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Abstract. There appeared not long ago a Reduction Formula for de-
rived Hochschild cohomology, that has been useful e.g., in the study of
Gorenstein maps and of rigidity w.r.t. semidualizing complexes. The
formula involves the relative dualizing complex of a ring homomor-
phism, so brings out a connection between Hochschild homology and
Grothendieck duality. The proof, somewhat ad hoc, uses homotopical
considerations via a number of noncanonical projective and injective
resolutions of differential graded objects. Recent efforts aim at more
intrinsic approaches, hopefully upgradable to “higher” contexts—like
bimodules over algebras in ∞-categories. This would lead to wider
applicability, for example to ring spectra; and the methods might be
globalizable, revealing some homotopical generalizations of aspects of
Grothendieck duality. (The original formula has a geometric version,
proved by completely different methods coming from duality theory.) A
first step is to extend Hom-Tensor adjunction—adjoint associativity—to
the ∞-category setting.
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Introduction

There are substantial overlaps between algebra and homotopy theory,
making for mutual enrichment—better understanding of some topics, and
wider applicability of results from both areas. In this vein, works of Quillen,
Neeman, Avramov-Halperin, Schwede-Shipley, Dwyer-Iyengar-Greenlees, to
mention just a few, come to mind. See also [Gr]. In recent years, homotopy
theorists like May, Toën, Joyal, Lurie (again to mention just a few) have
been developing a huge theory of algebra in ∞-categories, dubbed by Lurie
“Higher Algebra”,1 familiarity with which could be of significant benefit to
(lower?) algebraists.

This little sales pitch will be illustrated here by one specific topic that
arose algebraically, but can likely be illuminated by homotopical ideas.

1. Motivation: Reduction of Hochschild (co)homology

Let R be a noetherian commutative ring, D(R) the derived category of the
category of R-modules, and similarly for S. Let σ : R→ S be an essentially-
finite-type flat homomorphism. Set Se := S ⊗R S. Let M,N ∈ D(S), with
M σ-perfect, i.e., the cohomology modules H i(M) are finitely generated
over S, and the natural image of M in D(R) is isomorphic to a bounded
complex of flat R-modules.

Theorem 1.1 (Reduction theorem, [AILN, Thms. 1 and 4.6]). There exists
a complex Dσ ∈ D(S) together with bifunctorial S-isomorphisms

RHomSe(S,M ⊗L
R N) −→∼ RHomS

(
RHomS(M,Dσ), N

)
,(1.1.1)

S ⊗L
Se RHomR(M,N) −→∼ RHomS(M,Dσ)⊗L

S N.(1.1.2)

Remarks 1. “Reduction” refers to the reduction, via (1.1.1) and (1.1.2), of
constructions over Se to constructions over S.

2. The homology S-modules of the sources of (1.1.1) and (1.1.2) are
the Hochschild cohomology modules of σ, with coefficients in M ⊗L

R N , and
the Hochschild homology modules of σ, with coefficients in RHomR(M,N),
respectively.

3. (Applications.) The isomorphism (1.1.1) is used to formulate a notion
of rigidity with respect to a fixed semidualizing complex [AIL, §3], leading to
a broad generalization of the work of Yekutieli and Zhang summarized in [Y].

The special case M = N = S of (1.1.1) plays a crucial role in the proofs
of [AI, Theorems 3 and 4].

The special case M = N = S of (1.1.2) is used in a particularly simple
expression for the fundamental class of σ, see [ILN, Thm. 4.2.4].

4. The complex Dσ is determined up to isomorphism by either (1.1.1)
—which implies that Dσ corepresents the endofunctor RHomSe(S, S ⊗R −)

1Not to be confused with the contents of [HK].
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of D(S)—or, more directly, by (1.1.2)—which yields an isomorphism

S ⊗L
Se RHomR(S, S) −→∼ Dσ.

In fact, if g is the map Spec(σ) from V := Spec(S) to W := Spec(R), then

Dσ ∼= g!OW ,
i.e., Dσ is a relative dualizing complex for σ [AILN, Remark 6.2].

Thus we have a relation (one of several) between Hochschild homology
and Grothendieck duality.

5. For example, if Spec(S) is connected and σ is formally smooth, so that,
with I the kernel of the multiplication map Se → S, the relative differential
module Ωσ := I/I2 is locally free of constant rank, say d, then

Dσ ∼= Ωd
σ[d] :=

(
∧d I/I2

)
[d] ∼= TorS

e

d (S, S)[d].

Using local resolutions of S by Koszul complexes of Se-regular sequences
that generate I, one finds a chain of natural D(S)-isomorphisms

RHomSe(S, Se) −→∼
(
HdRHomSe(S, Se)

)
[−d]

−→∼
(
HdRHomSe(S, Se)

)
[−d]⊗Se S

−→∼
(
Hd
(
RHomSe(S, Se)⊗L

Se S
))

[−d]

−→∼
(
Hd
(
RHomS(S ⊗L

Se S, S)
))

[−d]

−→∼ HomS

(
TorS

e

d (S, S)[d], S
)

−→∼ HomS(Dσ, S)

−→∼ RHomS(Dσ, S).

The composition φ of this chain is (1.1.1) with M = N = S. (It is essentially
the same as the isomorphism HdRHomSe(S, Se) −→∼ HomS(∧dI/I 2, S) given
by the “fundamental local isomorphism” of [H, Chap. III, §7].)

As σ is formally smooth, σ-perfection of M is equivalent to M being a
perfect Se-complex; and S too is a perfect Se-complex. It is then straight-
forward to obtain (1.1.1) by applying to φ the functor

−⊗L
Se (M ⊗L

R N) = −⊗L
S S ⊗L

Se (M ⊗L
R N) ∼= −⊗L

S (M ⊗L
S N).

(Note that M and N may be assumed to be K-flat over S, hence over R.)

To prove (1.1.1) for arbitrary σ one uses a factorization

σ = (surjection)◦ (formally smooth)

to reduce to the preceding formally smooth case. For this reduction (which
is the main difficulty in the proof), as well as a scheme-theoretic version of
Theorem 1.1, see [AILN] and [ILN, Theorem 4.1.8].
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2. Enter homotopy

So far no homotopical ideas have appeared. But they become necessary,
via (graded-commutative) differential graded algebras (dgas), when the flat-
ness assumption on σ is dropped. Then for Theorem 1.1 to hold, one must
first define Se to be a derived tensor product:

Se := S ⊗L
R S := S ⊗R S,

where S → S is a homomorphism of dg R-algebras that induces homology
isomorphisms, with S flat over R. Such “flat dg algebra resolutions” of the
R-algebra S exist; and any two are “dominated” by a third. (This is well-
known; for more details, see [AILN, §2, §3].) Thus Se is not an R-algebra,
but rather a class of quasi-isomorphic dg R-algebras.

By using suitable “semiprojective” dg S-resolutions of the complexes M
and N , one can make sense of the statements

M ⊗L
R N ∈ D(Se), RHomR(M,N) ∈ D(Se);

and then, following Quillen, Mac Lane and Shukla, define complexes

RHomSe(S,M ⊗L
R N), S ⊗L

Se RHomR(M,N)

whose homology modules are the derived Hochschild cohomology resp. the
derived Hochschild homology modules of σ, with coefficients in M ⊗L

R N
and RHomR(M,N), respectively. These complexes depend on a number of
choices of resolution, so they are defined only up to a coherent family of
isomorphisms, indexed by the choices. This is analogous to what happens
when one works with derived categories of modules over a ring.

In [AILN], the reduction of Theorem 1.1 to the formally smooth case is
done by the manipulation of a number of noncanonical dg resolutions, both
semiprojective and semiinjective. Such an argument tends to obscure the
conceptual structure. Furthermore, in section 6 of that paper a geometric
version of Theorem 1.1 is proved by completely different methods associated
with Grothendieck duality theory—but only for flat maps. A globalized
theory of derived Hochschild (co)homology for analytic spaces or noetherian
schemes of characteristic zero is given, e.g., in [BF]; but there is as yet no
extension of Theorem 1.1 to nonflat maps of such spaces or schemes.

The theory of algebra in∞-categories, and its globalization “derived alge-
bra geometry,” encompass all of the above situations,2 and numerous others,
for instance “structured spectra” from homotopy theory. The (unrealized)
underlying goal toward which this lecture is a first step is to prove a version of
Theorem 1.1—without flatness hypotheses—that is meaningful in this gen-
eral context. The hope is that such a proof could unify the local and global
versions in [AILN], leading to better understanding and wider applicability;
and perhaps most importantly, to new insights into, and generalizations of,
Grothendieck duality.

2to some extent, at least: see e.g., [Sh2]. But see also 10.3 and 12.3 below.
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3. Adjoint Associativity

To begin with, such an upgraded version of Theorem 1.1 must involve
some generalization of ⊗ and Hom; and any proof will most probably involve
the basic relation between these functors, namely adjoint associativity.

For any two rings (not necessarily commutative) R, S, let R#S be the
abelian category of R-S bimodules (R acting on the left and S on the right).

The classical version of adjoint associativity (cf. [M, VI, (8.7)]) asserts
that for rings A, B, C, D, and x ∈ A#B, y ∈ B#C, z ∈ D#C, there
exists in D#A a functorial isomorphism

(3.1) a(x, y, z) : HomC(x⊗B y, z) −→∼ HomB(x,HomC(y, z))

such that for any fixed x and y, the corresponding isomorphism between the
left adjoints of the target and source of a is the associativity isomorphism

−⊗A (x⊗B y) ←−∼ (−⊗A x)⊗B y.
As hinted at above, to get an analogous statement for derived categories,

where one needs flat resolutions to define (derived) tensor products, one has
to work in the dg world; and that suggests going all the way to∞-categories.

The remainder of this article will be an attempt to throw some light on
how (3.1) can be formulated and proved in the∞-context. There will be no
possibility of getting into details, for which however liberal references will be
given to the massive works [Lu1] and [Lu2] (downloadable from Lurie’s home
page www.math.harvard.edu/~lurie/), for those who might be prompted
to explore the subject matter more thoroughly.3

4. ∞-categories

It’s time to say what an ∞-category is.
An ordinary small category C is, to begin with, a diagram

A1 A0s0

d1

d0

where A1 is the set of arrows in C, A0 is the set of objects, s0 takes an
object to its identity map, and d0 (resp. d1) takes an arrow to its target

3The page numbers in the references to [Lu2] refer to the preprint dated August, 2012.
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(resp. source). We can extend this picture by introducing sequences of com-
posable arrows:

•

• • • •

•

•

The first picture represents a sequence of two composable arrows, whose
composition is represented by the dashed arrow; and the second picture
represents a sequence of three composable arrows, with dotted arrows rep-
resenting compositions of two or three of these. The pictures suggest calling
a sequence of n composable arrows an n-simplex. (A 0-simplex is simply an
object in C.) The set of n-simplices is denoted An.

There are four face maps di : A3 → A2 (0 ≤ i ≤ 3), taking a sequence
γ ◦β ◦α to the respective sequences γ ◦β, γ ◦ (βα), (γβ)◦α and β ◦α. There
are three degeneracy maps sj : A2 → A3 (0 ≤ j ≤ 2) taking a sequence
β ◦α to the respective “degenerate” (that is, containing an identity map)
sequences β ◦α◦ id, β ◦ id◦α and id ◦β ◦α.

Likewise, for any n > 0 there are face maps di : An → An−1 (0 ≤ i ≤ n)
and degeneracy maps sj : An−1 → An (0 ≤ j < n); and these maps satisfy
the standard identities that define a simplicial set (see e.g., [GJ, p. 4, (1.3)]).

The simplicial set N(C) just defined is called the nerve of C.

Example. For any n ≥ 0, the totally ordered set of integers

0 < 1 < 2 < · · · < n− 1 < n

can be viewed as a category (as can any ordered set). The nerve of this
category is the standard n-simplex, denoted ∆n. Its m-simplices identify
with the nondecreasing maps from the integer interval [0,m] to [0, n]. In
particular, there is a unique nondegenerate n-simplex ιn, namely the identity
map of [1, n].

The collection of all the nondegenerate simplices of ∆n, and their face
maps, can be visualized by means of the usual picture of a geometric n-
simplex and its subsimplices. (For n = 2 or 3, see the above pictures, with
all dashed arrows made solid.)

The horn Λni ⊂ ∆n is the simplicial subset whose m-simplices (m ≥ 0)
are the nondecreasing maps s : [0,m]→ [0, n] with image not containing the
set
(
[0, n] \ {i}

)
. For example, there are n nondegenerate (n− 1)-simplices

namely djιn (0 ≤ j ≤ n, j 6= i).

Visually, the nondegenerate simplices of Λni ⊂ ∆n are those subsimplices
of a geometric n-simplex other than the n-simplex itself and its i-th face.
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Small categories are the objects of a category Cat whose morphisms are
functors; and simplicial sets form a category Set∆ whose morphisms are
simplicial maps, that is, maps taking m-simplices to m-simplices (for all
m ≥ 0) and commuting with all the face and degeneracy maps. The above
map C 7→ N(C) extends in an obvious way to a nerve functor Cat→ Set∆ .

Proposition 4.1. ([Lu1, p. 9, 1.1.2.2].) The nerve functor Cat→ Set∆ is a
fully faithful embedding. Its essential image is the full subcategory of Set∆

spanned by the simplicial sets K with the following property :
(∗) For all n > 0 and 0 < i < n, every simplicial map Λni → K extends

uniquely to a simplicial map ∆n → K.

Remarks. By associating to each simplicial map ∆n → K the image of the
nondegenerate n-simplex ιn, one gets a bijective correspondence between
such maps and n-simplices of K. (See, e.g., [GJ, p. 6].)

By associating to each simplicial map Λni → K the image of the sequence
(djιn)0≤j≤n, j 6=i, one gets a bijective correspondence between such maps and

sequences (yj)0≤j≤n, j 6=i of (n − 1)-simplices of K such that djyk = dk−1yj
if j < k and j, k 6= i. (See [GJ, p. 10, Corollary 3.2].)

Thus (∗) means that for all n > 0 and 0 < i < n, if λ is the map from
the set of n-simplices of K to the set of such sequences (yj) that takes an
n-simplex y to the sequence (djy)0≤j≤n, j 6=i , then λ is bijective.

Definition 4.2. An∞-category is a simplicial set K such that for all n > 0
and 0 < i < n, every simplicial map Λni → K extends to a simplicial map
∆n → K. Equivalently, it is a K for which the preceding map λ is surjective.

A functor from one ∞-category to another is a map of simplicial sets.

Thus∞-categories and their functors form a full subcategory of Set∆, one
that itself has a full subcategory canonically isomorphic to Cat.

Example 4.2.1. To any dg category C (one whose arrows between two
fixed objects are complexes of abelian groups, composition being bilinear)
one can assign the dg-nerve Ndg(C), an ∞-category whose construction is
more complicated than that of the nerve N(C) because the dg structure has
to be taken into account. (For details, see [Lu2, §1.3.1].)

For instance, the complexes in an abelian category A can be made into a
dg category Cdg(A) by defining Hom(E,F ) for any complexes E and F to
be the complex of abelian groups that is Hom

(
E,F [n]

)
in degree n, with the

usual differential. When A is a Grothendieck abelian category, we will see
below (Example 5.3) how one extracts from the ∞-category Ndg(Cdg(A))
the usual derived category D(A).

Example 4.2.2. To any topological category C—that is, one where the
Hom sets are topological spaces and composition is continuous—one can
assign a topological nerve Ntop(C), again more complicated than the usual
nerve N(C) [Lu1, p. 22, 1.1.5.5].



8 J. LIPMAN

CW-complexes are the objects of a topological category CW. The topo-
logical nerve S := Ntop(CW) is an∞-category, the∞-category of spaces. (See
[Lu1, p. 24, 1.1.5.12; p. 52, 1.2.16.3].) Its role in the theory of ∞-categories
is analogous to the role of the category of sets in ordinary category theory.

Example 4.2.3. Kan complexes are simplicial sets such that the defining
condition of ∞-categories holds for all i ∈ [0, n]. Examples are the singular
complex of a topological space (a simplicial set that encodes the homotopy
theory of the space), the nerve of a groupoid (= category in which all maps
are isomorphisms), and simplicial abelian groups. (See [GJ, §I.3].)

Kan complexes span a full subcategory of the category of ∞-categories,
the inclusion having a right adjoint [Lu1, p. 36, 1.2.5.3]. The simplicial
nerve of this subcategory [Lu1, p. 22, 1.1.5.5] provides another model for
the ∞-category of spaces [Lu1, p. 51, 1.2.16].

Most of the basic notions from category theory can be extended to ∞-
categories. Several examples will be given as we proceed. A first attempt at
such an extension would be to express a property of categories in terms of
their nerves, and then to see if this formulation makes sense for arbitrary∞-
categories. (This will not always be done explicitly; but as ∞-category no-
tions are introduced, the reader might check that when restricted to nerves,
these notions reduce to the corresponding classical ones.)

Example 4.2.4. An object in an ∞-category is a 0-simplex. A map f in
an ∞-category is a 1-simplex. The source (resp. target) of f is the object
d1f (resp. d0f). The identity map idx of an object x is the map s0x, whose
source and target are both x.

Some history and motivation related to∞-categories can be gleaned, e.g.,
starting from <http://ncatlab.org/nlab/show/quasi-category>.

The notion of∞-category as a generalization of that of category grew out
of the study of operations in the homotopy category of topological spaces,
for instance the composition of paths. Indeed, as will emerge, the basic
effect of removing unicity from condition (∗) above to get to ∞-categories
(Definition 4.2) is to replace equality of maps in categories with a homotopy
relation, with all that entails.

Topics of foundational importance in homotopy theory, such as model
categories, or spectra and their products, are closely related to, or can be
treated via,∞-categories [Lu1, p. 803], [Lu2, §1.4, §6.3.2]. Our concern here
will mainly be with relations to algebra.

5. The homotopy category of an ∞-category.

5.1. The nerve functor of Proposition 4.1 has a left adjoint h : Set∆ → Cat,
the homotopy functor, see [Lu1, p. 28, 1.2.3.1].

If the simplicial set C is an ∞-category, the homotopy category hC can
be constructed as follows. For maps f and g in C, write f ∼ g (and say
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that “f is homotopic to g”) if there is a 2-simplex σ in C such that d2σ = f ,
d1σ = g and d0σ = idd0g = idd0f :

•

• •
f

g id
σ

(This can be intuited as the skeleton of a deformation of f to g through
a “continuous family” of maps with fixed source and target.) Using the
defining property of ∞-categories, one shows that this homotopy relation
is an equivalence relation. Denoting the class of f by f̄ , one defines the
composition f̄2 ◦f̄1 to be h̄ for any h such that there exists a 2-simplex

•

• •
f1

h f2

One shows that this composition operation is well-defined, and associative.
There results a category whose objects are those of C, and whose maps
are the homotopy equivalence classes of maps in C, with composition as just
described. (For details, see [Lu1, §1.2.3].) This is the homotopy category hC.

Example 5.2. Let S be the ∞-category of spaces (Example 4.2.2). Its
homotopy category H := hS is called the homotopy category of spaces. The
objects of H are CW-complexes, and the maps are homotopy-equivalence
classes of continuous maps. (See [Lu1, p. 16].)

Example 5.3 (extending Example 4.2.1). In the category of complexes in a
Grothendieck abelian category A, the (injectively) fibrant objects are those

complexes I such that for any A-diagram of complexes X s←− Y f−→ I with
s both a (degreewise) monomorphism and a quasi-isomorphism, there exists
g : X → I such that gs = f . (See [Lu2, p. 93, 1.3.5.3].)

The K-injective (aka q-injective) objects are those I such that for any

diagram of complexes X s←− Y f−→ I with s a quasi-isomorphism, there exists
g : X → I such that gs is homotopic to f .

(Recall that, following Spaltenstein, right-derived functors are defined via
K-injective resolutions.)

Lemma 5.3.1. An A-complex I is K-injective if and only if I is homotopy-
equivalent to a fibrant complex.

Proof. Fix a fibrant Q. By [Lu2, p. 97, 1.3.5.11], if the complex M is exact
then so is the complex Hom•(M,Q); and so by [L, 2.3.8(iv) and (2.3.8.1)],
Q is q-injective, whence so is any complex homotopy-equivalent to Q.
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If I is q-injective, then factoring I → 0 as fibration◦ (trivial cofibration)
([Lu2, p. 93, 1.3.5.3]) one gets a monomorphic quasi-isomorphism j : I ↪→ Q
with Q fibrant, hence q-injective; so j is a homotopy equivalence [L, 2.3.2.2].

�

Remarks. 1. If the complex Q is bounded below and injective in each degree,
then Q is fibrant, hence q-injective, see [Lu2, p. 96, 1.3.5.6].

2. Any split short exact sequence, extended infinitely both ways by zeros,
is a complex homotopically equivalent to the fibrant complex 0, but not
necessarily itself fibrant, since fibrant complexes are termwise injective, see
again [Lu2, p. 96, 1.3.5.6].

5.3.2. For any additive category A, two maps in the dg-nerve Ndg(Ch(A))
are homotopic iff they are so as chain maps, see [Lu2, p. 64, 1.3.1.8]. Thus
the homotopy category hNdg(Ch(A)) is just the category with objects the
A-complexes and arrows the homotopy-equivalence classes of chain maps.

Similarly, when A is a Grothendieck abelian category and Ch(A)0 is the
full subcategory of Ch(A)) spanned by the fibrant complexes, the homotopy-
category of the derived∞-category D(A) := Ndg(Ch(A)0) [Lu2, p. 96,1.3.5.8]

is the quotient of Ch(A)0 by the homotopy relation on chain maps, and thus
is equivalent to the similar category whose objects are the fibrant compexes,
which by 5.3.1 is equivalent to the usual derived category D(A).

In summary : hD(A) is equivalent to D(A).

(A more general result for any dg category is in [Lu2, p. 64, 1.3.1.11].)

5.4. The homotopy category of a stable ∞-category is triangulated. (See In-
troduction to [Lu2, §1.1].) For instance, the ∞-category D(A) (just above)
is stable [Lu2, p. 96, 1.3.5.9]. So is the∞-category of spectra—whose homo-
topy category underlies stable homotopy theory [Lu2, p. 16, 1.1.1.11].

Example 5.5. A localization D → DV of an ordinary category D w.r.t
a set V of maps in D is an initial object in the category of functors with
source D that take the maps in V to isomorphisms.

A localization C→ C[W−1] of an∞-category C w.r.t a set W of maps (i.e.,
1-simplices) in C is similarly universal up to homotopy for those ∞-functors
out of C that take the maps in W to equivalences. (For more precision, see
[Lu2, p. 83, 1.3.4.1].) Such a localization exists, and is determined uniquely
up to equivalence by C and W [Lu2, p. 83, 1.3.4.2].

For functors of the form C → N(D) with D an ordinary category, the
words “up to homotopy” in the preceding paragraph can be omitted. (This
follows from the precise definition of localization, because in∞-categories of
the form Fun(C,N(D))—see §8.2—the only equivalences are identity maps.)

So composition with the localization map (see (12.4.1)) gives a natural
bijection from the set of ∞-functors C[W−1]→ N(D) to the set of those ∞-
functors C → N(D) that take the maps in W to equivalences, that is, from
the set of functors h(C[W−1]) → D to the set of those functors hC → D
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that take the maps in the image W̄ of W to isomorphisms. Hence there is
a natural isomorphism

(5.5.1) h
(
C[W−1]

)
−→∼

(
hC
)
W̄

giving commutativity of the homotopy functor with localization.

For instance, to every model category A one can associate naturally an
“underlying∞-category” A∞. Under mild assumptions, A∞ can be taken to
be the localization (N(A))[W−1], with W the set of weak equivalences in A.
Without these assumptions, one can just replace A by its full subcategory
spanned by the cofibrant objects, see [Lu2, p. 89, 1.3.4.16].

Equation (5.5.1), with C = N(A), shows that the homotopy category hA∞
is canonically isomorphic to AW̄ , the classical homotopy category of A [GJ,
p. 75, Theorem 1.11].

Example 5.3, with A the category of right modules over a fixed ring R,
is essentially the case where A is the category of complexes in A, with
“injective” model structure as in [Lu1, p. 93, 1.3.5.3]. Indeed, A∞ can be
identified with D(A) [Lu2, p. 98, 1.3.5.15], and the classical homotopy cate-
gory of A, obtained by inverting weak equivalences ( = quasi-isomorphisms),
with D(A).

Example 5.6. Let D be a dg category. For any two objects x, y ∈ D replace
the mapping complex MapD(x, y) by the simplicial abelian group associated
by the Dold-Kan correspondence to the truncated complex τ≤ 0 MapD(x, y),
to produce a simplicial category D∆ . (See [Lu2, p. 65, 1.3.1.13], except that
indexing here is cohomological rather than homological.)

For example, with notation as in 5.3, D(A) is also the homotopy category
of the simplicial nerve of the simplicial category thus associated to Ch(A)0

[Lu2, p. 66, 1.3.1.17].
For the category A of abelian groups, and D := Ch(A)0, [Lu2, p. 47,

Remark 1.2.3.14] (in light of [Lu2, p. 46, 1.2.3.13]) points to an agreeable
interpretation of the homotopy groups of the Kan complex MapD∆

(x, y) with

base point 0 (or of its geometric realization, see [GJ, bottom, p. 60]):

πn(MapD∆
(x, y)) ∼= H−nMapD(x, y) =: Ext−n(x, y) (n ≥ 0).

(See also [Lu2, p. 32, 1.2.1.13] and [Lu2, p. 29, §1.2, 2nd paragraph].)

6. Mapping spaces; equivalences

6.1. An important feature of ∞-categories is that any two objects deter-
mine not just the set of maps from one to the other, but also a topological
mapping space. In fact, with H as in 5.2, the homotopy category hC of an
∞-category C can be upgraded to an H-enriched category, as follows:

For any objects x and y in C, one considers not only maps with source x
and target y, but all “arcs” of n-simplexes (n ≥ 0) that go from the trivial

n-simplex ∆n → ∆0 x−→ C to the trivial n-simplex ∆n → ∆0 y−→ C—more
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precisely, maps θ : ∆1 ×∆n → C such that the compositions

∆n = ∆0 ×∆n j×id−−−→ ∆1 ×∆n θ−−→ C (j = 0, 1)

are the unique n-simplices in the constant simplicial sets {x} and {y} re-
spectively. Such θ are the n-simplices of a Kan subcomplex Mx,y of the
“function complex” Hom(∆1,C) [GJ, §I.5]. The mapping space MapC(x, y)
is the geometric realization of Mx,y. It is a CW-complex [GJ, §I.2]. For
objects x, y, z ∈ C, there is in H a composition map

MapC(y, z)×MapC(x, y) −→ MapC(x, z),

that, unfortunately, is not readily describable (see [Lu1, pp. 27–28, 1.2.2.4,
1.2.2.5]); and this composition satisfies associativity.

The unenriched homotopy category is the underlying ordinary category,
obtained by replacing each MapC(x, y) by the set π0 MapC(x, y) of its con-
nected components.

Example 6.2. When C = N(C) for an ordinary category C, the preceding
discussion is pointless: the spaces MapC(x, y) are isomorphic in H to discrete
topological spaces (see, e.g., [Lu1, p. 22, 1.1.5.8; p. 25, 1.1.5.13]), so that the
H-enhancement of hN(C) is trivial; and one checks that the counit map is
an isomorphism of ordinary categories hN(C) −→∼ C.

More generally—and much deeper, for any topological category D and
any simplicial category C that is fibrant—that is, all its mapping complexes
are Kan complexes, one has natural H-enriched isomorphisms

hNtop(D) −→∼ hD resp. hN∆(C) −→∼ hC

where Ntop(D) is the topological nerve of D (an ∞-category [Lu1, p. 24,
1.1.5.12]) and N∆(C) is the simplicial nerve of C (an∞-category [Lu1, p. 23,
1.1.5.10]), where the topological homotopy category hD is obtained from D

by replacing each topological space MapD(x, y) by a weakly homotopically
equivalent CW complex considered as an object of H [Lu1, p. 16, 1.1.3.4],
and the simplicial homotopy category hC is obtained from C by replacing
each simplicial set MapC(x, y) by its geometric realization considered as
an object of H (see [Lu1, p. 19]). Using the description of the homotopy
category of a simplicial set given in [Lu1, p. 25, 1.1.5.14], one finds that the
first isomorphism is essentially [Lu1, p. 25, 1.1.5.13]; and likewise, the second
is essentially [Lu1, p. 72, 2.2.0.1].

6.3. A functor F : C1 → C2 between two ∞-categories induces a functor
hF : hC1 → hC2 of H-enriched categories: the functor hF has the same
effect on objects as F does, and there is a natural family of H-maps

hFx,y : MapC1
(x, y)→ MapC2

(Fx, Fy) (x, y objects in C1)

that respects composition (for whose existence see [Lu1, p. 25, 1.1.5.14 and
p. 27, 1.2.2.4].)

The functor F is called a categorical equivalence if for all x and y, hFx,y is
a homotopy equivalence ( = isomorphism in H), and for every object z ∈ C2,
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there exists an object x ∈ C1 and a map f : z → Fx whose image in hC2 is
an isomorphism.

Example 6.4. For any ∞-category C, the unit map C → N(hC) induces
an isomorphism of ordinary homotopy categories (because N and h are
adjoint, so that hNh = h); but it is a categorical equivalence only when the
mapping spaces of C are isomorphic in H to discrete topological spaces, i.e.,
their connected components are all contractible (because this holds for the
mapping spaces of N(hC)).

The “interesting” properties of∞-categories are those which are invariant
under categorical equivalence. In other words, the H-enriched homotopy
category is the fundamental invariant of an ∞-category C; the role of C

itself is to generate information about this invariant.
For this purpose, C can be replaced by any equivalent∞-category, i.e., an

∞-category that can be joined to C by a chain of equivalences (or even by
equivalent topological or simplicial categories, as explained in [Lu1, §1.1],
and illustrated by Example 6.2 above). Analogously, one can think of a
single homology theory in topology or algebra being constructed in various
different ways.

Along these lines, a map in C is called an equivalence if the induced map
in hC is an isomorphism; and the interesting properties of objects in C are
those which are invariant under equivalence.

Example 6.5. An ∞-category C is a Kan complex (§4.2.3) if and only if
every map in C is an equivalence, i.e., hC is a groupoid [Lu1, § 1.2.5]. For
a Kan complex C, hC is the fundamental groupoid of C (or of its geometric
realization), see [Lu1, p. 3, 1.1.1.4].

7. Colimits

To motivate the definition of colimits in∞-categories, recall that a colimit
of a functor p̃ : K → C of ordinary categories is an initial object in the
category Cp̃/ whose objects are the extensions of p̃ to the right cone K.—
that is, the disjoint union of K and the trivial category ∗ (the category with
just one map) together with one arrow from each object of K to the unique
object of ∗—and whose maps are the obvious ones.

Let us now reformulate this remark in the language of ∞-categories. (A
fuller discussion appears in [Lu1, §§ 1.2.8, 1.2.12 and 1.2.13].)

First, an initial object in an ∞-category C is an object x ∈ C such that
for every object y ∈ C, the mapping space MapC(x, y) is contractible. It
is equivalent to say that x is an initial object in the H-enriched homotopy
category hC. Thus any two initial objects in C are equivalent. (In fact, if
nonempty, the set of initial objects in C spans a contractible Kan subcomplex
of C [Lu1, p. 46, 1.2.12.9].)

Next, calculation of the nerve of the above right cone K. suggests the
following definition. For any simplicial set K, the right cone K. is the
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simpicial set whose set of n-simplices K.
n is the disjoint union of all the sets

Km (m ≤ n) and ∆0
n (the latter having a single member ∗n), with the face

maps dj—when n > 0—(resp. degeneracy maps sj) restricting on Km to the
usual face (resp. degeneracy) maps for 0 ≤ j ≤ m (except that d0 maps all
of K0 to ∗n−1), and to identity maps for m < j ≤ n, and taking ∗n to ∗n−1

(resp. ∗n+1). It may help here to observe that for n > 0, the nondegenerate
n-simplices in K. are just the nondegenerate n-simplices in Kn together
with the nondegenerate (n − 1) simplices in Kn−1, the latter visualized as
being joined to the “vertex” ∗n .

This is a special case of the construction (which we’ll not need) of the
join of two simplicial sets [Lu1, §1.2.8]. The join of two ∞-categories is an
∞-category [Lu1, p. 41, 1.2.8.3]; thus if K is an ∞-category then so is K..

Define K.n inductively by K.1 := K. and (for n > 1) K.n := (K.n−1
)..

There is an obvious embedding of K into K., and hence into K.n. For
a map p : K → C of ∞-categories, the corresponding undercategory Cp/ is a
simplicial set whose (n−1)-simplices (n > 0) are the extensions of p to maps
K.n → C, see [Lu1, p. 43, 1.2.9.5]. This undercategory is an ∞-category
[Lu1, p. 61, 2.1.2.2].

Definition 7.1. A colimit of a map p : K → C of ∞-categories is an initial
object in the ∞-category Cp/.

Being an object (= 0-simplex) in Cp/ , any colimit of p is an extension of p
to a map p̄ : K. → C. Often one refers loosely to the image under p̄ of the
vertex ∗0 ∈ K. as the colimit of p.

Some instances of colimits are the ∞-categorical versions of coproducts
(where K is the nerve of a category whose only maps are identity maps),
pushouts (where K is the horn Λ2

0), and coequalizers (where K is the nerve
of a category with exactly two objects x1 and x2, and such that Map(xi, xj)
has cardinality j − i+ 1), see [Lu1, §4.4].

Example 7.2. Suppose C is the nerve N(C) of an ordinary category C.
A functor p : K → C corresponds under the adjunction h a N to a functor
p̃ : hK → C. There is a natural isomorphism of ordinary categories

h(K.) ∼= (hK).,

whence an extension of p to K. corresponds under ha N to an extension of p̃
to (hK).. More generally, one checks that there is a natural isomorphism

Cp/ = N(C)p/ ∼= N(Cp̃/).

Any colimit of p is an initial object in hCp/ ∼= hN(Cp̃/) ∼= Cp̃/ ; that is, the
homotopy functor takes a colimit of p to a colimit of p̃.

For more general C, and most p, the homotopy functor does not preserve
colimits. For example, in any stable ∞-category, like the derived∞-category
of a Grothendieck abelian category [Lu2, p. 96, 1.3.5.9], the pushout of 0
with itself over an object X is the suspension X[1] (see [Lu2, p. 19, bottom
paragraph]), but the pushout in the homotopy category is 0.
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8. Adjoint Functors

For a pair of functors (= simplicial maps) C
f−→ D

g−→ C of ∞-categories
one says that f is a left adjoint of g, or that g is a right adjoint of f, if
there exists a homotopy u from the identity functor idC to gf (that is, a
simplicial map u : C×∆1 → C whose compositions with the maps

C = C×∆0 {i}−−→ C×∆1 (i = 0, 1)

corresponding to the 0-simplices {0} and {1} of ∆1 are idC and gf , respec-
tively) such that, for all objects C ∈ C and D ∈ D, the natural composition

MapD(f(C), D)→ MapC

(
gf(C), g(D)

) u(C)−−−→ MapC(C, g(D))

is an isomorphism in H.

(For an extensive discussion of adjunction, see [Lu1, §5.2]. The foregoing
definition comes from [Lu1, p. 340, 5.2.2.8].)

Such adjoint functors f and g induce adjoint functors hC
hf−−→ hD

hg−→ hC
between the respective H-enriched homotopy categories.

As a partial converse, it holds that if the functor hf induced by a func-
tor f : C → D between ∞-categories has an H-enriched right adjoint, then
f itself has a right adjoint [Lu1, p. 342, 5.2.2.12].

The following Adjoint Functor Theorem gives a powerful criterion (to be
used subsequently) for f : C → D to have a right adjoint. It requires a
restriction—accessibility—on the sizes of the ∞-categories C and D. This
means roughly that C is generated under filtered colimits by a small ∞-
subcategory, and similarly for D, see [Lu1, Chap. 5]. (If necessary, see also
[Lu1, p. 51] for the explication of “small” in the context of Grothendieck
universes.) Also, C and D need to admit colimits of all maps they receive
from small simplicial sets K. The conjunction of these properties is called
presentability [Lu1, §5.5].

For example, the ∞-category S of spaces (see 4.2.2) is presentable [Lu1,
p. 460, 5.5.1.8]. It follows that the ∞-category of spectra Sp := Sp(S∗)
(see [Lu2, p. 116, 1.4.2.5] and [Lu2, p. 122, 1.4.3.1]) is presentable. Indeed,
presentability is an equivalence-invariant property of ∞-categories, see e.g.,
[Lu1, p. 457, 5.5.1.1(4)], hence by the presentability of S and by [Lu1, p. 719;
7.2.2.8], [Lu1, p. 242; 4.2.1.5] and [Lu1, p. 468, 5.5.3.11], S∗ is presentable,
whence, by [Lu2, p. 127, 1.4.4.4], so is Sp.

Theorem 8.1. ([Lu1, p. 465, 5.5.2.9].) A functor f : C → D between pre-
sentable ∞-categories has a right adjoint iff it preserves small colimits.

8.2. Let C and D be∞-categories. The simplicial set Hom(C,D) [GJ, §I.5]
is an ∞-category, denoted Fun(C,D) [Lu1, p. 39, 1.2.7.3]. Its 0-simplices
are functors (= simplicial maps). Its 1-simplices are homotopies between
functors, i.e., simplicial maps φ : C×∆1 to D such that the following functor
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is f when i = 0 and g when i = 1:

C = C×∆0 id×i−−−→ C×∆1 φ−→ D.

Let FunL(C,D) (resp. FunR(C,D)) be the full ∞-subcategories spanned
by the functors which are left (resp. right) adjoints, that is, the∞-categories
whose simplices are all those in Fun(C,D) whose vertices are such functors.

The opposite Eop of an ∞-category E [Lu1, §1.2.1] is the simplicial set
having the same set En of n-simplices as E for all n ≥ 0, but with face and
degeneracy operators

(di : E
op
n → E

op
n−1) := (dn−i : En → En−1),

(si : E
op
n → E

op
n+1) := (sn−i : En → En+1).

It is immediate that Eop is also an ∞-category.

The next result, when restricted to ordinary categories, underlies the
notion of conjugate functors (see, e.g., [L, 3.3.5–3.3.7].) It plays a role in
Theorem 12.1 below.

Proposition 8.3. There is a canonical (up to homotopy) equivalence

(8.3.1) ϕ : FunR(C,D) ≈−→ FunL(D,C)op.

that takes any object g : C→ D in FunR(C,D) to a left-adjoint functor g′.

9. Algebra objects in monoidal ∞-categories

A monoidal category M is a category together with a monoidal structure,
i.e., a product functor ⊗ : M×M→M that is associative up to isomorphism,
plus a unit object O and isomorphisms (unit maps)

O⊗M −→∼ M −→∼ M ⊗ O (M ∈M)

compatible with the associativity isomorphisms.
An associative algebra A ∈M (M-algebra for short) is an object equipped

with maps A⊗A→ A (multiplication) and O→ A (unit) satisfying associa-
tivity etc. up to isomorphism, such isomorphisms having the usual relations,
expressed by commutative diagrams.

(No additive structure appears here, so one might be tempted to call
algebras “monoids.” However, that term is reserved in [Lu2, §2.4.2] for a
related, but different, construct.)

Examples 9.1. (a) M := {Sets}, ⊗ is the usual direct product, and M-
algebras are monoids.

(b) M := modules over a fixed commutative ring O, ⊗ is the usual tensor
product over O, and M-algebras are the usual O-algebras.

(c) M := dg modules over a fixed commutative dg ring O, ⊗ is the usual
tensor product of dg O-modules, and an M-algebra is a dg O-algebra (i.e.,
a dg ring A plus a homomorphism of dg rings from O to the center of A).

(d) M := the derived category D(X) of O-modules over a (commutative)
ringed space (X,O), ⊗ is the derived tensor product of O-complexes. Any
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dg O-algebra gives rise to an M-algebra; but there might be M-algebras not
of this kind, as the defining diagrams may now involve quasi-isomorphisms
and homotopies, not just equalities.

The foregoing notions can be extended to ∞-categories. The key is to
formulate how algebraic structures in categories arise from operads, in a
way that can be upgraded to ∞-categories and ∞-operads. Details of the
actual implementation are not effortless to absorb. (See [Lu2, §4.1, etc.].)

The effect is to replace isomorphism by “coherent homotopy.” Whatever
this means (see [Lu1, §1.2.6]), it turns out that any monoidal structure on
an∞-category C induces a monoidal structure on the ordinary category hC,
and any C-algebra (very roughly: an object with multiplication associative
up to coherent homotopy) is taken by the homotopy functor to an hC-algebra
[Lu2, p. 332, 4.1.1.12, 4.1.1.13].

The C-algebras are the objects of an ∞-category Alg(C) [Lu2, p. 331,
4.1.1.6]. The point is that the the homotopy-coherence of the associativity
and unit maps are captured by an ∞-category superstructure.

Similar remarks apply to commutative C-algebras, that is, C-algebras
whose multiplication is commutative up to coherent homotopy.

Example 9.2. In the monoidal ∞-category of spectra [Lu2, §§1.4.3, 6.3.2],
algebras are called A∞-rings, or A∞-ring spectra; and commutative alge-
bras are called E∞-rings, or E∞-ring spectra. The discrete A∞-(resp. E∞-)
rings—those algebras S whose homotopy groups πiS vanish for i 6= 0—span
an∞-category that is equivalent to (the nerve of) the category of associative
(resp. commutative) rings [Lu2, p. 806, 8.1.0.3].

In general, for any commutative ring R, there is a close relation between
dg R-algebras and A∞-R-algebras, see [Lu2, p. 824, 8.1.4.6], [Sh2, Thm. 1.1];
and when R contains the rational field Q, between graded-commutative dg
R-algebras and E∞-R-algebras [Lu2, p. 825, 8.1.4.11]; in such situations,
every A∞-(resp. E∞-)R-algebra is equivalent to a dg R-algebra.

See also [Lu2, §4.1.4] for more examples of∞-category-algebras that have
concrete representatives.

10. Bimodules, tensor product

10.1. For algebra objects A and B in a monoidal ∞-category C, there is
a notion of A-B-bimodule—an object in C on which, via ⊗ product in C,
A acts on the left, B on the right and the actions commute up to coherent
homotopy. (No additive structure is required.) The bimodules in C are
the objects of an ∞-category ABModB(C), to be denoted here, once the
∞-category C is fixed, as A#B. (See [Lu2, §4.3].)

10.2. Let A, B, C be algebras in a monoidal ∞-category C that admits
small colimits, and in which product functor C × C → C preserves small
colimits separately in each variable. There is a tensor-product functor

(10.2.1) (A#B)× (B#C)
⊗−→ A#C,
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defined to be the geometric realization—a kind of colimit, see [Lu1, p. 542,
6.1.2.12]—of a two-sided bar-construction. (See [Lu2, p. 409, 4.3.5.11]; and
for some more motivation, [Lu0, pp.145–146].)

Tensor product is associative up to canonical homotopy [Lu2, p. 416,
4.3.6.14]. It is unital on the left in the sense that, roughly, the endofunctor of
B#C given by tensoring on the left with the B-B-bimodule B is canonically
homotopic to the identity; and similarly on the right [Lu2, p. 417, 4.3.6.16].
Also, it preserves colimits separately in each variable [Lu2, p. 411, 4.3.5.15].

Example 10.3 (Musings). It is natural to ask about direct connections
between (10.2.1) and the usual tensor product of bimodules over rings. If
there is an explicit answer in the literature I haven’t found it, except when
A = B = C is an ordinary commutative ring regarded as a discrete E∞-ring,
a case addressed by [Lu2, p. 817, 8.1.2.13] (whose proof might possibly be
adaptable to a more general situation).

What follows are some related remarks, in the language of model cate-
gories, which in the present context can presumably be translated into the
language of∞-categories. (Cf. e.g., [Lu2, p. 90, 1.3.4.21, and p. 824, 8.1.4.6].)

Let M be the (ordinary) symmetric monoidal category of abelian groups,
and let A, B, C be M-algebras, i.e., ordinary rings (set O := Z in 9.1(b)).
The tensor product over B of an A ⊗ Bop-complex (i.e., a left A- right B-
complex, or A-B-bicomplex) and a B⊗Cop-complex is an A⊗Cop-complex.
Can this bifunctor be extended to a derived functor

D(A⊗Bop)×D(B ⊗ Cop)→ D(A⊗ Cop)?

The problem is to construct, in D(A ⊗ Cop), a derived tensor product,
over B, of an A-B-bicomplex X and a B-C-bicomplex Y . As in the clas-
sical situation where C = Z, this requires building something like a quasi-
isomorphism f : Y → Y ′ of B-complexes with Y ′ flat over B; but now f
must be compatible with the right C-action. How can this be done?

To deal with the question it seems necessary to move out into the dg world.
Enlarge M to the category of complexes of abelian groups, made into a
symmetric monoidal model category by the usual tensor product and the
“projective” model structure (weak equivalences being quasi-isomorphisms,
and fibrations being surjections), see [Lu2, p. 816, 8.1.2.11]. It results from
[SS, Thm. 4.1(1)] (for whose hypotheses see [Sh2, p. 356, §2.2 and p. 359,
Proposition 2.9]) that:

1) For any M-algebra (i.e., dg ring) S, the category MS ⊂ M of left
dg S-modules has a model structure for which maps are weak equivalences
(resp. fibrations) if and only if they are so in M.

2) For any commutative M-algebra (i.e., graded-commutative dg ring) R,
the category of R-algebras in M has a model structure for which maps are
weak equivalences (resp. fibrations) if and only if they are so in M.

In either case 1) or 2), the cofibrant objects are those I such that for any

diagram I
f−→ Y s←− X with s a surjective quasi-isomorphism, there exists
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(in the category in play) g : I → X such that sg = f . Any object Z in

these model categories is the target of a quasi-isomorphism Z̃ → Z with
cofibrant Z̃; such a quasi-isomorphism (or its source) is called a cofibrant
replacement of Z.

Note that the the derived category D(S)—obtained by adjoining to MS

formal inverses of its quasi-isomorphisms—is the homotopy category of the
model category MS .

Now fix a graded-commutative dg ring R. The derived tensor product
S ⊗L

R T of two dg R-algebras S, T is the tensor product S̃ ⊗R T̃ .4 This con-
struction depends, up to quasi-isomorphism, on the choice of the cofibrant
replacements. However, two such derived tensor products have canonically
isomorphic derived categories [SS, Theorem 4.3]. Any such derived category
will be denoted D(S ⊗L

R T ).

If either S or T is flat over R then the natural map S ⊗L
R T → S ⊗R T

is a quasi-isomorphism; in this case one need not distinguish between the
derived and the ordinary tensor product.

More generally, let S and T be dg R-algebras, let M be a dg S-module
and N a dg T -module. Let S̃ → S and T̃ → T be cofibrant replacements.
Let M̃ → M (resp. Ñ → N) be a cofibrant replacement in the category

of dg S̃-(resp. T̃ -)modules. Then M̃ ⊗R Ñ is a dg module over S̃ ⊗R T̃ .
Using “functorial factorizations” [Ho, Definition 1.1.3], one finds that this

association of M̃ ⊗R Ñ to (M,N) gives rise to a functor

D(S)×D(T )→ D(S ⊗L
R T ),

and that different choices of cofibrant replacements lead canonically to iso-
morphic functors.

If A, B and C are dg R-algebras, with B commutative, then setting
S := A⊗R B and T := B ⊗R Cop, one gets, as above, a functor

D(A⊗R B)×D(B ⊗R Cop)→ D
(
(A⊗R B)⊗L

B (B ⊗R Cop)
)
.

Then, via restriction of scalars through the natural map

D(A⊗L
R C

op)→ D
(
(A⊗R B)⊗L

B (B ⊗R Cop)
)

one gets a version of the desired functor, of the form

D(A⊗R B)×D(B ⊗R Cop)→ D(A⊗L
R C

op).

What does this functor have to do with the tensor product of §10.2?
Here is an approach that should lead to an answer; but details need to be

worked out.
Restrict R to be an ordinary commutative ring, and again, B to be graded-

commutative. By [Sh2, 2.15] there is a zig-zag H of three “weak monoidal
Quillen equivalences” between the model category of dg R-modules (i.e.,

4This is an instance of the passage from a monoidal structure on a model category M

to one on the homotopy category of M [Ho, §4.3]—a precursor of the passage from a
monoidal structure on an ∞-category to one on its homotopy category.
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R-complexes) and the model category of symmetric module spectra over
the Eilenberg-Mac Lane symmetric spectrum HR (see e.g., [Gr, 4.16]), that
induces a monoidal equivalence between the respective homotopy categories.
(The monoidal structures on the model categories are given by the ten-
sor and smash products, respectively—see e.g., [Sc, Chapter 1, Thm. 5.10].
For A-B-bimodules M and B-C-bimodules N , the tensor product M⊗BN
coequalizes the natural maps M ⊗R B ⊗R N −−→−→M ⊗R N , and likewise for
the smash product of HM and HN over HB; so it should follow that when
M and N are cofibrant, these products also correspond, up to homotopy,
under H. This would reduce the problem, modulo homotopy, to a compari-
son of the smash product and the relative tensor product in the associated
∞-category of the latter category. But it results from [Sh1, 4.9.1] that these
bifunctors become naturally isomorphic in the homotopy category of sym-
metric spectra, i.e., the classical stable homotopy category.

For a parallel approach, based on “sphere-spectrum-modules” rather than
symmetric spectra, see [EKMM, §IV.2 and Prop. IX.2.3].

Roughly speaking, then, any homotopical—i.e., equivalence-invariant—
property of relative tensor products in the ∞-category of spectra (whose
homotopy category is the stable homotopy category) should entail a property
of derived tensor products of dg modules or bimodules over appropriately
commutative (or not) dg R-algebras.

11. The ∞-functor Hom

One shows, utilizing [Lu2, p. 391, 4.3.3.10], that if C is presentable then
so is A#B. Then one can apply the Adjoint Functor Theorem 8.1 to prove:

Proposition 11.1. Let A,B,C be algebras in a fixed presentable monoidal
∞-category. There exists a functor

HomC : (B#C)op ×A#C → A#B

such that for every fixed y ∈ B#C, the functor

z 7→ HomC(y, z) : A#C → A#B

is right-adjoint to the functor x 7→ x⊗B y : A#B → A#C.

As adjoint functors between∞-categories induce adjoint functors between
the respective homotopy categories, and by unitality of tensor product, when
x = A = B one gets:

Corollary 11.2 (“global sections” of Hom = mapping space). There exists
an H-isomorphism of functors (going from h(A#C)op × h(A#C) to H)

MapA#A(A,HomC(y, z)) −→∼ MapA#C(A⊗A y, z) ∼= MapA#C(y, z).
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12. Adjoint Associativity in ∞-categories

We are finally in a position to make sense of adjoint associativity for ∞-
categories. The result and proof are similar in spirit to, if not implied by,
those in [Lu2, p. 358, 4.2.1.31 and 4.2.1.33(2)] about “morphism objects.”

Theorem 12.1. There is in Fun((A#B)op× (B#C)op×D#C, D#A) a func-
torial equivalence (canonically defined, up to homotopy)

α(x, y, z) : HomC(x⊗B y, z)→ HomB(x,HomC(y, z))

such that for any objects x ∈ A#B and y ∈ B#C, the map α(x, y,−) in
FunR(D#C,D#A) is taken by the the equivalence 8.3.1 to the associativity
equivalence, in FunL(D#A,D#C)op,

−⊗A (x⊗B y)← (−⊗A x)⊗B y.

Using Corollary 11.2, one deduces:

Corollary 12.2. In the homotopy category of spaces there is a trifunctorial
isomorphism

MapA#C(x⊗B y, z) −→∼ MapA#B(x,HomC(y, z))

(x ∈ A#B, y ∈ B#C, z ∈ A#C).

12.3. What conclusions about ordinary algebra can we draw?
Let us confine attention to spectra, and try to understand the homotopy

invariants of the mapping spaces in the preceding Corollary, in particular
the maps in the corresponding unenriched homotopy categories (see last
paragraph in §6.1).

As in Example 10.3, the following remarks outline a possible approach,
whose details I have not completely verified.

Let R be an ordinary commutative ring. Let S and T be dg R-algebras,
and U a derived tensor product U := S ⊗L

R T
op (see Example 10.3). For

any dg R-module V , let V̂ be the canonical image of HV (H as in 10.3) in
the associated∞-category D of the model category A of HR-modules. The
∞-category D is monoidal via a suitable extension, denoted ∧, of the smash
product, see [Lu2, p. 619, (S1)]. Recall from the second-last paragraph in 5.5
that the homotopy category hD is equivalent to the homotopy category of A.

As indicated toward the end of Example 10.3, there should be, in D,
an equivalence

Û ≈−→ Ŝ ∧ T̂ op.

whence, by [Lu2, p. 650, 6.3.6.12], an equivalence

Ŝ#T̂ ' LModbU ,
whence, for any dg S-T bimodules a and b, and i ∈ Z, isomorphisms in the
homotopy category H of spaces

(12.3.1) MapbS#bT (â, b̂[i]) −→∼ MapLMod bU (â, b̂[i]).
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(For the hypotheses of [Lu2, p. 650, 6.3.6.12], note that the ∞-category Sp
of spectra, being presentable, has small colimits—see the remarks preceding
Theorem 8.1; and these colimits are preserved by smash product [Lu2, p. 623,
6.3.2.19].)

By [Lu2, p. 393, 4.3.3.17] and again, [Lu2, p. 650, 6.3.6.12], the stable
∞-category LModbU is equivalent to the associated∞-category of the model
category of HU -module spectra, and hence to the associated ∞-category U

of the equivalent model category of dg U -modules. There results an H-
isomorphism

(12.3.2) MapLMod bU (â, b̂[i]) −→∼ MapU(a, b[i]).

Since the homotopy category hLModbU is equivalent to hU := D(U),

(12.3.1) and (12.3.2) give isomorphisms, with ExtibS#bT as in [Lu2, p. 24,

1.1.2.17]:

ExtibS#bT (â, b̂) := π0 MapbS#bT (â, b̂[i]) −→∼ HomD(U)(a, b[i]) = ExtiU (a, b).

(In particular, when S = T = a, one gets the derived Hochschild cohomology
of S/R, with coefficients in b.)

Thus, Corollary 12.2 implies a derived version, involving Exts, of adjoint
associativity for dg bimodules.

12.4. Proof of Theorem 12.1 (Sketch). The associativity of tensor product
gives a canonical equivalence, in Fun((D#A) × (A#B) × (B#C), (D#C)),
between the composed functors

(D#A)× (A#B)× (B#C)
⊗×id−−−→ (D#B)× (B#C)

⊗−→ (D#C),

(D#A)× (A#B)× (B#C)
id×⊗−−−→ (D#A)× (A#C)

⊗−→ (D#C).

The standard isomorphism Fun(X×Y, Z) −→∼ Fun(X,Fun(Y,Z)) (see [GJ,
p. 20, Prop. 5.1]) turns this into an equivalence ξ between the corresponding
functors from (A#B) × (B#C) to Fun(D#A,D#C). These functors factor
through the full subcategory FunL(D#A,D#C): this need only be checked
at the level of objects (x, y) ∈ (A#B)×(B#C), whose image functors are, by
Proposition 11.1, left-adjoint, respectively, to HomB(x,HomC(y,−)) and
to HomC(x⊗ y,−). Composition with (ϕ−1)op (ϕ as in (8.3.1)) takes ξ into
an equivalence in

Fun((A#B)× (B#C),FunR(D#C,D#A)
op

)

= Fun((A#B)op × (B#C)op,FunR(D#C,D#A)),

to which α corresponds. (More explicitly, note that for any∞-categories X,
Y and Z, there is a composition functor

(12.4.1) Fun(Y, Z)× Fun(X,Y )→ Fun(X,Z)

corresponding to the natural composed functor

Fun(Y,Z)× Fun(X,Y )×X → Fun(Y,Z)× Y → Z ;
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and then set X := (A#B)op × (B#C)op, Y := FunL(D#A,D#C)op and
Z := FunR(D#C,D#A). . . )

The rest follows in a straightforward manner from Proposition 8.3. �

Acknowledgement I am grateful to Jacob Lurie and Brooke Shipley for
enlightenment on a number of questions that arose during the preparation
of this paper.
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