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Abstract. Cohomological vanishing properties are proved for finitely supported
ideals in an arbitrary d-dimensional regular local ring. (These imply refined
Briançon-Skoda-type results, not otherwise known in mixed characteristic.) It is

deduced that the adjoint Ĩ of a finitely supported ideal I of order a has order

sup(a + 1− d, 0), and that taking adjoints of finitely supported ideals commutes

with taking strict transforms at infinitely near points. Hence, Ĩ is also finitely

supported. Further: normal such I have reduction number 1 + ⌊d(1 − 1/a)⌋.

Introduction

In [L3, p. 747, (b)] there is a vanishing conjecture for an ideal I in a d-dimensional
regular local ring (R,m).1 Suppose there is a map f : X → Spec(R) which factors as
a finite sequence of blowups with smooth centers, and is such that IOX is invertible.
Let E be the closed fiber f−1{m}. The conjecture is that

Hi
E

(
X, (IOX)−1

)
= 0 for all i 6= d.

This statement implies, with ℓ(I) the analytic spread of I, and ˜ denoting
“adjoint ideal of” (a.k.a. multiplier ideal with exponent 1), that

Ĩn+1 = I Ĩn for all n ≥ ℓ(I) − 1,

which in turn implies a number of “Briançon-Skoda with coefficients” results, see
[L3, pp. 745–746]. The conjectured statement holds true when d = 2; and it was
proved by Cutkosky [C] for R essentially of finite type over a field of characteristic
zero (in which case it is closely related to vanishing theorems which appear in
the theory of multiplier ideals, see [Lz]). In these two situations, the assumed
principalization f is known to exist for any I 6= (0).

In this note we show that vanishing holds for those R-ideals which are finitely

supported, i.e., for which there is a sequence of blowups as above, in which all the
centers are closed points.

In addition, we deduce that the adjoint ideal of a finitely supported ideal I
is itself finitely supported, with point basis obtained by subtracting min(d−1, rβ)
componentwise from the point basis (rβ) of I. (The terminology is explained in §3.)
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1A stronger “CM” conjecture on that page was disproved by Hyry [Hy, p. 389, Ex. 3.6].
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More consequences of vanishing are scattered throughout §§3–4. For example,

for finitely supported I, Proposition 3.4 generalizes the above relation Ĩn+1 = I Ĩn;

and when, furthermore, I is the integral closure J of a d-generated ideal J—whence

J Ĩd−1 = Ĩd —Proposition 4.2 gives that J Ĩd−2 = Ĩd−1 ∩ J 6= Ĩd−1 (unless I = R),

and that J : I = J̃d−1 + J = Ĩd−1 + J . Moreover, for 1 ≤ t ≤ d, JJ t−1 = J t if
and only if t > d

(
1 − 1/ordα(J)

)
.

1. Reformulation of vanishing

Let K be a field. We denote by Greek letters α, β, γ, . . . regular local rings of
dimension ≥ 2, with fraction field K; and we refer to such objects as “points.”

From now on α will be a d-dimensional point, with maximal ideal mα, and
f : X → Spec(α) will be a proper birational map, with X regular (i.e., the local
ring OX,x is regular for every x ∈ X).

Let E1, E2, . . . , Er be the (d−1)-dimensional reduced irreducible components of
the closed fiber E := f−1{mα}. The local ring on X of the generic point of Ei is a
discrete valuation ring Ri, whose corresponding valuation we denote by vi. Since
the regular ring α is universally catenary [GD4, (5.6.4)], the residue field of Ri has
transcendence degree d − 1 over α/mα. There is then a unique point βi infinitely
near to α such that vi is the order valuation ordβi

associated with βi, see [L1, §1,
pp. 204, 208].2

We say that a point β ′ is proximate to another point β ′′, and write β ′ ≻ β ′′, when
β ′ is infinitely near to β ′′ and the valuation ring of ordβ′′ is the localization of β ′ at
a height one prime ideal. For each i, j such that βi ≻ βj , let pij be the height one
prime ideal in βi such that the localization (βi)pij

is the valuation ring Rj of vj .
Using induction on the length of the blowup sequence from βj to βi, one checks
that vi(pij) = 1.

Lemma 1.1. Let I be a nonzero α-ideal. Then for each i = 1, 2, . . . , r, we have

vi(I) ≥
∑

{j |βj≺βi}

vj(I).

(By convention, the sum of the empty family of integers is 0.)

Proof. After reindexing, we may assume that β1, β2, . . . , βs are all the βj such that

βj ≺ βi ; and then use that for some βi-ideal Ii we have Iβi = p
v1(I)
i1 · · · p

vs(I)
is Ii. �

Definition 1.2. A divisor
∑r

i=1niEi is full if for each i, it holds that ni ≥ 0 and
that, with preceding notation,

ni ≥
∑

{j |βj≺βi}

nj .

Examples 1.2.2. (a) For any nonzero α-ideal I, the divisor
∑r

i=1 vi(I)Ei is full.
(b) Any finite sum of full divisors is full.
(c) If D =

∑
i niEi is full, and 0 ≤ c ∈ R, then ⌊cD⌋ :=

∑
i⌊cni⌋Ei is full.

(As usual, for any ρ ∈ R, ⌊ρ⌋ is the greatest integer ≤ ρ.)

2 The first neighborhood of α consists of all points of the form OZ,z where ϕ : Z → Spec(α) is
the blowup of mα and z ∈ ϕ−1{mα}. A point β is infinitely near to α if there is a finite sequence
of points beginning with α, ending with β, and such that each member other than α is in the
first neighborhood of the preceding member.
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Conjecture 1.3. If D =
∑r

i=1niEi is a full divisor then

Hi
E(X,OX(D)) = 0 for all i 6= d.

(This holds, obviously, when i ≤ 0 or i > d.)

We assume henceforth that f is a composition

(1.3.1) X = Xn → Xn−1 → · · · → X0 = Spec(α)

where each Xi+1 → Xi (i < n) is the blowup of a regular closed subscheme of Xi .

Example 1.3.2. For f as in (1.3.1), the conjecture holds when D = 0, in which
case it is usually referred to as (an instance of) Grauert-Riemenschneider vanishing.

Indeed, for this to hold, [L2, p. 153, Lemma 4.2] shows it enough that the natural

derived-category map τ : α → RΓ(X,OX) be an isomorphism; and a straight-
forward induction, using the natural isomorphism RΓ(X,OX) ∼= RΓ(Z,Rh∗OX)

associated to a suitable factorization of f as X h−→ Z
g
→ Y , reduces proving that τ is

an isomorphism to the case of a single blowup, where it follows from [GD3, (2.1.14)
and (4.2.1)] (since the fibers of τ are single points or projective spaces), or from
[L2, Theorems 4.1 and 5] (since regular local rings are pseudo-rational [LT, §4]).

Set U := Spec(α)−{mα}, V := f−1U . From 1.3.2 one gets a natural isomorphism
OU −→∼ Rf∗OV , whence Hi(V,OV ) ∼= Hi(U,OU) for all i. But H0(U,OU) ∼= α, and

for 0 < i < d − 1, Hi(U,OU) ∼= Hi+1
mα

(α) = 0. Hence, for D :=
∑r

i=1 niEi (ni ≥ 0)

(so that OX(D)|V = OV , and H0(OX(D)) = α), the natural exact sequences

Hi−1(X,OX(D)) → Hi−1
(
V ,OV

)
→ Hi

E(X,OX(D))
ψi

→ Hi(X,OX(D)) → Hi
(
V ,OV

)

show that ψi is an isomorphism for 0 < i < d− 1, and ψd−1 is injective.

Furthermore, if mαOX is invertible, and we take the harmless liberty of identifying
the closed fiber E with the corresponding divisor, so that mαOX = OX(−E), then
applying lim

−−→
n

to the exact row of the natural diagram

Extd−1
(
OnE ,OX(D)

)
−→ Extd−1

(
OX ,OX(D)

)
−→ Extd−1

(
OX(−nE),OX(D)

)

≃

y
y≃

Hd−1
(
X,OX(D)

)
Hd−1

(
X,OX(D + nE)

)

we deduce a natural exact sequence

0 −→ Hd−1
E

(
X,OX(D)

) ψ
−−→ Hd−1

(
X,OX(D)

)
−→ lim

−−→
n

Hd−1
(
X,OX(D + nE)

)

where, one verifies, ψ is the above injective map ψd−1.
Thus for f as in (1.3.1) such that, further, mαOX = OX(−E) is invertible,

Conjecture 1.3 becomes:

Conjecture 1.4. If D =
∑r

i=1niEi is a full divisor then

Hi(X,OX(D)) = 0 for 0 < i < d− 1,

and for all n > 0 the natural map is an injection

Hd−1(X,OX(D)) →֒ Hd−1(X,OX(D + nE)).
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2. A special case

We prove Conjectures 1.3 and 1.4 in a special case.

Theorem 2.1. With α as before, suppose the map f : X → Spec(α) factors as

X = Xr → Xr−1 → · · · → X0 = Spec(α) (r > 0),

where for 0 ≤ i < r the map Xi+1 → Xi is the blowup of a closed point of Xi.

Then Conjecture 1.4—and thus Conjecture 1.3—holds true.

Proof. We proceed by induction on r. We often write Hi(−) for Hi(X,−).
Suppose r = 1, so that, with preceding notation, E = E1 and D = n1E (n1 ≥ 0).

For any q ≥ 0 there is a standard exact sequence, with OE(mE) := OE⊗OX(mE),

0 → OX

(
qE

)
→ OX

(
(q + 1)E

)
→ OE

(
(q + 1)E

)
→ 0.

Here E ∼= Pd−1, the (d − 1)-dimensional projective space over the field α/mα, and
OE(E) ∼= OPd−1(−1); so Hi

(
OE((q+1)E)

)
= 0 for i < d−1. Thus for 0 < i < d−1

there are natural isomorphisms

Hi
(
OX(qE)

)
−→∼ Hi

(
OX((q + 1)E)

)
;

and since, by Example 1.3.2, Hi(OX) = 0, it follows that Hi
(
OX(n1E)

)
= 0.

Moreover, for every q the natural map

Hd−1
(
OX(qE)

)
→ Hd−1

(
OX((q + 1)E)

)
= Hd−1

(
OX(qE + E)

)

is injective, whence so is Hd−1
(
OX(n1E)

)
→ Hd−1

(
OX(n1E + nE)

)
.

Next, when r > 1, let g : Y → Spec(α) be the composition of r − 1 closed-point
blowups, and h : X → Y the blowup of a closed point y ∈ Y . Make the indexing
such that E1 is the closed fiber of h. With vi as in §1, and 2 ≤ i ≤ r, let E ′

i be
the center of vi on Y . Arrange further that E ′

2, . . . , E
′
s are all of the E ′

i which pass
through y. Fullness of D =

∑r

i=1 niEi entails n1 ≥ n2 + · · · + ns.

Let D′ := n2E
′
2 + · · ·+ nrE

′
r; and let h−1D′ be the divisor

h−1D′ := (n2 + · · · + ns)E1 + n2E2 + · · ·+ nrEr,

so that OX(h−1D′) = h∗OY (D′). Fullness of D′ follows from that of D, because
for i > 1, βi is not proximate to β1. So the inductive hypothesis gives that
Conjecture 1.4 holds for D′. It follows that it also holds for h−1D′: indeed, as
Rh∗OX = OY (cf. 1.3.2), the standard projection isomorphism gives

RΓ(X,OX(h−1D′)) = RΓ(Y,Rh∗(OX ⊗ h∗OY (D′)))
∼= RΓ(Y,Rh∗(OX) ⊗OY (D′)) = RΓ(Y,OY (D′)),

and similarly for the full divisor D′ + nE ′, where E ′ is the full divisor such that
OY (−E ′) = mαOY (see 1.2.2), so that h−1(D′ + nE ′) = h−1(D′) + nE , whence

Hi
(
X,OX(h−1D′)

)
∼= Hi

(
Y ,OY (D′)

)
= 0 (0 < i < d− 1),

and the natural map

Hd−1(X,OX(h−1D′)) → Hd−1(X,OX(h−1D′ + nE))

is isomorphic to the natural injection

Hd−1(Y,OY (D′)) →֒ Hd−1(Y,OY (D′ + nE ′)).

It will therefore be enough to show the following:
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Lemma 2.2. If Conjecture 1.4 holds for a divisor Dν := νE1 + n2E2 + · · ·+ nrEr
where ν ≥ n2 + · · ·+ ns, then it holds for Dν+1.

Proof. Denote the residue field of y by κ(y), so that E1
∼= Pd−1

κ(y) . For any n ≥ 0,

there is the usual exact sequence

0 → OX(Dν + nE) → OX(Dν+1 + nE) → OE1
⊗OX(Dν+1 + nE) → 0.

Moreover, with N := n2 + · · · + ns − ν − 1,

OE1
⊗OX(Dν+1 + nE) ∼= OE1

(N).

To see this, just note, with λ : E1 →֒ X the inclusion, that λ∗OX(E1) ∼= OE1
(−1),

that if 2 ≤ j ≤ s then since E ′
j (see above) is a regular subscheme of Y passing

through y, therefore

λ∗OX(Ej) ∼= λ∗
(
h∗OY (E ′

j) ⊗OX(−E1)
)
∼= λ∗

(
OX(−E1)

)
∼= OE1

(1),

that if j > s then λ∗OX(Ej) = OE1
, and that since OY (E ′)|U ∼= OU for some

open U containing y (E ′ as above), therefore λ∗OX(E) ∼= λ∗h∗OY (E ′) ∼= OE1
.

Since N < 0, it follows in case n = 0 that

Hi(OX(Dν)) ∼= Hi(OX(Dν+1)) (0 ≤ i < d− 1),

so that Hi(OX(Dν)) = 0 =⇒ Hi(OX(Dν+1)) = 0. Furthermore, for any n ≥ 0

there is a natural injection Hd−1(OX(Dν + nE)) →֒ Hd−1(OX(Dν+1 + nE)). There
is then a commutative diagram, with exact rows,

0 −−→ Hd−1(OX(Dν)) −−→ Hd−1(OX(Dν+1)) −−→ Hd−1(OE1
(N))

ψν

y ψν+1

y
∥∥∥

0 −−→ Hd−1(OX(Dν + nE)) −−→ Hd−1(OX(Dν+1 + nE)) −−→ Hd−1(OE1
(N))

Hence if ψν is injective then so is ψν+1. Lemma 2.2 results.

This completes the proof of Theorem 2.1 �

Remarks 2.3. With f as in Theorem 2.1, and Ei, βi as before, set

E∗
i :=

∑

{j |βj⊃ βi}

ordβj
(mβi

)Ej .

So if p is the r × r proximity matrix with pii = 1, pji = −1 if βj ≺ βi, and pji = 0
otherwise, then by [L4, p. 301, (4.6)] (whose proof is valid in any dimension),

(2.3.1) (E∗
1 , . . . , E

∗
r )

t = p−1(E1, . . . , Er)
t

where “t” means “transpose”. Then, for any n1, . . . , nr ∈ Z, premultiplying both
sides of (2.3.1) by (n1, . . . , nr)p yields

r∑

i=1

(
ni −

∑

{j |βj≺ βi}

nj
)
E∗
i =

r∑

i=1

niEi.

Hence, the monoid of full divisors is freely generated by E∗
1 , . . . , E

∗
r .

For example, the relative canonical divisor Kf := (d − 1)(E∗
1 + · · · + E∗

r ) is full.
Note that by [LS, pp. 201–202], Jf := OX(−Kf ) is the relative Jacobian ideal of f,

and by [LS, p. 206, (2.3)], ωf := J −1
f = OX(Kf ) is a canonical dualizing sheaf for f .

(In fact, since f is a local complete intersection map, ωf
∼= f !OSpec(α).)
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Corollary 2.4. Under the hypotheses of Theorem 2.1, the following hold for any

full divisor D on X.

(i) Hi
(
X,OX(Kf −D)

)
= 0 for all i 6= 0.

(ii) Hi
E

(
X,OX(Kf −D)

)
= 0 for all i 6= 1, d.

(iii) H1
E

(
X,OX(Kf −D)

)
∼= α/H0

(
X,OX(Kf −D)

)
.

(iv) Hd
E

(
X,OX(Kf −D)

)
is an injective hull of α/mα.

Proof. For any invertible OX -module L, the α-module Hi(X,L⊗ωf ) is Matlis-dual

to Hd−i
E (X,L−1) [L0, p. 188, Theorem]; and so (i) and (ii) result from Theorem 2.1

by duality (via Conjectures 1.3 and 1.4, respectively). Similarly, (iv) is dual to the
obvious statement that H0

(
X,OX(D)

)
= α. Assertion (iii) results from the natural

exact sequence

0 = H0
E

(
X,OX(Kf −D)

)
→ H0

(
X,OX(Kf −D)

)
→ α = H0

(
V,OV

)

→ H1
E

(
X,OX(Kf −D)

)
→ H1(X,OX(Kf −D)

) (i)
= 0.

�

3. Finitely supported ideals

Recall that an α-ideal I is finitely supported if there is a map f : X → Spec(α)
which factors as in Theorem 2.1 such that the OX -module IOX is invertible. In
this situation, IOX = OX(−D), where, as in Example 1.2.2, D is a full divisor.3

Also, H0(X, IOX) = Ī, the integral closure of I; and with ωf = OX(Kf) as in

Remark 2.3, H0
(
X,OX(Kf − D)

)
= H0

(
X, Iωf

)
is the adjoint ideal Ĩ, see [L3,

p. 742, (1.3.1)].

The vanishing conjecture and various consequences hold for finitely supported
ideals (but see Remark 4.1).

Corollary 3.1. If f : X → Spec(α) is as in Theorem 2.1, and I is an α-ideal

such that I := IOX is invertible, then the following all hold.

(i) Hi
E

(
X, I−1

)
= Hi

E

(
X, I−1ωf

)
= 0 for all i 6= d.

(i)′ Hi
E

(
X, I

)
= Hi

E

(
X, Iωf

)
= 0 for all i 6= 1, d.

(ii) Hi
(
X, Iωf

)
= Hi

(
X, I

)
= 0 for all i 6= 0.

(ii)′ Hi
(
X, I−1ωf

)
= Hi

(
X, I−1

)
= 0 for all i 6= d− 1, 0.

(iii) Hd−1
(
X, I−1ωf

)
is Matlis-dual to H1

E

(
X, I

)
∼= α/Ī.

(iv) Hd−1
(
X, I−1

)
is Matlis-dual to H1

E

(
X, Iωf

)
∼= α/Ĩ.

(v) H0
(
X, I−1ωf

)
= H0

(
X, I−1

)
∼= α.

(vi) Hd
E

(
X, I

)
= Hd

E

(
X, Iωf

)
is an injective hull of α/mα.

Proof. Since the divisors D and Kf +D are both full, (i) and (ii)′ follow from Theo-
rem 2.1, via Conjectures 1.3 and 1.4 respectively; and, given the duality mentioned
in the proof of Corollary 2.4, (iii) and (iv) both result from Corollary 2.4(iii). State-
ment (v) is obviously true. Finally, (ii), (i)′ and (vi) result from their respective
dual versions (i), (ii)′, and (v). �

3For more on finitely supported ideals, see [AGL], [DC], [Ga], [Tn].
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Remark 3.2. For the vanishing of H1
E(X,I−1), and hence its dual Hd−1(X,Iωf ), it

suffices that f factor as in (1.3.1). Indeed, there is an exact, locally split, sequence

0 → C → On
X → I → 0,

whence, with (−)∗ := HomOX
(−,OX), an exact sequence

(3.2.1) 0 → I−1 = I∗ → On
X → C∗ → 0,

giving another exact sequence

0 = H0
E(X,C∗) → H1

E(X,I )−1 → H1
E(X,On

X ) = 0

where the first term vanishes because C∗ is locally free, and the third by Example 1.3.2.
Tensoring (3.2.1) with ωf (a dualizing sheaf, inverse to the relative Jacobian ideal)

and noting that Hd−1(X,OX ) and hence its dual H1
E(X,ωf ) vanish (Example 1.3.2), one

shows similarly that H1
E(I−1ωf ) and its dual Hd−1(X,I) both vanish.

The point basis B(I) of a nonzero α-ideal I is the family of nonnegative integers(
ordβ(I

β )
)

indexed by the set of all points β infinitely near to α, with Iβ the

transform of I in β (i.e., Iβ := t−1Iβ, where t is the gcd of the elements in Iβ.)
Two nonzero α-ideals have the same point basis iff their integral closures are the

same, see [L1, p. 209, Prop. (1.10)]. The proof in loc. sit. shows, moreover, that if
I and J are α-ideals such that ordβ(I

β ) ≤ ordβ(J
β ) for all β, then Ī ⊃ J̄ , where

“¯” denotes integral closure.
The ideal I is finitely supported iff I has finitely many base points, i.e., β such

that ordβ(I
β ) 6= 0, see [L1, p. 213, (1.20), and p. 215, Remark]. Thus the product

of two finitely supported ideals is still finitely supported.4

Here is the main result in this section (proved for d = 2 in [L3, p. 749, (3.1.2)]).

Theorem 3.3. Let α be a d-dimensional regular local ring (d ≥ 2) and I a finitely

supported α-ideal, with point basis B(I) = (rβ). Then:

(1) ordα(Ĩ ) = max(ordα(I) + 1 − d, 0); and

(2) for any β infinitely near to α, Ĩβ =
(
Ĩ

)β
.

Hence the adjoint ideal Ĩ is the unique integrally closed ideal with point basis(
max(rβ + 1 − d, 0)

)
. In particular, Ĩ is finitely supported.

Remark 3.3.1. A propos of (2), Iβ = Īβ ⊃ Īβ (where “ ” denotes integral closure),
see [L1, p. 207, Prop. (1.5)(vi)]); but equality doesn’t always hold ([Tn, Example 1.2]).

Corollary 3.3.2. For any finitely supported α-ideal I, Ĩ = α ⇐⇒ ordα(I) < d.

We also have the following weak subadditivity consequence:

Corollary 3.3.3. For finitely supported α-ideals I, J , it holds that

Ĩ J̃ ⊃ ĨJ .

4It can be seen, for any α-ideal I and any d-dimensional infinitely near β, that if Iβ is

mβ-primary then β is dominated by a Rees valuation of I. Hence I is finitely supported iff every

base point of I is d-dimensional. More constructively, I is finitely supported iff IOX is invertible

where X → Spec(α) is obtained by successively blowing up all the finitely many d-dimensional

infinitely near β such that β is dominated by a Rees valuation of I—in which case, with the
notation of Remark 2.3, IOX = OX

(
−

∑
i ordβi

(Iβi)E∗

i

)
.
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Proof. One checks that for any nonnegative integers r and s,

max(r + 1 − d, 0) + max(s+ 1 − d, 0) ≤ max(r + s+ 1 − d, 0).

Since “transform” respects products, therefore ordβ
(
(Ĩ J̃ )β

)
≤ ordβ

(
(ĨJ )β

)
for

all β, whence the conclusion (see above). �

In the opposite direction lie the next Corollary and also Proposition 3.4 below.

Corollary 3.3.4. For finitely supported α-ideals I, J , it holds that

ĨJ ⊃ IJ̃ ,

with equality if and only if ordβ(J
β ) ≥ d− 1 at every base point β of I.

Proof. The inclusion results from the equality ĨJ : I = J̃ [L3, p. 741, (b) and (d)].

The point basis B

(
IJ̃

)
=:

(
rβ

)
satisfies

rβ = ordβ
(
Iβ

)
+ max

(
ordβ(J

β ) − d+ 1, 0
)

[L1, p. 212, (1.15)], whence

rβ = max
(
ordβ

(
IJ )β

)
− d+ 1, 0

)
⇐⇒ either ordβ(I

β ) = 0

or [ordβ(I
β ) > 0 and ordβ(J

β ) ≥ d− 1].

�

For the proof of Theorem 3.3, we begin by proving Corollary 3.3.2.
Any β with Iβ 6= β is d-dimensional [L1, p. 214, (1.22)], so since α is regular, the

residue field of β is finite over that of α, see [GD4, (5.6.4)]. Hence, by [Hi, p. 217,
Lemma 8]:

(∗) if ordα(I) < d then ordβ(I
β ) < d for any infinitely near β.

With this in mind, recall from Remark 2.3 that, with f : X → Spec(α) as at the
beginning of this §3, and Kf =:

∑
i ciEi we have

Ĩ = H0
(
X, Iωf

)
= H0

(
X, OX

( ∑

i

(ci − ordβi
(I))Ei

))
,

and
ci =

∑

βj⊂βi

ordβi
(md−1

j ) ≥
∑

βj⊂βi

ordβj
(Iβj)ordβi

(mj) = ordβi
(I),

the last equality by [L1, p. 209–210, Lemma (1.11)]. The implication “⇐ ” in 3.3.2
results.

Furthermore, if, say, E1 corresponds to the valuation ring of ordα, then

ordα(Ĩ ) ≥ ordα(I) − c1 = ordα(I) − (d− 1).

In particular, if Ĩ = α then ordα(I ) ≤ d− 1, giving the implication “⇒” in 3.3.2.

Now Corollary 3.3.2 and (∗) show that Theorem 3.3 holds if ordα(I) < d. For
the rest, we need the following key fact.

Proposition 3.4. Let I and J be finitely supported α-ideals such that for each β

infinitely near to α, ordβ(J
β ) ≥ (d− 1)ordβ(I

β ). Then

ĨJ = IJ̃ .
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Proof. In the proof of Lemma 1.1, applied to the present situation, one has Ii = Iβi;
hence the condition “ordβ(J

β ) ≥ (d− 1)ordβ(I
β ) for each β” translates to

(3.4.1)
(
vi(J ) −

∑

{j |βj≺ βi}

vj(J )
)

≥ (d− 1)
(
vi(I) −

∑

{j |βj≺ βi}

vj(I)
)

(1 ≤ i ≤ r),

which implies that if f : X → Spec(α) is a composite of closed-point blowups such
that IOX and JOX are both invertible (such an f exists because IJ is finitely
supported) then, for 0 ≤ k ≤ d− 1, it holds that Ik(JOX)−1 = OX(Dk) with Dk a
full divisor on X.

Hence, by Corollary 2.4(i),

Hd−i
(
X, (IOX)−kJωf

)
= Hd−i

(
X,OX(Kf −Dk)

)
= 0 (0 ≤ i, k ≤ d− 1).

This being so, we see that the case J = In (n ≥ d−1) is treated in [L3, §2.3]; and
the proof for arbitrary J is essentially the same.5 �

Corollary 3.4.2. If J is a finitely supported α-ideal with ordα(J ) ≥ d− 1 then

m̃αJ = mαJ̃ .

Now we can prove Theorem 3.3 by induction on the least number of closed-point
blowups needed to principalize I. Set ordα(I) := a. Since we have already disposed
of the case a < d, it will clearly be enough to show that:

(1) If a ≥ d− 1, then ordα(Ĩ ) = a+ 1 − d; and

(2) if g : X1 → Spec(α) is the blow up of m := mα, and β is the local ring of a closed
point on X1, then

Ĩβ =
(
Ĩ

)β
.

Let h : X = Xr → X1 be as in Theorem 2.1. For any OX -module L, the natural
map is an isomorphism mh∗(L) −→∼ h∗(mL). (The assertion being local on X1, one
can assume that mOX1

∼= OX1
. . . ) Furthermore, from Remark 2.3 one deduces that

ωh = ωf(mOX)d−1. So with I1 := I(mOX1
)−a, it holds that

(mOX1
)a−d+1 Ĩ1 := (mOX1

)a−d+1h∗
(
I1ωh

)
= (mOX1

)a−d+1h∗
(
I1ωf (mOX)d−1

)

= (mOX1
)a−d+1h∗

(
Iωf (mOX)−a+d−1

)
= h∗(Iωf).

Using induction on s > 0, one deduces from Corollary 3.4.2 that

m
sĨ = m̃sI := H0

(
X,msIωf

)
= H0

(
X1, h∗(m

sIωf)
)

= H0
(
X1,m

sh∗(Iωf)
)
.

Since the invertible OX1
-module mOX1

is g-ample, and h∗(Iωf) is coherent, therefore
msh∗(Iωf) is generated by its global sections for all s≫ 0; that is, by the preceding,

m
sh∗(Iωf) = m

sĨOX1
,

whence
(mOX1

)a−d+1 Ĩ1 = h∗(Iωf) = ĨOX1
.

Since Ĩ1 6⊂ mOX1
, this implies (1) above; and then—as it is straightforward to

check for any z ∈ X1 that the stalk
(
Ĩ1

)
z is just (̃I1)z—localizing at β gives (2).

This completes the proof of Theorem 3.3. �

5Here, a principalization of I is given to begin with, so the fact—of which a special case is
used in loc. cit.—that the ˜ operation on α-ideals commutes with smooth base change follows
from commutativity with H0 and with formation of ω.
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4. Additional observations

Let J = (ξ1, . . . , ξd) (d := dimα) be a finitely supported (hence mα-primary)
α-ideal. Proposition 4.2(ii) shows that (as was mentioned in the Introduction)

JJ̃n−1 = J̃n for all n ≥ d, whereas for 1 ≤ s < d, JJ̃s−1 6= J̃s; and Proposi-

tion 4.2(i) shows, via Corollary 3.3.2, that for s > 0, JJs−1 = Js if and only if

s > d
(
1 − 1/ordα(J )

)
. In particular, JJd−1 = Jd.

Remark 4.1. Bernd Ulrich informed me of an example of Huneke and Huckaba
[HH, p. 88], in which α can be taken to be the localization at (x, y, z) of the polyno-

mial ring C[x, y, z] (so that d = 3), J =
(
x4, y(y3 + z3), z(y3 + z3)

)
, and JJ2 6= J3.

This J cannot, then, be finitely supported. In fact it has a curve of base points in
the blow up of mα. Moreover, analysis of the proof of Proposition 4.2(i) shows that
if f : X → Spec(α) is a principalization of J by a sequence of smoothly centered
blowups then H1(X, JOX) ⊃ J3/JJ2 6= 0. Thus, for instance, Corollary 3.1(ii)
does not hold for principalizations of arbitrary mα-primary ideals.

It is well-known that for any ideal I ⊃ J , the dual of α/I (i.e., Homα(α/I, E),
where E is an injective hull of α/mα) is (isomorphic to) (J : I)/J . Indeed, by local
duality the dual of α/I = H0

mα
(α/I ) is Extd(α/I, α), and, the sequence (ξ1, . . . , ξd)

being regular, there are standard isomorphisms

Extd(α/I, α) ∼= Homα(α/I, α/J ) ∼= (J : I)/J.

Proposition 4.2. For the preceding J, setting J t := α for all t ≤ 0, we have, for

all s ∈ Z,

(i) Js/JJs−1 is dual to α/(J̃d−s + J ); and

(ii) J̃s/JJ̃s−1 is dual to α/(Jd−s + J ).

Hence, since a finite-length module and its dual have the same annihilator,

(iii) JJs−1 : Js = J̃d−s + J ; and

(iv) JJ̃s−1 : J̃s = Jd−s + J .

A proof is given below.

Corollary 4.3. For any s ∈ Z, the following conditions are equivalent.

(i) JJ̃s−1 = J̃s ∩ J .

(ii) JJd−s−1 : Jd−s = J : Jd−s.

(iii) JJd−s−1 = Jd−s ∩ J .

(iv) JJ̃s−1 : J̃s = J : J̃s .

Proof. Since, clearly, JJ̃s−1 ⊂ J̃s ∩ J , therefore 4.2(ii) makes condition (i) hold if

and only if J̃s/(J̃s ∩ J ) is dual to α/(Jd−s + J ), i.e., isomorphic to (J : Jd−s )/J .
All these modules have finite length, so the natural isomorphism

J̃s/(J̃s ∩ J ) ∼= (J̃s + J )/J
4.2(iii)

= (JJd−s−1 : Jd−s)/J

shows that (i) ⇐⇒ (ii).
The proof of (iii) ⇐⇒ (iv) is analogous. (Replace s by d − s, and interchange

˜ and .)
The implications (i) =⇒ (iv) and (iii) =⇒ (ii) are obvious. �
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Corollary 4.4. The following hold.

(i) JJ̃d−2 = J̃d−1 ∩ J .

(ii) JJd−2 = Jd−1 ∩ J .

(iii) JJ̃d−3 = J̃d−2 ∩ J .

Proof. For s ≥ d− 1, condition 4.3(ii) obviously holds, whence so does 4.3(i).
Similarly, (ii) results from 4.3(iv) =⇒ 4.3(iii), with s = 1.
As pointed out by Bernd Ulrich, condition (iii) results similarly from the fact

that 4.3(iii) holds for s = d− 2, a special case of the main result in [It]. �

Proof of Proposition 4.2. Let f : X → Spec(α) be a composition of closed-point
blowups such that L := JOX is invertible. Then for all s ∈ Z, H0(X,Ls) = Js and

H0(X,Lsωf ) = J̃s.

Corollary 3.1(ii) and (ii)′, give, for all j ≥ 0,

Hi(X,Lj) = 0 (i 6= 0),

Hi(X,L−j) = 0 (0 < i < d− 1).

Arguing as in [LT, p. 112], one finds then that Js/JJs−1 is isomorphic to the kernel

of the map

Hd−1(X,Ls−d)
ξ1⊕···⊕ξ

d−−−−−→ Hd−1(X,Ls+1−d) ⊕ · · · ⊕ Hd−1(X,Ls+1−d)︸ ︷︷ ︸
d times

.

Hence Js/JJs−1 is dual to the cokernel of the dual map

H1
E(X,Ld−s−1ωf ) × · · · ×H1

E(X,Ld−s−1ωf )︸ ︷︷ ︸
d times

(ξ1,..., ξd)
−−−−−→ H1

E(X,Ld−sωf ).

Corollary 3.1(i) and (iv) give, for all j ∈ Z, H1
E(X,Ljωf )

∼= α/J̃ j . Accordingly,

one verifies that Js/JJs−1 is dual to the cokernel of the map

αd
(ξ

1
,..., ξ

d
)

−−−−−→ α/J̃d−s,

proving (i). The proof of (ii) is analogous, except that one begins by tensoring the
complex K(F, σ) in [LT, p. 112] with Lsωf instead of with Ls. �
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integral closures of ideals, Michigan Math. J. 28 (1981), 97–116.
[Tn] E. Tostón, Finitely supported monomial complete ideals, preprint, Prepublicaciones del

Departamento de Algebra, Universidad de Valladolid, no, 67, 1997.

Dept. of Mathematics, Purdue University, W. Lafayette IN 47907, USA

E-mail address : lipman@math.purdue.edu
URL: www.math.purdue.edu/~lipman/


