* be as before. To every F* € DT (X) one associates func-
torially a Cousin Ox-complex Eze F*®, as follows. Let £* be an injective resolution
of F*. From the natural exact sequence

0= Igpir [ Igp12 L — Do [T 010 L — Iy [ 17,42 L% — 0 (p€2),
one derives connecting homology homomorphisms (see LA (i)
P HZP/ZP+1]:. — ngil/zp+2‘7_—.7
whence the sequence

-1 o OP7 o OF 1 .
9) S ng—l/zp]: — ng/zwlf I H§1_+1/ZP+2‘7: -

which is in fact a complex, denoted Eze F*, with degree-p component H?}, JZpH1 Fe.
(The filtration T'® of the identity functor gives rise to a spectral sequence whose
EY 0 terms form the complex EzeF*. The spectral sequence converges to the
homology of F* when X has finite Krull dimension, see [I1], p. 227, p.241].) The
isomorphism in (§) shows that Ez«F*® is a Cousin complex; and if x € ZP \ ZP*!
then there are natural isomorphisms

(10) (B F*)a) = (B £ L( @ aurE) = mre
yeZr\zZr+1

Here are some basic properties of Cousin complexes, to be used in the next
subsection.

LEMMA 3.2.1. Let X, Ox and Z°® be as before. Set E:= Ez.. Let C*® be a
Cousin Ox -complez.

(i) [a] For any m > n,p € Z and x € ZP the natural maps are isomorphisms
0>,C* =1,.C* = RI;.C*,
UZn0<mC. == -l—‘Zn/ZmC. - R—l—‘Zn/ZmC.7
C*(z)[-p] = L,C* = RI.C".
There result natural isomorphisms:
[b] HPRI;C® = HPC® = C*(x) = HP(C*(x)[-p]);
[c] HPEF*® ﬁ» (EF*)(x) a HPF* (F* e DY(X)).
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~

(ii) The graded isomorphism EC® <= C*® made up of the punctual maps
(EC®)(z) = Z;HPRFZP/ZPHC. ﬁ) I;HPFZP/ZP+IC. =I1,C" =C*(x)
is an isomorphism of complezes.
(iii) The punctual isomorphism in (ii) factors as

EC*)(x) = HEC®* = C*(z);
(BC) o) 2 HIC® = C*(2)

and hence the following diagram, with F*, x and p as in (i)[c], commutes:

(BEF*)() —— (EF*)(x)
ml: :lm

HPEF* _— HPFe
)le]

PrROOF. For any Z' C Z C X, flasque sheaves are acyclic for the functors I,
and I, (28], p. 37]). Since a Cousin complex consists of flasque sheaves, (i)
results.

For (ii), we note first that in the above definition of EF*® we can replace £* by
any flasque resolution of F*; so when F* is a Cousin complex C®, we can take L*®
to be C* itself.

For any integer p, there is a natural commutative diagram with exact rows:
C* —— [ c* —— 0

[ ]
0 —— FZp+1/Zp+2C E— FZP/ZP+2 AYVASE

0 —— = 1] —— ryogunlC® —— Ol —— 0

An examination of the p-th connecting homology homomorphisms derived from the
rows (see ([@)) makes (ii) clear.

With C* = EF*, the second assertion in (iii) amounts to commutativity—given
by the first assertion—of the square in the following diagram.

(BC*)(z) — ¢o(x)

| m |

gres O ceyy M g

For the first assertion, we can use C® instead of L* to describe derived functors
(see above). Then the definitions of the maps involved tell us that what has to be
verified is commutativity of the following diagram [BZZTI11) of natural isomorphisms,
where the direct sums are all extended over y € ZP \ ZP*1. But in that diagram,
commutativity of subdiagram [0y follows from the description of the map in (§);
and commutativity of the remaining subdiagrams is straightforward to check. O

Let (X,A) € F, (see §T)). Then the codimension function A determines a
filtration Z* of X with

ZP ={zx € X| A(z) > p}.
This filtration satisfies the properties (a)-(d) listed near the beginning of §82A
(Property (a) is satisfied because A is bounded below by the least of its values at
the generic points of the finitely many irreducible components of X.) For this Z°,
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LHL,, ,nC ——  LHYC[-p) — ——  LCP

o !

LHP((@©iyC*(y))[-p]) —— L(®iyC*(y))

|

LHP(®©i, 1, C*) —— I, H?(® (i,C*(y)[-p]))
L (@i, HPI, C*) —— L (@i, H(C*(y)[-p])) —— L (Di,C*(y))

l l l

HILCC s HC@[p) )
BzZ11)

a Z*-Cousin complex is called a A-Cousin complex, and the Cousin functor Eze is
denoted by Ea. The relation of Ea to translation is immediate from the definition
of Eze: for any complex F* and integer n,

(11) EA_n(]:'[n]) = (EA]:.)[TL]

Our main interest is in the full subcategory Coza(X) C C(X) whose objects
are those A-Cousin complexes whose underlying modules are in Aqe(X).

Let (X,A) € Fe, z € X, F* € D/ (X), G*:= EARIYF*. Then the composition

g* () T, grriyFe : @m

HE T
is a natural isomorphism
(12) G*(z) = Hp Fy  (p=Ax)).
From 23 A it follows that G* € Coza (X).
LEMMA 3.2.2. Let f: (X,A1) — (Y,Az) be a flat map in Fe, M® a complex
in Coza,(Y) and P*® a flat quasi-coherent Ox-module. Let x € X and q:= As(f(z)).

Then for any i € Z, with o the truncation functor of YIA@), and ®:= R, the
natural maps are isomorphisms

H, (ffosqM®®@P%), =~ Hy, (fM*@P*), = H, (ffocgM*@P*),,
HRIZ(f*o5qM® @ P*) =5 H.RIY(f*M* @ P*) = HIRIY(f*0<qM® ® P*).

PROOF. The first two maps are isomorphic, respectively, to the last two, see (@),
so it suffices to show that the last two are isomorphisms. Since f and P*® are flat,
the natural exact sequences

0— oxgM®* = M®* = 0<cq 1 M* — 0,
0— o5g+1 M®* = M®* = o<, M®* — 0.
induce exact sequences
0= ffo>gM*®@P* = ffM*@P® — ffocg 1 M*@P* — 0,
0— ffo5>q1 M*@P® = fAM*@P®* — ffocaM* ®@P* — 0.
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Applying the derived functors RI;, RI} to the triangles in Dy (X) arising from the
last two exact sequences, we get triangles in the derived category of complexes
of Ox, z-modules. The resulting long exact cohomology sequences show that for the
lemma to hold it suffices that for all 7,

(13)  HIRI(ffo<cqiM*@P%) = 0 = HRIX(f 05001 M® @ P°).

But ([@3)) follows by induction from BTl For example, in the case of o441 M*®
we have for any n > 1 an exact sequence
(14) 0= 05gint1M® = 05010 M® = M [—qg—n] — 0.
Since M1 = @, i, M*(y) where y # f(x) (since Aq(y) # q), BT yields

HRF(ffMT™[—q—n]@P*)=0 Vi
Therefore from the long exact sequence corresponding to ([[dl) we conclude that
HIRIE(f* 05 gin i1 M® & P*) 2 HIREL(f 05420 M* & P*).
Hence by induction on n we see that for all n > 1 and for all <,
HIRE(f 02001 M* © P*) = HIRE(f 02000 M* © P*).
But for a fixed ¢ and for n sufficiently large, the right hand side is 0, and thus
HRI(f*05q+1M*@P*) =0 Vi

A similar argument works for o<4—1 M?®. O

Applying BZ2A with o<, M?* in place of M*®, and using BETTIl we conclude:
COROLLARY 3.2.3. In the situation of BZZA there are natural isomorphisms
Hp (MO @P%)e == Hp (fMI-q@P%). == Hpi(M(y)®o,, P:)

(G)l2 (G)lz Zl(ﬁ)

HRIZ(f*M* @ P*) = H;RI{(f*M[~q]®P*) == H; "RIY(f"iyM*(y) @ P*)

3.3. Cohen-Macaulay complexes. Let (X,A) € F. and let Z* denote the
filtration of X induced by A, ie., ZP = {z € X | A(z) > p}. We say that a
complex F* € DT(X) is Cohen-Macaulay with respect to A (in short A-CM, or
simply CM) if it satisfies the following equivalent conditions (cf. [I1l p. 242], (i) <
(ii), where the boundedness assumption on F* is not used):

(i) (a) For all integers i < p, Hy, F* = 0;
(b) For integers ¢ > p the canonical map H},F* — H'F*® is surjective
when ¢ = p and bijective for ¢ > p (equivalently, H)l( /Zp]: * =0 for
i > p);
(ii) For any z € X, HLF* = 0 for i # A(x) (equivalently, for any integers
{ #pv HéP/ZP+1‘F. = O)

Let DT (X; A)cm be the full subcategory of D (X) whose objects are A-CM
complexes. We now recall the relation between A-CM complexes and A-Cousin
complexes. For the next few results we set aside considerations of quasi-coherence

and torsionness. For convenience, we suppress the reference to the codimension
function A in our notation. Thus £ = Ex and DT(X)cm = DF(X; A)om.



42 J. LIPMAN, S.NAYAK, AND P. SASTRY

Let Cou(X) C C(X) be the full subcategory of Cousin complexes. A basic
property of Cou(X) is that if two maps h, k from F* to G* in Cou(X) are homotopy
equivalent, then h = k. (More generally, for integers p > ¢ any map from F? to G4
is zero since for any z,y € X and abelian groups F, G, we have Hom(i, F, i,G) = 0
if y ¢ {x}.) So Cou(X) can be considered as a full subcategory of K+(X). Then
the localization functor Q: K(X) — D(X) takes Cou(X) into DT (X)cm. Indeed,
by (i) of B2l for any C* € Cou(X) and z € X, with p := A(z) there is an
isomorphism HJC®* = HJ(C*(z)[—p]) and therefore HIC* = 0 if j # p. Thus
@ induces an additive functor

Q: Cou(X) — DT (X)cm-
Let us elaborate. With
C:= Cou(X), D:=D"(X)cm,

we shall assume for the rest of this subsection that @ (resp. E) is a functor from
C to D (resp. D to C).

PROPOSITION 3.3.1. With preceding notation, the functor Q: C — D is an

equivalence of categories having FE as a pseudo-inverse equivalence. In particular,
E is fully faithful.

PrOOF. That @ is an equivalence of categories is one of the main results
(Theorem 3.9) in [25]. Let S: D — C be a pseudo-inverse equivalence. Since
EQ = 1g BZIii)), there are isomorphisms £ =~ EQS) = S. Thus E is a
pseudo-inverse of Q. O

COROLLARY 3.3.2. Let EQ == 1g be the isomorphism of BZIii). Then
there exists a unique isomorphism of functors S = Sx a: 1y == QE such that the
following two induced isomorphisms are equal:

E =Flg — EQE, E =1gF = EQE.
Furthermore, the following induced isomorphisms are equal:
QEQ — Qlg = Q, QEQ — 15Q = Q.

PROOF. Since E is fully faithful, for any F* € D the map EF®* =~ EQEF®
given by F = 1gF =~ EQFE comes via E from a unique functorial isomorphism
F* = QEZF* that fulfills the first assertion. The second assertion need only be
shown after application of the functor F, at which point the first assertion reduces
the problem to showing that the following isomorphisms are equal

EQEQ — EQlg = EQ, EQEQ — 1gEQ = EQ,
which is easy to do after composition with the isomorphism EQ) -~ 15. O
COROLLARY 3.3.3. For any F* € D the isomorphism S(F*®): F* =~ QEF*
obtained in is the unique one satisfying the property that for any z € X,

with p:= A(z), the induced isomorphism HPS(F*®): HEF®* =~ HEQEF?® is the
inverse of the isomorphism in B2ZINi)[c].
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PROOF. Let ¢: F* =5 QFEF*® be an isomorphism. Consider the following
diagram, where the vertical isomorphisms are given by the punctual decomposition

of E(—) in ([):
(EF*)(x) (EQEF*)(x) —2—C%. (EF*)(x)

| ! g

H?F* —— HPQEF®* —— HPF*
HY¢ B2 T[]
The rectangle on the left commutes for functorial reasons, while the one on the
right commutes by B2ZI(iii). If ¢ = S(F*), then by B3 the top row composes
to an identity map, and hence so does the bottom. Conversely, if the bottom row
composes to an identity map, then so does the top. Since this holds for every x € X,
EQ = 1g
therefore the composite map EF*® £, EQEF* @ “)c EF* is identity and
hence ¢ = S(F*). O

(Ed) (=)
—_—

Let 2 € X and p:= A(z). Any Ox-complex C*®, has the subcomplex I%T}C.’

and for the stalks at = there is the inclusion map v = y(z,C*®): I,C®* — C2. Since
“stalk at x” is an exact functor, Q-+ factors naturally as

r.c* »RInce Lce
with ¥ = (z,C*) a D(Ox,,)-morphism. So for F* € D*(X) there is a natural
map

m = m(z, F°): (HLF*)[-p] a (EF*)(x)[-p] = LLEF* L (EF*),.

If 7* € D then by definition, H:F*® = 0 for i # p. Hence the natural maps
(see Y[ (m)) are isomorphisms
RLF® =5 m,REF® < 7y R F* = (HYF*)[—p).
Let 1y = ny(z, F*) be the resulting isomorphism RI, F* - (HEF®)[-p].
COROLLARY 3.3.4. For any F* € D, set £*:= QEF* and let v: F* — E* be
the isomorphism given by B3I Then with notation as above the following diagram
in D(Ox, 5 ) commutes:

Fr o= &

T

d| [

RIF* o (HLF®) 1)

2

ProoF. Expand the diagram thus:
Fo — Fo (EF*),

x
x

"YT (P Tnl () Tvz

RLF —— (H2F*)[-p) —=— (BF*)(a)[-7 L (EF*)
|:|3 MT:
RI, F* —— RI,E*

RI v



44 J. LIPMAN, S.NAYAK, AND P. SASTRY

By definition, the rightmost column composes to ¥(z, £®), and so the outer border
of this expanded diagram commutes.

Subdiagram [0y commutes by definition.

According to B33 application of the homology functor H? to subdiagram [
produces a commutative diagram. But that means [J3 itself commutes, because its
vertices are complexes which have vanishing homology in all degrees except p, and
H? is an equivalence from the full subcategory of such complexes in D(Ox ;) to
the category of Ox ;-modules (with pseudo-inverse F' — F[—p]).

It results then that [J; commutes, as asserted. ([l
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4. Generalized fractions and pseudofunctors

Below we recall the definition of a pseudofunctor. In EE3] we give a modified
version of Huang’s pseudofunctor constructed in [I3]. Various components of this
pseudofunctor have an explicit description in terms of generalized fractions. Gener-
alized fractions are useful in denoting elements of certain local cohomology modules.
In 1] we review the definition of generalized fractions and state the relation be-
tween two different competing definitions. In §£2 we review some isomorphisms
that are needed to describe the pseudofunctor discussed in EE31l In §EE4 we prove
a somewhat technical result which is mainly used in proving commutativity of the
diagram in {3) in 4

A contravariant pseudofunctor ‘4’ (or (—)#) on a category C assigns to each
C-object X a category X7, to each C-morphism f: X — Y a contravariant func-
tor f#:Y# — X%, to each C-diagram X L.y 2 Z a functorial comparison
isomorphism Cﬁg: f*g” = (gf)*, and to each C-object Z a functorial unit iso-

morphism 6?: (17)# = 144, all subject to the following conditions:

i) For every triple of morphisms X oy 27 " Woin C the following
associativity diagram commutes.

4o I7CTn e
[7g7"h?" ———= f7(hg)

# o #
CF gl l lcf,hg

(9f)#n# —Q (hgf)*
gf,h
ii) For any map f: X — Y in C, the following two compositions are identity

#

C 5#*1f#
N
(1X)#f# xS f# X

(1x)* 7,
ct, pHo# !
f#(ly)# v f# e SEEEN f#(ly)#.
If necessary, we also use the cumbersome notation of a quadruple
(ot 0 dty)

to denote the pseudofunctor ‘#’ where the first entry operates on the objects of C,
the second on morphisms, the third on pairs of composable morphisms and the
fourth on objects of C, all having the obvious meanings as per the definition above.
A covariant pseudofunctor is defined by associating to each morphism in C a
covariant functor which is required to satisfy appropriately modified compatibility

conditions. We will use the subscript notation (—)4 when dealing with covariant
pseudofunctors (cf. [I3] chapter IV]).

Remark. The definition is simpler when for all Z, (17)# = 1,4 and 5? is the
identity map. A pseudofunctor satisfying these additional conditions is said to be
normalized. Replacing the functor (17)# by 1,4 for every Z and replacing C}% g by
C’j; whenever f or g is an identity map transforms any pseudofunctor (—)# into
an isomorphic (in the obvious sense) normalized one.

A normalized contravariant pseudofunctor on C is the same thing as a con-
travariant 2-functor from C to the 2-category of all categories.
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4.1. Generalized fractions. Let A be a noetherian ring and M an A-module.
Let t = (t1,...,t,) be a sequence in A and let a denote an ideal in A such that
Va = VtA. Then the elements of the local cohomology module H}M can be
represented in the form of generalized fractions of the type

m
[t?l,...,t?f]’ m e M, b; > 0,
however there are two natural ways of doing so which we now review. We state the
relationship between these two ways in Lemma Tl

The first method involves using the Cech complex. Let X = Spec(A), let Z
denote the closed subset of X defined by the ideal a and let U denote the comple-
ment X \ Z. Let 4 = (Uy,...,U,) denote the affine open covering of U associated
to the sequence t where U; = Spec(4;,). Let C*(4, M) denote the Cech complex
of A-modules for the sheaf M N’U (see ZZZTI), corresponding to the cover U of U.
Let M — I°® denote an injective resolution of M. Then M~ — I°*"~ is a flasque
resolution, in fact a resolution by Aqc(X)-injectives. We may therefore make the
identification H*(U, M~) = H*T'(U,I1*~). The complex C*(4, M) exists between
degrees 0 and n — 1 and we have a natural map

(15) My, = C" YW, M) —» HM1C*(U, M) 2 H Y (U, M~) -5 H' M.

where « is the standard isomorphism relating the Cech cohomology to the usual
one (see [12, IIT, Lemma 4.4]) and 7 is the usual connecting homomorphism in the
homology long exact sequence associated to the exact sequence

0L I*—1I*—T(UI*"™)—0.

The map 7 is surjective for n > 1 and an isomorphism for n > 1. Therefore any
element § € H'M is the image of an element in My, ..+, . This leads to one way
of representing a cohomology class by a generalized fraction, viz., for 6 € H}M,
for m € M and for positive integers b; we say that

m
9:
[tll’l,...,tfl"]c

(the subscript C stands for Cech) if the element

m
B b S Mtl"'tn
t ety

goes to 6 under the natural map of [[H). We call such a generalized fraction a
C-fraction representing 6.

The second method involves the direct-limit Koszul complexes. Let K2 (t)
denote the direct-limit Koszul complex on t over A. With I*® denoting an injective
resolution of M, there are natural quasi-isomorphisms (with ® = ® 4)

KL(t) @M — K3 (t)@I° — I ,I*=11I°. (cf. BT
Therefore we have a natural map
(16) My, =KLt) M — HY (K, (t) @ M) =2 HIM.
We represent any 0 € H' M by a generalized fraction

m
9:
[til,...,t%ﬂh
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(the subscript K being for Koszul) if the element
m

—— € Mt ot
o gl !

n

goes to 0 under the natural map of ([H). We call such a generalized fraction a
K-fraction representing 6.

LEMMA 4.1.1. With A, M,t,n as above, for any m € M and integers b; > 0
with i between 1 and n, the following relation holds.

m m
:—1"
[tll’l,...,t%"]K ( >Lg1,...,t¢;L

PROOF. Before we begin with the proof we will take a short digression regarding
Cech resolutions. Let X = Spec(A), U, { be as above. Let Oy — €* denote the
corresponding Cech resolution of Oy on U. For an A-module N, set Ng =N~
We now recall some basic facts concerning C*.

The complex C® consists of flat Oy-modules. For any A-module N, the natural
induced map Ny — €®*®y N7 can be canonically identified with the corresponding
Cech resolution and if NV is injective, so that N7 consists of Aget(U)-injectives then
C* @y N7 also consists of Aqei(U)-injectives. Set C* =I'(U, C*). Then C*® consists
of flat A-modules and there is a natural isomorphism

C* @4 N == I'(U,C* @y Nj) = C*(U,N).

U

It follows that if M — I°® is an injective resolution then in the following diagram
having obvious natural maps,

My —— €* @y My

(7) | B

I 2 ey I

all the maps are quasi-isomorphisms and (2 has a homotopy inverse. Moreover,
there are isomorphisms

HC*(U, M) = HT(U,C* @y M) ——— H'T(U,C* @y I3

via Bl
——— H'T(U,It7") = H'(U, My).
via B,

It follows that the map « in ([[H) is obtained from this process. It then follows that
the map My, ..., — HI'M of ([[3) is also obtained from the sequence
Moty = €™V @4 M H' (O™ 04 M) —=— H(C" @4 T°)
via 31
— S g U) e HOL I
via B,
Finally, we recall that C* is a displaced (and truncated) version of the complex
K*:= K2 (t). More precisely, for all p except p = —1, we have C? = KP*1 and
dfe = d? where d stands for the corresponding differentials. In particular, the

graded maps C? — KPt! defined as (—1)PT! times the identity map, form a map
of complexes ¢: C* — K°[1].
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Returning to the proof of LTIl consider the following diagram with maps de-
scribed below (we use ® = ®4 for the rest of the proof).

H 1 (C*o M) 2o H Y K*[1]o M) —2— H"(K*® M)

s 2 [ s

(18) H"Y(C*®I*) —— H"YK*[l]®I*) —— H"(K*®1I*)

TMS Tug
HY(1*~(U)) —— H"I I® — H"I[I*
H1o
The maps p1, pe are induced by ¢ ® 1. while uo, 7 are induced by the natural
isomorphism K*[1]®@ — == (K*®—)[1] obtained using the convention in §L4 ().
It follows that the underlying maps of complexes of uo, 17 are identity maps at the
graded level. The maps us, 4, 5 are the obvious natural ones. The map ug is the
isomorphism induced by £; in ([[@). In particular, the underlying map of complexes
of ug is given, at the graded level, by the restriction maps

"™U) — @ I = C'1IP C (C*oI°)".

The map pg is the usual isomorphism (see BZIl) while u1¢ is the connecting homo-
morphism referred to in the definition of n in (IH).

It suffices to show that the diagram in [[¥) commutes. Assuming that ([IX)
commutes, one proves the Lemma as follows. The composition p10ptg 1113 defines the
map used in ([F) while the composition g ' u5 defines the map used in ([@). From
the definitions involved we see that the map pop1 sends the cohomology class of the
cocycle ﬁ € C" ' ® M to the cohomology class of (—1)"t n—c K"®@ M,

5 b
-

thereby ;;roving the Lemma.

In @) the top two rectangles commute due to functorial reasons. To prove
commutativity of the bottom part, consider an element ¢ € H"~1(I*~(U)). Since
the natural map I"~! — I"~1~(U) is surjective (as "1~ is flasque) there exists
an element, say z, in I"~! whose restriction to I"~1~(U) is a cocycle mapping to (.
Let §° denote the differential of the complex I®. Then 6"~z maps to zero in I"™(U)
and so lies in I, I™ and is an n-cocycle in I; I". From the definition of 1119 we see
that p10(¢) = [6"~12]. Under the natural map IJI" — I" = K@ " C (K*®@I*)"
the element d" 'z maps to 1 ® 6"~z and therefore we have

popio(¢) = [1 @™ 1z].

Traveling the other route in the bottom half of ([[J), under the sequence of natural
maps I" — ["7™(U) — @J,Z‘l =C'® 1" C (C*®I*)"!, the element z
goes to y:= (z/1,...,2/1). Therefore us(¢) = [y]. Considering y as an element
of K' ® I"~! via the identification K = C°, we see that

prpsis(C) = [—yl.

To finish the proof we must verify that pgpi0(¢) = prusps(¢), which amounts
verifying that the element 3 = 1 ® 6" 'z + gy in (K*®* ® I*)" is cohomologous to
zero, i.e., 3 is a coboundary. The element vy = 1® 2z € K°® I" C (K* @ I[*)"~!
maps to 3. (I
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From now on, unless specifically mentioned, all generalized fractions, by default
are C-fractions.

As a final remark note that, with notation as above, if J is an ideal in A
such that M is J-torsion, then the natural induced map Hy;, ;M — HzM is an
isomorphism. In particular, we may also represent the elements of H[, ;M by
generalized fractions.

4.2. Some local isomorphisms. We now describe some local isomorphisms
that form the base of the construction of a pseudofunctor over local rings. By
default, any local ring is considered a topological ring under the topology given by
the powers of the maximal ideal. If any letter such as R, S, A, B, ... denotes a local
ring then the corresponding maximal ideal is denoted by mgr, mg,ma, mp,.. ..

Let R — S be a local homomorphism of noetherian local rings. Let M be
an mpg-torsion R-module and L an S-module. Let }A%, S denote the respective
completions of R, S along the corresponding maximal ideals. Then M can nat-
urally be considered as an R-module. Set L:= L ®s S. For any integer r, the
S-modules H;, (M ®g L) and Hom%(S, M) (where Hom% denotes continuous Hom
as R-modules) are mg-torsion modules and hence naturally inherit the structure of
an S-module. Moreover there are following isomorphisms.

For any integer r, there is a natural isomorphism
(19) H}, (M ®p L) = H}, (M ®g L)
defined by the following sequence of natural maps (with m = mg, m = mg)

H! (M ®p L) - (HL,(M @g L)) ®s S 2 Hl, (M © L) ®s S)

— Hj, (M ®p L) <= Hj, (M ®5 L) 5 H' o(M ® L) = Hp (M @5 L),
where «; are seen to be isomorphisms due to the following reasons. For a; we use
the fact that H;, (M ®g L) is mg-torsion, for az we use flatness of S over S, for az
we use that M is mp-torsion and finally a4 is the isomorphism corresponding to
extension of scalars.

The following natural map is an isomorphism

(20) Hom§,(S, M) — Hom%(S, M)
as is seen by taking direct limits over ¢ of the following sequence
Homp(S/mly , M) = HomR/m%(S/m%,M) = Homﬁ/m%(S/m%,M).

In the rest of this subsection we shall consider iterated versions of the isomor-
phisms in (@) and @0). These isomorphisms give the comparison maps of the
pseudofunctor in

4.2.1. Let A — B — C be local homomorphisms of noetherian local rings.
Let I be an ideal in B and N an I-torsion B-module. Let i = dim(B/I) and
j = dim(C/mpC). For any C-module Ly there exists a canonical isomorphism
(21) H), (H},,(N)®p Ls) =~ HJ(N @p L),

that is described in terms of generalized fractions as follows. Let s be a system of
parameters of length i for mp/I and let t be a system of parameters of length j
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for ma/mpC. Then [EII) assigns

- Lo

¢ ___){n@l} {n € N,l € Lo}.

s, t

(By varying s,t we see that (ZI) uniquely determines (ZII). The existence and
canonicity of Il follows from [I3, 2.5], recalled in &) below, modulo an iso-
morphism that reverses the order of the tensor product and a constant sign factor
depending only on 4, j. Also, see ATl for another definition.) Now suppose M is a
zero-dimensional A-module and L1 a B-module. Set I:= m4B. Then the module
N =M ®4 Ly is I-torsion and hence from (ZII) we obtain

(22) H), (H}, (M ®a L) ®p Ly) = H.7(M ®4 (L1 ®p L2)).

As in ), if s and t denote systems of parameters for mp/maB and m¢o/mpC
respectively, then ([Z2) is described in terms of generalized fractions by the rule

) [[m@lt} ®1la } . {m@)il,lt@ 12)]7

Finally, the isomorphism in (22) is compatible with passage to completion: Let
A B C denote the respective completions of A B, C along the corresponding max-
imal ideals. Set L1 =11 ®p B L2 =Ly ®¢c C. The following diagram commutes

H}, (H}, (M ®a L1) ®p Ly) —— HEJ(M ®4 (L1 ®p L2))

@) | |

Hﬂné(Hﬁné(M ®;L1)®p L) —— Hrz;j_éj(M ®z (L1 ®g L2))

{m S M,ll S Ll,lg S Lg}

where the rows are isomorphisms obtained using [2) and the columns are isomor-
phisms obtained by applying ([[d) iteratively.

For convenience of reference, we also recall the analogue of ([22) in Huang’s
convention for local cohomology and generalized fractions. Thus in Huang’s con-
vention, where the order of the tensor product is reversed, the iterated isomorphism
of [22) is written as (see [13], 2.5])

&) H), (Ly®p H}, (L1 ®4 M)) = H}((Ly ®p L1) ®4 M),
and at the level of generalized fractions, is given by
h®
|:ZQ ® [ lsm}:| N |:(lz ®ll) ®m)],

M,l Lq,1 Lot
t t.s {m e M,y € L1,ly € Ly}

4.2.2. For A,B,C, M as in ([Z2) there also exists a natural isomorphism
(23) Hom%(C,Hom% (B, M)) = Hom%(C, M)

corresponding to “evaluation at 1”. Furthermore the following diagram of isomor-
phisms induced by 1) and 23] commutes.

Hom$ (C,Hom$ (B, M)) —— Hom%(C, M)

() l |
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42.3. Let A,B,M be as in [Z2), and let J be an ideal in A. Let L be a
B-module. Set A:= A/J, B:= B/JB, L = L/JL. Then for any integer r there is

a natural map
(24) ang(HomA(Z, M) @4 L) — Homp (B, H), (M ®4 L))
defined by the following sequence (where N := Homa (A4, M), m = mp, M = mz)
H(N®x L)~ H(N®5L)~H (N®sL)=Homp(B,H, (N ®4 L))
— Homp(B, H!,(M ®a4 L)).

(Note that for a surjective map R — R, continuous Hom = usual Hom, i.e.,
Hom%(R, —) = Homg(R, —).) If we further assume that A — B is formally smooth
and L is flat over B and if r = dim(B/maB) then @4) is an isomorphism (JI3}
3.6]). Finally, the following diagram, induced by ([[@), @) and @) commutes.

Hy, (Homa(A, M) @5 L) —— Homp(B, H},, (M ©4 L))

@) | |

H,_(Hom (A, M) L) —— Homp(B, Hy, (M ®; L))

424. Let A L5 B — A be local homomorphisms of noetherian local rings
that factor the identity map on A. Suppose f is formally smooth of relative dimen-
sion r. Let t1,...,t, be a regular system of parameters of mpg/maB. Let M be an
m a-torsion A-module and L be a rank one free B-module with generator g. Then
there exists a natural isomorphism (depending on the choices t1,...,t. and g)
(25) Homp(A, Hy, (M ®4 L)) = M
which we now describe in terms of generalized fractions. In this case it is convenient
to first pass to the completions (see [1'& Chp. 5] for proofs of statements below).
Upon completlng A, B, L we get that B can be identified with a power series ring
over A, say B = A[[Ty,...,T,]] where t; maps to T;. Further, H” A(M ®3z L), as
an g—module, is isomorphic to a direct sum of copies of M, i.e., there is a natural
decomposition

-~ M, if i; > 0 for all j;
(26) anﬁ (MezL)=oM,. . My, = {0, othjerwise. !
Moreover if i; > 0 for all j, the canonical inclusion M = M;, . ;. — H,Tné (M®3z Z)
is given by
m— [ meg
T, .. T
It follows that the map M;, . ;. — M;, i1, 4., given by multiplication by T

----- r

is an isomorphism for ¢; > 1 and zero for i; = 1. In particular, the submodule

}, m € M.

of HZ;LE (M ®3 E) consisting of elements annihilated by T7,...,T; is precisely the
summand M; ;. In view of ([d) and @), we obtain the 1som0rph1sm in Z3).
Now suppose L= QA a and g = dT1 A ... ANdT,. Consider the natural maps

() Homé(A,ané(M ®3 %/g)) —— Hy, (M ®; Qé/g) 22 M =M,

where 7 is the canonical inclusion and res is the projection map induced by (24).
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Then res, which a priori depends on the choice of variables Ty, ...,7,, is in fact
independent of such a choicdl. Since res is canonical it follows that &3) defines a
canonical isomorphism. In terms of generalized fractions ([0 is given by

mdly A...\NdT,

@) me T,....T,

4.3. Pseudofunctors over local rings. We now describe a canonical pseudo-
functor over local rings, one that forms the base for the pseudofunctor that we
construct over the category F of formal schemes. Let € denote the category whose
objects are noetherian complete local rings and whose morphisms are local homo-
morphisms that are essentially of pseudo-finite type (see §Z1I). By EZZH(i), our
definition of € agrees with the one in [I3] p. 28]. Note that € is anti-isomorphic
to the full subcategory of connected zero-dimensional formal schemes in F. By a
smooth map in € we mean a map which is formally smooth under the topology
given by powers of the corresponding maximal ideals.

THEOREM 4.3.1. For any ring R € €, let Ry denote the category of zero-
dimensional R-modules. Then there exists a canonical covariant pseudofunctor (—)y
on € and a choice for isomorphisms as in I(i) and I(ii) below, such that II-IV below

are satisfied. (The terms Cﬁ(f)’(f) and 5&7) used in Il refer to the comparison
isomorphisms associated with (—)4).
I. (i) If f: A— B is a smooth map of relative dimension r in €, then for
any M € Ay, there is a natural isomorphism (where wy = Q%/A)

fiM = Hy, (M ©awp).
(i) If f: A — B is a surjective map in €, then for any M € Ay, there is
a natural isomorphism

fsM =% Homu (B, M).

II. (i) Let A L. B 2, € be smooth maps in € having relative dimensions
r1,Te respectively. Let t1,ta denote the transcendence degree of the
induced maps of residue fields ka — kg and kg — ko respectively.
Then for any M € Ay, the following diagram commutes

Cf,Q
gs fyM R (9f)sM

Hpy (HI (M ®awyp) @pwg) —— HRI (M @4 wgy)

where the vertical maps are obtained by using 1.(1) and the bottom row
is (—1)"*"2 times the map given by 22) and the natural isomorphism
wf ®pwg —= wgr induced by the exact sequence in D2

5The map res is called the residue map.
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(ii) Let A B2 O be surjective homomorphisms in €. Then for any
M € Ay, the following diagram, whose vertical maps are obtained
using 1.(ii), commutes.

gz [y M S, (9f )M

! !

Hom(C, Hom (B, M)) —22—. Hom(C, M)
(iii) Let f, A, B, M,r be as in 1.(i). Let J be an ideal in A. Let f: A — B
denote the map induced by going modulo J. Let A - A, B <> B

denote the canonical surjections. Then for any M € Ay, the following
diagram commutes

—_ ey’ .
fayM BEE— JsfsM

| !

H" _(Homu (A, M) ®Zw7) ——  Homp(B, H (M ®awy))

mg
where the vertical maps are obtained using 1.(1),(i1) and the bottom
row is given by @) and the natural isomorphism wy @p B = wy.

(iv) Let A BT Abe maps in & such that mf =14 and f is smooth
of relative dimension r. Then for any M € Ay, the following diagram,
with vertical maps induced by 1.(1),(ii), commutes.

el
Ty [y M d M

! Lo

Homs(A, Hj,, (M @awp)  —2 M
II. If f: A — A is the identity map, then for any M € Ay, the following

isomorphisms
f]jM by I,(i) HSLAM canonical M, fﬁM by I,(ii) HOHlA(A,M) canonical M,

agree with the isomorphism induced by 5&4: fr = la,.
IV. For any map f: A — B in &, f; takes an injective hull of the residue
field ka of A to an injective hull of kp.

The proof of EE31is based on Huang’s result [T3} Theorem 6.12]. We also need
the following lemma for the proof.

LEMMA 4.3.2. Let ((—)a, (—)Q,Cé_)’(_),5g_)) be a pseudofunctor on €. For

any two maps R L8 LT set Cg’g = (=1)12019 where t1,ty are the tran-
scendence degrees of the induced maps of residue fields kr — ks and ks — kr

respectively. Then ((—)a, (—)a,Céf)’(f),égf)) is also a pseudofunctor on €.

Proor. This is a straightforward verification. O
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Proof of E311 In [I3], Huang constructs a canonical covariant pseudofunctor
on ¢ which we denote, following Huang, by ‘#’. For any ring R in €, Ry is the
category of zero-dimensional R-modules and so Ry = R;. We define ‘§’ as the
pseudofunctor obtained by modifying ‘#’ using B3 Then for any map f: A — B
in €, we have f; = fx. In order to prove properties I-IV for ‘" we now recall some
properties of ‘#’.

Let f: R — T be a morphism in € and let R - S 5 T be a factorization of f
where 7 is a smooth map of relative dimension r. For any M € R, set

(n,m)%#M :=Homgs(T, H,,  (wy ®r M))

(cf. I3l p. 29] where Huang uses the somewhat ambiguous notation 1770# instead).
The construction of (—)4 provides a natural isomorphism

(27) JaM == (n,m)4M, see T3, p. 33].

Note that the order of the tensor product w, ® g M occurring in (n, )4 M is reverse
to the one we work with, such as the one in I.(i) of L3l Our next task includes
redescribing Huang’s (—)x in our convention.

For f as in L.(i), consider the factorization A L. B =5 B. We define the
required isomorphism in I.(i), to be given by the following sequence

(28) fiM = fuM "B (f,15)p M S0 T, (wy @4 M) = H, (M @4 wy)

where the last isomorphism is induced by the obvious map wy®a M = M ® 4 wy.
For f as in L(ii), consider the factorization A — A — B. We define the
required isomorphism in I.(ii), to be given by the following sequence

(29) FM = fuM F (14, £)uM 2 Homa (B, M).

Now under the hypothesis of part IL.(i) of the Theorem we claim that the
following diagram commutes where the vertical maps are obtained by using [EJ)
and the bottom row is (—1)*("2+%2) times the map given by [£2) and the canonical
isomorphism wy ® p wy = wyy induced by the exact sequence in

Cf,Q
g fuM R (9f)e M

. ! 1

Hy (H}} (M ®awp) @pwy) —— H2I(M @4 wyy)

Since C{ Y= (—1)t1t20£gg , commutativity of (B) implies that of the diagram
in II.(i). To prove that @) commutes we shall expand it vertically using the
definition of ([E8)). First note that the following diagram commutes due to functorial
reasons.

3 r
G4 M — guHt (M @4 wy)
mlg#f#%(g,l)#(.ﬂl)# lm

swap

Hp2 (wg®@p Hj(wp @4 M)) Hpz (Hjt (M ®@aws) @p wg)
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Therefore we may expand ([B) as follows.

cL
g foM — (9f) M
mlg#f#%(g,l)#(f,l)# mygf)#%(gf,l)#
(31) Hp2 (wg ®@p HiL (wp @4 M) ——— H22H" (wor @4 M)

d |
&
Hy (Hpt (M @4 wp) @p wg) ——— HRI™ (M @4 wgr)

The vertical maps are the obvious ones. Thus (3,7 are induced by switching the
order of the tensor products. The maps «,  are defined as

a _ (_1)r1t2( m) + wg®Bwa)wgf>,
5 = (_1)t1(rz+t2)( (m) + (.Uf(g)ng—megf).

Then by the definition of Ci;g in [I3] 6.10], the top rectangle of [BI) commutes.
For the bottom rectangle we use the following calculations on generalized fractions
with notation explained below.

[u® [”8;’”]} oyt [(/m ) ®m] L Ly [m@ (1 v)]

t t,s t,s
— (_1)r17‘2+7‘1t2 m ® (/J‘ A V)
s, t ’
H ® [V%m} i) [m?V:I ® K i) (_1)t1(T2+t2) me (V A /J’)
t t s, t
— (_1)r17‘2+7‘1t2 m ® (/J‘ A V)
s, t '

(Here, m € M,y € wg,v € wy and s, t are systems of parameters B/ma B, C/mpC

~

respectively and have lengths 71,79 respectively. Also, the free modules Q}B /A

and ﬁlc /B have ranks 71 + t1, 79 + to respectively.) Thus ([B) commutes, thereby
proving II.(i).

The remaining cases of part II of the Theorem are relatively straightforward.
Note that for a closed immersion, the relative dimension is zero and so is the
transcendence degree at the residue fields. Thus the sign change effected by
plays no role in the remaining cases of II. Similarly Huang’s sign factor in [13} 6.10]
does not affect the remaining cases. Thus (ii), (iii) and (iv) of II follow easily from
Huang’s definition of CJ;? (cf. 4.4, 3.6, 6.5 of [T3]).

Part III immediately follows from the definition of 5&4 in [I3, p. 37]. Part IV
holds because (—)4 takes injective hulls to injective hulls. Finally, since (—)4 is
canonical, so is (—)g. O

For convenience of reference we state the following easily verified remark.
REMARK 4.3.3. Let f: A — B be an isomorphism in €. Then for (—); as
in EXT] for any M € Ay, the following two isomorphisms are equal.

fﬁM B3 I.(i) H%B (M ®a B) —M®,B canonical M
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fuM B30 1.(60) HOIHA(B, M) canonical M

One proves by verifying the analogous statement for Huang’s pseudofunc-
tor (—)#.

REMARK 4.3.4. In L.(ii) of B3], since f is assumed to be a closed immer-
sion, there is no distinction between the functors Homa (B, —) and Hom$ (B, —).
However, in general, the former does not preserve the property of modules being
zero-dimensional and so the latter is preferred. Moreover we have the following.

Let €.t be the subcategory of € consisting of residually finite maps, i.e., those
maps for which the corresponding induced map of residue fields is finite (e.g., a
power series ring over the base ring). Then there is a canonical choice for a
pseudofunctor on €, viz., one that assigns to any map f: A — B in €, the
functor sending M € Ay to Hom{ (B, M) € By, and for any pair of composable
maps, the comparison map corresponding to “evaluation at 1”7 (see (23)). In [13]
Chp. 7], Huang shows that the restriction of (—)4 to €, is in fact isomorphic to this
canonical pseudofunctor. This isomorphism generalizes the one resulting from I.(ii)

of E311

4.4. Tterated fractions and translation invariance. The results in this
subsection are somewhat technical in nature. The main result is L2l

Let f: B — C be a flat local homomorphism of noetherian local rings with
corresponding maximal ideals mp, mc. Suppose N*® is a bounded-below complex of
B-modules having the property that there exists an integer j such that H!, SN*=0
for I # j. This property is equivalent to requiring that there exist an integer j for
which the natural truncation maps (L4 (&)

(32) R, N® — r¢;RE, N® — (Hj, N*)[-/]

are isomorphisms. This property holds for any shift of N® too. Let L® be a
bounded-above complex of flat C-modules. From B8 we know that the natural
map

RI, (R, ,N*®p L*) — RI),_ (N*®pL®)
is an isomorphism. Therefore, applying H}, . to the following natural map
(33) (HI, N*)[-jl©p L* = RI,, N*®pL* — N*@pL*
we obtain a natural isomorphism (for all )
(34) H,,. ((H], N*)[-jl®p L*) = H,, (N*©pL*).

We elaborate on this isomorphism in the special case when N*® and L*® consist of
one module each. Let N be a B-module which, as a complex, satisfies the hypothesis
of B2). For application purposes let ¢’ denote the integer for which we have the
isomorphism RI), N - (Hg;B N)[—¢] as in B2). Let a,b be integers. Let L be
a flat C-module. For any integer p’, we now consider a natural isomorphism

(35) O : HE, (HY N@p L) = HLF (N @p L)
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which is obtained by applying Hg{gqlf"’b to the following sequence of maps de-
scribed below. (We are also using the convention in §L4 (&m).)

@) (HY,N 5 Dla—q + 8 — (i Nla—q) o5 LY
(B3b) — (HZ,*(Na])[a — ¢] ®5 L[b]
(B3c) — Nla] ®p L[b]

Bad) — (N®p L)[a+ b

The maps (BBh) and [B3H) are the natural isomorphisms obtained using the con-
ventions in §LAl (@), while ([BHb) is an equality by §CA (nl). The map B3k) is
obtained from B3) using N® = Nla], L* = L[b] and j = ¢’ — a, and so from B4
we conclude that Hﬁ;gql*a*b applied to ([B3k) yields an isomorphism. Thus @) is
an isomorphism.

LEMMA 4.4.1. In the above situation we have the following.
(i) The isomorphism O, in () is independent of the choice of a,b.
(ii) Assume the following.
(a) There exists an ideal I C mp such that N is I-torsion.
(b) There exists a sequence s of length ¢’ in mp such that s generates
mp/I up to radicals.
(¢c) There exists a sequence t of length p' in me such that t generates
me/(mpC) up to radicals.
Then 0, satisfies the following iteration formula for generalized fractions

Ml l

9([[5]@9}) = {"Gﬂ, neN, lel.
t s, t

PrOOF. For part (i), it suffices to show that 0, = 0o0. Let ¢4, denote the

map (H,‘{;BN ®p L)[a—¢ +b] = (N®p L)[a+ b] obtained by composing [B5h)—

@B3d). To prove (i) it therefore suffices to show that ¢q = ¢o,0[la + b] where the

latter map denotes shifting ¢g ¢ by a 4+ b. This reduces to verifying that the outer
portion of the following diagram commutes

(HY,N@s Dla—q +b] 225 (HY, N)la—¢] o5 LI

l lﬁfﬂb)
(HE, N)[-¢| @5 L)la+b] —— (H%*(Na]))la - ¢'] ®p L[]

l lﬁsb

(N ®p L)[a+b] Ly Nla] ® L[b]

where the maps in left column describe ¢g o[a + b], the remaining outer edges de-
fine ¢4, and the horizontal map in the middle row is the composite of the following
isomorphisms obtained using the conventions in A (&), (Rad).

(HL,N)[~¢] ®p L)a+b] = (H%,*(Na)))[~q'] ®5 L)[a +b]
= (HE-(Na)))[~¢1la] ©5 L[b]

The upper rectangle commutes by Lemma below, while the lower one com-
mutes due to functoriality of the truncation maps. Thus (i) follows.
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To prove (ii), by (i) we may assume a = 0 = b. By ELI we see that if the
required iteration formula holds for K-fractions then it also holds for C-fractions.
Therefore it suffices to prove (ii) using K-fractions.

Before we proceed further, we recall some terminology concerning the local
cohomology functors. Let R be a commutative ring, u a finite sequence in R and
let uR denote the ideal generated by u. Then we set

ar(=)=H'RL (=),  Hy(-):=H'K(u,-).

By BIA there is a natural isomorphism H{p(—) = Hi(—). If R — S is a
homomorphism, then we distinguish the K -complexes over R and S by using the
terms K2 (u; R) and K3 (u;.S) respectively, however for any S-module M, the term
H! M is unambiguous in view of the canonical isomorphism

K3 (w;R)®@r M = K3 (u;5) ®s M.

Returning to the proof of part (ii), we consider the following diagram through
which we relate the map 6y o to a map involving the K3 -complexes.

HE(HY LN @5 L) —— (K2(6) 80 (K% (s) @5 Nl @5 L)) ]

(36) 190,0 l’y =7
HEs (Nepl) ——  (K&(ts)0c (N L)) +d]

The objects in the left column are modules thought of as complexes existing in
degree zero only. The objects in the right column are complexes of length p’+¢’ since
the sequences t and s have length p’, ¢’ respectively by assumption. Furthermore
the complexes in the right column exist between degrees —p’ — ¢’ and 0. The
horizontal maps, «, 3, described below in detail, are the natural truncation maps
and are surjective at the graded level. Via the horizontal maps, the elements in
the modules occurring in the left column can be represented by suitable Koszul
fractions occurring in degree zero in the complexes in the right column. The proof
of (ii) then reduces to first finding a map ~ which makes [Bf) commute and then
chasing the image of Koszul fractions through ~.

The horizontal maps in ([BH) are defined as follows. The map « is defined by
the composition of the maps

HY (HE N ©5 L) = Hlp(HIpN 95 L)
~ HY'(HYN @5 L)
— (Ks(t) @0 (HE N op L))y

— (K%(t) 90 (K2(s) @5 N)ld] 5 L) ) [P

where the last two maps are obtained by truncation of the appropriate K3 -complex
at the highest homology spot. The map § in ([BH) is defined by the composition of
the maps
HL (N @p L) = H (N @p L) = H T (N @p L)
— (Ka(t.s) e (Nop )P +d].

where the last map is obtained by truncating at degree zero.
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In order to find v which makes [Bf) commute we expand (B8l horizontally using
the definition of a and vertically using the definition of 6y . For convenience we
do the expansion in two stages ([BBh), [B8b) below).

The leftmost column in @Bh) corresponds to the definition of 6y o. The horizon-
tal maps on the left side in ([BBh) are, with the exception of the bottommost map 41,
the isomorphisms induced by the natural maps RI}, . — RI{s and R}, , — RIp
while ¢; is induced by the natural map

RI,. — Rl 0 = R(licLic) = R R

The vertical maps in the middle column, with the exception of the bottommost
one 71, are defined similar to the way the corresponding ones on the left column
are defined while 7; is induced by the natural isomorphism

RI,N ®p L = RIL.(N ®p L).

The horizontal maps on the right side in ([B6h) are induced by the natural isomor-
phisms of the kind RI; (—) = K2 (?) ® (—). The map 7, is induced by

0: K3(t, (—))[=¢'] = K(t, (=)[=4])

where © is the second component of the §-functor pair (K3 (t,(—)), ), (cf. BI4).
The remaining vertical maps in the rightmost column of BBh) are the obvious
counterparts of the maps in the middle column.

The top three rectangles on the left side and the bottom three rectangles on
the right side in ([BBh) commute for obvious reasons. The topmost rectangle on the
right commutes because the isomorphism in BT 4lis one of §-functors. To verify the
commutativity of the bottom rectangle on the left we expand it horizontally using
obvious natural maps as follows.

H A" (R, N ©5 L) ——— H} S(REEN ©p L) —— H{'" (RN @5 L)

! ! [

HL(Nepl) ——  HLLEL(N®pL) —— H " RE(N®5pL)
In this diagram the rectangle on the left commutes for functorial reasons while the
one on the right commutes by Lemma B2 below. Thus ([B6h) commutes.

For ([BGb) we use the notation

K}:= K3 (t;0), K3:=K3(s;0), Kj:=K5(s;B)®pN.

The horizontal maps in ([BGb) are the obvious ones given by truncation. (In each case
the complex in question has zero homology in higher degrees.) The leftmost column
of (B@b) is precisely the rightmost column of ([B6h). The remaining columns of ([B6b)
are the obvious counterparts of its leftmost one. In particular, the convention
in LA (&), applies for the maps 73, v4, 75, v6. Commutativity of [B8b) is obvious
from the functoriality of the maps involved.

Upon composing the top rows in (B6h), [B8b) we recover the map « of (Bf). In
order to verify that the composition of the bottom rows in ([B6h), [B0b) is the same
as § of BH) we reduce to checking commutativity of the following diagram whose
left column gives ¢ and whose right column gives the sequence of bottom rows in



HY (HL,N®plL)  ——  Hi(HZNopl) — —— HY' (HE N @5 L)

H H I

HEX (HE,N ®p L)[~q') —— HI " (HIN ©p L)[~¢]) ——  HI'' (HEN @5 L)[~q'])
m)l l l
HEZT (HL ,N)[~¢'| @5 L) ——— HIZ (HGN)[~q)1®5 L) ——  HP Y (HEN)[-¢'| @5 L)
m T Ttruncation Ttruncation
HY 2 (RL,,N@pL) ——— HISUREEN@pL) —— HI''7((KS%(s; B)®p N) @5 L)

canonicall lWI lcanonical

HEF (N @p L) s HYFUREG(N®pL) —— HI' (K (s:C) ®c (N @5 L))

HY(H{NepL) — ——  (KtecH{NopL)p)  ——  (Kioc(Kld)os )P

| K |

HY'* (HE'N @5 L)[~¢]) —— (K; ®c (H{' N @5 L)[—q’]) ' +4d] —— (K{ ®c (Kxld'l®s L)[—q’]) " +4q']

| = [

HY (1 N)[=d| @5 L) —— (K2 @o (BEN)[~d12e L)) +d] —— (K @o (Kk@p L)) +d]
— — |
H§’+q'(K]0V ®s L) — (K{ ®c (K¥ ®8 L))[p'+q'] _— (Kl. ®c (K ®B L))[P'-&-ql]

canonicall canonicall lcanonical

HY " (K3 @c (N@n L) —— (Ki@c (K3 @0 (N@p D)) +d] <2 (K& (ts) @c (N @p L)) +d]

09
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B0h)-B0d). (For simplicity, we set n =p' +¢, M = N ®p L.)

HY M _ 1o M
l |
HisoM - H{cRI;cM
l |

H{ M ——— HP(K%(5;0) @c M)
T T
(K2(t,8) @0 M) ] == (K2.(t.5) @0 M)[n]

The horizontal arrows in the middle are the obvious natural ones. Commutativity
of the above diagram follows easily.

Since [Bh) + [B0b) = @) holds along three edges of @) we therefore have
found a map v which makes [B8) commute, viz., 7 is given by the rightmost column
in (B6b).

To complete the proof of (ii), let the sequence s be given by elements sq,. .., ¢
and t by t1,...,ty. Fixne N,l € L. Set

s ns ’ ®l
ai= T € F) where FUi= (K;o(t) ®c (K3 (s) ®5 N)[¢] ®5 L))[p’]

and

1P l
Z9:1= (=) Tne € G’ where G*:= (K;O(t,s)@)c (N®BL)>[p/+q'].
tl...tp/.sl...sq,

The maps « and § of B8] induce, in degree zero, the following maps of C-modules
a®: FO — HY, (H% N@pL), 6°:G°— HEXT (N @p L).
From the definition of K-fractions in ([[f) we see that

n

a’(z1) = [[Jt@l] and 50(22):[

s, t

3

n®l}

It therefore suffices to check that 4°(z1) = 22 where 7 is the degree zero component
of . Using that v is given by the rightmost column in ([BGb), the verification

7%(21) = 22 follows easily. (Note that as per L4, (1), the map (v5)° of @8b) has
a sign of (=1)'?" while (v6)° is the identity map.) O

In the proof of EZT] we used the following two lemmas.

LEMMA 4.4.2. Let B — C be a homomorphism of noetherian rings. Let N be a
B-module and let L be a flat C-module. For any ideals b C B,c C C, the following
diagram, with maps described below, commutes.

RI (RN ®p L) —— RI (RN ®pL)

-] -]

RI yo(N®pL) — = RIRIEL(N®pL)
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The map oy is induced by the natural map I}, .o — 1. The map az is induced by
the natural map RIJ N — N. The map a3 is induced by the natural isomorphism
RI;N®pL = RI,(N®pL). The map a4 is the natural isomorphism of derived
functors corresponding to the composition I, = I. I} . (The functor Iy sends
injective modules to injective ones.)

PROOF. Set b':= bC. We expand the above diagram vertically as follows where
the unlabeled maps are the obvious natural ones.

RI (RN ®p L) —— RI;(R[LN®pL)

c+b’
| |

l H

RI, ,(N®pL) —*— RIRI,(N®gpL)
The top retangle obviously commutes. Set M := N ®p L. Let M — I*® be a C-
injective resolution. Then RI,,M = I;,I°®. Since I;,I® also consists of C-injectives,
the lower rectangle of 1) reduces to the following diagram, where each map being
the obvious one, is an equality.

Loyl I* —— L IL,I°

l l

F+b/I. — .l:.l—é/_[.

c

O
The following lemma is proven by a direct calculation and we omit the proof.

LEMMA 4.4.3. Let R be a commutative ring. Let F*, G* be complexes of R-
modules. For any integers i, j, k the following diagram commutes
( F,G )—1

0.7
(F*@G)i+j+k —=— F°li+j]®G[K
wf}o")*l[mll H

( f}[ci],G)—l
(Flil@ G+ k] — (F*lD)[] ® G*[K]
where all the maps are obtained using the convention in 14, ).
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5. Pseudofunctorial behavior for smooth maps

The main result here is Proposition ZIl In §5.01 we provide the main input
that goes into defining the isomorphism (@) of L3 (see ([BY) below). In §82 we
consider the situation of composition of two smooth maps. Suppose f, g are smooth
maps such that ¢gf exists. Then we consider the two Cousin-valued functors, one
obtained by using [CZA(i) for gf and the other by using [CZAi) iteratively for g
and f. We provide a comparison isomorphism between these two in ([Bd) below. In
Proposition B2 we show that this global comparison map is compatible with the
local one of ([Z2) via the isomorphism in ([BX) below.

In particular, the results of this section allow us to define a Coz-valued pseud-
ofunctor for the category of smooth maps in F, (see §81). The proof of B2 is
somewhat lengthy and §56.3 and §8.4 are devoted exclusively towards this. In §5.3
we decompose the diagram of EZTlinto convenient parts, the non-trivial cases being
handled in §541

5.1. An isomorphism. Let h: (X,A;) — (Y,A) be a smooth map in F,
having constant relative dimension, say d. Let M?* be a complex in Coza (Y), i.e.,
M?* is a A-Cousin complex of quasi-coherent torsion Oy-modules. Let £ be a
flat quasi-coherent Ox-module. By BT, the complex h* M*® ®x L[d] consists of
Aqe(X)-modules and hence Ea, RIJ(h*M*® @x L[d]) € Coza,(X) (see ([I2)).

Let x € X,y = h(z),p = A1(z),q = A(y). We now define a natural isomor-
phism
(38) (Ea,RIG (W M® @x L[d]))(z) = HEUM (y) @y Lo).

Set M = M*(y). Then BJ) is the composition of the following isomorphisms (see

explanatory remarks below).

(Ea,RIx(h"M® @x L]d]))(z)

= HE (hW"M*® @x L]d])s (

= HJ, (07 (iy M)[—q] @x L[d]). (

HE (M[—q] ®, L,[d]) (stalk at x)
(
(

I

by [[32))

I

via truncation)

K

HY, (M @y L)[d —q]) see YA (w))
HPFI=UM @, L,). see YLA (Rdil))

My

BEEEEE
|

K

For ([B8b) we use the sequence of natural maps
M = 0 qM® — 02q0< M® = MI[—q] iy M[—q].

Each one of the complexes in this sequence is in Coza (Y) and hence by [B2ZZ), the
functor H?, (h*(—) ®x L[d]) sends each map in this sequence to an isomorphism.
Composing these isomorphisms appropriately results in [B8b). The map in B3k)
is induced by the canonical identification of the stalk at x (the stalk of i, M at y
being M). The map in [B8d) is induced by the isomorphism (§L4 ([@))

M[—q] @y Lo]d] = (M @y Ly)|d — q]
which, as per convention, is (—1)?¢ times the identity map on M ®,, L,.
REMARK 5.1.1. Another way of obtaining the isomorphism from B8b)-([B8k) is

the following. Consider the complex My . Since M* is a Cousin complex, therefore
(M%), =0 for i > q and furthermore (M%), = M*(y) = M. In particular, there is
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a natural map of complexes M[—q] — M3, and therefore an induced natural map

M[—q] ®y L[d] — M} ®, L;[d]. The following isomorphisms
E3) HE, (W M® @x Lld])e == Hy, (M} @y L[d])
B3 < Hj,, (M[—q] @, L.[d])
define the same map as the one resulting from [B8b)-(B3c).

REMARK 5.1.2. By using (@) instead of ([[2) in B8h) we see that B3h)-B)
in fact give an isomorphism
HiRIF(h* M® @x L[d]) = H, (M (y) @y Ls)

for all 3.

LEMMA 5.1.3. With notation as above, RIy.(h* M®*®x L[d]) is Cohen-Macaulay
with respect to Ay (83)). In other words, for any x € X and any i € Z such that
i £ p=A1(z) we have

HIRIZ(W*M® ®@x L[d]) = 0 = HIF7I(M*(y) ®, Ly).

PROOF. Set M := M*(y). We claim that for any finitely generated submod-
ule N of M and any free Oy, ;-module L of finite rank, we have H."4"4(N®, L) = 0
for i # p. Since M ®, L, is a direct limit of modules of the type N ®, L and since
local cohomology commutes with direct limits the lemma follows from the claim
and

Set F':= N®, L. Since N has finite length it is a Cohen Macaulay Oy, ,-module.
By 2223 (ii), the induced local homomorphism Oy , — Ox 5 is flat. Moreover the
fiber ring Ox,o/myOx, 4, being formally smooth over the residue field Oy, /m,, is
a regular ring and hence a Cohen-Macaulay ring. Therefore, by [9] (6.3.3)] or [19}
p. 181, Corollary], F' is a Cohen Macaulay Ox_ ;-module. In particular, Hjan =0
for j # dim F'. Tt suffices to show that dim F':= dim Supp(F) =p+d — gq.

Since N has finite length, we conclude that

Supp(F) = Supp((OQy,y/my) @y L) = Supp(Ox,s/myOx,z).
Therefore, by 2610, dim(F) =p+d — q. O

5.2. Iteration of the Cousin functor. Let (X, Ay) ER Y,4A,) L (2,A,)
be smooth maps in F, having constant relative dimension d, e respectively. Let £
be a quasi-coherent flat Oy-module and L9 a quasi-coherent flat Oyx-module. For
any complex F* of Oz-modules and G* of Oy-modules set

E,F*:=Ex,RIJ(g*F* @y Li]e]),
E;G®* :=EaRIX(f°G* @x La]d]),
E, F*:=EaRIZ((9f) F* @x (f*L1 @x L2)[d + €]).
The functors E(_y map Cousin complexes to Cousin complexes:
E,(Coza, (Z)) C Coza, (Y),
E;(Coza, (¥)) C Cozay (X),
E,(Coza, (2)) C Coza, (X).
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Let M*® € Coza, (Z). There exists a natural isomorphism
(39) E,M* =~ EE,M®
which we describe as follows : (with G*:= g* M*® ®y L1[e])
E, M®:= Exn, RIN((9f)"M® @x (f*L1 ®x L2)[d + €])

(35.29) = EaRIX(f*g"M® @x (f*Li[e] ©@x L2[d]))
EIb) - E,G*

(Bc) < E,RIJG*

BI) = E;Ea, Rlyg' = E,E, M"*

The map [B3) is induced by (f*L1 @x L2)[d + €] == f*L1]e] ®x L2[d] obtained
from our convention in I [@). In particular, %) is ERI}.(—) of a map that is
(—1)¢? times the identity map at the graded level. The maps [3b), %) are the
obvious natural ones, the latter being an isomorphism by BT By T3 RIjG*
is a Ay-Cohen-Macaulay complex on Y. We define (B3d) to be the natural map
induced by the unique isomorphism QEa, RIG* = RIJG* obtained from 3.2

The isomorphism in ([B3) can be described explicitly at the punctual level. Fix a
point z in X and let y = f(x), z = g(y). Let Ay(2) =r, Ay(y) = q, Ax(x) = p. Let
Ox 2, Oy,y, Oz, . be the corresponding local rings and m,, m,,, m_ the corresponding
maximal ideals. Set p’:=p+d—qgand ¢:=q+e—r.

PROPOSITION 5.2.1. The following diagram of Ox,-modules commutes.

(B, B, M*)(x) A2 (B, M®*)()
| @B
H?, (B,M®)(y) @y Lo,) €3
linduced by (33

HP, (HE (M®(2) @2 L1,) @y La,) &, HEF(M®(2) @5 (L1y @y L2,))

The rest of this section is devoted to proving Proposition EZTl In we
indicate how to decompose the diagram in Proposition B2l into more convenient
parts whose commutativity is verified in the last subsection.

5.3. Scheme of proof of B2l We now outline the general scheme of our
proof of Proposition EZIl The diagram, whose commutativity is in question, can
be written as follows.

Vi —— W,

l

(40) Vs

|

Vi — Vs
Without loss of generality, we assume that M® = i,M[—r] where M = M?*(z).
This can be justified using the truncation arguments of B8b) as each truncation
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map is functorial and the corresponding induced map on the cohomologies is an
isomorphism. In order to prove commutativity of @), we expand it in the following
way explained below.

Vi 1% Vo Vo
| | |
(41) V3 Ve —— W
| | |
Vi Vi Vs Vs

For the above diagrams and subsequent ones occurring in this section, we use the
notation that any map V; — V; occurring in the diagrams is denoted by e(4, j).
Set M := M*®(z) and set N:= M ®. L1,. The vertices occurring in Il are the
following.

Vii= (B,E,M")(z) Vii= HEF (M ®. (L1, ©, L2.,))

Vo= (E,M®)(z) Vo= Hy, ((Hy, (Nle—r]))[—q] ®y L2,[d])
V= Hi (B, M) () @y Lo5)  Vii= HE, (Nle =] @y L,[d])

Var= HY (HE N @, Lay)  Vei= HEYY (N @, La,)

The maps in [{Il) which come from EI), viz., e(2,1),e(1,3),e(3,4) and e(2,5) are,
by definition, the ones specified in BZZ1l The remaining maps in {Il) are defined
as follows.

The map e(1,6) is defined as the composition of the following maps

Vi = (BE,M)(2) = HE, (B, M) (y)[—q] ©y L2,]d])
— Hp,, ((H7,,(Ne = r])[=q] ©y L2,[d]) = Ve
where the first isomorphism is obtained from the sequence [B8h) to [B8k) for the
functor E; acting on the Cousin complex E, M*® on Y, while the second isomorphism

is induced from the sequence B3h) to B3d) for the functor E, acting on M.
The map e(2,7) is defined to be the composition of

Vo = (B, M®)(z) = HJ, (M[=r] ©: (L1, ®y L2g)[d + €])
== Hp,, (M[=r] ®. (L1y]e] ®y L2,]d]))
—= Hb (M ® Ly,)le—r1]®y Lao,[d]) = V7
where the first isomorphism is obtained using the sequence ([B8h) to [B8c) while the
second and the third maps are induced naturally by the isomorphisms
(L1y @y Log)ld+e] — Liy[e] @y L2a]d],  M[=r] @z Liyle] = (M & L1y)[e 7]

obtained using LA ().

We define e(6,7) using [B4) with the following notation. Let B — C denote
the natural local homomorphism Oy, — Ox ;. Let N®* = Nle —r], L* = L3,[d]
and j = ¢g. The hypothesis of [B4l), which in effect is the hypothesis of B2), is
satisfied because for any integer [, there are isomorphisms

~

H}, N*:=H), (Nle—r])=H; " (M ®. L1,) —— HRIJ(g"M"* @y Lie]),

so that by LT3 these modules vanish for [ # q.
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The map e(6,4) is obtained as the composition of the maps
Vo= 3, (8, (Ve — ) —a] @, Lo,ld]) = HE, (Y, N)[~q] , L2,[d)
< Hp (Hf N ®, L2,) = Vi

where the first isomorphism involves §I4 ([{dill), as in B8), while the second one
is an imitation of (Bd)-[B3k).

For e(7,8) we follow [B3d)-([B8k), while e(4, 8) is gotten using (ZII). The canon-
ical associativity map for tensor products gives e(8,5).

Note that e(8,5)e(4,8) = e(4,5), where the latter is an arrow in #{). Therefore,
to prove that (@) commutes it suffices to show that the four subdiagrams in (1)
commute. Of these four, the ones on the extreme left and extreme right may be
written as follows.

Vi e—— VW Vo —— Vs
(12) | | | I
Vi — Vs Vi—— W

Commutativity of these two is easily verified; we do so in this subsection. Commu-
tativity of the remaining two subdiagrams of (Il) is proved in the next subsection.

The commutativity of the rectangle on the left in ([@2) follows from the com-
mutativity of the following diagram whose maps are obtained using the various

isomorphisms B8h) to B3).

v — "
)-C@) E3h)-B2)
" ) gy (8, M)0)]-a] ©y L, ld])
E3h)-B3H) E3h)-B3)
1y, ((Hg, (Nle— ) @, L,) BV o
B=) =)
v, EH)-BR:) HP, ((H,q,;yN)[—fJ] ®y E2x[d])

For the rectangle on the right in [Z), we expand vertically using the definition
of the vertical maps e(2,7) and e(8,5). Since both the maps e(2,7) and e(2, 5) start
from V4 and factor through the steps (B8h)-[B8kc), we may replace V; by the target
of B8c). The resulting diagram, shown below, is seen to be commutative from the
sign chase indicated along the inner sides of the arrows.

HE, (M=) ©: (L1, @y La.)ld +e) 20 HEFY (M ©: (L1, y L2,))

l(—l)dﬁ T

HE, (M[=r] ®: (L1y[e] @y Laz][d])) HE T (N @y L)

[ |

_pye=nd L
H?, (Nle — 1] @, La,]d]) m HE+4 (N @, L)
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5.4. Conclusion of proof of B2l In the previous subsection, the commu-
tativity of the two rectangles in ([B2) was shown. Now we verify the commutativity
of the remaining two subdiagrams in ().

First we consider the following rectangle in (HI).

Vo — W7

o |

Vi—— W

We claim that the isomorphism (7, 8)e(6,7)e(6,4)!: V4 — Vg is the same as the
isomorphism 6, of ([BH) for the choices a:= e — r, b:= d along with the notation
p' =p+d—q, ¢ = q+e—r. Indeed, from the definition of the maps involved we see
that e(6,4)~1 corresponds to ([BEh)-(BHb), e(6,7) corresponds to ([BEk) and e(7,8)
corresponds to ([B3l). Now the commutativity of EJ) follows from part (ii) of
Lemma EEZT1

Thus the only remaining rectangle in (Il) whose commutativity needs to be
checked is the following.

Vie— W
(44) l l
Vo —— W

Before proceeding further we review our terminology. Recall that M*® is assumed
to be based at one point only, i.e., M® = i,M[—r] for a suitable Oz, ,-module M.
Also N = M ®. L1,. Set N*:= (¢*M ®y L1)[e — r] where M = i.M. We shall
henceforth make the canonical identification

(45) Nj = Nle—r].

Also note that with G*:= ¢g* M* ®y L4]e] as in ), using (§L4 ([@)), we obtain an
isomorphism

(46) G*:=g"M* @y Lile] = ("M @y Ly)le — 1] =: N°.

Now expand (4 modulo [H) as follows, with the maps «; described below.

(B,E,M*)(x) LCDE (B, M*)(z)
as = e(2,7)7!
@ HE, (N ©y La,]d])
(47) 043

HE, (Ea,RIN®)y @y L2,[d]) «—=— HE, (RIIN®)y ®y L2,[d))

045/[ (673

HE, ((H, ND)=d ©y L2,[d]) —— HE, (RL, Nf ®y La,]d])
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The map «a; is the composition of the following isomorphisms

(B,E,M®*)(z) =2 b2, (FE,M® @ Lo[d)),

% H?, (E,M®), ®, La,[d])

—— HE, (Ea,RIN®), @, La,[d))

where the last map is the obvious one induced by {H]). The map s is the inverse of
the isomorphism e(2,7) via {H) while a3 is the obvious natural map. The map ay
is obtained by applying the isomorphism of functors QEa, = 1p+(y).,, of B3 on

the Cohen-Macaulay complex RE{;N ®. The map aj is induced by the composition
hd ~ . truncation .
(H%yNy)[_Q] (m)* (Ea, RIGN®)(y)[—(q] ﬁ (Ea,RIIN®),.

The map ag is the composition

BT
—_—

RI}, N} (RGN, 28 (RN,

where J is an open coherent ideal in Oy defining @ Finally, a7 is the isomorphism
induced by the truncation maps in (B2).

Now we verify that the outer border of #X) is equivalent to (), which is
the same as verifying the relations, aglal = ¢(1,6) and a3a6a7_1 = ¢(6,7). The
latter follows from the definitions involved while the former is a consequence of the
commutativity of the following diagram. Here the left column represents ozglal
while the right column represents e(1,6) modulo EH). Also, recall that M* is
assumed to be based only at z.

(B, E,M*)() — (E,E,M*)(z)
B3k) and @) B3h)-B2)
H? (B, M%), ©y Logld) 2 {2 (B, M*)(y)[—q] ®y La[d])
induced by (&) induced by EH)

HY, (BayRIN®), @, Lo,[d]) ——=— HE, ((Ba,RIN*)(y)[—q] @, L2,[d))

* truncation *

as induced by (@) | cf. B3h)
Hy,, (H, N9 =q] ®y L2,]d])  ——= Hy, (HE, NG [=d] ®y Las[d])

To prove commutativity of the upper subdiagram in 1) we expand it hori-
zontally using the definition of e(2,1) and vertically using the definition of a;. For
convenience we break the diagram into two parts, see below.

The leftmost column of vertical maps in defines a; of ([@X). The remaining
columns follow the same pattern of definition. The horizontal maps on the left are
induced by the isomorphism QFa, = 1 of applied to RIJG*, RIJN*®, while
the ones on the right are the canonical ones induced by R/ — 1. In particular the
horizontal maps in the bottommost row are asz, ay of ). It is obvious that
commutes.

The rightmost column of! is the same as the leftmost column of We use
E':= Ea,RI} for convenience. The remaining maps in are the obvious ones
as indicated by the labels. (The minus signs refer to the convention in JLAlm).)




(E,E,M*)(z) B mRrye@ B mee

E3) | see @ @ @
HE, (B M @x Lo[d])e ——— HE (f*RIJG® @x Lo[d])e —— HE, (f*G* ®@x La[d]).
(48) B | = 1ocalization localization localization
HE (B, M®)y @y Log[d])  —— HE, (RIJG*)y ®y Log[d]) ——  HE, (G @y Log[d])
via (EB) via (@) via [EG)
HE, ((Ea,RIEN®)y ©y L2,[d]) ——— HE, (RIZN®), ®y L2,[d]) —— HE, (N3 @y L2,[d])

x

G B (g M o (fLale] @ Lald)) (@) (B M*)(@)
| |m see () | (T3
13,(/"G" @x Laldl)s —— HE(/'g"M* @x (/" Lile] @ Lald])e —— HE,((0f)"M® O (L1 & La)ld +e])
() [[— [[— [p—
HY, (G} @, L,1d]) H, (9" M®), 8, (L1yle] ©, Lo,[d])) HE, (M[=r] 8. (L1, @, L2,)[d +¢])
via @0 | (-1 [ [ v
HE, (N ©y Log[d) —  HE (M. Liyle—r] @y Lold]) 2 HE (M[r] @, L1,]e] ®, L2,1d])

0L
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Commutativity of [(49)| follows easily. Moreover, traveling along the bottom row
of [(49)| and then its right column gives the map «sy of ). In particular, the upper

subdiagram in [#7) is the same as +[(49)] and hence commutes.
For the lower rectangle in (@), upon “canceling off” H? and ®,Ls,[d] from

each object, we reduce to showing that the outer border of the following diagram
(of derived-category maps) commutes.

QEa, =1
/ ° Y

(Ea,RIGN®), 22220
(@) and truncation/[ Tcanonical

(HgRIgN.)[_q] truncation RI;/ R[gN.

la la
truncation
(Hf, Ny)l—q] —— RI, N}
ByB34 the upper rectangle commutes while the lower one commutes for functorial
reasons. This completes the proof that {), and hence ), commutes.
The commutativity of the diagrams in (), E3) and @A) proves that all the

four subdiagrams of @Il) commute. We have therefore shown that () commutes,
thereby proving Proposition B2l

(RIGN®)y
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6. Closed immersions and base change

Having tackled the case of smooth maps in §8, we now look at the category of
closed immersions. For a closed immersion f: X — Y in F, the functor f” defined
in 671 below provides the other concrete formula for Cousin complexes. As in §8,
after relating f* to its punctual version, we describe a comparison isomorphism
for the case of composition of two closed immersions, and give the corresponding
punctual description. The proofs are straightforward in this case. In §6.2 we take
up the situation of a fibered product of a smooth map and a closed immersion. The
main result there is Proposition

6.1. Closed Immersions. Let h: (X,A;) — (Y,A) be a closed immersion
in F.. For any complex G* on Y we define a complex h’G*® as follows

W G®:= h™"Homo, (h.Ox,G*).

PROPOSITION 6.1.1. Let notation and conditions be as above.

(i) The functor h® takes Cousin complexes to Cousin complexes and further-
more h*Coza (Y) C Coza, (X).

(ii) The functor h, maps Coza,(X) to Coza(Y) and furthermore there are
natural isomorphisms h’h. —~ h™'h, = 1g where C = Coza, (X).

ProOOF. Let M*® be a A-Cousin complex on Y. Fix p € Z. By definition, there
is a natural decomposition M? = @i, M, where y ranges over points in Y such
that A(y) = p and M, is an Oy ,-module. Since Homo, (h«Ox, —) commutes with
direct sums (because h,Ox is a coherent Oy-module) therefore there is a canonical
decomposition

(WM®P = @, h" " Homo, (h.Ox,i,M,).
It suffices to consider only those y € Y which have a preimage in X. Note that for
any sheaf F on Y, there is a natural isomorphism

Homo, (F,iyM,) = i,Homo,  (Fy, M,)
because, for any open neighborhood V of y, there is a canonical isomorphism
Homo, (F|y,iyM,|,) == Homo, ,(F,, M,).
Therefore, for x € X and y = h(x) there are natural isomorphisms
h™'"Homo, (h.Ox, i, M,) = h~'i,;Homo, ,((hiOx)y, M,)
= i;Homo,  (Ox,z, My).
Thus h’ M* is a A;-Cousin complex on X with (b’ M*®)(z) - Homo, ,(Ox,s, My)

as Ay, by definition, is the restriction of A to X. If M, is a zero-dimensional Oy ,-
module then Homo, ,(Ox,z, M,) is a zero-dimensional Ox ,-module. Therefore,
by EZX8, 7’ Coza(Y) C Coza, (X).

With z,y as before, for any Ox ;-module IV, there is a natural isomorphism
hyigN =2 i, N. Since h, commutes with direct sums it follows that h, takes Cousin
complexes to Cousin complexes. Furthermore, if N is a zero-dimensional as an
Ox,z-module then it is also zero-dimensional as an Oy ,-module. By 230 we see
that h, maps Coza,(X) to Coza(Y). The remaining assertions in (ii) hold more
generally for arbitrary complexes on X. O
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From the proof of we obtain a canonical isomorphism
(50) (" M®)(z) = Homo, ,(Ox.z, M* (1))

which can also be described as follows. Set p = Aj(z). Then &) equals the map
in degree p induced by the following map of complexes

(R M?®), = (Homo, (h.Ox, M®)), = Homo, ,(Ox,z, M3). (cf. EII)

Let (X, Ay) N Y,A,) < (Z,A,) be closed immersions in F.. Let G* be a
complex on Z. Then there is a natural isomorphism

(51) 196" — (9f)G*
defined as follows. Let Z, J denote the ideals in Oy that define X and Y respectively.

We make the identification ¢.Oy = Oz/J, (9f)«Ox = Oz/Z, f.Ox = Oy/IOqy.
We define (1)) by the following sequence of obvious natural maps

2 4°G* = f Homy(Oy /IOy, g~ " Homz (02 /T, G*))
= g "Homz (02 /T, Homz (02T, G*))
=5 g " Homz (02/Z,G%) = (9f)°G".

Let 2 be a point in X. Set y = f(x),z = g(y). Let A, B, C denote the local rings
Oz, Oy, Ox ; respectively. Let M*® be a complex in Coza, (Z). Set M = M*(z).

PROPOSITION 6.1.2. Under the above conditions, the following diagram com-
mutes.

(FemM@) P (g M)
using (H])J{
Homp(C, (3" M*)(y)) using (5T
induced by (H])J{
Hompg(C,Hom (B, M)) N Homy (C, M)

PROOF. Set p = Ayx(z). Then the diagram in question is obtained from the
degree p part of the following diagram of complexes whose vertical maps are given
by the usual identification of stalks.

(f~ Homy (Oy /IOy, g~ " Homz(02/7, M*)))e —BR2 (£1 g~ Homs (02 /T, M*)).

canonicall canonicall

Homp(C, Homa (B, M?)) B8, Hom A (C, M?)
Commutativity of the above diagram follows easily. O

6.2. A Fibered Product. In this subsection we are concerned with the sit-
uation of the following diagram in F. which is cartesian, so that W = X xy Z,

(W, Ay) —2— (Z,A,)

(52) jl l

(X, Ac) —— (Y,4)
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and where f, g are smooth maps of constant relative dimension d and i, j are closed
immersions. Set E:= Ea, and E:= E,,, the respective Cousin functors on X, W.
Let £® be a complex on X. Set

E,(=)=ERLy(g"(—) ®w j°L®),  E,(-)= ERIY(f"(-) ®x L)

We use the following convention. Since j is a closed immersion, therefore the func-
tor j. is exact and hence we use j. to denote the corresponding derived functor Ry,
too. Also note that j, maps Aqc(W) to Age(X).

LEMMA 6.2.1. Let J be any coherent ideal in Ox. SetT = JOw. Let Z be
any closed subset of X. Set Z = ZNW. Then for any G* € DT (W) the following

natural maps are isomorphisms.
J«RI;G* — RI;j.G°, JRIZG* — RI;j.G*.

PROOF. For the first isomorphism, we refer to |2 5.2.8(d)]. Since j. preserves
flasqueness and since flasque sheaves are acyclic for the functors I7 and Iy, the
second assertion holds because Jelm =137 O

LEMMA 6.2.2. For any F* € DY(W) there is a natural isomorphism
JWEF® = Ej.F*.

PROOF. Recall that the Cousin functors E, E are given by the E 0 terms of the
spectral sequences induced by the corresponding codimension filtrations on X, W.
We prove the lemma by showing that either side of the required isomorphism is
constructed from the same filtered complex on X. For any subset Z C X we set
Z =7ZNW. Set

ZP:={x € X|A(x) = p} and Z'=ZP nW.

Let Z* be an injective resolution of F*. By definition, EF* is constructed using
the filtration {17, Z°},ecz of Z°. Since j. is exact j.£2F* can be constructed using
the filtration {j.1,Z%}pez of j.Z°. On the other hand note that j.Z* consists of
flasque sheaves (which are acyclic for the functors I,). By exactness of j., the
natural map j,F*® — 5.Z° is a quasi-isomorphism and hence a flasque resolution.
Therefore Ej.F* can be computed using the filtration {I},5.Z°}pcz of j.Z°. Since
for any subset Z C X we have j. I = Ij., it follows that {j.[7»Z°}pez and
{I}57+Z°}pez define the same filtration of j,Z*® and hence the result follows. O

For any complex G® on Z there are natural isomorphisms described below.
Jo(97G @w L") < jug" G ©x juj L0 L f1i.Gt @ fujT Lt
(53) 4,60 @y L°

Since j is a closed immersion, j, distributes over the tensor product and thus we
obtain the isomorphism «. For § we use the base-change isomorphism j.g* = f*i,.
The canonical map ~ is an isomorphism because f*#.G® is supported on 'W.

Let F* be a complex in D (W). Then there are natural isomorphisms

(54) W ERLYF® = Ej,RLLGF* =~ ERIYj.F*



PSEUDOFUNCTORIAL BEHAVIOR OF COUSIN COMPLEXES 75

where the first one is obtained using the isomorphism constructed in and
the second one using 2T} Therefore, for any G* € DJ.(Z), there are natural
isomorphisms

JUE,G* = . ERE(g°G" @ 5°L%) PR ERIL). (4°G* @ 5 L)
B pRI(frigt o L) = B, i,

1

In particular, applying 7~ results in an isomorphism

(55) E,G* — j 'E;i.G°.
Let M*® be a complex in Coza, (Y). Then there is a sequence of natural maps
(56) E,i’ M® = j7IEi, " M® — jPEini® M® — °E, M®,
where the first map is the isomorphism from (BH), the second map is induced by
the natural map j> — 7' (and is readily seen to be an isomorphism) and the third
is induced by the natural map 7,3’
Let w be a point in W and let z, y, z denote the corresponding images in X, Y, Z.
Set p = A1(z),q = Az(y). Since the maps i, 7 in [&2) are closed immersions, there-

fore As(z) = g and Ay(w) = p. Set p1:= p—q+d. By EEI0 the relative dimension
of Ox,2/Oy,y and Oz ./Ow,. is p1. Set M := M*(y), N:= Homo, ,(Oz ., M).

— 1.

PROPOSITION 6.2.3. Let notation be as above. Assume that M*® € Coza,(Y)
and that L* = L[d] where L is a quasi-coherent flat Ox.-module and d is the relative
dimension of f,g in @&A). Then the natural maps in &) are isomorphisms and
the following diagram commutes.

(5%

(E,i* M®)(w) — ("B M®) (w)
| e e
HP: (P M®)(2) @ (57 L)) Homo, , (Ow,w, (E;M*®)(2))
l(ii) l(ﬂ&

Hﬁnlw (N Bz (J*E)w) ﬂ’ Homox,z(OW,waHﬁfz(M Ry L))

ProOF. All the maps involved in the diagram in question are functorial in M*®
and hence using truncation arguments, we may assume without loss of generality,
that M*® = i, M[—¢q]. We now proceed by expanding the diagram of the Proposition
horizontally according to the definition in [8). Set jy,(—):= Homo, ,(Ow,w, —)
and set

TP =g i’ M® @w j*L[d], F3 = fri i M® @ L]d],
Fy = (" M®)(2) @ (5" L)w, Fy = (ixi” M®)(y) @y La.

From (B3) we obtain a natural isomorphism j.Fy —= F. Also, as Ox ,-modules,
there is a natural isomorphism F; —> F5.

The expanded version of the diagram of the Proposition occurs in (). The
downward arrows in the upper portion are obtained using [BH) or (B). The hor-
izontal maps on the top row are given by the maps in (Bf). The remaining maps
are the obvious natural ones.



(E, M) (w) —— (B M) (w) ——  (PELIM)(w) ——  (EM)(w)

H |

0, (Erii®M*)(2) e jup(Eint® M®)(2)) ——  Jup(E;M*)(@))

(57) l l

HrIw)zlel ? Hﬁ’leFQ A jwbHrIzleF2 - jwbHﬁzlx(M By L)

l ! H

Hﬁmlw(N ®: (" L)w) — Hgnlx (v By Ly) —— jwbHﬁmlz(N By Ly) —— jwngnlx (M Xy L)

(e ERE,F?) () B, (BRELF@) e (ERILFS)(x)
o) 0, | &= o)
HE, (g7 (" M®) @w j*L[d)w — —— HE, (:F7)a ——  HE ([ (i, M®) @x L[d)),
(58) ) C) Os )G
HE, (" M®)(2)[—q] @ (7*L[d])w) HE, (12 M*)(y)[—q] @y (L[d])2)
- - ) @3- CF)

H Fy SN HPLFy - HP) Fy

9.
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GERGF) (@) — (ELREFH) (1) — (ERLEF?)(@)

! ! !

(o HERELFD),  — (HEGREGFS), — (HERILFY).

{}T @ T @ T
(59) (G0 REGF)e — (H7GRIGFT)e — (HGRIGGFTL).
| |
(e H 50, 1 )a (HG 5 F)e
l l
HE, T, 1, (G F )

HE, (g M® @w j*Lld])w —— HE (97" M®)w @ (j*L[d])w) — HE, ((PM®)(2)[—q] ®. (5*L]d])w)
natural

HE, (ju(g" " M® @w j*L[d]))x

(60) via o of (B3
HE, (g™ " M® @x juj ™ Lld]))e —— HE, (g™ M®)s @4 (juj*Lld])z) —— HE, (" M®)(2)[~q] @. (7*L[d])w)
via 3, of B&3) via 3,7 of (EH)J/ 04 J/

ngm (f*i*ibM. x ‘C[d])w - Hﬁll((f*z*’bM.)w Qz (‘C[d])w) - Hf%((i*ib./\/l')(y)[—q] Ry (‘C[d])w)
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Commutativity of all the rectangles in ([B), except for the top left one marked
as [y, is straightforward to verify. We expand [J; in (E5]).

The unlabeled horizontal maps in (B8) are the obvious natural isomorphisms.
It remains to verify commutativity of (s and (3, since commutativity of the other
rectangles is evident.

In[(59)} we expand O horizontally using (B2) and vertically using (I2) and B9
with the notation that 7 denotes the largest coherent ideal in Oy defining the closed
set m Commutativity of is straightforward to verify.

An expanded and transposed version of (3 occurs in For the horizon-
tal maps in we don’t use ([B8b)-[B8k), but instead invoke BTl (localize first
and then truncate). Only commutativity of [J; needs explanation, the rest being
obvious.

Set N'*:= i’ M*. Then N'* € Coza, () and i,.N'* € Coza, (Y). Now commu-
tativity of Oy, where the horizontal maps are induced by truncation, follows from
the commutativity of the following diagram.

(g N*)e —— (eg'Na[—q] —— N*(2)[-q] ®: Ow,w

base changcJ{ J{ J{

(fYisN®)e —— (f"iN)al—q] —— (N*)(y)[=q] ®y Oxz
We have thus shown that &2) commutes. By ([4), the maps in the bottom row
of (&) are isomorphisms. Since the vertical maps in (&) are isomorphisms, there-
fore the remaining horizontal maps are also isomorphisms. This shows that (&) is
an isomorphism. O
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7. The retract case

The main result of this section, viz., Proposition[L3Ais the final key ingredient,
along with the main results of the preceding two sections, needed in proving the
main theorem of this paper.

The title of this section refers to the situation where the identity map on an
object (Y,4,) in F. is factored as (Y,4,) = (X,Ar) LN (Y,Ay) such that i is a
closed immersion and h a smooth map of constant relative dimension. In we
show that the Cousin functor obtained by using for h,i is isomorphic to the
identity functor on Coza, (Y). Residues of differential forms play a role here.

After covering some homological preliminaries in 711 below, we prove a general
result in 7 which provides a partial description of the coboundary map of the
Cousin complex of [CZA(i). Proposition [[32 is then an easy consequence modulo
the local ingredient involving residue maps.

7.1. Homological preliminaries. Let D be a triangulated category with
translation functor T'. Consider a commutative diagram in D as below whose rows
and columns are assumed to be triangles in D.

Al L) A2 a2 Ag 23 TAl

Uy l u2 l u3 l Tuy l
B, B1 B, B2 Bs Bs TB,
(61> Ull Uzl U3J, TUlJ,

C, —— Oy = Cs = TC

o el

TAl &) TA2 &? TA3

Suppose C7 = 0 = A3. Then we obtain two ways of defining a map C3 — T A; as
follows. Consider the following diagram.

Bs —2 . TB

(62) Cs TA,

WT Tml
Cy —2— TA,

Since C7 = 0 hence 2 and T'uy are isomorphisms. Since Az = 0 hence vs and Ty
are isomorphisms. Therefore, inverting these isomorphisms, we obtain one map
each from the upper and lower half of ([G2) viz., (Tul)_lﬁgvgl and (Tal)_lwng_l.

We now find a condition under which these two maps coincide. Complete the
map A; —* B, to the following triangle (uniquely determined up to isomor-
phism)

(63) Ay — By — X — TA,



80 J. LIPMAN, S.NAYAK, AND P. SASTRY

in D for suitable X and maps By — X — TA; in D. Consider the following
commutative diagram whose rows are triangles in D. (This may be imagined as
comparing the triangles in the second row and second column of () via a triangle
constructed along the diagonal.)

B1 B2 B3

Bl B2 Bg TB1
u] H T
(64) A 2, B, X TA,

o o
Ay —2 5 By —2 5 Cy —2 5 TA,

From the defining axioms of triangles we conclude that there exist maps (not
uniquely determined)

X“.By and X250,

which, when filled in (Gl), make it commute. (Note that u', o’ are isomorphisms
since the remaining vertical maps in (G4l are isomorphisms.) We therefore obtain
the following diagram.

XL)Bg

(65) “/l vgl

Cs L)Cg

LEMMA 7.1.1. Suppose we have a commutative diagram as in ([EX) with rows
and columns as triangles in D and suppose the following conditions hold.

(i) We have Cy; =202 A3 and hence the vertical maps in [@3) are invertible.
(ii) There is a choice of maps u', o', (satisfying their defining conditions) for
which the diagram in (E3) commutes.

Then the diagram obtained by replacing the vertical maps in [B2) by their respective
inverses, commutes.

PROOF. We expand (@2) in the following way

Bs By —2 B
S

Cs X —— TA
o el

Oy Cy —22 . TA,

where the two squares on the right side are obtained from (4] and hence commute
by definition of w’ and ', whereas the rectangle on the left side is the same as the
diagram in ([@3). Condition (ii) therefore implies that the above diagram commutes.

O
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Let A be an abelian category. Recall that to any exact sequence of complexes
0 — L* - M* — N* — 0in C(A) we can associate a corresponding induced
triangle L* — M* — N*®* — L°[1] in D(A) (see, e.g., [I7, Example (1.4.4)]).
This association is natural, in that, any map of short exact sequences in C(A)
functorially gives rise to a corresponding map of triangles. Recall further:

LEMMA 7.1.2. Let A be an abelian category with enough injectives. For any
triangle T in DT (A) there exists in C(A), an ezact sequence of complezes of
injectives given by 0 — L®* — M®* — N°®* — 0, such that the corresponding
triangle L®* — M® — N°® — L*[1] is isomorphic to T

PROOF. Let N*®, L* denote complexes of injectives that are D' (A)-isomorphic
to C*, A® respectively. The natural map C*[—1] — A® induces a map N*[—1] — L*®
which may also be thought of as a map in K(A) and hence can be represented by
a map, say «, in C(A). Let M* denote the mapping cone of a. The standard exact
sequence involving L® M*®, N*® results in a triangle, and from the defining property
of triangles we see that there is a map of triangles

C*[-1] A* B* c*
N°*[-1] L® M* N*
which is in fact an isomorphism of triangles. O

Let A be an abelian category with enough injectives. Let
0—TIy —TIy—I3—0

be a sequence of additive functors from A to A which is exact on injectives of A.
Then any complex G* in DV (A) gives rise to a triangle

(66) RI,G* 22l Rry,Ge 222l RT,G* —— RIG°[1]

in the following manner. Let G®* — I°® be an injective resolution so that we may
set RI;G*[n] = T';I*[n]. Then (BH) is the triangle associated to the exact sequence
00— IMI®* — T'9I®* — I'3sI®* — 0.

LEMMA 7.1.3. With A and T'; as above, let T be a triangle in DY (A), say
F'* — G* — F* — F'*[1], such that RT'1F* =2 0 = RI'sF’®*. Then the two
rows in the following diagram (maps being the obvious natural ones) give rise to
the same map from RTsF*® to RT'1 F'*[1].

~

RI'sF* «— RI3G*

RI,G[1] —~— RIF*[1]
from (BB

RFgF. ; RFQF. EEEE— RFQF/.[l] ; RFlF/.[l]

PRrOOF. By we may assume, without loss of generality, that F'®, F'®, G*®
consist A-injectives and fit into an exact sequence 0 — F'* — G* — F* — 0
such that the corresponding induced triangle is isomorphic to 7. For j = 1,2, 3,



82 J. LIPMAN, S.NAYAK, AND P. SASTRY

set A; := I';F'*, B; :== I';G*, C; := T';F*. We therefore obtain the following
commutative diagram in which the rows and columns are exact sequences.

0 0 0
0 Ay Ay As 0
(67) 0 By By Bs 0
0 Ch Co Cs 0

0 0 0

The rows and columns give rise to triangles in D(A) and so we obtain a commutative
diagram in D = D(A) as in (@). The assumption R F* = 0 =2 RI'3G* implies
that As and C; are isomorphic to 0 in D and hence condition (i) of Lemma [T
is satisfied. In (E7) the natural map A; — Bz is a monomorphism in C(A). Let X
denote its cokernel. It follows that the natural maps Bs — Bs and By — Cs in (1)
factor through the epimorphism By — X and so we obtain the following induced
commutative diagram in C(A).

X —— B3

Lo

Cg—>C3

From the triangle associated to the exact sequence 0 — A; — By — X — 0 we see
that X fits into a triangle as in ([3). Furthermore the maps X — B3 and X — Cy
of the above diagram give a choice for v/, o’ in (BH), i.e., make ([64) commute. Since
for this choice of v/, o/, ([GH) commutes therefore condition (ii) of Lemma [Tl is
satisfied. The desired result now follows from Lemma [LT1] O

Let (X,A) be a formal scheme in F. and let {Z™},,ez be the filtration of X
induced by A. Let F be a flasque sheaf on X. Fix an integer p. Let z1,...,x% be
points in ZP \ ZPTL. Let W = {x1,..., 2%} be the closure of the set {1,..., 21}
We claim that for any 4, the canonical inclusion I, F < (I}, F)., is surjective. To
that end, let U be an open neighborhood of z; and let s be an element of (I}, F)(U).
Let Y be the closed set generated by those generic points of Supp(s) that do not
lie in {z;}. Then the restriction of s to the open set V:= U\ Y lies in (IET}]:) (V).
Thus our claim follows.

Now assume that there is a point 2’ € ZP+! such that 2’ is an immediate
specialization of z; for each i. Set W':= W N ZPT1. Arguing as in the previous
paragraph, we see that the canonical map I, — (IyF)s is an isomorphism.
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Next note that there is a surjective map

j=k
Ly F — FW/W’]: 0o p. 227, of. @ jejlmj(ﬂcj}—)-

Hence, by localizing at =’ (resp. z; for any i), we obtain a surjection (resp. an
isomorphism)

(Liy Far — @515 F, (resp. (Lyy F)e, == I, F),

T

where the inverse of the last isomorphism is the one described in the previous
paragraph.

For convenience, we shall use Ij,,, to denote the functor I, Jzm Consider the

following diagram where all the unlabeled maps are the canonical ones and a is
defined below.

0 — L,F —— (IwFy —— &L,F —— 0
(63 | | L

0 - (I;+11p+2°7:)96’ - (I—Z;:P+2f)1', - (I;’:P‘f’lf)x, - 0
We define a to be the canonical inclusion induced by the decomposition in (&):

Qrre @ nr=( @ Wh7), g EmnF)
J {ylA(y)=p, y~z'} {y|A(y)=p}

LEMMA 7.1.4. The diagram in [@83) commutes and its rows are exact. In par-
ticular, for any complexr G* € D(X), there is a commutative diagram

®urg ——  HYGe

! !

(HY ) 200:1G%)er —— (Hpits 012G )

where the downward arrows are induced from the corresponding ones in [@8) and
the horizontal maps are the usual connecting homomorphisms resulting from the
exact rows.

Proor. Using the natural maps Iy, — I, Iy — Iy, FW/W, — sz/zwlv
we expand (BX) as follows.

0 — L,F —— IwFe —— @LF ——0
H [
0 ——  (IpFe —— EFo —— LywFle — 0

! ! !

0 — (sz+1/zp+2-7:)z’ - (sz/zp+2-7'-)z’ E— (sz/zp+1-7'-)z' — 0

It is clear that the above diagram commutes. The middle and the bottom rows,
being localization of exact sequences, are exact and hence the top row is also exact.
O



84 J. LIPMAN, S.NAYAK, AND P. SASTRY

Looking at the image of the vertical maps in the commutative diagram of [T
we in fact see that the following diagram of induced natural maps commutes,

®,Hr6° —— HLGe
(69) mjz (lm)lz
@, (EaG®)(z;) —— (BEaG®)(z')

where the bottom row is induced by the differential of EAG®.

7.2. Coboundary for lateral specializations. Let f: X — Y beamapinF.
We say that a specialization x ~ z’ is f-lateral if it is an immediate specialization
and its image under f is also an immediate specialization.

Let h: (X,Ax) — (Y,4y) be a smooth map in F, having constant relative
dimension n. Let M® be a complex in Coz(Y,A,), and let £ be a quasi-coherent
flat Ox-module. Set E(M®) = EaRIJ(MW*M®* ® L[n]) € Coz(X,Ay). Our
aim is to describe the differential of E(M®) when restricted to the components
corresponding to a fixed h-lateral specialization.

Let y ~ o' be an immediate specialization in Y. Let 2/ € h~1{y’} and
21,...,2x € h~H{y} be such that 2’ is an immediate specialization of x; for each i.
Set

q=28(), p=Ax(x:), M =M*(y), M' = M*(y).

Then Ay(y') = ¢+ 1 and Ax(2') = p+ 1. By EGI0 p; := p — ¢ + n is the
relative dimension of Ox ., over Oy , and also of Ox ,» over Oy . Let ¢ denote
the following map of Ox ,/-modules

Pun (Mo, L.;) = PEM) () — EM®) (@) = HEL (M @y Lar),
J ’ j

where the first and the last isomorphisms are obtained using ([B8) and the map in
the middle is induced by the differential of EM®. Let 9: M — M’ denote the
natural map of Oy ,-modules induced by the differential of M*®. Our aim is to
express ¥ in terms of 0.

Set O, := Ox,¢; and Oy := Ox 4. Let W = {x1,..., 21} be the closure of the
set {x1,...,x,}. Let J be an open coherent ideal in Ox such that Supp(Ox/J) = W.
Set I:= J,. Note that IOx ,, = Jg; is my,-primary for each j. Indeed, since J
is open, we may first go modulo a defining ideal in Oy so that X may now be
assumed to be an ordinary scheme. Then the required conclusion follows easily.
In particular, the canonical map Rszj (M ®y Ly;) — RI—}Ozj (M ®y Lg;) is an

isomorphism.

PROPOSITION 7.2.1. In the above situation, consider the following diagram
where 1, p2, 3 are maps of Ox -modules defined as follows. The map p is
defined on each component via the sequence of natural maps

H{' (M @y Lor) — HY (M @y L)) == Hip (M ®yLy;) <~ HE (M ®y, Ly)),

J
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e is the one induced by the canonical inclusion I, = — I and pg is (—1)" times

HP (— ©y L) applied to 8: M — M’

@j HE (M @, Emj) — Hﬁmlw, (M’ @y Lar)

j
#1T #2l

H (M ®y Lo) —— HY (M @y Lo)

Then p1, o are isomorphisms and the above diagram commutes.

ProoF. Using truncation arguments as in ([B3b) we see that ¢ depends only
on the modules M, M’, i.e., we may assume without loss of generality that M®
satisfies M7 = 0 for j # q,q + 1, and MY =i, M, M9 =4, M'. Set

F*:=RIy(f*o<qM® ®@x L[n]),
F'* = RIX(f" 02941 M® @x L[n]),
G*:=RIy(f*M* @x L[n]).
Applying RIV.(f*(—) ®x L[n]) to the triangle
(70) ToattM® — M® — 0 M® — (55411 M)]1]

associated to the exact sequence 0 — 0>¢4 1 M® — M® — o<, M® — 0 results in
the following triangle in D(X)

(71) F'* —G* — F* L F.

The map v is obtained from the d-functoriality of RIY.(f*(—) ®x L[n]) (§CA &),
which in turn involves the three §-functors, RIy, f* and ®xL[n]. The first two of
these commute with translation by construction, and the third, as seen from the
convention in §LA (M), also commutes with translation.

Set Fj:= M ®y Ly;, F:= M ®y Ly, and F':= M' ®, L. We now expand
the diagram in the assertion of the lemma as follows.

D;(EM®)(z;) —— (EM®)(2)

Al al

(72) @, Hp, Fy —=— @,HLF —F— HIUFC S HbF

H1 T MQT Mml H2 l

HI'F A (HEF) s (HRPUF), 2 HPFY
The map po is the obvious one induced by the differential of EM®. We define iy
componentwise as the composition of the following natural maps

(BEM®)(x)) = (Ea,G)(w) oo HE,G® —o HEF*.

Note that this amounts to using [B8k) and B8b) without involving the isomorphism

HY RIN(-) = H}?’%j (=)a; (cf. (). We define pg by first replacing H2 RIy(—)

by H?, (—)z, and then following the remaining steps in (B8) so that pepus equals
J

BY). The maps us, us are defined in an analogous fashion. We define w11, p13

by following the same steps used in defining ug, us respectively; for example, in

case of p111, we first replace (H{y RI§(—))s by HY(—)s using the isomorphisms
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(RIRIY(—))s = (R (—))s = RI; (—)y and then follow (B3c)-B3e). In par-
ticular, pg, ps, te, s, 411, 13 are all isomorphisms. For ug, p19 we refer to the top
row of (BX). We define uy by

P ur 7o = P ur G* LA pgrrige = pgrripe
y (ra1) y J top row @
and define p12 to be the unique map satisfying ulgulguﬁl = U3.

The rectangles on the bottom left corner and the bottom right corner of ([2)
commute for functorial reasons. By BTl we have RI},7* = 0 and RI; F'* =0
and therefore by the exactness of the top row of ([BF) it follows that g, 1o are
isomorphisms. In particular, 1, po are isomorphisms.

Since ¢ = M8M5M0M21 e 1 it follows that the commutativity statement of the
lemma is the same as proving that the outer skeleton of ([[2) commutes and so we
reduce to checking commutativity of the middle two rectangles in ([2).

Vertically expanding the topmost rectangle in ([[2) results in the following di-
agram having obvious natural isomorphisms as vertical maps.

@, EM)(z;) 2L (EM)()

@j(ng/Zp+lg.)(xj) (ngil/zpwg.)(x/)
zl lz
. top row +1 e
@, H.G mrlg
zl }
&b, 1L, F* R HPF Fre

The left and right columns in the preceding diagram give the maps ps and ps
respectively. The commutativity of the subdiagram on the top was recorded in (E9)
while the bottom rectangle commutes by definition of p7.

So for the lemma it only remains to check that the following subrectangle of ([Z2)
commutes.

(73) HgT Mlol
(HB, F*)o —2 (HDF'F'®),

To that end we claim that p12 equals (Hjy, (—))a for v as defined in ([I]). Assuming
the claim, checking that (33 commutes amounts to checking that the following di-

agram “commutes” where the top row represents p7 and the bottom row represents
the rest of ([3).

@j Hazc)j]:. = @j ngg. tffv H:f’-Hg. . H:fj_lj:/.

@J ng]:. ; (HIZ/)V]:.);E’ M) (H{Ij{;’l‘lflo)m, ; Hg,‘i‘lj_-/o

Mo M10
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We use [[T3 in this situation with I'y = I, (—), T's = (I};;(—))s and I's = &, 1,

Upon applying H? to the diagram of we see that the top horizontal map
in [CTAlis (—1) times the map labeled ? in [[T3 (L4, (). The remaining maps
in the preceding diagram agree with those in H? of the diagram of Therefore,

by LT3 (@) commutes.

Verifying the above claim on p12 amounts to checking that the following dia-
gram commutes.

P (— ’
(H‘I;V]:o)m/ M} (Hﬁj_lfl.)z’

(74) HHJ, #13l
HP' (M @y Lor) — HP' (M’ @y Lo)
Let us expand this diagram vertically using the definition of u11, p13, F*® and F'®.

HP (— ’
(HYRIL(f o<eM® @x Lin)))or 2 (BRI (0001 M® @2 L))

| |

HY(f*0<qM® @x Lln])or e BN (frosgn MO @x Lin))e
| H
HY (f*iyM[—q] ®@x L[n])ar —s HPN(fiy M [—q — 1) @x L[n])ar
m)_m@lggn = (- sign = <71>Q"+"JM>—M>
HY((M ®y Layr)[—q +n]) s HYP((M @y Lor)[—q — 1+1))
@) | | @
HY (M @y Lyr) — HY' (M @y Lor)

Here p14 is minus of Hf (=), of the composite map (where ® = ®x,L* = L[n])

FrocgM® @ L o (fros M) @ L 2o (ffos M® @ L)1]

where T is induced by applying f*(—) ® £* to the last map in ([[0) while 6 is
obtained using the convention in §L4 (), and therefore, is the identity map on the
graded level. Tt follows from the definition of 4 in (Il) that the topmost rectangle
commutes. Next set 15 = w14 so that the second rectangle from the top commutes.
Keeping in mind that M* is a two-term complex supported in degrees ¢, g+ 1, one
notes that on the stalks at 3’ the natural map

i,M = M = H(o2,M®) 2T F9((05 0 MO)[1]) = M =iy M

is precisely —9 where 9 is the canonical Oy ,-linear map M — M’ induced by
the differential of M*® (cf. LA ([X)). Letting p16 be the obvious map induced
by (—1)™0 we see that the third rectangle from the top, after going through (B3c)
in the vertical maps, is obtained as H} of the following commutative diagram where
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®:®y/,L:£z/.
M[~q]® Lin) <%= M'[~¢ = 1][1]® Lin] —“— (M'[~¢~1]® Lin))[1]

sign

[ (e |

(M ® L)[—q + 7] (Z1)"8e1 (M’ ® L)[—q + n]

The rectangle involving p16 and pg clearly commutes and thus () commutes. O

COROLLARY 7.2.2. In the situation of [LZTl, assume further that there exists a
sequence in I of length p1, say, t =t1,...,t,, such that the following natural maps
are 1somorphisms.

H?l (M Ry Em/) — Hf(}) ,(M Ry Eml) H?I(MI Ry Em/) — Hf(}) ,(M/ Ry Eml)
Then any element of @; HE! (M ®y Ly;) (resp. HE (M’ ®y Lqr)) can be written

as a sum of generalized fractions of the type

l
w:[ me }, meM,l € Ly,r; >0

Lt
m el
(resp. [tri trél}’ m' e M'lI" € L7, >0)
11

and v of L2l sends the element represented by w to the element represented by

the fraction
(=D)"9(m)®1
ot ]
PROOF. Since 1, o of L2 are isomorphisms, the generalized-fraction repre-

sentation holds. The description of ¢ in terms of such fractions follows immediately
from the commutative diagram of [LZ11 O

7.3. Application to the retract case. Let (Y,A,) 5 (X, Ay) LR (Y, Ay)
be a factorization of the identity map on Y in F., where i is a closed immersion
and h a smooth map of constant relative dimension, say n. Note that ¢ takes any
immediate specialization in Y to an h-lateral specialization in X. (§2)

LEMMA 7.3.1. (¢f. |27, Thm. 2.6]) In the above situation, let y ~ y' be an
immediate specialization in'Y having corresponding image x ~ ' in X. Then there
exists an Ox 5-sequence t =1t1,...,t, satisfying the following properties.

(i) The sequence t maps to a reqular system of parameters in Ox 5 /My Ox o
and in Oy, o /myOx . Moreover, a basis of (Qflx/y)w and (Q%c/y)w’ is given
by dty,...,dt,.

(ii) LetJ be the largest (open) coherent Ox-ideal defining {x} and X the largest
(open) coherent Oy-ideal defining @ Then Ky Ox o +tOx 0 = Ty

PrOOF. The statements are local in nature. For any open subset U in X, with

V = i71U we have h(U) C V and h restricts to a smooth map U — h~'V. Thus
we may replace X by U:= Spf(B) an affine open neighborhood of 2’ in X, and Y

by V = i7!U = Spf(A4). Then the natural induced maps A 2, B T A factor the
identity map on A and ¢ is a smooth map.
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By replacing U,V by smaller open subsets if necessary such that ' € U and
V = 7 'U remain valid, we may assume, without loss of generality, that QL v is

free so that the B-module SA)}B,/A = (U, 6111/\7) (see @) in §ZT) is free of rank n.
Let J be the ideal in Ox defining the closed immersion . Set J = kerw. Then
d |u = J~B. By and there are natural isomorphisms

J)T? = Qh,©p BJJ,  3/8% = Q-

By the Nakayama lemma it follows that J,» = JOx . is generated by n elements.
These elements may be assumed to be images of sections of J over a suitably small
open affine neighborhood of z’. Again, by shrinking U, V if necessary we may assume
that J is generated over B by n elements. Let t = {¢1,...,¢,} be such a generating
set. The kernel J,; (resp. J,) of the natural map Ox , — Oy, (vesp. Ox » — Oy )
induced by i is generated by the natural image of t. Therefore, by [T9, Thm. 8.4],
the maps (completions being along the respective maximal ideals)

— 0 — — 0/ —_—
Oyﬁy[[Tl, ceey Tn]] — ODC,my Oyﬁy/[[Tl, NN ,Tn]] — Ofx’x/,

defined by sending T to t;, are surjective. Let us verify that 6, 8" are isomorphisms.

Using for the maps Oy , — @[[Th T N (jf)—c\z we see, by comparing
ranks of the free modules in 5.3} that for a = ker#, we have a/a? = 0. By the
Nakayama lemma a = 0. A similar proof works for ker#. Now (i) follows by
considering the image of t in Ox ;.

For (ii) note that J C J and moreover J/J is mapped to X under the isomorphism
(O;x/ﬂ)‘z -~ QOy. In particular, it holds that J = J+XOx. Since §,- is generated
by t, (ii) results. O

Let M* € Coz(Y, Ay). Set E,(—):= Ea, RIY(h*(—) ®wp[n]). We now consider
a graded isomorphism

(75) ib]Eh,M. M
which is defined pointwise, say for y € Y, by the following isomorphism (where
M =M*(y), v =i(y), ¢ = Dy(y) = Ax(7), w = wp)

-h . &0 .

("B, M®)(y) —— Homo, ,(Oy,y, (E,M*)(z))

(—1)7" times (ﬁﬁ) M.

<2 Homo, (O, Hi, (M 9, 01)
For the last isomorphism we also need ZZG.9 and the isomorphisms of (@) and @0).
PROPOSITION 7.3.2. The graded map in [&) is also a map of complexes.

(cf. 27, Lemma 6.13])
PROOF. Let y ~» ¢y’ be an immediate specialization in Y and let  ~ z’ denote

the corresponding image in X. Set ¢ = A, (y) = Ax(x), so that ¢ +1 = Ay(y/) =
Ay (z'). Tt suffices to prove that the following diagram, whose columns give ([7H),
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commutes. Here 1) and 0 have the same meaning as in [CZ1]

(ibEhM.)(?J) - (ibEhM')(y’)
! |
Homo, , (Oy,y, Hy (M ®, wy)) Homo, ,(Oyy, Hy, (M’ ®y wyr))
| |
HE, (M ®y w,) — HE (M @y wyr)
(—1)1mx lf & (C1jantn x lf )
M 9. M

The commutativity of the top rectangle is straightforward to verify. We now verify
commutativity of the bottom rectangle by a chase involving generalized fractions.
We use in this regard. Regarding the notation in [Z2Z1l in this situation, we
have W = {z}, p1 = n (since Ay (z) = Ay(y)), £ = wy, and J is the largest coherent
ideal defining W.

Let t be the sequence in O, obtained in [C3Tl Let us verify that t satisfies the
hypothesis of LZ2A Let X be as in (ii) of L3l Since K, Oy, = K, = m,, the
latter being the maximal ideal of Oy, ,, and since M is m,-torsion, we see that M
is Ky/-torsion as an Oy ,-module. With I = J,» as in [L2] by (ii) of [L3Tl we see
that the canonical map RI; (M @, wyr) = R (M ®y w,) is an isomorphism.
Since M’ is my-torsion and by [LZINi), My = my O +1O0z C my Op +1 C myy,
the other condition also results.

By [C3i), dtq A dta A -+ Adty, is a generator of w,s and of w, (cf. definition
of @3)). Now chasing the image of the fraction

m@dty Adtg N\ --- ANdty,
1 trp1
1 seeeylpy

in H}), (M ® w,) we conclude by O
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8. The main theorem

Having established the crucial ingredients in B2l T2 and [[332 we are
now in a position to prove the Main Theorem stated in L3l The crucial results
are brought together in Proposition below. This enables a fairly quick proof
of existence of the basic pseudofunctor (—)*, given in §821

In §85 we describe the behavior of (—)* with respect to translations.

Let us recall some notation discussed in L3 Let (X, A) be an object in F.
Let COZOA(T)C) be the category consisting of graded maps of the underlying graded
objects of the complexes in Coza (X). More formally, an object N'® in Coz{ (X) is a
Z-graded sequence of Aqc(X)-modules such that for any p € Z, N7 lies on the p-th
skeleton induced by A. A morphism in COZOA(DC) is simply a Z-graded sequence of
maps in Aqet(X). There is a canonical forgetful functor Coza (X) — Coz (X) that
forgets the differential on a Cousin complex. For A'* € Coza(X) we shall denote
its image in Coz) (X) also by N°.

Let f: (X, Ax) — (Y,4y) be a map in F.. For any M* € COZOAB (Y), we define
an object fM®* € Cozy (X) by (with notation explained below)

(fAM)(@):= (fa)eM,  z€X,

where, with y = f(z), we have M = M*(y), f; is the induced map on the com-
pletions of the stalks 61; — 53-5\96 and hence is in € (§3)) and (—) is the pseud-
ofunctor on € of E31l Via the canonical forgetful functor, we shall, by abuse of
notation, let f% take inputs from Coza, (Y) too. Since (—); is a pseudofunctor on €,
we can, in an obvious manner, make (—)% into a pseudofunctor on F..

The key step in defining f#¥M?* of our Main Theorem is to specify a differential
on fAM®. We do this first for the subcategory of smooth F.-maps and for the sub-
category of closed immersions, then paste locally via factorizations, and finally use
independence of the result of pasting from the choice of factorizations (Proposition

B33) to globalize.

8.1. Smooth maps. For any smooth map f: (X, Ay) — (Y,4y) in F. having
constant relative dimension d and for any M* € Coza, (Y), set
[

EfM® = Ep RIX(f*M® @x wyld]).

Let x be a point in X. Set y = f(x), p = Ax(x), ¢ = Ay(y). Let f» be the induced
map on the completion of the stalks Oy , — Ox ;. Let p; be the relative dimension

of fx, which, by Z6I0 equals p — ¢ + d. Set M = M*(y). Consider the following
isomorphism

(76)  (EsM®)(2) s B2 (M @, (wy)a)

BRI B, o (0 g wz) —— ()M = (FM)(0)

where 6 is (—1)P+49)+? times the isomorphism in EZ3Z1] 1.(1). As z ranges over X
we therefore obtain a graded isomorphism E;M® <~ fiM®. If f does not have
constant relative dimension on X, then we restrict to connected components of X
and then carry out the above procedure.

In particular, there is now a natural candidate for f¥M® (with f smooth).
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The isomorphism E; -~ f% given by (fH) behaves well with restriction to open

subsets on X. In greater detail, let U be an open subset of X and (U, A) % (X, Ay)
the corresponding open immersion. Set f; = fu. Then the following diagram
commutes:

(EfM®)|,, —— (FAM®)|,
™ | |
E,M® ——  fime

where « is defined through the following sequence of obvious natural maps (with

Ex:= Ea,, Ey:= Ea)
(EfM* (BxRIF(f*M®* @x wyld])) ],

= By((RIX(f*M® @x wy[d]))|,,)

- ByRI((f*M* @x wyld])],)

- ByRI(ff M® @ wyly [d])

= ByRI(fiM® @y wy,ld]) =Ep M®.

=

The commutativity of ([[7) is verified punctually as follows. Let x,y, p, M etc., be
as before. Expanding the horizontal maps we obtain the following diagram where
it suffices to verify that the rectangle on the left commutes.

m),M) Rest of () ~
—_—

(E;M*)(2) HE, (M[—q) ®, wp..ld) (F)eM
o] H |
B M) @) B g (g @y wpald) 2T, (e

Expand the rectangle on the left, with the following notation:
G* = "M® @xwyld], G7:=fiM® Quuwy(d], G*:=M[-q]®ywyzld].

(ExRIxG®)(z) ——  HIRIyG* —— H} G —— H} G*

(Bu(RIXG®)| )(x) —— HE((RIYG®)[,)

(BuRL(G*],))(x) —— HERI(G®

(BuRIGY)(x) ——  HIRIG —— Hj G, —— H}, G*

For the horizontal maps in the first two columns from the left, we refer to [[2) of
§82A Thus these two columns together correspond to [B8h). The horizontal maps
in the rightmost column correspond to [B8b)-BRc). The vertical maps are the
canonical ones. Commutativity of the above diagram is straightforward to check
and thus [{d) commutes.
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The following is an immediate consequence of the commutativity of ().

PROPOSITION 8.1.1. Let f: (X, Ayx) — (Y, Ay) be a smooth F.-map. Let U C X
be open and (U, A) % (X, Ay) the corresponding open immersion. If (—)* is defined
for smooth maps via [4), then for any M® € Coza, (Y), (fﬁ./\/l')‘u = (fu)*M* as

complexes. In particular, uf is the restriction of 1ﬂx to U.

8.2. Closed immersions. Let f: (X, Ay) — (Y,Ay) be a closed immersion
in F.. Then for any M*® € Coza, (Y) and any « € X, with y = f(z), M = M*(y),
and f, having the obvious meaning as above, we use the following isomorphism

(78) (M) (@) B Homo, , (O 0, M)

Y,y

(fo)eM = (f*M®)(x)
to get a graded isomorphism f°M® -5 ffM®. In particular, there is now a natural
candidate for f¥M® for f a closed immersion.
The isomorphism f’> < f% given by @) commutes with restriction to open
subsets in the following sense. Let U be an open subset of Y. Set V:= f~'U. Then

the following diagram of obvious natural maps commutes.

(M), —— (M),

(f‘v)b(M.‘u) - (f|v)h(M.|u)
Commutativity of the above diagram is proved by showing it at the punctual level

where it is straightforward to verify. In summary, if (=) is defined for closed

immersions using (), then (f|v)ﬁ(./\/l'|u) = (fu./\/l')|v.

PrOPOSITION 8.2.1. Let f: (X,Ax) — (Y,4y) be a map in F, that is both
a smooth map and a closed immersion. Then for any M*® € Coza,(Y), the two
natural candidates for a differential on fSM?®, viz., the one induced by ([[8) and
the one by (), agree. Moreover, if X =Y and f is the identity map lx, then the
graded isomorphism 5&(/\/1'): lgc./\/l' — M?® also induces the same differential.

PROOF. First we show that f is an isomorphism from X onto a union of con-
nected components of Y. Let V = Spf(A4) be a connected affine open subset of Y
for which f='V is non-empty. Since f is a closed immersion, f~!V is an affine
open subset, say U = Spf(A/I), of X. It suffices to show that I = 0. Let a be a
defining ideal in A. By ZZZH the map A — A/I is flat and hence the same is true
for AJa — A/(a+ I). Hence (a+ I)/a is idempotent. Since Spec(A/a) (=V as a
topological space) is connected it follows that (a4 I)/a = 0 and hence I C a. As A
is complete w.r.t. a, I is in the Jacobson radical of A. Flatness of A — A/I implies
that I is idempotent and hence I = 0 by the Nakayama lemma.

Thus we may assume without loss of generality that f is an isomorphism. We
drop reference to the codimension functions for the rest of this proof. Now note
that there are canonical isomorphisms

f*./\/l. -~ Ef./\/l., f*Mo -~ fflMo -~ fbM.,
where the first one is obtained by composing the isomorphisms
ffM® = EffM®* = ERIYf*M®* =5 ERIY(f*M® @x wyld]) = EfM*®
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which are based on the following:

e The complex f*M?* being Cousin, the isomorphism of BZZII(ii) applies.

e Since f*M?® consists of torsion modules, the canonical map is an isomor-
phism RIJ f*M* — f*M?°.

e In this situation wr[d] = Ox[0]. (Henceforth we shall identify ®xOx[0]
with the identity functor.)

We claim that the following two graded isomorphisms are equal, thereby showing
that ([[0) and ([¥) induce the same differential on ffM®:

(79) Mt = EgMme T e e s ot B e

The final statement of the proposition then follows from B3], TI1.
For any z € X, f, is an isomorphism, and hence to prove the above claim it
suffices to show that, at the punctual level, via the canonical isomorphism

M = M@, Oxy = Lf*MP = (f"M*)(2),  (p=Ax(2))

the two graded isomorphisms in [[d) reduce to the (inverse of the) corresponding
isomorphisms in B33 We now show this reduction for the first isomorphism in [Zd),
leaving the other one to the reader.

Fix z € X. Let y = f(x),M = M*(y). Consider the following diagram of
natural isomorphisms whose top row is the first isomorphism in ([[Z3).

(FM)a) ——  EpM)@)  — (M) ()

! | H

M M®y Ox)w . H7Onm (M ®U Ox7w) rest of (ZH) ]?muM

Note that all the signs involved in B8) and the rest of (7)) vanish in this situation.
The bottom row is inverse of the first isomorphism in and therefore it suffices
to show that the above diagram commutes. The rectangle on the right commutes
trivially. We expand the one on the left as follows.

(frMe) () BERD

| a|. al.

FMm @) B ppge R

! I Js

(Ef*M*)(z) —— (ERIxf"M°)(z)

Only the maps 3; require explanation, the other nonlabeled maps being the obvious
ones. Let B2 be the unique map such that Bocs gives [B). (In other words, fo
involves (B8h)-([B8e), except that (), which is part of [B8h), is taken care of by as.)
We define 31 by following the same steps as in (2, the only difference being the
absence of RIy (cf. @), (), where RIy may be dropped when F* consists of
torsion modules).

The two rectangles on the right side commute for functorial reasons. For the one
on the top left, see the proof of BEZLiii) with C®* = f*M?®*. The one on the bottom
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left expands to the following diagram, whose commutativity is easily verified.

(fM)2) =— H'Lf*M* ——  HPf*M®
LITMP —= H"(I; f*MP[-p]) —— Hﬁ(f*}/lp[—p])
L frmP H3f£Mp
M ®}Om HY (ng Ox.z)

O

8.3. Factorizable maps. Consider a map f in F which admits a factorization
of the type f = f1fo where fs5 is a closed immersion and f; a smooth map. The
graded isomorphisms in (Z8) and ([J), then give a candidate for f*. However since
there is no unique choice for a factorization of f as a smooth map followed by a
closed immersion we must first show that different factorizations do lead to the
same definition of ff. We accomplish this in BZ32), the main result of this section.

DEFINITION 8.3.1. Let h be a map in F, and let h = hq,..., h, be a sequence
of maps in F, such that h factors as h,h,—1---hy and each h; is a smooth map or
a closed immersion:

(DCA) (Zl,Al)—>...—>(HA)

For any M* € Coza,, (Y) we define a Cousin complex in Coza (X), to be denoted by
h* M® or (hy|--- |k, )ﬁM' as follows. As a graded object we set h* M® = h*f M*®. We
set the d1fferent1al of h!M* to be the one induced by Cf: hY---hAM® = hIM®
where Ch is the natural map derived from the pseudofunctorlahty of (—)f and
hu -hE M?® is equipped with a differential by iteratively using (Z8) and (Z3).

In the notation of B3l the underlying object of hfAM® depends only on the
composite map h and not on the individual terms of the sequence h. We want to
show that the differential of h* M*® is also something that depends only on h. We
first show this in four special cases. These cases are based on the results in BE21],
ET2 and What follows is essentially a rewriting of these results in a
way that incorporates (—)? via the isomorphisms in (Z8) and (). It is important
to get signs right, so we give elaborate proofs whenever necessary.

Case 1. Suppose f, g are composable smooth maps in F. so that the composition
gf is also smooth. Then we claim that (gf)* = (f|g)?. If f, g have constant relative
dimension (and hence so does gf by ELGH), then it suffices to show that in the
situation of §o.2 with £; = wy and Lo = wf, the following diagram commutes.

(B M*)(2) L (BB M) ()
using (m)l

(80) using | ([Z8) (qugM')(x)
using (m)l

(M) (@) L2 (frgh M) ()
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Before we verify that ) commutes we need to set up some notation. For
any map ¢: R — S of noetherian local rings that is formally smooth of relative
dimension r and for any R-module N we set ¢, N:= H] (N ®rwg). Set M =
M?*(z). Now we expand ([Bl) as follows with maps described below.

(EgrM®)(z) (EfEqM®)(x)

| o

(gf)er A — fﬂcxgyxM — fzx((EgM.)(y))

Os
O Jow9y M —— [ (EgM®)(y))
Gf)\me ‘L ﬁcxg/,;;xM Uy !
Y2
o Os  Jogye M —— foy(EgM®)(y))
5 }
GhasM  ——  Fu@y,M 0o (JTEuM®)(2)
[ 151
(9f)IM®)(z) —— (figPM®)(z) =——= (f'¢'M"*)(2)

The rectangle [y is the same as the diagram in B22Z1] via the isomorphism in 263
Consequently [J; commutes. The vertical maps in [Js, 03 are the ones induced
by going to completion (see ([A)) while the remaining horizontal maps are the
obvious induced ones. Consequently [Us, s commute. In [y, 71,72 are induced
by the isomorphism f;x - fmﬁ defined exactly as in the map 6 in [@), (i.e.,
vi = (=1)P*Tdatr times the map induced by BEZ3L 1.(i)). The horizontal maps
being the obvious ones, [y commutes. In g, §; is the natural map induced by
the isomorphism E,M® % goM® of ([H). The remaining maps in (g spell out
the definition in (), in particular, d; is (—1)(@+€)7+9 times the isomorphism given
by 3] 1.(i). Therefore Og commutes. The vertical maps in 07 are equalities
while the horizontal maps are obtained from the comparison isomorphism C{ Y9 and
so O; commutes. Finally in Os, « is another instance of the map 6 in () so
that a is (—1)P+4+)™+P times the isomorphism of EE3.0, I.(i). Note that 3, which
is obtained from 23, is (—1)@~")(P+4=9) times the the bottom row of EZ31L I1.(i),
(because g — r is the transcendence degree of the induced map of residue fields
k(z) — k(y) and p + d — q is the relative dimension of Oy , over Oy ,). From the
commutative diagram in B3] I1.(i) and the following calculation

(_1)(p+d+e)r+p(_1)(q—r)(p+d—q) — (_1)(p+d)q+p(_1)(q+e)r+q,
we conclude that 05 commutes. This proves that ) commutes.

By first restricting to connected components, if necessary, the the condition on
constant relative dimension for f, g is relaxed, thus proving Case 1 in general. As
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a corollary we now have a Coz-valued pseudofunctor (—)f over the subcategory of
smooth maps in F,.

Case 2. Suppose f,g are closed immersions in F. such that the composition
gf exists and hence is also a closed immersion. Then (gf)* = (f|g)*. For this it
suffices to show that in the situation of the following diagram commutes.

(frg" M) (@) —— ((gf) M®)(x)

I l

ot
(Fig" M) (@) — ((9f)"M*)(x)
The commutativity of this diagram follows from[E- A and the commutative diagram
in (@) As a corollary we now have (—)* as a pseudofunctor over the subcategory
of closed immersions in F,.
Case 3. For the diagram in B2), we claim that (5|f)F = (g|i)?. Tt suffices to
show that in the situation of 223 with £ = wy, the following diagram commutes.

(Egi” M) (w) —— (7E;M®)(w)

| |

(81) (g** M®)(w) (F*Es M) (w)

(g M) (w) ——— (F°f*M®)(w)
To prove this we expand &) as in ([§2) with the following notation. For formally
smooth maps of noetherian local rings we use the notation of (—)x as in Case 1. For
any surjective map 1: R — S of noetherian local rings and for any R-module N
we set ¥y N := Hompg(S, N). In what follows, those maps of ([82) which are not
specifically described are assumed to have obvious meanings.

Modulo the relation ee~! = 1, the diagram in 0, is the same as that in
and hence [J; commutes. The maps in [y are obtained from completion and the
isomorphism of (), so (s commutes. The maps p1, pa2, i3, 14 are induced by the
isomorphisms gy, — Guwy and fm,x = f;ﬁ which, in turn, are defined exactly
as 0 is defined in ([f8) (and hence equal (—1)P+9a+P times the corresponding map
induced by B3], 1.(i)). We obtain v from the pseudofunctoriality of §. From the
commutative diagram in EEZT] II.(iii), it follows that O3 commutes. In [y, k1
is induced by an application of ([¥) while k2 in O is induced from ([@). The
remaining maps in [y, (5 spell out the definition of the maps k; and hence (4, (5
commute. The remaining rectangles in &) commute due to functorial reasons.
Thus ([2), and hence (&), commutes.

Case 4. Suppose Y — X N Y is a factorization of the identity map on Y
with i a closed immersion and h a smooth map in F. Then (i|h)? = (1y)*. For this
it suffices to show that in the situation of [L32 for any y € Y, the diagram

(PEM*)(y) — 2 Mo(y)

(83) m:ml 165
(IBREM®) () — ((1y)P M) ()

commutes, which can be done along the same lines as the earlier cases.



(Eqi” M®)(w)

(7B M) (w)

gwx((ibM.)(z)) — GuxizxM ——  JuufexM

l Os

ﬁx((ZbM.)(z)) — g-’u\lxizxM I @K’L’/;XM
(82) H1 l#z l;%
Gup(PM)(2)) —— FuyisuM ——  GuyizaM
(" M*)(w) a Gusing M
(g% M*)(w) (g7 M®)(w)

U

Oz

Jusifox M~ jusfox M —— juy (EyM®)(2))

- |

Jusi oM —— Jusfox M —— Ju (B M®)(2))

- |

Jofox M —— JusfoxM —— Juy(EzM®)(@))

: |
.]/';tif;ﬁM Os (juEf'M')(w)
’ J{nz
(75 fF M) (w) (75O M) (w)

AMISVS 'd ANV SMVAVN 'S ‘NVINIT T
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Before we put together the four cases above, we will need some basic results
involving the definition in B3] For the rest of this subsection, we do not write the
Cousin complexes that occur as inputs of the functors we work with. We also drop
reference to the codimension functions. We call a sequence f = f,..., f, of maps
in F composable if, for each i, the target of f; equals the source of f;1. For any 1,
f<; denotes the sequence f1, ..., f; and f; denotes the sequence fi11,..., fn-

LEMMA 8.3.2. Let £ = f1,..., fn be a composable sequence in F, such that
each f; is a smooth map or a closed immersion.

(i) For any i, the canonical graded isomorphism

(F<i)?(Fi)' = (fi o f1) (fu o fir1)' = (fu-o fr)P =

is a map of complezes.
(ii) Suppose that for some i there exist maps gi, gi+1 in F such that
(@) gi+19: = fix1rfi and g;, gix1 are smooth maps or closed immersions;

(b) (gilgi+1)* = (fil fisr)"-
If g denotes the (composable) sequence obtained by replacing f;, fiy1 in £
by gi, giv1 respectively, then £t = gt.

PROOF. The following diagram, whose maps are the canonical graded isomor-
phisms, commutes by pseudofunctoriality. Since the vertical maps define the dif-
ferentials on f<;,fs;, (i) follows.

(fi"'fl)h(fn"'fi-i-l)h N (fn"'fl)h

l !
foo St == S fh

For (ii), consider the following diagram, whose maps are the canonical isomor-
phisms induced by (—)%.

(fisrfi)? =—= (9it19i)"

| |

b el h b
fifi+1 7 9i9i+1

By assumption, if the objects in the bottom row are equipped with a differential

by using ([[8) and (), then the bottom row is a map of complexes. Therefore, the
analogous statement holds for the following diagram.

(fn"'fl)h - (fn"'fl)h

| |

f1h " 'fiufiu-i-l T Fz — f1h e 'fiu—19595+1fz'h+2 o sz
Thus (ii) follows. O

PROPOSITION 8.3.3. Let X - 2, Dy gnd X 22 Zo D2y e maps in F
such that hj are smooth maps, i; closed immersions and hii1 = hoia. Assume
further that hyiy is separated. Then (i1|h1)f = (iz|h)?.
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Proor. Consider the following diagram with obvious choices for the maps and
notation.

" "

XL Ay X s 2y Xy X X

-1/ -/ .
J/lz J/'LQ J//LQ

-/ h/
:X:Xyz,g Z—1> Zl Xng -1 Zg

| [ [ 2

X . e _h

Separatedness of hii; and hji4 implies that d is a closed immersion and by Case 2

and Case 4 above we conclude that (d|iy|hYy)* = 1gc = (d|i!|h})F. Therefore we
obtain the following isomorphisms of complexes

V(i hn)F = (d |11 (ia |l )F =2 (d ]3| )in | )?
(@181 ol ho )
s (i |hY)F (i ho)* = 1% (io|h2)F

where «a, 7y are obtained using B3 (i), while 8 is defined as follows. We begin from
the southwest corner of ([B4). By Case 3 above applied to the bottom left rectangle
in (Bd) and by B3 (ii), we may replace the subsequence h}, i1 by i}, h}. Proceed-
ing in this manner for the remaining rectangles in &) (using Cases 1, 2, 3 above
and B3 (ii)), we reach the northeast corner of ([B4l) to complete the definition
of [.

Since «, (3, v are all equalities and 1& is isomorphic to the identity functor
on Coz(X) we see that (i1|h1)* = (iz|ho)". O

8.4. Constructing (—)* for a general map. In order to extend the preced-
ing results for factorizable maps as in to arbitrary maps in F we first need a
localization result. For the following Lemma, we drop reference to the codimension
functions and the Cousin complexes that occur as inputs to the functors involved.

LEMMA 8.4.1. Let U - 2 2 Y be maps in F where i is a closed immersion
and h is a smooth map. Let W be an open subset of U so that there exists some

-/
K2

open subset 2! of Z for which i~'2' =W. Let W = Z/ AN Y denote the induced
maps. Then (i|h)* w= (3'|h")E.

PRrOOF. This follows immediately from the fact that over smooth maps and
closed immersions, (—)* behaves well with respect to restriction to open subsets

(cf. BITD). O

We are now in a position to define (—)* of the Main Theorem over the whole
of Fe. Let f: (X,Ax) — (Y,4Ay) be a map in F,. Let B = {Uy}rea be the
collection of all open subsets of X such that for any A, the induced map fy: Uy — Y
admits a factorization Uy —2— Z P, Y where i) is a closed immersion and hy
a separated smooth map. By EZZ4 B forms a basis for open sets in X. Fix a
complex M?* in Coza, (Y). For any Uy € B and for any factorization fx = hxix, set

/QM’ = (ix|ha ) M. ByB33 fj{./\/l' does not depend on the choice of iy, hy. For
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any Uy € B, any open subset U of Uy is also in B and by BZT] with Uy := U we
have (fﬁj\/l')’uy = (f%, M®). Tt follows that the differentials of (ffM®) for A € A
can be pasted together to yield a differential on fiM®. We take this canonical
choice as the differential of f* M.

It follows that our definition of f* satisfies properties (ii) and (iii) of the Main
Theorem in JL3 We now address property (i) which amounts to verifying that the
graded constructs of (—)¥ work at the level of complexes too.

Let us verify that for any map f: (X,Ay) — (Y,4,) in F, f*is a functor of
complexes, i.e., for any map of complexes M* — N in Coza, (Y), the canonical
graded map fiM® — fEIN® is also a map of complexes. The verification is local
in nature and so we reduce to verifying at open sets of the type U, in B; here the
desired result is obvious.

Under the hypothesis of (i)(b) (resp. (i)(c)) of the Theorem, we set Cfﬂg = C;»ﬁg

(resp. 536 = 556) From BZTlit follows that for any (X, A) € F and M* € Coza(X),
the natural transformation 536 induces a map of complexes 1%6./\/1' —~5 M?®*. The

rest of this subsection is devoted to the case of the comparison maps.
Let

(0, A) L (4, 4,) L5 (2,A,)

be maps in F, and let M*® be a complex in Coza, (Z). We need to verify that the
canonical graded isomorphism

Ch (M®): fig M — (gf)PM®

is a map of complexes. Since the definition of (—)% is local in nature and since
the definition of the differential for (—)* is based on local constructions, we may
assume without loss of generality that X,Y and Z are affine formal schemes, say
X = Spf(C),Y = Spf(B) and Z = Spf(A). By ZZ3 we may factor the natural map
A— B as

A—P=(AX,..., X)s, )" > B
and the natural map B — C' as
B—Q=((B[Y1,....,Yn])r,J)" = C.

Set p = kerm. Let T':= my,'T where 7y : P[Y1,...,Y;,] — B[Y1,...,Y;,] is the
map naturally induced by 7. Let J’ be the inverse image of J under the induced
surjection (P[Y1,...,Ym])w — (B[Y1,...,Ym])7; the kernel of this surjection is
also generated by p. Set R:= ((P[Y1,...,Ym])7r,J')". Then

Q= ((P/p[V1,.... Yul)r, )" = ((P[Y1, ..., Yul)zr/(p), ])" = R/(pR).

Thus the following statements hold:

e As a map of noetherian adic rings the natural map P — R is essentially
of pseudo-finite type and formally smooth.
e Spf(Q) is the fibered product Spf(B) xgp¢py Spf(R) in F.
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Now consider the following diagram of canonical maps where the vertical ones are
smooth and the horizontal ones are closed immersions.

-/

Spf(C) —2— Spf(Q) —*— Spf(R)

h;l ’”l
Spf(B) —“— Spf(P)
hy l
Spf(A)
Note that f = hbiz, g = h1i1. By construction, we have
ff=(iaB5), g* = (a|m)F,  (9f)F = (ihizlhiho)".
To prove that C;»ﬁ g 18 @ map of complexes consider the following commutative dia-
gram of canonical graded isomorphisms.

o
(hyiz)*(haiz)® - (hyhoiliz)®

l l

EhytRE 2 it BRSRE — 2 (#4n)f (hyha)t
The bottom row, when equipped with differentials as in §8Tand §82 is seen to be a

map of complexes by using Case 3 of &3 for o and Cases 1, 2 for 8. Therefore C;»ﬁ p
is a map of complexes.

8.5. Compatibility with translations. For any map f: (X,A) — (Y,A")
in F, and for any integer n, we denote the obvious map (X,A —n) — (Y,A’ —n)
by f™. Let M* € Coza/(Y). Then M®[n] € Cozar—,(Y) and both (f#M®)[n]
and f (")ﬁ(/\/l'[n]) are in Coza_,(X). The latter two also have the same underlying
graded objects and so we are naturally led to comparing their differentials.
Consider the graded isomorphism

n u L] ~ L]
(85) PO MO n]) = (FAM®)[n)
defined punctually, say at a point z € X, with y = f(z), by

(86)  (FHMUD) (@) = & (M) EES B M) = (M) (@),
where ¢ is the transcendence degree of the residue field extension k(y) — k(z).

PROPOSITION 8.5.1. The graded isomorphism in ) is an isomorphism of
complexes. Morever the following hold.

(i) If m is an integer, then the following diagram of isomorphisms commutes,
where the horizontal arrows are obtained using 5).

FoEE (Mo m + n)) (fEM®)[m + n]

F M mIn]) —— (F M) ] ——  (FAM®) ][]
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(i) If g: (Y,A") — (Z,A") is a map in F. then the following diagram of
isomorphisms commutes, where the horizontal arrows are obtained wus-

ing (BH).
FOR R M) —— O (gMO) ) —— (figPM®)[n]
via C;("),g(")l lvia Cf',g

(g™ FOEMOn]) =—— (gf)™ (M®[n]) —— ((g/)*M*)[n]

PROOF. The horizontal maps in (i) and (ii) are, at the punctual level, signed
multiples of identity maps, according to the sign (—1)"" in (BH). Hence (i) follows
from the additivity of n¢ vis-a-vis n for fixed ¢, while (ii) follows from the additivity
vis-a-vis t for fixed n.

To verify that ([B3) is a map of complexes it suffices to do so locally on X and Y
and hence we may assume that f factors as a closed immersion into a smooth map.
Thus it suffices to assume that f is either a closed immersion or a smooth map.
The first case is easily settled, using, e.g., (B). (In particular, sign considerations
play no role.) Assume then that f is a smooth map.

We use notation as in 811 From our convention in JLA[M), we see that

T M [n] @x wyld] = (f*M® @x wyld])[n].
Recall that for any complex F°®, Ea_n(F*[n]) = (EaF®)[n] (see ). It
follows that
Epo) (M[n]) = (EzM®)[n].
To conclude the smooth case, it suffices to show that the preceding equality is

consistent with the isomorphism of ([BH), i.e., for any x € X, the following diagram
of punctual isomorphisms commutes.

(B (M®[n]))(2) == ((EfM*®)[n])(2)
via (m)l l\’ia @
Powew) 5 B
Using p = A(z),q = A'(y) as in @] we have that t = p — q. After some diagram

chase, using the choices of signs involved, one reduces the commutativity to the
following immediately verifiable calculation.

(—=1)p=mla=m)rp=n(_qynlp=a) (_1)patr — 1
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9. Residual and dualizing complexes

In this section we discuss residual complexes on a formal scheme X (Definition
)E These special Cousin complexes play an important role in duality theory.
They can be characterized as being the Cousin complexes associated to pointwise
dualizing complexes in the derived category Dgct(X) (Proposition @ZZ2). For any
F.-map f, f* takes residual complexes to residual complexes (Proposition FLT4).

On finite-type schemes over finite-dimensional regular noetherian rings, Yeku-
tieli and Zhang have found a duality between the category of coherent sheaves and
the category of Cohen-Macaulay complexes with coherent homology [28, Thm. 8.9].
This duality generalizes to all formal schemes having a coherent-dualizing complex
(Corollary BE32). (For the formal spectrum of a complete local ring it is essen-
tially Matlis duality, see Example @234) There follow quick proofs of a number of
facts about Cousin complexes, for example a generalization to complexes on formal
schemes, of results of Dibaei, Tousi and Kawasaki about finite generation of the
homology of Cousin complexes of finite type modules (see Proposition [3.H).

9.1. (—)! preserves residual.

DEFINITION 9.1.1. We say that a complex R*® on a noetherian formal scheme X
is a residual complex if it consists of Ay(X)-modules and if for any defining ideal J,
the complex Homo, (Ox/J,R*) on the scheme (X, Ox/J) is a residual complex.

It is easily shown that R°® is residual if there exists one defining ideal J such
that for any n > 0, Homo, (Ox/I", R*®) is residual on (X, Oy /I™). Note that the
existence of a residual complex on a noetherian formal scheme X implies that X is
in F because the corresponding statement for ordinary schemes is true.

LEMMA 9.1.2 (cf. [I1l VI, Lemma 5.2]). Let A be a noetherian local ring with
mazimal ideal ma and residue field k. Let M be an m a-torsion A-module. Suppose
there exists an ideal I in A such that for any integer n > 0, Hom4(A/I"™, M) is an
injective hull of k over A/I"™. Then M is an injective hull of k over A.

PROOF. Set M,,:= Homa(A/I™, M) C M. Each M, is an essential extension
of k and M = U, M,,. Therefore M is also an essential extension of k. In particular,
there exists an embedding M C E(k) where E(k) is an injective hull of k over A.
Set E, := Homu(A/I",E(k)) C E(k). By hypothesis, for each n, M,, = E,.
Therefore, M = E(k). O

For the next result we use some basic facts on residual complexes on ordinary
schemes as developed in [IT], VI, §1] and [5 §3.1, §3.2].

LEMMA 9.1.3. Let X be a noetherian formal scheme and R® a residual com-
plex on X. Then there is a unique codimension function A on X such that R® €
Coza(X). Moreover, for any x € X, R*(x) is an O ,-injective hull of the residue
field k(x) at x.

PROOF. Let 7 be a defining ideal in Oy. For n > 0, set
R? = Homo, (Ox/I", R®).
Since R*® consists of A(X)-modules, it is isomorphic to the direct limit of the R?’s.

On the ordinary scheme X, := (X, Oy/ZI™), the complex R?, being a residual

6This definition agrees with the one for ordinary schemes in [I1}, VI, §1], and also, for formal
schemes of finite Krull dimension, with the one in |27, 5.9]. (Yekutieli’s residual complexes are
dualizing, hence cannot exist on formal schemes of infinite Krull dimension [I1], p. 283, Cor. 7.2].)
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complex, induces a unique codimension function A,, for which R? € Coza, (X,).
Moreover, for every x € X, R (x) is an Oy, ,/Z2-injective hull of k(z). Since
Ry == Homo, (Ox/I™, Ry, 1), Ry is also in Coza,,,, (Xy) (cf. EI).In particu-
lar, A, = A, 41, which we henceforth denote by A. Moreover, the canonical inclu-
sion Ry, — Ry respects the pointwise decomposition. Taking limits we see that
R* is a A-Cousin complex, where for any x, R*(z) is a direct limit of the R (z)’s.
Since each R?(x) is an mg-torsion Ox ,-module, so is R*(z). By BT R*(x) is
an injective hull of k(z) over Ox ;. O

In light of T3 if a codimension function A is chosen on X, then we shall
only consider those residual complexes which induce A. Thus, for (X,A) € F, a
residual complex shall always be assumed, by default, to lie in Coza (X).

PROPOSITION 9.1.4. Let f: (X,Ay) — (Y,4Ay) be a map in F.. If R® is a
residual complex on'Y, then fPR® is a residual complex on X.

PRrROOF. First we prove the result when X := X and Y := Y are ordinary
schemes so that f is essentially of finite type. For any z € X, (f¥R®)(z) is an
Ox -injective hull of k(z) at (3L IV). So it only remains to check that f*R®
has coherent homology. This being a local property, in view of the existence of
factorizations as in ZZ4 it suffices to consider the cases when f is a smooth map
(of constant relative dimension n) and when f is a closed immersion. In the smooth
situation, by Cohen-Macaulayness of f*R®®x wy[n] (213), there are isomorphisms
[FR® ®x wyln] == E(f*R* @x wrln]) == f*R® (see and (@), though a-
priori, the first isomorphism is only a D(X)-isomorphism). Since wy is coherent,
fYR*® has coherent homology. If f is a closed immersion, in view of the isomorphism
ft == f* of @), the proof follows easily from the coherence of f,Oy (cf. [IT], III,
Prop. 6.1]).

Now we consider the general case, when X, Y are arbitrary formal schemes.
Fix a defining ideal J in Ox and a defining ideal J in Oy such that JOx C J.
Set X, := (X, O0x/T™), Y, := (Y,0y/Jd™"). Then there is a commutative diagram of
natural induced maps as follows.

In

X, — Y,

Jrj’n/ JZTL

x —1—y
Using the isomorphisms if - i’ and j# - j® obtained from (X)), we deduce
that R*® is residual on Y <= Vn, if,R® is residual on Y,, = Vn, f1if R® is residual
on X,, <= Vn, jif¥R* is residual on X,, = f*R* is residual on X. O

9.2. Residual and pointwise dualizing complexes. This subsection is de-
voted to showing a pointwise dualizing property for residual complexes. Let X be
a noetherian formal scheme in F. For any point z € X, let j, denote the canonical
map Spf ((jf)-c\z) — X where (jf)-c\z is the completion of the local ring Oy , along the
stalk J, of a defining ideal J in Ox.

LEMMA 9.2.1. Let X, z,j:= j, be as above. Set W:= Spf(@:). Then:

(i) The map j is adic, i.e., for any defining ideal T in Ox, TOw is a defining
ideal. In particular, j* takes Ay(X) to Ay(W) and Aqet(X) to Aqet(W). Moreover,
for any F € A(X), the natural map j~1F — j*F is an isomorphism.
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(ii) The map j is étale (smooth of relative dimension 0). In particular, j* is
ezact and Lj* = j* takes Dy(X) to Dy(W) and Dqee(X) to Dget(W).

(i) If w denotes the unique closed point of W, then for any F* € D;Lct(f)C),
there is a natural isomorphism HY j*F® -~ HIF®.

PROOF. First we show that j is adic and étale. Let V = Spf(A) be an affine
neighborhood of x. It suffices to show that the induced map W — V is adic and
étale, so we assume V = X. Let I be a defining ideal of A. Then J = I™~4 is a
defining ideal in Ox and since IOy, , = J, therefore I generates a defining ideal

of (5)—6\1 By B2 we see that the image of j*J in Ow is the ideal generated by

1 (73; Thus 5 is adic. For étaleness we refer to the discussion preceding ZZG.0

For an adic map, (—)* sends Ai-modules to Ai-modules, as can be seen by
arguing at the stalks using BTl Since (—)* also preserves quasi-coherence, it
sends Aqc-modules to Agci-ones. Exactness of j* follows from flatness of j which
in turn follows from smoothness of j. Finally, since j~! and j* commute with direct
limits, to verify that j='F -~ j*F for F € Ai(X), it suffices to do so when F is
annihilated by a defining ideal J in Ox.. Now we may descend to the corresponding
schemes and here the result is clear. Thus (i) and (ii) are proved.

For (i), by BIJ(ii), we may assume that F* consists of Age(X)-injectives.
Then with m,,m, as the local rings at x,w respectively, there are natural iso-
morphisms Hf, Fp = H.F® and H}, (j*F*)w == HLj*F* (see [@) of §&II).
Now (iii) follows by using (j*F®), = (j71F*), = Fr, and that m,, is just the
completion of m,. (I

For the definition of a ¢-dualizing (= torsion-dualizing) complex on a noetherian
formal scheme X we refer to |2 2.5.1]. (See also [27] §5].) An Ox-complex D* is
pointwise t-dualizing if D* € Dc'fct(DC) and for any x € X, with j,, W as in @21
j*D* is t-dualizing on W. In view of [Bl 3.1.4], this definition agrees with the one
for ordinary schemes .

We need some notation before proceeding further. Let Y be a noetherian formal
scheme, and J a defining ideal in Oy. Let ¢ be the canonical closed immersion

Y:=(Y,0y4/3) — Y. Then for any F* € D(Y) we set
i'F*:= RHom} (0y /I, F*) € D(Y).

Here RHom$,(Oy/J, F*) can be considered as a complex in D(Y") in a natural way.
Also, i' is a right adjoint of i, = Ri,: Dgc(Y) — D(Y) (see |2, Examples 6.1.3(4)]).

PROPOSITION 9.2.2. Let X be a noetherian formal scheme.

(i) Let D* be a complex on X and let J be a defining ideal in Ox. Forn >0, let
in denote the canonical immersion X, = (X, Oy /I") — X. Then D* is pointwise
t-dualizing <= for any n > 0, i\, D* is pointwise dualizing on X,.

(ii) Let D* be a complex on X. Then D* is t-dualizing <= X has finite Krull
dimension and D*® is pointwise t-dualizing.

(iii) Any residual complex on X is pointwise t-dualizing. Conversely, if D*® is
a pointwise t-dualizing complex on X, then the following hold:

(a) The complex D* induces a codimension function A on X such that D* is
Cohen-Macaulay w.r.t. A.
(b) The complex EAD® is residual, so that, via 1 =2 QEx of B3, D* is

isomorphic to a residual complex.
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PROOF. (i) The flat-base-change isomorphism [2] p.8, Thm. 3] gives:

LEMMA 9.2.3. Let X, z, j., W be as in @20l Let J be a defining ideal in Ox.
Let X, W be the schemes obtained by going modulo J,IJOw in Ox, Ow respectively
so that the following diagram of induced natural maps is a fiber square.

v

W e, x

W —
Ja
Then for any F* € D(;Lct(DC) there is a natural isomorphism i''j:F® = j5i'Fe.

Now, in take i = i,,, X = X,,. Then D* is pointwise t-dualizing = (for
any x € X) j2D* is t-dualizing on W = 4"'j*D* is dualizing on W ([2, Lemma
2.5.10]) = j'*i'D* is dualizing on W. Thus i*D*® is a pointwise dualizing complex
on X. The converse is proved by reversing the arguments.

(ii). We use the same arguments as in (i) above along with [I1l, V, 7.2 and 8.2].

(iii). Suppose R*® is a residual complex on X. First note that if X has finite Krull
dimension, then R*® is t-dualizing. Indeed, by T3 and ZZ3H(ii), R® consists of Aqct-
injectives, therefore, by [2] 2.5.6], |2, 2.5.10] and [IT], VI, 1.1(a)], R*® is t-dualizing.
Now we drop the hypothesis on Krull dimension of X. For z € X, j, in @2Tlis étale
and adic. Therefore, by ([ff), we obtain an isomorphism jiR® -~ jiR® which
by BT is a residual complex on W. Since W has finite Krull dimension, j:R® is
t-dualizing on W. Thus R*® is a pointwise ¢-dualizing complex.

Conversely, suppose D* is a pointwise t-dualizing complex on X. By BL8(ii)
we may assume that D® is a bounded below complex of Agyci(X)-injectives. For
a defining ideal J in Ox and n > 0, set D} := Homo, (Ox /3", D*). Then D*
is isomorphic to the direct limit of the D2’s. By [2, 2.5.6] D5 = i\, D* and
hence by [2, 2.5.10] D¢ is a pointwise dualizing complex on X,, = (X, Ox /™).
In particular, Dy, induces a unique function A,, for which it is Cohen-Macaulay.
Since D; —- i!rz,n+1D:z+1 where i, n41 is the canonical immersion X,, — Xy 41, it
follows that A, = A, 41, henceforth to be denoted as A. Since H}(—) commutes
with direct limits we see that the A-Cohen-Macaulayness of the D;’s carries over
to D*. By Z3.M(iii),(iv) and BT3 there is an isomorphism H;D*®* -~ H} D} so
that EAD® € Coza(X). Thus, via the isomorphism in B32 D* is D (X )-isomorphic
to a complex R® in Coza (X).

If we define R}, in the obvious manner, then R? is a pointwise dualizing complex
on X, lying in Coza (X,,). In particular, R? is a residual complex on X,,. Thus R*®
is a residual complex. (Il

Finally we prove that Yekutieli’s definition of a residual complex on X agrees
with ours when X has finite Krull dimensionﬂ i.e., we show that a complex R® on X
is residual if and only if it is t-dualizing and there is an isomorphism of Ox-modules
BpRP == @yi.J(x) where J(x) is the Ox z-injective hull of the residue field k(x)
at  (see Z3H(ii)). The ‘only if’ part follows from and 2Z2A(11), (iii). For the
‘if” part, note that the corresponding statement holds for ordinary schemes and
hence if we define R, as in the proof of then R} is residual on X,,. Thus R*®
is residual.

In this context note that Lemma 5.13 in 27| requires a finite-dimensionality assumption,
see Nagata’s example of an infinite-dimensional noetherian regular ring in 21, p. 203].
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9.3. CM complexes and coherent sheaves. For a formal scheme X, let
D{(X) be the essential image of RI¥|p,, i.e., the full subcategory of D(X) such that
€ e D & £ 2 RIYF with F € D.. Proposition BT shows that D (X) C Dgct(X).
The functor RIY is an equivalence from the category D(X) to the category D& (X),
with quasi-inverse A := RHom® (RIyOx, —) (see [2, p. 24]). In particular, if X is an
ordinary scheme, so that RIY. is the identity functor on D(X), then D} (X) = D.(X).

By [2, p.26, 2.5.3 and p.27, 2.5.5], X has a t-dualizing complex R® € D% (X)
iff X has a “c-dualizing” complex R? € D.(X), which is so, e.g., if X is locally em-
beddable in a regular finite-dimensional formal scheme. In fact AR® is c-dualizing;
and conversely, if R? is c-dualizing then RIyR? € Df(X) is t-dualizing.

PROPOSITION 9.3.1. Let X be a formal scheme with a t-dualizing complex R,
which may be assumed residual, and A the codimension function associated to R®
(see B2 BT3). Assume further that R® € DE(X). Then G* € D{(X) is a A-CM
complex if and only if its dual

DyG* := RHom®(G*, R*®)
is (D(X)-isomorphic to) a coherent Ox-module.

By [2, p.28, 2.5.8], the functor D; induces, in either direction, an antiequiva-
lence between D, (X) and D (X). Thus:

COROLLARY 9.3.2. The functor Dy induces, in either direction, an antiequiva-
lence between Aq(X) and the full subcategory of A-CM complezes in DE(X).

Since for all M* € D(X), RHom®*(M*, AR®) = RHom®* (RIZM*® R*) (see [2,
p-24, (2.5.0.1)]), therefore:

COROLLARY 9.3.3. A complex M*® € D.(X) is such that RIyM?® is A-CM if
and only if, with R3:= AR®, the coherent dual

D M*®:= RHom®*(M*, R?)

is a coherent Ox-module.
In particular, RIOx is A-CM if and only if RS is a coherent Ox-module.

EXAMPLE 9.3.4. Let A be a complete local ring and X := Spf(A4) the formal
spectrum of A. Then A(X) is the category of A-modules. We can take R*® to
be an injective hull of the residue field of A, (considered as a complex vanishing in
nonzero degrees) |2, p. 25, Example 2.5.2(3)]. Then A maps the unique point z € X
to 0; and a A-Cousin complex is simply an A-module. Thus the Cousin functor F
can be identified with the functor H?, and by B33l H? is an equivalence from the
category of A-CM complexes to the category of A-modules. So if G® is A-CM then
there is a D-isomorphism G* -~ H2G®, whence G* € Di(X) < H2G* € D:(X).
But from [2] p.28, Prop.2.5.8(a)] and Matlis duality [T9], p.148, Thm. 18.6(v)] it
follows that HOG® € D (X) if and only if H)G® is an artinian A-module. Thus:

The equivalence of categories HO: {A-CM Ox-complexes} — {A-modules}
takes the full subcategory of A-CM complexes in Di(X) to the full subcategory of
artinian A-modules, and transforms the antiequivalence of into Matlis duality.

PRrOOF of 3l As above, if G* € D} then D;G* € D., and G* = D, D.G*. It
will therefore suffice to show that if x € X and F* € D, then

([E3T1) H'RI,RHom®*(F*,R*) =0 = HA®r2 =
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Let us prove [@3IL). The first assertion in [I, p.33, (5.2.1)] (whose proof

applies to any ringed space) gives a canonical isomorphism
Rl}T}RHom' (F*,R*) = RHom*(F°, RI%?}R').

Recall that the stalk at x of an injective Ox-module is an injective Oy z-
module. (In view of [T0, pp. 110-111, (5.2.6) and (5.2.8)], the proof for schemes
in [I1, p. 128, 7.12] extends to formal schemes.) It follows that RHom®(F*, —)
“commutes” with the exact functor “stalk at z.” (Since R*® is a bounded injective
complex, one can use [I1} p.68, Prop. 7.1] to reduce the proof to the trivial case
F* = O%.) Thus there are canonical isomorphisms

H'RI,RHom*(F*,R*) =~ H'RHom},, (F2, RLR®).

Since RIR® = R*(z)[—A(z)] and, by T3, R*(z) is an injective module
containing the residue field k, of Ox ., therefore

H'RHom},, (Fr, RIR®) = Homo, , (H*® 7 F2 R*(z)).

If HA(m)*i]—"; # 0 then any nonzero principal submodule admits a nonzero
Ox, z-homomorphism into k, C R*(x), and so, R*(x) being injective, there exists
a nonzero map HA@ = F* — R*(z), whence H'RI, RHom®(F*,R*) # 0. The
assertion (@3IL) results. O

PROPOSITION 9.3.5. Under the assumptions of there are, for any n € Z
and F* € Dc(X), with F*' := RHom®*(F*, R*) and H:= H"F* € D.(X), functo-

rial isomorphisms
Ex-nF* = Ea-n((H[-n])") = H'ln] € D{(X).
Hence for all n € Z, Ea_,DE(X) C DE(X).

PRrROOF. Let §: F? — F3 be a Dc.-map such that H"(¢) is an isomorphism
H"F*y = H"F3. As in the proof of @3l we deduce that for each x € X the
map Hf(m)fn]:l" — Hf(x)fn]:z'/ induced by 0 is an isomorphism. Thus € induces
an isomorphism EA_n]-'l" -~ EA_n 2'/.

To get the first isomorphism in the Proposition, apply the preceding to the
canonical maps 01: F* — 75,F® and 62: (H"F*)[—n] — 7>, F°, each of which
induces a homology isomorphism in degree n.

For the second isomorphism, gives that H' is a CM-complex in D}, whence

En—n((H[-n))") = Ea—n((H'[n])) Eﬂ) (EAH’)[n]EZ)H’[n] e D;.

The last assertion holds because by the statement preceding Corollary 32,
every G € D} is, isomorphic to an F*'. (]

COROLLARY 9.3.6 (cf. [7, p.26, Thm.3.2], [6, Thm.4.4]). Let X, R® and A

be as in LI Let 0 # G* € Di~ (X), so that 0 # D,G* € D} (X) and we can set
m=m(G*):=min{n | H"D;G* #0}.

(i) There is a canonical D(X)-map s(G*): G*[—m] — Ea(G*[—m]) # 0 such
that any D(X)-morphism of G*[—m] into a A-CM complex E° in Di(X) factors
uniquely through s(G*).

(i) If G*[-m] in (i) is A-CM then s(G*) is the isomorphism S(G*[—m])
of B32
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PROOF. For simplicity, we write G for G°, ..., G’ for DG, ....
Set F:=G" € D.(X) and H:= H™(G). By @3H the natural map H[-m]| — F
induces an isomorphism

EA(Q[—m]) (E]) (EA,mg) [-m] = H' (#0),

whose inverse composed with the natural map o: G[—m] = (F[m])’ — H' is defined
to be the map s(G).
Assertion (i) results now from the sequence of natural isomorphisms

Hom(G[-m], £) = Hom (&', G'[m)])
=~ Hom(&'[-m], F) = Hom(E'[-m], H[-m]) = Hom(H’, ).
(For the third isomorphism, recall from B3] that £’ is a coherent Ox-module.)

If G[—m] is A-CM then by [l F[m] is a coherent Ox-module, so that o is an
isomorphism, whence so is s(G); and then functoriality of S forces s(G) = S(G[—m]),
proving (ii).

EXAMPLE 9.3.7. Suppose that in @30, X is an ordinary scheme. After trans-
lating R we may assume that m(Oy) = 0. Then with K := H°(O) = H°(R), a
canonical Ox-module, @3H for F* = R gives Ea(Ox) = K’, whence m(K) = 0.
If Ox satisfies the Serre condition (S2) then the natural map is an isomorphism

Ox =~ H°(Ea(Ox)) = HY(K') (= Hom(K, K));
so in this case [@3H for F* = K’ gives
EA(K) = EA(K”) = OSC =R.

Similar considerations apply with an arbitrary coherent Ox-module in place
of O, see, e.g., [6, Thm.4.6 (and 1.4)].

Keeping the notation and assumptions of and its proof, we close with some
characterizations of the integer m(G).

Replacing m by n < m in the proof of @30I(i) gives that Fa (g[—n]) =FAr_nG =0,
and further that any D(X)-morphism of G[—n] into a A-CM complex in D¢ (X) vanishes.
The proof of L3 IIshows further that with F:= G’, Hﬁ(”*mg #0 <= x € Supp(H™F).
In particular, m:= m(G) is the unique integer such that

(a) for all x € X and q¢ > A(x) —m, HIG =0, and

(b) there is an x € X such that HA@-mg #0.

We claim that, furthermore:

(1) m=m/':=min{ A(z) —q | ¢ € Z, = € Supp(HG) }, and

(2) for any generic point = of Supp(H™F), = € Supp(HG) and A(x) —q=m.
In less contorted terms, m:= m(G) is the unique integer such that

()" for all x € X and q > A(z) —m, HY(G5) =0, and

(b) for any generic point x of Supp(H™F), HA®)~™(G,) # 0.

PROOF. Let Z°® be the filtration defined by A (i.e., x € Z? <= A(z) > p.) In view
of (a), @) gives, for any j > p — m,

HJZP/ZP+1g = EB i (HzG) = 0.
A(z)=p
So if ¢ + m > d:= mingex A(x), there is a surjection followed by isomorphisms
(%) H%wmg g H%wm—lg - H%wm—zg — e Hgdg = H'G.
Hence Supp(HG) C Supp(H,,,,G) C Z*"™, and so m < m’.
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Next, among points in Supp(H™F) choose one, say x, where the value of A is minimal.
We will show that HA®) =™, £ 0, from which follows that m’ < m, proving (1).

It also follows that if z is any generic point of Supp(H™F) then, since z has an open
neighborhood V' within which z is the only such generic point, therefore

0 # HA(Z)*"L(Q\V)(QW)Z _ HA(Z)*mgz7

proving (2).

Set := A(x). As before, H™™G is dual to H™F, # 0, so HS~™G # 0. Similarly, if
A(y) < 4, so that y ¢ Supp(H™F), then H,f(y)*mg = 0. Hence, with g:= § — m,

(i) H%q+7n/zq+vn+l

(11) H%;imfl/ztfrmg =0.
From (ii) it follows that the natural map H} .,G — H. ., .G is injective. Then
since ¢ > d — m, (x) shows that H7, ., G = H?G (the case ¢ = d — m being trivial).
Since for any abelian sheaf A, the stalk at x of Is,, A vanishes, therefore the natural

~

map is an isomorphism (Héﬁm Gz = (H;S/Zsﬂg)z; so for nonvanishing of HA@-mg_

G has nonzero stalk at x; and

we need only note that by (i), the target of this isomorphism doesn’t vanish. (]
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10. Some explicit descriptions

We conclude this paper by giving explicit descriptions of some notions encoun-
tered in earlier sections. In JILTl we concentrate on the Suominen isomorphism for
Cohen-Macaulay complexes; this is the isomorphism 15 == QFE defined in B3
There it is defined in an implicit way. Here we give an explicit description for it in
several cases. (See also Corollary FIZ6(ii).) In I3 we study f* for an étale map
f. This includes the case of completion of a formal scheme along an open ideal and
also the case of open immersions which we covered in and

We use the following notation throughout this section.

(a) Let (X, A) € F.. Let D:= DT (X, A)cm be the category of A-CM complexes
on X (§83). Then the Suominen isomorphism Sx a (or simply S in case of no
ambiguity) is the isomorphism 15 > QF defined in B34 For any G* € D we
denote the induced isomorphism G* =~ QEG® by S(G*).

(b) For any smooth map f: (X, Ay) — (Y,4y) in F, of relative dimension d,
we use f°(—):= f*(—) @x wyld].

10.1. The Suominen isomorphism. Let (X,A) € F.. Let G* be a A-CM
complex on X with bounded homology. In [T1], p. 242-246], Hartshorne describes a
non-canonical way of constructing an isomorphism G* =~ @QFEG®. This construc-
tion lacks functorial properties. Nevertheless it satisfies a property, recalled below,
that makes the isomorphism functorial when G® ranges over Gorenstein complexes
(1, p. 248]). We now show that the Suominen isomorphism S(G*®) also satis-
fies this property, so that if G* is Gorenstein, then S(G®) agrees with ¢(G*) for
¢: 1 = QF as constructed in [T p. 249].

Let (X,A) € F.. Let 7* € DP(X), and let £* be an injective resolution of F*.
Let Z* denote the filtration of X induced by A. Let E?9(F°®) = EP9(L®) be the
spectral sequence associated to the filtered complex I,,L£°®. Recall that EAF*® is
given by the EY 0_terms of this spectral sequence. Now if F* is also A-CM, then
the EY"?-terms vanish for ¢ # 0 so that the spectral sequence degenerates. Since
the spectral sequence converges to the homology of £®, there results, for any i € Z,
(with F* A-CM) a natural isomorphism

Vet HHEAF® = E3°(L°) = H'L® = H'F".
Let C,D,Q, E be as in 3 Set DP:= D N D (X).

PROPOSITION 10.1.1. With notation as above, for any F* € D and for any
integer 1, the induced isomorphism H'S(F*®) is inverse to ¢'r..

PROOF. Since H!S(—) and 1/1%_> are functorial in F*® we may replace F* by

any isomorphic complex in DP. In particular, since F* is isomorphic to a Cousin
complex, therefore, we may assume without loss of generality that F* = QC*®
where C*® is a Cousin complex.

By B3 the isomorphism S(QC®): QC* == QEQC® is the same as the Q-
image of the inverse of the isomorphism ¢¢ce : EQC*® EZWi), C*. Therefore it suffices
to show that ¢be = H'pce.

Before proceeding further, we need a definition. For any complex G® on X, let
EG® denote the complex given by the EY O_terms of the spectral sequence associated
to the filtered complex I,,.G*®; the only difference from the definition of EG® being
that now we do not replace G® by an injective resolution. If G® consists of flasque
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sheaves, then there is a canonical isomorphism EG®* =~ EG*®. If G* is A-Cousin,
then EG®* = G* [BZI(ii)) and moreover the filtration {I,.G®}nez is now given
by truncations @ZIi)[a]). Therefore the EY?-terms of the associated spectral
sequence vanish for ¢ # 0. It follows that if G® is a A-Cousin complex, then the
canonical maps

deg. sp. seq. for I,4G*®

Hig. _ H?,Ego Hig.
compose to the identity map.
Returning to the proof, let C* — L*® be an injective resolution. Consider the

following commutative diagram of natural isomorphisms.

Hico N HZEC. Hic'
C*=EC*® deg. sp. seq. for I,4C*®

5| |

HiE Le s Hzﬁo

deg. sp. seq. for I,¢ L®

By definition, E £* = EC® and moreover (8a)~! = Hi¢ce and 716 = ¢&.. Since
the top row composes to the identity map, it follows that Hi¢ce = 1)b.. O

Our next goal concerns adic smooth maps in F.. We begin with a preliminary
result on fibers.

For any map of formal schemes f: X — Y, the fiber of f over a point y € Y is
the formal scheme X, := X xy Spec(k(y)) where k(y) is the residue field of Oy ,,.
As is the usual practice, we shall identify the underlying topological space of X,
with its canonical image in X.

As usual, for points x € X and y € Y, we shall denote the maximal ideals at
Ox 2, Oy, y by mg, m, respectively. The following basic facts on fiber spaces follow
easily from the definitions. For any = € X, the stalk of the structure sheaf of X,
at x is canonically isomorphic to Oy, /m,Ox, .. If f is adic, then X, is an ordinary
scheme.

LEMMA 10.1.2. Let f: (X, A1) — (Y,As) be a smooth map in B, of constant
relative dimension d. Let y € Y. Then for any x € X, 0 < Aq(y) — Aq(x) < d.
Moreover, if f is adic, then the following conditions are equivalent.

(i) x is a generic point of X,.
(ii) myOyx,z = Mmy.
(i) Ai(z) = As(y) —d.

PrOOF. By definition, A, = f#A, [ZI2) so that Ax(y) — Ay(x) equals the
transcendence degree of the residue field extension k(y) — k(z) and hence is non-
negative. The other inequality follows from 2610 which also immediately implies
(ii) <= (iii). If (iii) holds, then for any nontrivial specialization z’ ~» = we get a
contradiction because A;(x’) < Aj(z) = Aq(y) — d. Thus (iii)) = (i).

If f is adic and smooth, then X, is a smooth ordinary scheme over Spec(k(y))
and hence is a disjoint union of integral schemes. Therefore if = is a generic point
of X, then the local ring R of X, at x is a field. In view of the canonical isomorphism
R =5 Ox,5/myOx, s, (i) = (ii) follows. O

Let f: (X,Ax) — (Y,4y) be an adic smooth map in F. of constant relative
dimension d. Let M® be a complex in Coza,(Y). Since M®* consists of torsion
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Oy-modules, f being adic implies that f*M?® consists of torsion Ox-modules. In
particular, fOM?® = f*(—) ®x wy[d] also consists of torsion Oyx-modules and hence
the canonical D(X)-map RIY f°M®* — f°M?® is an isomorphism. Therefore, by
ET3 f°M-® is a Ay-CM complex. Set E:= Ea,. Our aim is twofold :
e To explicitly construct a quasi-isomorphism ny(M?®): fCM®* — Ef°M*®
in C(X).
e To show that the natural image of n(M®) in D(X) is the same as the
Suominen isomorphism S(f°M?*).

Before proceeding further we need to set up some notation. Much of the no-
tation concerns the fact that both f°M?® and Ef°M*® also have a graded decom-
position arising from the punctual grading on M?®, i.e., one parametrized by the
points of Y. For the rest of this subsection, we shall assume that f, X, Ay, Y, Ay, d
are fixed. Set w:= wy. Here then is some notation that we shall use for the rest of
this subsection.

i) For any y € Y with M = M*(y), set f¢(M®,y):= f*i, M @y w. For any
Yy Y
integer a, there results natural isomorphism
(foMo)a o~ @ fo(/\/l',y).

{yeyl Ay(y)=a+d}
(ii) For any z € X, with y = f(z),p = Ax(z) — Ay(y) + d, M = M*(y), set
Gome = HE, (M ®ywy).
(iii) For any y € Y and any integer a, set £ (y) := D, ix(Gz,Mme) Where

varies over points in X, such that Ay (x) = a.
(iv) For any integers a,b set

E4b, = b suw = P i(Gaape).

{ye¥| Ay (y)=b} {zeX] Ax(z)=a, Ay (f(x))=b}

ByM@TA if b < a or b > a+ d, then Eﬁ;lb. (= &P for simplicity) has
an empty sum and hence equals 0. The points contributing to £»%+¢ are
ones that are generic in their fiber while those contributing to £* are
ones that are closed in their fiber.

(v) For any integer a set

85\1/10 — @ Ea,b. — gwa o ga,aJrl ®--- @5a,a+d'
bEZ
Let us first record that for any integer a there is a natural isomorphism

(87) (EfOM®)" = Efye,

defined as follows. Let 2 € X be such that Ay (z) = a. For y = f(z), M = M*(y),
qg=Ay(y) and p1 = a — ¢ + d, consider the natural isomorphism

—1)% times
(M) (@) S (M @, w0) = Gae.

By summing up over all € X such that Ay () = a, we obtain &1).
Our next step is to define, for any integer a, a canonical map (f°M?*)* — £4..
Let y € Y be such that Ay(y) = a +d. Let z € X, be such that Ay(z) = a.
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By MLT2 « is generic in the fiber and m,Ox , = m,. Hence, with M = M*(y)
we obtain
(88) (fO(M.a y))w EMQyw, = me (M Ry Wy) = H’I?Lz (M Ry ‘Uﬂc) =GuMme

where the first of the three equalities holds because m,-torsionness of M implies
that M ®, w, is myOx ,-torsion. For a fixed y, by varying x over all the generic
points of X, (equivalently, over points in X, such that Ay (z) = a) we therefore
obtain a map

FEMEy) Sl NG (£ (MO ))e s @D 10 Cape = Ee (y):

Finally, taking direct sums over all y € Y such that Ay (y) = a+d, we obtain a map

(89) (FoMO)* — ELT — Epe.
Combining ([&7) with ([§Y) results in a natural graded map
(90) np(M®): foM® — EfoM®.

The rest of this subsection is devoted to showing that (@) is a map of com-
plexes, in fact a quasi-isomorphism whose derived-category image is the Suominen
isomorphism S(f°M?*®). We first show this in the special case when M® is con-

centrated in one spot (ILIH MITH) and in [T MITY the general case is

considered.

LEMMA 10.1.3. Let f: (X, Ax) — (Y,Ay) be an adic smooth map in F. of
constant relative dimension d. Let Z* be the filtration on X induced by A.. Let
M?® be a complex in Coza,(Y) such that M® is concentrated in only one degree,
so that N'® :== f°M?® is also concentrated in one degree, say a (in other words,
N°® = N%—a] and M®* = M 4[—a —d]). For anyy €Y, set N(y):= f>(M*,y).
Then the following hold.

(i) HguN® =, N* =N = H'N®.
(i) Exe =0 forn<a orn>a+d.

(iii) Sj)lafd = EYye or, in other words, Eﬁ;lb. =0 for b # a+d. Moreover, for

any x € X such that Ax(xz) = a and Ay(f(z)) = b # a + d, we also have

HON® = HON® = [N = 0.

(iv) Let x € X, y = f(x) and M = M*(y). If Ax(z) = a and Ay(y) =a+d
then

M @yws = (N(Y))e = I, N(y)) = LN =N

PROOF. (i). Since N* = N%[—a], hence Hg N® = I, N* and N = HN*.
Hence the natural map v: Hg. N® — H®N® is injective. Since N'* is Ay-CM
(BEI3), therefore by definition of Cohen-Macaulayness, v is also surjective.

(ii). If n < a or n > a + d, then for any z € X such that Ay(z) = n, we have
Ay(f(x)) #a+ d by T Since M* is concentrated in degree a + d only, hence
M*(f(z)) =0. Thus G4 ame = 0 and the result follows.

(iii). Let b # a + d. Fix x € X such that Ay (z) = a and Ay(f(z)) = b. In the
canonical decomposition N* = &, N (y), we have y # f(x) for all y contributing in
the summation, since y only ranges over points with codimension a + d. Hence, by
BITN R, N* = 0. The desired conclusion follows.
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(iv). Since NM(y) is an Aget(X)-module, the first two isomorphisms follow
from [B8) and BT3 For any other point 3’ € Y such that Ay (y') = a+d there is no
specialization y’ ~» y and hence (i,, M'), = 0 for any Oy ,,-module M’. In particu-
lar, (N(y))z = (f*iy (M*(y')) ®xw), = 0. In view of the canonical decomposition
of N, the last two equalities of (iv) result. O

LEMMA 10.1.4. Let notation and assumptions be as in [LL3. Then the map
e\a a a e\ canonical a . ®\a e\a
P (fOM®)* =N = H3.(N®) ——— Hzu 7000 (N®) = (EN?)* = (Ef*M®)
equals the map of @) in degree a.

Proor. Consider the following diagram wherein @,,®, and @, are indexed
over the sets {y € Y|Ay(y) = a+ d}, {z € Xy|Ax(x) = a}, and {z € X|Ax(2) = a}
respectively.

(EfoM.)a

H%QN. _— H%a/Zﬂ+lN.

H%aNa - Hg“/zaHNa - @i HIN®

| . H
(foM®)* =N —— Oy O 1N

i [ [

SN (y) —— &y Be ia(N(Y))e By Bz i1y (N (y))

J{Z O3 J{l

The identifications in Oy and Os follow from MITA(iii), (iv). Rest of the maps are
the obvious canonical ones. The commutativity of [J; follows from the description
of the punctual decomposition in (B) while that of the remaining rectangles is
straightforward. To prove the Lemma, it suffices to check that both, v and the
degree a component of (@), occur as the composition over the two different paths
along the outer border from (f°M*®)* to (Ef°M?*)® in the above diagram. The case
of v is clear, and the other one follows upon examining the definitions involved. [

@i LN

M

ProrosITION 10.1.5. Let notation and assumptions be as in [OLT3. Then the
graded map ng(M?®): N* — EN*® of @) is a quasi-isomorphism of complexes.

PROOF. By assumption, N'® is concentrated only in degree a and in view of
the isomorphism (&), by ML) it follows that (EN*)™ =0 for n < a.

Since N'® is Ax-CM, therefore N* and EN® are isomorphic in D(X) say, via
S(N*), and hence to prove the Proposition it suffices to show that in @), N is
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mapped bijectively to the kernel of § = §% - : Hga/ZaHN' — Hgﬂl/za+2./\/'. By
[[@TA it suffices to show that the sequence of canonical maps

s +1
HZ.N® = Hzozaa N® — Hga+1/Za+2./\/'

is exact.

By Cohen-Macaulayness of N'® we have H%a+1/za+2f\/° = 0. Since § corre-
sponds to the ath connecting homomorphism in the cohomology long exact sequence
associated to the exact sequence

0— FZaJrl/ZaJrz — FZa/Za+2 — FZa/ZaJrl — 0,

we see that ker(d) = Hga/ZaHN‘. Therefore it suffices to show that the natu-
ral map H¢, N® — H%a/za”./\/' is an isomorphism. Since A® is CM, therefore

HE, 2N® = Hgﬁﬂ\f ®* = 0. Therefore from the cohomology long exact sequence
associated to the exact sequence

O — FZQ+2 ———’an ———’FZQ/ZQ+2 — O

we obtain the desired conclusion. O

PROPOSITION 10.1.6. Let notation and assumptions be as in MOLY. Then the
derived-category image of ng(M?®) is S(N'®).

PROOF. Since N* is concentrated in degree a and (EN*)" = 0 for n < a
(see proof of [MLTH), therefore any derived-category isomorphism N°® —~ EN*®
is represented by a quasi-isomorphism N* — EN® which is moreover completely
described by the corresponding (injective) map in degree a, N* — (EN®)?. Let S
be the quasi-isomorphism representing S(A®*) and 5S¢ the induced map in degree a.
Set n := ny(M?®*) and let n* be the induced map in degree a. The Proposition
amounts to saying that S¢ = n®.

For any sheaf F on X and for any family of Ox ,-modules G, where x varies
over points in X, if Homo, , (Fz,G,) = 0 for all 2, then Homy (F, ®.i,G,) = 0.
In particular, since (EAN®)? lies on the Z¢/Z% !-skeleton, to show that S% = 7%, it
suffices to show that for any z € X with Ay (z) = a, the natural induced maps S
and n? from N2 to (EN®)% are equal. Moreover, by [LTA(iii), it suffices to confine
our attention to € X such that Ay (z) = a and A, (f(x)) = a + d. In particular,
the identifications of [MLT3iv) apply.

It suffices to show that for ¢ = n? or ¢ = S¢, the following maps compose to
the identity map

HIN® = HON® = N2 2o (EN*)2 = (EN*)(2) B2 H2N.

Indeed, since the remaining maps are isomorphisms, ¢ is uniquely determined by
the condition that the composition be identity.
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In the case of ¢ = 0% we conclude using the outer border of the following
diagram of natural isomorphisms whose top row gives ¢ and whose commutativity
is straightforward to verify.

_1yad -1

N s M@y wy ——— HY, (M ®yw,) B (BN (@) = (BN®)S
H sce M) l lam)
LN HIN® S HIN®

In the case of ¢ = S¢ we use the following commutative diagram of natural
isomorphisms, where the top row composes to the identity map by

HEA™® =S, popne  BEIOE oy
H USG le O<q
;1 5%[—al) a ®\a
Ho(N[-a)) =D, ga(BA*)[-a))
LNe LSt L[ (EN®)
e S v B e

O

Now we tackle the general case when M?*® is no longer assumed to be concen-
trated in one spot.
For integers 7, s, let §'y52" denote the map Eyfs — Eﬂ.l’t defined as follows.

ED

r,s inclusion
5./\/1'

(EfOM.)T

differential & projection 1.t
= (Bf M) Epte Epte’

6;/[.

LEMMA 10.1.7. Let f,X,Ax,Y,Ay,d, be as in LT3 Let M* € Coza,(Y),
no longer assumed to be concentrated in one degree. For any integers r,s,t the
following hold.

(i) If s > t, then 83t = 0.
(i) Assume s < t. For any integer n, if n < s so that Eje = E° .

and Exlr.l,t — Egjj,l., then 5;;;;75 = 5;;5]\/1" Similarly, if n > t, then

r,8,t __ ¢7,8,t
Said = 67 .
5a,a+d,a+d _ 6a,a+d,a+d
Me -

(iii) For any integer a, Ma+d]—a—d]

PROOF. (i) We claim that more generally, any map from £, to Eﬁ.l’t is zero
when s > t. Indeed, let i,G, be a component of 8;’/15. and i,-G, a component
of Eﬁ.l’t. It suffices to show that Homy (i, Gy, i.rGsr) = 0 or, more generally, that
2’ ¢ {x}. By definition, A, (f(z)) = s and A,(f(z')) = t. Therefore s > t =—>

f@) ¢{f(2)} = 2’ ¢ {x}.
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(ii) Suppose n < s. The canonical map o>, M®* — M* induces a map of
complexes Ef°0>,M®* — Ef°M®. Consider the following diagrams where the
bottom row of the diagram on the left is the same as the top row of the diagram
on the right.

oame = &L
(EfOUan')TH N (EfoMo)rJrl
Eos Mo — Enge zl O, zl
: Oy : e — &l
(Bfosn M) —— (Bf°M") | |
e — o

(EfQUZnMo)r-i-l - (EfoMo)r—i-l
The left columns of the two diagrams together give 5;5: s While the right ones

right give 67%". The rectangles 1,y commute because the isomorphism in (§7),
which uses (BH), factors through truncations. Commutativity of the remaining
rectangles is obvious and so the desired conclusion follows. A similar argument
works for the corresponding statement when n > t.

(iii) Using r = a and s =t = n = a + d in (ii) we conclude by truncating on
the left and right. O

PROPOSITION 10.1.8. Let notation and assumptions be as in[I0-1.1 Then the
graded map ng(M®): fEM® — Ef°M® defined in @) is a map of complezes.

PROOF. We have to verify that for any integer a, the following diagram com-
mutes.

(fo./\/l')a N gj\z;la.nLd - 55(/1- N (EfoMo)a

! !

(foMo)a+1 Eﬂ,l’aJrler 5}1\/4{.1 (EfoMo)aJrl
Let us first verify that for any integer n > 0, the composite map

a,a+d,a+d—n

(foMo)a . g;aajrd JM' gj\z;lL.l,aqLdfn

is zero. If n > 0 then we conclude by MLTA(i). If n = 0, then by MLTA(iii) we may
assume without loss of generality that M?® is concentrated in degree a + d only and
then we conclude by [MLTH

We have thus reduced the Proposition to proving that the following diagram

comimutes.

(oM S g

l léa,a+d,a+d+1
M.

(foMo)a+1 W 8X;li-.l,a+l+d
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By definition, ([B) respects the grading on each side indexed by the points of Y.
In particular, it suffices to verify that for any immediate specialization y ~» ¢y’ in Y
such that Ay (y) = a+d, the following diagram commutes, with the columns being,
as above, induced by the differential of M*® and E f°M?®.

fEM®y) —— EXye(v)

fo(./\/l., y/) 5’7\;{.1 (y/)
Before simplifying this diagram further, we need some notation. Set M := M*(y),
M':= M*(y'). By L2 the definition of £LL. (y) C Sﬂ.l’aHer involves a finite
direct sum of modules of the type i,,G,. where x’ ranges over the set of generic
points of the fiber over ¥’ and G,y = HY, (M’ ®, w,s). Fix one such point z’.
Let z1,...,xg,...,2; be all the points that are generic in the fiber over y where
x1, ...,k are exactly those that specialize to 2’. Any such specialization z; ~ 2’ is
necessarily immediate since Ay (z;) = a and Ay (z') = a+ 1. Note that the induced
map from the summand @, iz,Gz; of 44 (y) (where G, = ngmj (M ®y we,)

for any j) to E4f (y') is zero because, 2’ ¢ {z,} for j > k implies more generally
that Homox (Z'm]. Gm]. ) iz/Gm/) =0.

Coming back to the previous diagram, we may restrict the target £45.! (y) of
the diagram to the component i,,G, and moreover, since for any sheaf F, we have
Homoe. (F, iy Gyr) == Homo, , (Fz, Gyr), we may localize the previous diagram
at 2’. Then verifying its commutativity reduces to verifying that of the rectangle
on the right in the following diagram, where, as expected, « is induced by the
differential of f°M?* and 8 is induced by the differential of F f°M* via &1).

eajgk Hmzj (M ®y wa;)

to stalk at x;

M @y wer —— (f*(M*,y))ar

and then B3
(91) 8®1l al Bl
M’ ®y wy — s (fPM ) ﬂ) Hgﬂt (M’ @y war)

Let 0 denote the Oy ,-linear map M — M’ induced by the differential of M®.
The rectangle on the left clearly commutes. It remains to prove that the outer
border of (@) commutes. We apply [Z2ZT] in this situation with essentially the
same notation as used there. (The map h and its relative dimension n are now
denoted by f,d respectively.) Note that in this case we have p; = 0 and £ = w.
Let J be the largest coherent ideal defining the closed set {z1, ...,z } and let T =7,
as in [LZTl We make the following claims.

(i) The Oy z-modules M ®, wyr and M’ @, w,s are I-torsion.
(ii) The top and bottom rows of () give the maps 1, ps respectively of [LZ11
(iii) The map 3 of (@) equals (—1)%) for ¢ as in ZIl (Note that d corre-
sponds to n used in [LZT1)
Assuming these claims, [@Il) commutes by [LZT] thus proving the Proposition.
Both (ii) and (iii) are straightforward to verify. The rest of this proof is devoted
to showing (i).
Let K be the largest open coherent ideal in Oy defining the closed set {y}.
Since f is adic, therefore J:= KOx is an open ideal in Ox. Since the ordinary



PSEUDOFUNCTORIAL BEHAVIOR OF COUSIN COMPLEXES 121

scheme X := (X, Ox/3) is smooth over the ordinary scheme Y := (Y, Oy /X), there-
fore the generic points of (the irreducible components of) X all map to the generic
point of Y, viz., y. In particular, the generic points of the fiber over y corre-
spond exactly to the generic points of X. Note that J € J. Set J:= J/J. Then
the closed set defined by J contains Spec(Ox .), and hence the stalk I of J at 2’
is a nilpotent ideal. But I can be canonically identified with J,//J,/. It follows
that proving (i) is equivalent to proving that M &, w, and M’ ®, wy are Jy -
torsion. Since Jr = K, Ox z we therefore reduce to showing that M, M’ are
X,-torsion as Oy ,-modules. In the case of M we conclude from the fact that
Ky Oy, =K, =m, and M is an my-torsion Oy ,-module. In the case of M’ we
conclude from the fact that K, = m,,. O

ProPOSITION 10.1.9. With notation and assumptions as in TR the natural
map ny(M?®): fPM® — Ef°M® is a quasi-isomorphism whose derived-category
image Qnyp(M?®) is S(fOM?®).

PROOF. Set n:= ns. It suffices to verify that Qn(M?®) = S(f°M?*), because
that implies that 7 is a quasi-isomorphism.

By B33 the validity of Qn(M®) = S(f°M?*) amounts to that of the punctual
statement that, for any x € X, with p = Ay (z), the composite isomorphism

HEn(M?®) B2 [c]
_— _

for F* = f°M*

HngMO HgEfOMQ HngM.
is the identity. Let us verify this punctual statement.

Fix x € X with p = Ax(z) and ¢ = Ay(f(x)). Since HPn(—) and the iso-
morphism obtained from BZZILi)[c] are functorial in M®, in view of the natural

isomorphisms ([B22))
HPfM® = HP o, M®, HPYEf°M® = HPEf o<, M°,

we may replace M*® by o<, M?®. By a similar argument we may truncate in the

other direction and thus we reduce to the case when M® = M9[—¢] is concentrated
in only one degree.

By LT for M* = M9[—g], we already have Qn(M?*) = S(f°M*) and hence

the punctual statement corresponding to x now follows by referring back to

O

REMARK 10.1.10. Suppose f: (X, Ax) — (Y, Ay) is as in Lemma[[lLT3 Let
Ly(M®)(= Ly): Ef(M*) = E(f°M®) == fH(M®)

be the isomorphism in the construction of f#(M®*) in §8l (see the second paragraph
of loc.cit.). We would like to summarize the relationship between the global maps
Ly, ny and various natural local isomorphisms (e.g. ([[{), ([ or the isomorphisms
in TheoremEEZTl) in a special case, viz. when M?® is concentrated at a point. The
purpose is to gather together the many sign twists we have used into one place.

Suppose z is a point on X. Let p = Ax(x), y = f(x), ¢ = Ay(y), S = @,
R= @;, ¢: R — S the natural map induced by f, t = dim(S/mgrS) =p —q+d,
M a zero dimensional R—module, F = i, M, M* = F[—q] and set

(@) = Ax (@) Ay (y) + Ax ().
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The natural quasi-isomorphism
Ef(M®)(2)[=p] = LEf(M*) — RLEM?®
obtained by applying I, to an injective resolution E;(M®) — Z* of the flasque
complex E¢(M?®) gives on applying H? the isomorphism
p: Ep(M®)(z) = HEEf(M®),

which is the inverse of the map in BZZIi)[b]. In view of Propositions and
[T and the definitions in @), (&), (@), @), @), we see that the following

diagram commutes up to a sign of (—1)(*):

HE(Ef(M®)) - Ep(M?®)(z)
Hﬁ(anf)T lL(m)
HE(foM®) (fEMe)(
e
HE(f*Fl—q] © wyld]) P M
H lEEI(i)
HL(f*F @wy) H! (M ®@ws/g)

@,

10.2. Truncations. In this subsection we gather together some properties
of f* with a view to future applications. These results are not used in the next
subsection.

Recall that if F is an abelian sheaf on a topological space X, = a point on X
and G an abelian group, then Homgpeaves(F, izG) == Homgroups(Fz, G). In par-
ticular, if F, = 0, then any map from F to i,G is zero.

LEMMA 10.2.1. Let f: (X, A") = (Y, A) be a map in F, and let z € X, y € Y
be points such that A'(x) = A(y). If x is not closed in its fiber or if y # f(x), then
for any Ox .-module C and any Oy, ,-module M, Homo, (fyi,C,i,M) = 0.

PROOF. By definition, A’ = f*A and hence A’(z) < A(f(x)) with equality
holding only if z is closed in its fiber. Now note that f.i,C = iy,)C. Thus if we
assume Homo, (i ¢(z)C, iy M) # 0, then (iz,)C), # 0 and hence y € {f(z)}. But
this implies that A(f(z)) < Ay ) with equality holding only if y = f(z). Since
A’(z) = A(y) we therefore obtain that x is closed in its fiber and y = f(z), which
is a contradiction. g

DEFINITION 10.2.2. Let (Y, A) € F. and let M*® € Coza(Y). For any Oy-
endomorphism of the total Oy-module T'(M?*) of the graded module M®, we get,
for every pair of points y, ¢’ in Y an Oy-linear map i, (M*(y)) — i,y (M*(y')).
We denote by daqe (y,y") : iy(M®(y)) — iy (M*(y’)) the map induced by the
coboundary map on M?*.

LEMMA 10.2.3. Let f : (X, A") — (Y, A) be a map in F. and let C* be a Cousin
complex on (X, A"). Then 5c-( ') =0 4f f(2') is not a specialization of f(x).
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PRrROOF. If f(z') is not a specialization of f(x) then z’ is not a specialization
of z and hence any map from i,(C®(z)) to i, (C*(2’)) is necessarily zero. O

LEMMA 10.2.4. Let f: (X, A") — (Y, A) be a smooth morphism in F.. Let
0—F —F3 —F; —0
be an exact sequence of complexes in Coza(Y). Then the induced sequence
0— PR — [T — 1R —0
of complexes in Coza:(X) is exact.
PROOF. Let x € X. For any integer i set L% (—):= HIRIY(f*(—) ®x wsld]).

Set p:= A’(x). Since f is a flat map and wy a flat Ox-module, we get a long exact
sequence

C— LPNFS) — LE(F?) — L2(Fs) — LP(F3) — LEYY(F?) — ...
By Cohen-Macaulayness (E-L3) the Li-terms vanish for i # p so that we obtain a
short exact sequence
0 — LP(F}) — LE(F3) — LE(Fs) — 0.

Since this holds for every € X, in view of the isomorphism L2(—) = (f*(-))(x)
(see (@), BY)) the desired conclusion follows. O

Let (X, A") ER (Y, A) be a map in F.. Then any Cousin complex in Coza:(X)
admits natural filtrations arising from the codimension function on Y. The filtra-
tions are obtained as follows. For p,n € Z set

up = {z € X|A'(x) = n,A(f(z)) > p}
and
Sy ={z € X|A(z) = n,A(f(2)) < p}-

Suppose C*® € Coza/(X). Then C*® has a natural decreasing filtration {F?(C*)},
by subcomplexes in Coza/(X) defined as follows. For p € Z define the nth graded
piece of FP(C®) by

PPt = P i.C*(x).
zexh
By M23 FP(C®) is stable under the action of the coboundary map d¢e on C*® so
that the restriction of dce to FP(C*®) gives a differential dps(cey on FP(C®) that
makes it a subcomplex of C®. In a similar vein we can define, for p € Z, a complex
Gp(C*) whose nth graded piece is

Gp(C)":= @D i.C*(x).
zeSy

Viewing G,(C®) as the cokernel of the inclusion FP™!(C®) — C*, we obtain a differ-
ential 0, (cs) on G(C*). Note that for any =, 2" € X if A(f(z)), A(f(z')) < p, then
da,(c)(z,2") = 62(z,2"). There results a short exact sequence of Cousin complexes
on (X, A):

(92) 0 — FPTHC®) — C* — G,(C*) — 0.

Note that F? and G, are functorial on Coza/(X).
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Let F* € Coza(Y). With o>, and o<, the truncation functors (4L (X)) we
claim that the following hold.
FP(fEF*) = [ (o2pF*)
(93) Gp(f*F*) = fFo<pF*)
FP(fEF®)/FPL(fEF®) = fH(FP[-p)).
All these are straightforward to verify using the arguments in (ii) and (iii) of LT

10.3. Etale maps. By an étale map of formal schemes we mean a smooth
map of relative dimension 0. In the case of an étale map f, the formula for f# can
be simplified further. We begin with a few preliminaries concerning a criterion for
a complex to be Cousin.

LEMMA 10.3.1. Let (X,A) € F.. A complex F* on X is A-Cousin if and only if
it satisfies the following condition: For any x € X and integers i,j such that i # 0
or j # A(z), we have HLFJ = 0.

Proor. If F* is A-Cousin, then the condition stated in the Lemma follows
from B2Z1Ki)[a]. Let Z* be the filtration of X induced by A. For the ‘if’ part, we
must show that for any integer j, F7 lies on the Z7/Z7+! skeleton, i.e.,

Fl=TI,7 and HymF =0=HynF.
Note that the condition of the Lemma can be rephrased as saying that if ¢ 7 0 or
j # n then len/znﬂfj =0.

Recall that for p < 0, ZP = X. Therefore to show that F7 = r,; F7, it suffices

to show that the natural maps
FZ]‘]:j - sz—l]'-j — sz—zfj — ... —’Fx]:‘] :_7:‘]
are isomorphisms. For every n there are exact sequences

0 —’an+1 —’an — FZn/Zn+1 — 0.

By hypothesis, H%n/znﬂ]-"j =0 for all j # n. Thus I, F’ = I, F/ for n < j.

For verifying the other condition of Cousinness, first assume that X has finite
Krull dimension so that A is bounded above and hence for p > 0, ZP = ). To show
that H;Hl FJ =0 it suffices to show that the natural maps

H1ZJ+1]:‘]—>HZZ]+2]:J—>—>Hé]:] =0
are isomorphisms. By hypothesis, H;n/znﬂ FJ =0 for all 4 and for n > j, whence
the desired conclusion follows.

If X is not finite-dimensional, we use a localization argument, cf. [1T, p. 242].
For any # € X let X(,) denote the space of all the generizations of x. In fact
Xy = Spf((?x\w) where the completion is with respect to the stalk J, of any
defining ideal J in Ox. Then {Z2 := ZP N X(;)}pez is the induced filtration
on Xg. Let f: X, — X be the canonical inclusion. By L34 below, the condi-
tion of the Lemma also holds for the complex f~!F* on X(z)- Moreover we have
(Hy; i  Fi)y = (H;Hlf_l]:j)w. But the latter is 0 since X(,) has finite Krull
dimension. Since (HY, ,F7), = 0 for every z € X, therefore H},;,, F7 = 0. O

The next few results concern the localization argument used in the proof
of M3l Lemma [MI32 below is used in [I1l p. 242] without proof.
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LEMMA 10.3.2. Let X be a noetherian topological space such that any nonempty
irreducible closed subset Z contains a unique generic point. Let Y be a subset of X
that is stable under generization. Let f:Y — X denote the canonical inclusion.
Then, for any flasque sheaf F on X, its restriction f~'F on'Y is also a flasque
sheaf.

PrOOF. First note that the presheaf restriction of F is flasque, i.e., if G denotes
the presheaf on Y that assigns to any open subset V of Y, the set lim F (U) where U
U

ranges over open subsets of X containing V', then for any open subset V; of Y, the
canonical map G(Y) — G(V1) is surjective. Indeed, if U; is any open subset of X
containing V7, then in the following commutative diagram of canonical maps

F(X) —"— F(h)

ml pgl
G(y) —=— g(\)

p1, P2, p3 are all surjective and hence p,4 is also surjective. Therefore it suffices to
show that G is already a sheaf. For the rest of this proof the flasqueness assumption
on F is not needed.

By quasi-compactness, it suffices to verify the sheaf property for open coverings
consisting of finitely many open sets. Let V' be an open subset of Y and let {V;}7
be an open covering of V. Set V;;:= V; NV;. Let s; be sections of G over V; such
that s; and s; agree on V;;. We must show that there is a unique section s of G
over V whose restriction to V; is s;. Before proceeding further we remark that for
any open subset U of X and any a € F(U), if 3 is the induced element in G(UNY")
then Supp(8) = Supp(a) NY.

By definition, for each i, there exists an open subset U; of X and an element
t; € F(U;) such that V; = U; NV and t; maps to s; under the canonical map
]‘-(Ul) — g(‘/;) Set Uij = UiﬂUj and set tij = ti —tj S ‘7:(U1]) Since tij vanishes
on Vi; = U;; NV, therefore its support Z;; is a closed subset of U;; avoiding Y. Let
Z_Z-j denote the closure of Z;; in X. We claim that Z_U Ny = 0.

Since Z;; is an open dense subset of Z,;, therefore Z;; contains all the generic
points of the finitely many irreducible components of Z_” Moreover, Z_” is the
set of all the specializations of these generic points. Since each generic point is
outside Y and since Y is stable under generization, it follows that Z;; N Y = 0.

Set Z:=U; ;Z;; and U, := U; \ Z. Let t\ be the restriction of ¢; to U/. Then
t; and t; agree on U; N U; and hence there exists a section ¢’ of F over U":= U;U]
whose restriction to U] is t]. Let s be the image of ¢ in G(V'). Then the restriction
of s to V; equals s;. It remains to demonstrate the uniqueness of s.

Let § € G(V) be such that its restriction to each V; is s;. There is an open
subset U” of U’ and an element ¢ € F(U") such that ¢ maps to 5. Let ¢ be the
restriction of ¢’ to U”. Then the support of t” — t is a closed subset W of U” that
avoids Y. Arguing as above, we see that the closure W of W in X also avoids Y.
Then the restriction of ¢ to the open set U” \ W agrees with that of ¢ and hence
§=s. O

LEMMA 10.3.3. Let f: Y — X be as in IL3A Let Z C X be a subset that is
stable under specialization. Then for any sheaf F on X, f1L,F = I, f~'F.
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PROOF. The canonical map f~'I,F — f~'F is injective and factors through
Iy f7IF — f7'F. Therefore it suffices to check that the natural induced map
¢: [TULF — Iy f1F is surjective.

Let V be an open subset of Y. Let s € (I,~y f~'F)(V). Then there exists an
open subset U of X and an element ¢ € F(U) such that UNY =V and ¢ maps to s
under the canonical map F(U) — (f~1F)(V). Then Supp(t) N'Y = Supp(s) C Z.
Let W be the set of all specializations of those generic points of (the irreducible
components of) Supp(t) that do not lie in Y. Then W is a closed set avoiding Y.
The restriction of ¢ to the open set U \ W then has support in Z. Therefore the
image of ¢t in f~1I,F(V) is an element whose image under ¢ is s. O

COROLLARY 10.3.4. Let X be as in MIZA Let x be a point in X and let
Y := X, be the set of all generizations of x. Let f: Y — X be the canonical
inclusion map. Let Zy C Zy be subsets of X that are stable under specialization.
Set Z!:= Z;NY. Then for any complex F* and any integer i, there is a canonical
isomorphism (HZZ{/Zéf’lf')m - (HZZ1/Z2f.)z'

PROOF. Since f~! is exact, it preserves quasi-isomorphisms and hence we
may replace F*® by a flasque resolution. By MI3A f~'F* consists of flasque
sheaves on Y. Thus we reduce to showing that for any flasque sheaf F on X,
(Hifzi/zéf’l}")z = (H'I; ,5,F)q. Since H' commutes with localization and
f~! preserves stalks, we reduce to showing that I‘Z;/ng_lf = f_ll"Zl/Z2 F. There-
fore we conclude from the following commutative diagram where the rows are exact
and the two leftmost columns are equalities by

U —— L f'F —— Iy fF —— 0

H H l

0 —— [ F —— [, F —— [T,

0—’FZ§

1/22.7: — 0

O

PROPOSITION 10.3.5. Let f: (X, Ax) — (Y,4Ay) be a map in F. such that for
any x € X, with y:= f(x), Ox,o/myOx. 4 is a finite-dimensional vector space over
the residue field k(y) at y (in particular, Ax(x) = Ay(y)). Then f has finite fibers.
Moreover, for any M® € Coza,(Y), the following hold.

(i) Iy f*M® € Coza, (X).

(i) Let y € Y. Set M := M°*(y). If f~{y} = 0, then I}f*iyM = 0.
Otherwise, if f~'{y} = {z1,...,2n}, then, with p = Ax(z;) = Ay(y),
the Ax-Cousin complex Iy f*i, M[—p] is only concentrated at the points
zj (1 <j<mn), and for any j there is a natural isomorphism

(I F*M®)(a;) = (I3, MI=p)) ;) = M ®, Ox.,
uniquely determined by the natural map
I;jFDéf*Mp = ijFDéf*in — ([TiyM)y; == M @y Ox ;.
PROOF. Let ¢ € X,y € Y with y = f(x). Then the local ring of the fiber

space X, at z is isomorphic to Ox 5/myOx » and hence, by hypothesis, has Krull
dimension zero. Therefore x does not have any nontrivial generization in X,. Since



PSEUDOFUNCTORIAL BEHAVIOR OF COUSIN COMPLEXES 127

this holds for any element z in X, it follows that X, is zero-dimensional and hence
consists of finitely many points.

Note that Iy f*M?* consists of Aqct(X)-modules. For any integer j in view of
the canonical decomposition M7 == @, i, M*(y) (where A, (y) = j), we deduce,
using the same arguments as in LTI that for any x € X, if j # Ay (f(x)) = Ax(2),
then H:(IY.f*M7) =0 for all 4.

For this paragraph, fix © € X. Set y:= f(z), p:= Ax () = Ay(y), M = M*(y).
Then there are natural isomorphisms

Hz(l—ﬁf Mp) - Hl (f Mp) - H:nm(Mz Xy ODC,:E) — H:nm(M Xy Ox,m).

By hypothesis, m,Ox, , is m;-primary and hence m,-torsionness of M implies that
M ®, Ox,, is my-torsion. Thus HS% (M ®y Ox ) = M ®, Ox,, and moreover
H! (M ®y Ox,,) =0 for i # 0. In particular, H} (I3 f*MP?) = 0 for i # 0.

By M3t now follows that Iy f*M?*® € Coza, (X) and moreover for any z € X
we obtain a canonical isomorphism (Iy f*M?®)(x) > M*(f(2)) @) Ox,z-

For (ii), with y € Y fixed, we may assume that M® is concentrated only at y.
It follows from the above description that if f~'{y} = 0, then for all z € X,
(I3 f*M®)(xz) = 0 and hence I} f*M* = 0. Also, if f~*{y} = {@1,...,2,} then
Iy f*M?* is only concentrated at the points z;. By chasing through the isomor-
phisms in the previous paragraphs for i = 0, we obtain the desired isomorphism
in (ii). 0

Let us note that an étale map satisfies the hypothesis on f in [MLZA Indeed,
if f is a smooth map of relative dimension d, then d is the sum of the Krull
dimension of (Ox, ,/myOx ) and the transcendence degree of the residue field
extension k(y) — k(z) (cf. ZEI0). Therefore d = 0 implies that my Oy , is my-
primary and that k(z) is a finite extension of k(y). Thus (Ox, 5/myOx, ;) has finite
length over k(y).

We are now in a position to describe f* for f an étale map. Note that if f is
an étale map, then wy = Ox. Moreover, as in the proof of B2l we shall identify
the functor (—) ® O [0] with the identity functor.

PROPOSITION 10.3.6. Let f: (X,Ax) — (Y,4y) be an étale map in F,. Let
M® € Coza,(Y). Then IYf*M® is canonically isomorphic to fEM®. More pre-
cisely, with E = Ea,., the following canonical maps are isomorphisms

(94) Brme Z2 g — BRI M B pige,

and for any x € X, with y:= f(x), M := M*(y), the corresponding punctual iso-
morphism is given by
95) (S MO)(@) T M ®, Oxy = M ©; Oxy s foy M,
PROOF. Let p = Ax(z). We relate @) with ([@3) through a diagram, which
for convenience, is broken into two parts, viz., {@@) and {@Z) below. The rightmost
column of ([@H) is the same as the leftmost one in ([@). The top row of (@) + (@0
gives (@A) while the leftmost column of [@H) gives the first two maps in [@). The
remaining portion of the outer border of {@@) + (@7) gives ([Hl), which is the third
map used in ([@4). Note that in this situation the sign obtained from the map 6
occurring in ([[@) is trivial because now d = 0 and p = gq.



L (Ix f*M)P LI f* MP
o) | 0 |
(96) LERS MO ——— HPLfM® 0 L MP[p) === HQI{f*MP

l l

L (ERILf*M®)P ——— HPRIYfrMe® oeeton,

on M

l l

HY(RIy f*MP[=p]) H)RIy f*MP

LIfMP ——  (ILfMP),  ——  (f*MP), —— M®,0x, — fuM

| |

. 1.0

I I

(97) H)IY f*MP —— (H&—}Fgéf*/\/lp)z — L, (f*MP)y —— I, (M ®,Ox,)
HORILf*MP ——— (HORILf*MP), —2 1O (f*MP),

{=}

AMISVS 'd ANV SMVAVN 'S ‘NVINIT T

8¢CIT
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The commutativity of all the subrectangles in (@) and (@) except [J; are
verified easily. For [0y, set C*:= I} f*M®. We may then rewrite [J; as the following.

rcr rcr

I H

[ (EC*y —— HEC* —— H2(C?[~p))

For commutativity of (J; we now refer to the proof of B2ZZILiii). Note that every
map in [J; is an isomorphism.

All the horizontal maps in ([@8) are isomorphisms and all the maps (horizontal
as well as vertical) in (@) are isomorphisms. Therefore the vertical maps in (@),
in particular the ones in the leftmost column are also isomorphisms. In particular
the middle maps in (@) is also an isomorphism. O

PROPOSITION 10.3.7. Let f: (X,Ax) — (Y,4y) be an etale map in F.. Let
M?* € Cozp, (Y). Set F*:= RIyf*M?*. Then the following diagram commutes
in D(X) and moreover all the maps in it are D(X)-isomorphisms.

LffM® ——— RILf*M®
lmm) lm
ELf*M* —— ERILf*M*

Thus, the Suominen isomorphism RIY f*M® == ERIY f*M?® is the composition
of the following (explicit) isomorphisms

B . .
RIL [ Me L) e pge BB, gy pepqe cononicl, g e pr e

PROOF. The vertical maps in the given diagram are D(X)-isomorphisms and
by 30, the bottom row is an isomorphism. Therefore only commutativity of the
above diagram needs to be shown. The complexes involved in the above diagram
are all Ax-CM in D(X). Let C,D be as in §8231 Since E = Ea, is fully faithful
as a functor from D to C @3)), it suffices to verify that E applied to the above
diagram gives a commutative diagram.

Set C*:= I} f*M?* € C and N*:= RI}.f*M* € D. There is a canonical map

QC* — N* and FE of the above diagram may be written as the following one.
EQC* —— EN*
EQ(C* = EQC')l lE(N’ =, QEN®)
EQEQC* —— EQEN"*

The vertical map on the left is also the same as (EQC®) =~ EQ(EQC®) (see proof
of B3 ) while the vertical map on the right is, by the defining property of the
Suominen isomorphism, the same as (EN*®) = EQ(EN*). Thus the preceding
diagram commutes for functorial reasons. O

Completion of a formal scheme along an open ideal is an etale map. In this
case we obtain further concrete descriptions of (—)*. We begin with a preparatory
Lemma.
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LEMMA 10.3.8. Let (Z,A;) € F.. Let I be an open coherent ideal in O. Let
K (X, Ay) — (Z,A;) be the completion map corresponding to the completion of Z
along J. Let F* be a complex of Aqct(Z)-modules such that for any integer j, F7 is
a direct sum of modules of the type i, F, for z € Z, where F, is a zero-dimensional
Oz, .-module. Set K= kLI . Then the following hold.

(i) The canonical maps k™ I3 F* — k*I; F* — I}Kk*F* are isomorphisms
and for any integer j, k11 F7 is a direct sum of modules of the type i, F,
for x € X, where z = k(x) and F, the corresponding Oz, ,-module.

(ii) Suppose F* € Coza,(Z). Then k'F* € Coza, (X) and for any x € X,
with z = k(z), F = F*(2), we have (k'F*)(z) = (k'i,F)(x) = F.

(iil) Suppose F*® consists of Aqet(2)-injectives. Then k'F*® consists of Aget(X)-
injectives and the canonical map I3 k*F* — RIYK*F*® is an isomorphism.

PROOF. That x~'I[JF* — k*I;F* is an isomorphism follows immediately
from the fact that Ij F* consists of J-torsion modules. At any rate, for (i), since
k™Y k%, I, I} commute with direct sums, we may replace F* by a single sheaf
F:=1i,F. Since F € Ayet(Z) therefore I; F = ITX‘}' where we identify the underly-
ing topological space |X| of X by its image in Z, viz., Supp(Oz/J). If z € |X|, then
Iy (i:F) = i.F, and if 2 ¢ |X], then Iy (i.F)) = 0. In the former case, if « is the
unique point mapping to z, then k= 'i,F = i, F. Moreover, since Iyi . F' =i Fis
an J-torsion module, therefore the natural maps k 1i, F — k*i, F « I¥Kk*i, F are
isomorphisms. Thus (i) and (ii) follow.

For (iii), by (i) above and ZZ0, it only remains to be verified that the natural
map Iyk*F* — RIyk*F* is an isomorphism. Since it suffices to prove this locally,
we may assume that IO« is generated by global sections. Then we conclude by BT

O

ProrosiTioN 10.3.9. Let k, X, Ay, Z, A, and J be as in [O3Z Then for any

M?® € Coza, (2), the canonical graded isomorphism k= I3 M® == r*M®, given
at the punctual level, with x € X, z = k(z), M = M*(z), by

completions

LM (x2) =M = M®, Ox,
(w715 M) (@) B A r=— g

@ﬂM7

is an isomorphism of complezes.

Proor. It suffices to prove that the outer border of the following diagram
commutes

(i M) (@) B (e Mo () (IR M®)()
H | e |
M — M®z Ox,m — E;ﬁM

for then the Proposition follows from 30 because the isomorphisms in [I3(i)
and (@) are maps of complexes. The square on the right commutes by defini-
tion of ([@H). For the square on the left we expand as follows and the required



PSEUDOFUNCTORIAL BEHAVIOR OF COUSIN COMPLEXES 131

commutativity is verified easily.
(v M) (2) —— (W M)(x) —— (Ixs"M®)(2)

l l !

(k'L M), —— (5 i.M)y —— (Ilk*i.M),

l l l

(k7 Yi,M), ——— (K"i,M), (K*i. M),

l l l

M — M®,O0x, M @, O,z

O

REMARK 10.3.10. In the situation of I3 for any z € Z, with x = k(z2),
the completions of the local rings Oz , and Ox . along their maximal ideals are
canonically isomorphic to each other. Therefore, if we make the identification
Oz.. = Ox.,, then we find that

1'12),%_11"3 M® =k711 1&/\/1' =K' M®, KekPM® =T} 1&/\/1'.

We conclude this subsection with some remarks concerning the Suominen iso-
morphism S. We have already seen two instances, viz., LT and [[0.3.71 where an
explicit form for S is obtained. In fact we can generalize further. We shall use the
principle, already used in the proof of [ML3.4, which is that for any CM complex N,
to find an explicit candidate for S(N'®), it suffices to find an explicit isomorphism
from N* to a Cousin complex C®, because, S(C*®) is represented by the isomorphism
of BZI(ii). We elaborate below.

Let (X, Ay) LN (Z,Ay) L, (Y,Ay) be maps in F. where f; is an etale map
and fo is an adic smooth map of relative dimension d. Let M* € Coza, (Y). Set
f:= fafi. Let us obtain an explicit description of S(RI. f°M?*).

There are canonical isomorphisms fCM® == f7fSM® = fffSM* and hence
there are natural explicit D(X)-isomorphisms

RIYfM® = RIxf{ fM* ﬁ’ RIY f{Ea; fsM® ‘ﬁ IXf{Eng fs M.
Since C*:= I} f{ Ea, f5 is a Cousin complex, therefore, via the above isomorphism,
S(RIY f°M?®) is now given by the isomorphism of B2Z.TNii).

Now assume further that f; = x is the completion map as in [[L3.d Choose
an Aqc(Z)-injective resolution f§M® — Z°. Since r is flat the induced map
K*fsM® — k*1°* is also a quasi-isomorphism. There are natural isomorphisms

M)
and [ML3R1)
where the last map is obtained by applying Ii_lla to the homotopy-unique quasi-
isomorphism Ef§M?® — Z* induced by the quasi-isomorphism 7, (M*) ([ILLY).
Now with C® := k™I Ea, f§M®, (see ML3R(ii)) we see that the isomorphism
in B2ZKii) represents S(RIy foM?®).

The above results can in fact be applied to any smooth map, albeit locally.
Indeed, any smooth map f: X — Y in [F can be factored locally on X as f|u = faf1

RIyf°M® = RIYK'T® KTUGIY & kTG Ea, fSM®
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where fy: Z — Y is an adic smooth map and f;: U — Z is an étale map. This can be
shown by an argument involving locally choosing a differential basis of Q} A recent
result of Alonso Tarr{o, Jeremias Lépez and Pérez Rodriguez [4] says that fi can

in

fact be chosen to be a completion map such as k above. (However their result is

stated only for formally smooth maps which are of pseudo-finite type; it is possible
though, that their result holds more generally for essentially pseudo-finite type too.)
Thus all the descriptions given above may be applied locally.

10.
11.
12.
13.

14.
15.

16.

17.
18.
19.
20.

21.
22.

23.
24.
25.
26.
27.

28.
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NUMBERED DISPLAYS

Display Page Display Page Display Page
(1) 9 (35a) 57 (59) 77
2) 9 (35b) 57 (60) 77
(3) 9 (35¢) 57 (61) 79
(4) 24 (35d) 57 (62) 79
(5) 27 (36) 58 (63) 79
(6) 36 (36a) 60 (64) 80
(7) 36 (36b) 60 (65) 80
(8) 37 (37) 62 (66) 81
(8 37 (38) 63 (67) 82
9) 38 (38a) 63 (68) 83
(10) 38 (38b) 63 (69) 84
(11) 40 (38) 63 (70) 85
(12) 40 (38d) 63 (71) 85
(13) 41 (38¢) 63 (72) 85
(14) 41 (38b') 64 (73) 86
(15) 46 (38¢') 64 (74) 87
(16) 46 (39) 65 (75) 89
(17) 47 (39a) 65 (76) 91
(18) 48 (39b) 65 (77) 92
(19) 49 (39¢) 65 (78) 93
(20) 49 (39d) 65 (79) 94
(21) 49 (40) 65 (80) 95
(22) 50 (41) 66 (81) 97
(23) 50 (42) 67 (82) 98
(23) 50 (43) 68 (83) 97
(24) 51 (44) 68 (84) 100
(24) 51 (45) 68 (85) 102
(25) 51 (46) 68 (86) 102
(25) 51 (47) 68 (87) 114
(25') 52 (48) 70 (88) 115
(26) 51 (49) 70 (89) 115
(27) 54 (50) 73 (90) 115
(28) 54 (51) 73 (91) 120
(29) 54 (52) 73 (92) 123
(30) 54 (53) 74 (93) 124
(31) 55 (54) 74 (94) 127
(32) 56 (55) 75 (95) 127
(33) 56 (56) 75 (96) 128
(34) 56 (57) 76 (97) 128
(35) 56 (58) 76
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