DIFFERENTIAL INVARIANTS OF EMBEDDINGS OF MANIFOLDS IN COMPLEX SPACES

Weiming Huang and Joseph Lipman

Abstract

Let V be a reduced complex space, W a complex submanifold, and let $\left(V^{\prime}, W^{\prime}\right)$ be another such pair. Let $f: V \rightarrow V^{\prime}$ be a homeomorphism with $f(W) \subset W^{\prime}$, such that f and f^{-1} are both continuously (real-)differentiable. Then f induces a component-(with multiplicity)-preserving homeomorphism \mathbf{f}_{0} from the normal cone $C(V, W)$ to $C\left(V^{\prime}, W^{\prime}\right)$, respecting the natural \mathbb{R}^{*} actions on these cones. Moreover, though \mathbf{f}_{0} need not respect the \mathbb{C}^{*} actions nevertheless the induced map on Borel-Moore homology $f_{*}: H_{*}(W) \rightarrow H_{*}\left(W^{\prime}\right)$ takes the Segre classes of the components of $C(V, W)$ to \pm those of the corresponding components of $C\left(V^{\prime}, W^{\prime}\right)$. In particular we recover the differential invariance of the multiplicity of W in V.

Introduction. In studying singularities one is interested in invariants, analytic (biholomorphic) or topological. And it can be an occasion for celebration when an analytic invariant turns out to be topological. For example, a famous open problem of Zariski is to determine whether the multiplicity of a hypersurface germ in \mathbb{C}^{n} is invariant under ambient homeomorphisms.

In between the analytic and topological domains, there is a large and relatively unexplored territory populated by differential invariants, i.e, data which are associated to complex spaces and which are always the same for two C^{s}-homeomorphic spaces $(s>0)$. The multiplicity of a reduced complex space germ is such a differential invariant, for $s=1$ [GL], but not a topological one, even for ambient homeomorphisms of curves in \mathbb{C}^{3}.

In this paper we consider a reduced complex space V with an r-dimensional connected submanifold $i: W \hookrightarrow V$. Assume for simplicity that all the irreducible components of V have the same dimension, say d, and that they all properly contain W. Let \mathcal{I} be the kernel of the natural surjection $\mathcal{O}_{V} \rightarrow i_{*} \mathcal{O}_{W}$, let \mathcal{G} be the graded \mathcal{O}_{W}-algebra $\oplus_{m \geq 0} i^{*}\left(\mathcal{I}^{m} / \mathcal{I}^{m+1}\right)$, and let $C(V, W):=\operatorname{Specan}(\mathcal{G})$ be the normal cone of W in V (see $\S 1$), with (reduced, irreducible) components $\left(C_{j}\right)_{j \in J}$. The components P_{j} of the projectivized normal cone $P=P(V, W):=\operatorname{Projan}(\mathcal{G}) \xrightarrow{\wp} W$ correspond naturally to those of $C(V, W)$. For each j let $\left[P_{j}\right] \in H_{2 d-2}(P)$ (BorelMoore homology) be the natural image of the fundamental class of $P_{j} . P$ carries a canonical invertible sheaf $\mathcal{O}(1)$, with Chern class, say, $c \in H^{2}(P, \mathbb{Z})$. The Segre class $s_{i}\left(C_{j}\right) \in H_{2 r-2 i}(W)$ is defined by $s_{i}\left(C_{j}\right):=\wp_{*}\left(\left[P_{j}\right] \cap c^{d-1-r+i}\right) .{ }^{1}$

Our motivating result is that these Segre classes are, up to sign, C ${ }^{1}$ invariants of the pair (V, W). (For a precise statement see Theorem (6.3).)

[^0]We first prove that the normal cone $C(V, W)$ is a differential invariant, even "as a cycle": given a second pair $V^{\prime} \supset W^{\prime}$, then any C^{1} homeomorphism $f: V \rightarrow V^{\prime}$ with f^{-1} also C^{1} and $f(W)=W^{\prime}$ induces a homeomorphism \mathbf{f}_{0} from $C(V, W)$ onto $C\left(V^{\prime}, W^{\prime}\right)$ such that \mathbf{f}_{0} maps each irreducible component of $C(V, W)$ onto one of $C\left(V^{\prime}, W^{\prime}\right)$ having the same multiplicity. (See Theorem (4.3.1); the case where W is a point was an important part of [GL].) This is shown via the standard deformation (see $\S 2$) of V to $C(V, W)$, restricted however to real parameters t. (So we have the trivial family $V_{t} \cong V$ for $0 \neq t \in \mathbb{R}$, together with $V_{0} \cong C(V, W)$.) Of course the trivial part of this deformation, away from $t=0$, behaves functorially; and one needs to show that the functoriality "extends continuously" to the entire deformation. This is done in Theorem (3.3), via the derivative of f. In $\S 4$ we prove the differential invariance of the multiplicities of the components by interpreting these numbers as intersection multiplicities along the components of V_{0}, and noting that such intersection numbers are known to be topological invariants.

Now in order to get at the Segre classes we must pass from $C(V, W)$ to $P(V, W)$, and so we have to quotient out the natural \mathbb{C}^{*} action. The problem is that we used the derivative of f to establish functoriality of $C(V, W)$, and that derivative is only real-linear. Thus the \mathbb{C}^{*} action may not be functorial.

To deal with this problem, we construct in $\S 5$ the relative complexification of $C:=$ $C(V, W)$ (in fact, of any cone over W), an analytic subset $\widetilde{C} \subset C \times{ }_{W} C$ whose fibers are real-analytically isomorphic to the complexifications of the fibres of C, at least almost everywhere over W. This \widetilde{C}, together with a natural real-analytic \mathbb{C}^{*} action, is indeed C^{1}-functorial (Theorem (5.3.1)). But we have not been able to extract any Segre classes directly from \widetilde{C}. Instead we use the \mathbb{C}^{*}-stable, analytic subset $\Lambda(C) \subset \widetilde{C}$ consisting of pairs $\left(c_{1}, c_{2}\right)$ of points of C such that one of them lies in the orbit of the other with respect to the natural \mathbb{C}^{1} action (reviewed in §1). Using the functoriality of \widetilde{C}, we find that $\Lambda(C)$ is C^{1}-functorial. Furthermore, off its vertex section, $\Lambda(C)$ together with its induced \mathbb{C}^{*} action is topologically isomorphic to the rank two bundle $\mathcal{O}(1) \oplus \mathcal{O}(-1)$ (minus its 0 -section) over $P(V, W)$. It follows that the Segre classes of the components of this rank two bundle become differential invariants, up to sign, when pushed down from $P(V, W)$ to W. These pushed-down classes are easily seen to be the Segre classes $s_{i}\left(C_{j}\right)$ such that $i-1$-(codimension of W in V) is even. The remaining Segre classes can be obtained similarly, just by changing (V, W) to $\left(V \times \mathbb{C}^{1}, W \times\{0\}\right)$ (which doesn't affect the total Segre class, but changes the codimension by one). For details see §§5-6.

Incidentally, with $e_{j}:=$ multiplicity of the component C_{j} of $C:=C(V, W)$, the Segre classes $s_{i}(C)$ can be defined by $s_{i}(C):=\sum_{j} e_{j} s\left(C_{j}\right)$ (cf. [Fn, p. 74, Lemma 4.2]; the sums here are "locally finite" with respect to decomposition into irreducible components [BH, p. 465, 1.7].) As above, the e_{j} are differential invariants; but because of the sign ambiguity in Theorem (6.3), $s_{i}(C)$ may not be a differential invariant-though its image in $H_{*}\left(W, \mathbb{Z}_{2}\right)$ is.

In particular, $s_{0}(C)=m(V, W)[W]$, where $m(V, W)$ is the multiplicity of W in V [Fn, §4.3]. Hence Theorem (6.3) implies that $m(V, W)$ is a differential invariant. (That is the main result of [GL], where a more straightforward proof is given).

1. Normal cones. We begin with a brief review of some facts about normal cones, facts which are "well-known" but not, as a whole, easily accessible in the literature.
(1.1) Let $\left(V, \mathcal{O}_{V}\right)$ be a reduced complex analytic space, and let $\left(W, \mathcal{O}_{W}\right)$ be a (not necessarily reduced) complex subspace of V. Let \mathcal{I} be the kernel of the surjection $\mathcal{O}_{V} \rightarrow i_{*} \mathcal{O}_{W}$ corresponding to the inclusion i : $W \hookrightarrow V$. The graded $\mathcal{O}_{W^{-}}$ algebra $\operatorname{gr}_{W}(V):=\oplus_{m \geq 0} i^{*}\left(\mathcal{I}^{m} / \mathcal{I}^{m+1}\right)$ is finitely presentable, since $i^{*}\left(\mathcal{I}^{m} / \mathcal{I}^{m+1}\right)$ is coherent for all m [MT, p. 2, Prop. 1.4]. So one can define the normal cone $C(V, W)$ of V along W to be

$$
C(V, W):=\operatorname{Specan}\left(\mathrm{gr}_{W}(V)\right)
$$

(For the definition of Specan, see [Ho, p. 19-02].) This cone is naturally equipped with a map

$$
p=p(V, W): C(V, W) \rightarrow W
$$

together with a "vertex" section

$$
\sigma=\sigma(V, W): W \rightarrow C(V, W)
$$

($p \circ \sigma=$ identity), corresponding, via functoriality of Specan, to the obvious maps $\mathcal{O}_{W} \leftrightarrows \mathrm{gr}_{W}(V)$. Moreover, with \mathbb{C}^{1} the affine line there is the map

$$
\mu: \mathbb{C}^{1} \times C(V, W) \rightarrow C(V, W)
$$

corresponding to the map of \mathcal{O}_{W}-algebras $\operatorname{gr}_{W}(V) \rightarrow \operatorname{gr}_{W}(V)[T]$ (T an indeterminate) whose restriction to $\mathcal{I}^{m} / \mathcal{I}^{m+1}$ is multiplication by $T^{m}(m \geq 0)$.

One checks via the corresponding \mathcal{O}_{W}-algebra maps that there are commutative diagrams (with "id" standing for "identity" and "mpn" for "multiplication"):

Restricting attention to underlying point sets, if for $a \in \mathbb{C}$ and $x \in C(V, W)$ we set $a x:=\mu(a, x)$, then

$$
\begin{aligned}
p(a x) & =p(x) \\
a_{1}\left(a_{2} x\right) & =\left(a_{1} a_{2}\right) x \\
1 x & =x \\
0 x & =\sigma p(x) .
\end{aligned}
$$

Remark (1.1.1). The foregoing holds with $\mathrm{gr}_{W}(V)$ replaced by any finitely presented graded \mathcal{O}_{W}-algebra $\mathcal{G}=\oplus_{m \geq 0} \mathcal{G}_{m}\left(\mathcal{G}_{0}=\mathcal{O}_{W}\right.$, and every \mathcal{G}_{m} is a coherent \mathcal{O}_{W}-module).
(1.2) To get a picture of $p: C(V, W) \rightarrow W$ near a point $w \in W$, we embed the triple (V, W, w) locally into some \mathbb{C}^{n}, as follows. In the local ring $\mathcal{O}_{V, w}$ let $\left(\tau_{1}, \tau_{2}, \ldots, \tau_{s}\right)$ generate the ideal corresponding to the germ of W. Denoting convergent power series rings by $\mathbb{C}\langle\cdots\rangle$, pick a surjective \mathbb{C}-algebra homomorphism

$$
\alpha: \mathbb{C}\left\langle T_{1}, T_{2}, \ldots, T_{r+s}\right\rangle \rightarrow \mathcal{O}_{V, w} \quad\left(T_{i} \text { indeterminates }\right)
$$

such that $\alpha\left(T_{r+i}\right)=\tau_{i}(1 \leq i \leq s)$. Correspondingly, with $n:=r+s$, there is an open neighborhood V^{*} of w in V, an open neighborhood U of 0 in \mathbb{C}^{n}, a holomorphic map $\theta: V^{*} \rightarrow U$, and holomorphic functions $\varphi_{i}: U \rightarrow \mathbb{C}(i=1,2, \ldots, e)$ such that
(i) θ induces an isomorphism of V^{*} onto the reduced analytic subspace V^{\prime} of U consisting of the common zeros of the φ_{i} :

$$
V^{\prime}:=\left\{z \in U \mid \varphi_{1}(z)=\varphi_{2}(z)=\cdots=\varphi_{e}(z)=0\right\} .
$$

(ii) θ maps $W^{*}:=W \cap V^{*}$ isomorphically onto the analytic space

$$
W^{\prime}:=L \cap V^{\prime}=L \times_{\mathbb{C}^{n}} V^{\prime} \subset V^{\prime}
$$

where L is the reduced r-dimensional space

$$
L:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in U \mid z_{r+1}=z_{r+2}=\cdots=z_{n}=0\right\}
$$

(iii) $\theta(w)=0$.

The embedding θ induces an isomorphism

$$
C(V, W) \times_{W} W^{*}=C\left(V^{*}, W^{*}\right) \xrightarrow{\sim} C\left(V^{\prime}, W^{\prime}\right)
$$

compatible with the canonical maps p, σ, and μ. So let us simply consider the case where $V=V^{\prime}$ and $W=W^{\prime}$. Then $\mathcal{I}=\mathcal{J} \mathcal{O}_{V}$, where \mathcal{J} is the \mathcal{O}_{U}-ideal generated by the coordinate functions $\xi_{r+1}, \ldots, \xi_{n}$ (i.e., $\left.\xi_{h}\left(z_{1}, \ldots, z_{n}\right)=z_{h}\right)$.

With $j: L \hookrightarrow U$ the inclusion, there is an isomorphism of graded \mathcal{O}_{L}-algebras

$$
\operatorname{gr}_{L}(U):=\oplus_{m \geq 0} j^{*}\left(\mathcal{J}^{m} / \mathcal{J}^{m+1}\right) \xrightarrow{\sim} \mathcal{O}_{L}\left[T_{1}, \ldots, T_{s}\right]
$$

whose inverse takes T_{h} to the section of $j^{*}\left(\mathcal{J} / \mathcal{J}^{2}\right)$ given by $\xi_{r+h}(1 \leq h \leq s)$; and so we have an isomorphism

$$
C(U, L) \xrightarrow{\sim}\left(L \times \mathbb{C}^{s}\right) \subset\left(\mathbb{C}^{r} \times \mathbb{C}^{s}\right)=\mathbb{C}^{n}
$$

This isomorphism identifies $p(U, L)$ with the projection $\mathrm{pr}_{1}: L \times \mathbb{C}^{s} \rightarrow L$, and $\sigma(U, L)$ with the map id $\times 0: L \xrightarrow{\sim} L \times\{0\} \hookrightarrow L \times \mathbb{C}^{s}$. Furthermore, we have the closed immersion

$$
\begin{equation*}
C(V, W) \hookrightarrow C(U, L) \tag{1.2.1}
\end{equation*}
$$

corresponding to the natural surjection $\operatorname{gr}_{L}(U) \rightarrow \operatorname{gr}_{W}(V)$. There results a commutative diagram, whose horizontal arrows represent embeddings:

The action of \mathbb{C}^{1} on $C(V, W)($ via $\mu)$ is induced by the action on $C(U, L) \cong L \times \mathbb{C}^{s}$, easily checked to be given on underlying point sets by

$$
\begin{equation*}
a(x, z)=(x, a z) \quad\left(a \in \mathbb{C}, x \in L, z \in \mathbb{C}^{s}\right) \tag{1.2.3}
\end{equation*}
$$

In particular, the analytic group $\mathbb{C}^{*}=\mathbb{C}^{1}-\{0\}$ acts freely on $C(V, W)-\sigma(W)$.
The points of $C(V, W)$-identified via (1.2.2) with a subvariety of $W \times \mathbb{C}^{s}$ —can be specified by equations as follows. Let $w \in W \subset L$. For any open neighborhood N of w in L, for $x \in N$, and for any polynomial

$$
F\left(T_{1}, \ldots, T_{s}\right) \in \Gamma\left(N, \mathcal{O}_{L}\right)\left[T_{1}, \ldots, T_{s}\right]
$$

let $F_{x} \in \mathbb{C}\left[T_{1}, \ldots, T_{s}\right]$ be the polynomial obtained from F by evaluating coefficients at x, and define the function $\widetilde{F}: N \times \mathbb{C}^{s} \rightarrow \mathbb{C}$ by

$$
\widetilde{F}(x, y)=F_{x}\left(y_{1}, \ldots, y_{s}\right) \quad\left(x \in N, y \in \mathbb{C}^{s}\right)
$$

Set $V_{N}:=V \cap\left(N \times \mathbb{C}^{s}\right)$. (Recall that $V \subset \mathbb{C}^{n}=\mathbb{C}^{r} \times \mathbb{C}^{s}$.) Then:
(1.2.4) The point $(w, z) \in W \times \mathbb{C}^{s}$ is in $C(V, W) \Leftrightarrow$ for every $m \geq 0$ and for every N and F as above with F homogeneous of degree m, if the function $\widetilde{F} \mid V_{N}$ is in $\Gamma\left(V_{N}, \mathcal{I}^{m+1}\right)$ then $\widetilde{F}(w, z)=0$.

The proof, an exercise on the definition of Specan, is left to the reader.
Remark. The following "initial form" characterization (1.2.5), suggested by [Hi2, p.18, Remark 3.2], is readily seen to be equivalent to the one in (1.2.4). For s-tuples $\nu=\left(\nu_{1}, \ldots, \nu_{s}\right)$ of non-negative integers, we set $|\nu|:=\nu_{1}+\cdots+\nu_{s}$; and for $z=\left(z_{1}, \ldots, z_{s}\right) \in \mathbb{C}^{s}$, we set $z^{\nu}:=z_{1}^{\nu_{1}} z_{2}^{\nu_{2}} \ldots z_{s}^{\nu_{s}}$.
(1.2.5) The point $(w, z) \in W \times \mathbb{C}^{s}$ is in $C(V, W) \Leftrightarrow$ for all open neighborhoods N_{1} of w in \mathbb{C}^{r} and N_{2} of 0 in \mathbb{C}^{s}, and for all $m \geq 0$, if the holomorphic functions $f_{\nu}: N_{1} \times N_{2} \rightarrow \mathbb{C}$ are such that $\sum_{|\nu|=m} f_{\nu}(x, y) y^{\nu}=0$ for all $(x, y) \in V \cap\left(N_{1} \times N_{2}\right)$, then $\sum_{|\nu|=m} f_{\nu}(w, 0) z^{\nu}=0$.
(Equivalently: for all holomorphic functions $f: N_{1} \times N_{2} \rightarrow \mathbb{C}$ vanishing on $V \cap\left(N_{1} \times N_{2}\right)$ and such that $\lim _{t \rightarrow 0} t^{-m} f(x, t y)<\infty$ for all $(x, y) \in N_{1} \times N_{2}$, we have $\lim _{t \rightarrow 0} t^{-m} f(w, t z)=0$.)
(1.3) Now here is a geometric description of $C(V, W)$. As in (1.2), we identify (V, W) with $\left(V^{\prime}, W^{\prime}\right) \subset\left(U, W^{\prime}\right) \subset\left(\mathbb{C}^{r} \times \mathbb{C}^{s}, \mathbb{C}^{r}\right)$. We denote by π_{f} the projection $\mathbb{C}^{r} \times \mathbb{C}^{s} \rightarrow \mathbb{C}^{s}$ (" f " stands for "fiber").

Proposition. The point $(w, z) \in W \times \mathbb{C}^{s}=C(U, W)$ is in $C(V, W)$ iff there exist sequences $v_{i} \in V, a_{i} \in \mathbb{C}(0<i \in \mathbb{Z})$ such that $v_{i} \rightarrow w$ and $a_{i} \pi_{f} v_{i} \rightarrow z$. Moreover, for any $(w, z) \in C(V, W)$, there exist such a_{i}, v_{i} with all the a_{i} real and positive.

Proof. Suppose that there are sequences $v_{i} \in V, a_{i} \in \mathbb{C}$, such that $v_{i} \rightarrow w$ and $a_{i} \pi_{f} v_{i} \rightarrow z$. Set $v_{i}=\left(x_{i}, y_{i}\right)$, so that $x_{i} \rightarrow w, y_{i} \rightarrow 0$, and $a_{i} y_{i}=a_{i} \pi_{f} v_{i} \rightarrow z$. With notation as in (1.2.5), we have then (assuming, as we may, that $v_{i} \in N_{1} \times N_{2}$):

$$
\begin{aligned}
\sum_{|\nu|=m} f_{\nu}(w, 0) z^{\nu} & =\lim _{i} \sum_{|\nu|=m} f_{\nu}\left(x_{i}, y_{i}\right)\left(a_{i} y_{i}\right)^{\nu} \\
& =\lim _{i} a_{i}^{m} \sum_{|\nu|=m} f_{\nu}\left(x_{i}, y_{i}\right)\left(y_{i}\right)^{\nu}=0 .
\end{aligned}
$$

Thus $(w, z) \in C(V, W)$.
For the converse, we have the following stronger statement, due to Hironaka [Hi, p. 131, Remark (2.3)].

Lemma (1.3.1). If $(w, z) \in C(V, W)$ and $z \neq 0$, then there exists a real analytic map $\varphi:(-1,1) \rightarrow V$ with $\varphi(0)=w, \varphi(t) \notin W$ if $t \neq 0$, and such that

$$
z /|z|=\lim _{t \rightarrow 0^{+}} \pi_{f} \varphi(t) /\left|\pi_{f} \varphi(t)\right|
$$

A variant of Hironaka's proof will be given below, in (2.3).
2. Specialization to the normal cone. With $i: W \hookrightarrow V$ and \mathcal{I} as in (1.1), consider the graded \mathcal{O}_{V}-algebra

$$
\mathcal{R}=\mathcal{R}_{\mathcal{I}}:=\oplus_{n \in \mathbb{Z}} \mathcal{I}^{n} T^{-n} \subset \mathcal{O}_{V}\left[T, T^{-1}\right]
$$

where T is an indeterminate and \mathcal{I}^{n} is defined to be \mathcal{O}_{V} for all $n \leq 0$. By [MT, p. 2, Prop. 1.4], \mathcal{R} is finitely presentable, so we can set

$$
\mathbf{V}=\mathbf{V}_{W}:=\operatorname{Specan}\left(\mathcal{R}_{\mathcal{I}}\right)
$$

\mathbf{V} is called the specialization of (V, W) to $C(V, W)$, see [LT, pp. 556-557].
The terminology is explained as follows. We have natural maps

$$
W \times \mathbb{C}^{1} \xrightarrow{\alpha} \mathbf{V} \xrightarrow{\beta} V \times \mathbb{C}^{1}
$$

where α is the closed immersion corresponding to the obvious \mathcal{O}_{V}-algebra homomorphism

$$
\mathcal{R} \rightarrow \mathcal{R} / \mathcal{I} T^{-1} \mathcal{R} \xrightarrow{\sim} \oplus_{n \geq 0}\left(\mathcal{O}_{V} / \mathcal{I}\right) T^{n}=i_{*} \mathcal{O}_{W}[T]
$$

and β corresponds to the \mathcal{O}_{V}-algebra inclusion $\mathcal{O}_{V}[T] \hookrightarrow \mathcal{R}$. Note that $\beta \circ \alpha$ is the closed immersion $i \times \mathrm{id}: W \times \mathbb{C}^{1} \hookrightarrow V \times \mathbb{C}^{1}$. Let \mathfrak{t} be the composition

$$
\mathfrak{t}: \mathbf{V} \xrightarrow{\beta} V \times \mathbb{C}^{1} \xrightarrow{\mathrm{pr}} \mathbb{C}^{1} .
$$

Denote the fiber $\mathfrak{t}^{-1}(0)$ by \mathbf{V}_{0}.

Proposition (2.1). (i) The map \mathfrak{t} is flat.
(ii) β induces an isomorphism of $\mathbf{V}-\mathbf{V}_{0}$ onto $V \times\left(\mathbb{C}^{1}-\{0\}\right)$.
(iii) There is a natural commutative diagram

with σ and p as in (1.1), and ρ an isomorphism.
Thus \mathfrak{t} gives us a flat family of closed immersions, isomorphic to i : $W \hookrightarrow V$ wherever $\mathfrak{t} \neq 0$ and to $\sigma: W \hookrightarrow C(V, W)$ where $\mathfrak{t}=0$.

Proof. We have $\operatorname{pr}^{-1}(0)=V \times\{0\}=\operatorname{Specan}\left(\mathcal{O}_{V}[T] / T \mathcal{O}_{V}[T]\right)$, and it follows that $\mathbf{V}_{0}=\operatorname{Specan}(\mathcal{R} / T \mathcal{R}) \subset \operatorname{Specan}(\mathcal{R})$. But there is an obvious isomorphism $\mathcal{R} / T \mathcal{R} \xrightarrow{\sim} \oplus_{n \geq 0} \mathcal{I}^{n} / \mathcal{I}^{n+1}$, whence an isomorphism $\rho: C(V, W) \xrightarrow{\sim} \mathbf{V}_{0}$.

The surjection $\mathcal{R} / T \mathcal{R} \rightarrow \mathcal{R} /\left(T \mathcal{R}+\mathcal{I} T^{-1} \mathcal{R}\right)$ is naturally identifiable with the obvious surjection of $\oplus_{n \geq 0} \mathcal{I}^{n} / \mathcal{I}^{n+1}$ onto its degree 0 component $i_{*} \mathcal{O}_{W}$; thus the restriction of α to \mathbf{V}_{0} gets identified with $\sigma: W \hookrightarrow C(V, W)$, and so the left square in (iii) commutes. The right square commutes because it is obtained by applying the functor Specan to a (clearly) commutative diagram of graded \mathcal{O}_{V}-algebras.

A morphism of analytic spaces $f: X \rightarrow \mathbf{V}$ factors through $\mathbf{V}-\mathfrak{t}^{-1}(0)$ iff the corresponding map $\Gamma(\mathbf{V}, \mathcal{R}) \rightarrow \Gamma\left(X, \mathcal{O}_{X}\right)$ sends T to a unit, i.e., $\mathcal{R} \rightarrow f_{*} \mathcal{O}_{X}$ factors through $\mathcal{R}\left[T^{-1}\right]$. Consequently

$$
\mathbf{V}-\mathbf{V}_{0}=\operatorname{Specan}\left(\mathcal{R}\left[T^{-1}\right]\right)=\operatorname{Specan}\left(\mathcal{O}_{V}\left[T, T^{-1}\right]\right)
$$

and (ii) follows.
In particular, off \mathbf{V}_{0} the map \mathfrak{t} coincides with the projection pr, which is flat. Since T is not a zero-divisor in \mathcal{R}, therefore the germ of \mathfrak{t} in the local ring of any point on \mathbf{V}_{0} is not a zero-divisor (see e.g., [Ho, p. 19-07, Corollaire]), and so \mathfrak{t} is flat everywhere along \mathbf{V}_{0} too. This proves (i).
(2.2) Now let us see how the above specialization looks locally.

Assume as in (1.2) that $(V, W) \subset\left(\mathbb{C}^{r+s}, \mathbb{C}^{r}\right)$. Let $\xi_{1}, \ldots, \xi_{r+s}$ be the coordinate functions on \mathbb{C}^{r+s}, and for $i=1,2, \ldots, s$, set $\eta_{i}:=\xi_{r+i} \mid V$. We embed \mathbf{V} into \mathbb{C}^{r+s+1} as follows. There is a surjective \mathcal{O}_{V}-algebra homomorphism

$$
\psi: \mathcal{O}_{V}\left[T_{1}^{\prime}, \ldots, T_{s}^{\prime}, T\right] \rightarrow \mathcal{R}
$$

with

$$
\psi\left(T_{i}^{\prime}\right)=\eta_{i} T^{-1} \quad(1 \leq i \leq s), \quad \psi(T)=T
$$

Correspondingly, there is an embedding $\mathbf{V} \hookrightarrow V \times \mathbb{C}^{s+1} \hookrightarrow \mathbb{C}^{r} \times \mathbb{C}^{s} \times \mathbb{C}^{s+1}$. But for each $i, \eta_{i}-T_{i}^{\prime} T$ is a global section of the kernel of ψ; therefore the embedding factors through the subspace of $\mathbb{C}^{r} \times \mathbb{C}^{s} \times \mathbb{C}^{s+1}$ where these functions vanish, i.e., the reduced subspace whose points are of the form $\left(x_{1}, \ldots, x_{r}, a y_{1}, \ldots, a y_{s}, y_{1}, \ldots, y_{s}, a\right)$, a subspace isomorphic to \mathbb{C}^{r+s+1}.

With V so regarded as a subspace of \mathbb{C}^{r+s+1}, the maps $\alpha: W \times \mathbb{C}^{1} \rightarrow \mathbf{V}$ and $\beta: \mathbf{V} \rightarrow V \times \mathbb{C}^{1}$ are given on underlying point sets by

$$
\begin{gathered}
\alpha\left(x_{1}, \ldots, x_{r}, a\right)=\left(x_{1}, \ldots, x_{r}, 0, \ldots, 0, a\right) \\
\beta\left(x_{1}, \ldots, x_{r}, y_{1} \ldots, y_{s}, a\right)=\left(x_{1}, \ldots, x_{r}, a y_{1}, \ldots, a y_{s}, a\right) .
\end{gathered}
$$

The map \mathfrak{t} is induced by projection to the last coordinate. For $a \neq 0, \beta$ maps the fiber $\mathbf{V}_{a}:=\mathfrak{t}^{-1}(a)$ isomorphically onto $V \times\{a\}$, i.e.,

$$
\begin{equation*}
\mathbf{V}_{a}=\left\{\left(x_{1}, \ldots, x_{r}, y_{1} \ldots, y_{s}, a\right) \mid\left(x_{1}, \ldots, x_{r}, a y_{1}, \ldots, a y_{s}\right) \in V\right\} \tag{2.2.1}
\end{equation*}
$$

The embedding of $C(V, W)=\mathbf{V}_{0}$ in $\mathbf{V} \subset \mathbb{C}^{r} \times \mathbb{C}^{s} \times \mathbb{C}^{s+1}$ arises from the surjection $\bar{\psi}$ obtained from ψ by modding out T. This $\bar{\psi}$ factors as

$$
\mathcal{O}_{V}\left[T_{1}^{\prime}, \ldots, T_{s}^{\prime}\right] \rightarrow \mathcal{O}_{W}\left[T_{1}^{\prime}, \ldots, T_{s}^{\prime}\right] \rightarrow \mathcal{R} / T \mathcal{R}
$$

Comparing this embedding to (1.2.1), we find that the underlying point set of \mathbf{V}_{0} consists of all $(w, 0, z, 0) \in \mathbb{C}^{r} \times \mathbb{C}^{s} \times \mathbb{C}^{s} \times \mathbb{C}^{1}$ with $(w, z) \in \mathbb{C}(V, W)$, where $C(V, W)$ is regarded as being embedded into $\mathbb{C}^{r} \times \mathbb{C}^{s}$ as in (1.2); and then passing as above from $\mathbb{C}^{r} \times \mathbb{C}^{s} \times \mathbb{C}^{s} \times \mathbb{C}^{1}$ to \mathbb{C}^{r+s+1}, we can write

$$
\begin{equation*}
\mathfrak{t}^{-1}(0)=\mathbf{V}_{0}=\left\{(w, z, 0) \in \mathbb{C}^{r} \times \mathbb{C}^{s} \times \mathbb{C}^{1} \mid(w, z) \in C(V, W)\right\} \tag{2.2.2}
\end{equation*}
$$

(2.3). To prove (1.3.1), we first note that since \mathfrak{t} is flat, therefore \mathbf{V}_{0} is nowhere dense in \mathbf{V}, so that for any point $(w, z, 0) \in \mathbf{V}_{0}$, there exists an analytic map

$$
\phi: \mathbb{D} \rightarrow \mathbf{V} \quad\left(\mathbb{D}:=\text { unit disc in } \mathbb{C}^{1}\right)
$$

such that

$$
\phi(\mathbb{D}-\{0\}) \subset \mathbf{V}-\mathbf{V}_{0} \quad \text { and } \quad \phi(0)=(w, z, 0)
$$

(This follows, e.g., from the Nullstellensatz and from the algebraic fact that in a noetherian local ring A-like the stalk at $(w, z, 0)$ of $\mathcal{O}_{\mathbf{V}}$ —any prime ideal is the intersection of all prime ideals \wp containing it and such that $\operatorname{dim}(A / \wp)=1$.) Set

$$
\phi(\xi)=(\lambda(\xi), \mu(\xi), \tau(\xi)) \in \mathbb{C}^{r} \times \mathbb{C}^{s} \times \mathbb{C}^{1} \quad(\xi \in \mathbb{D})
$$

For ξ sufficiently small, $\tau(\xi)$ is given by a convergent power series

$$
\tau(\xi)=a \xi^{q}+a_{1} \xi^{q+1}+\ldots \quad(a \neq 0, q>0)
$$

With $b \in \mathbb{C}$ such that $a b^{q}$ is real and positive, we have then, for real $t>0$:

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \tau(b t) /|\tau(b t)|=1 \tag{2.3.1}
\end{equation*}
$$

Assuming, as we may, that $|b|=1$, consider the real analytic map $\varphi:(-1,1) \rightarrow V$ given by

$$
\varphi(t)=(\lambda(b t), \mu(b t) \tau(b t)) \in V \quad(t \in(-1,1))
$$

see (2.2.1). Then $\pi_{f} \varphi(t)=\mu(b t) \tau(b t)$; and since $\mu(0)=z$ and $\tau(0)=0$, (1.3.1) results from (2.3.1).
3. Differential functoriality of the specialization over \mathbb{R}. In this section we look at maps of analytic spaces primarily in terms of underlying topological spaces.
(3.1). Let $\mathfrak{t}: \mathbf{V} \rightarrow \mathbb{C}$ be the specialization of (V, W) to $C(V, W)$, see $\S 2$. The specialization over \mathbb{R} (or \mathbb{R}-specialization) of (V, W) to $C(V, W)$ is the real analytic space

$$
\mathbb{R}_{\mathbb{R}} \mathbf{V}:=\mathbb{R} \times_{\mathbb{C}} \mathbf{V}=\mathfrak{t}^{-1}(\mathbb{R})
$$

As in §2, we have natural maps

$$
W \times \mathbb{R} \xrightarrow{\alpha}_{\mathbb{R}} \mathbf{V} \xrightarrow{\beta} V \times \mathbb{R} .
$$

The fibers $\mathbf{V}_{a}:=\mathfrak{t}^{-1}(a)(a \in \mathbb{R})$ of $\mathfrak{t}: \mathbb{R}^{\mathbf{V}} \rightarrow \mathbb{R}$ are all real-isomorphic, via β, to V, except for $\mathbf{V}_{0} \cong C(V, W)$.
(3.2) Let (V, W) be as in (1.1), and let $\left(V^{\prime}, W^{\prime}\right)$ be another such pair. Define $\mathfrak{t}^{\prime}:{ }_{\mathbb{R}} \mathbf{V}^{\prime} \rightarrow \mathbb{R}$ as above (with respect to $W^{\prime} \subset V^{\prime}$).

Let $f: V \rightarrow V^{\prime}$ be a C^{1} (continuously differentiable) map such that $f(W) \subset W^{\prime}$.
We recall the definition of C^{1} map. A map $g: V \rightarrow \mathbb{R}^{n}$ is C^{1} at $v \in V$ if for some analytic germ-embedding $(V, v) \hookrightarrow\left(\mathbb{C}^{N}, 0\right)$, there is an open neighborhood U of 0 in \mathbb{C}^{N} and a C^{1} map $U \rightarrow \mathbb{R}^{n}$ whose restriction to $V \cap U$ coincides with that of g. A germ-map $\gamma:(V, v) \rightarrow\left(V^{\prime}, v^{\prime}\right)$ is C^{1} if its composition with some embedding $\left(V^{\prime}, v^{\prime}\right) \hookrightarrow\left(\mathbb{C}^{M}, 0\right)$ is C^{1} at v. (If this property of γ holds for one choice of embeddings then it holds for any choice.) Finally, the above map f is C^{1} if its germ at each $v \in V$ is C^{1}.

Define the $\mathrm{C}^{1} \operatorname{map} \mathbf{f}:{ }_{\mathbb{R}} \mathbf{V}-\mathbf{V}_{0} \longrightarrow \mathbb{R} \mathbf{V}^{\prime}-\mathbf{V}_{0}^{\prime}$ to be the composition

$$
\mathbb{R} \mathbf{V}-\mathbf{V}_{0} \underset{\beta}{\sim} V \times\left(\mathbb{R}^{1}-\{0\}\right) \underset{f \times \mathrm{id}}{ } V^{\prime} \times\left(\mathbb{R}^{1}-\{0\}\right) \underset{\beta^{\prime-1}}{\sim} \mathbb{R}^{\prime}-\mathbf{V}_{0}^{\prime}
$$

Theorem (3.3). With preceding notation, assume further that W is a complex submanifold of the analytic space V. Then the map \mathbf{f} has a unique extension to a continuous map (still denoted $\mathbf{f}): \mathbb{R}^{\mathbf{V}} \rightarrow_{\mathbb{R}} \mathbf{V}^{\prime}$; and the following diagram commutes:

In particular, $\mathfrak{t}^{\prime} \circ \mathbf{f}=\mathfrak{t}$. The restriction \mathbf{f}_{0} of \mathbf{f} to $\mathbf{V}_{0}=C(V, W)$ is a continuous map from $C(V, W)$ to $C\left(V^{\prime}, W^{\prime}\right)$, fitting into a commutative diagram

see (1.1), and for each $w \in W$, the restriction of \mathbf{f}_{0} to $p^{-1}(w)$ is real-analytic. ${ }^{2}$

[^1]Proof. The assertions need only be verified near an arbitrary point $\nu \in \mathbf{V}_{0}$, so we can introduce coordinates as in (2.2). To be more precise, let $\pi: \mathbf{V} \rightarrow V$ be the canonical map, corresponding to the inclusion $\mathcal{O}_{V} \hookrightarrow \mathcal{R}$; and define $\pi^{\prime}: \mathbf{V}^{\prime} \rightarrow V^{\prime}$ similarly. Let $w:=\pi(\nu)=p \rho^{-1}(\nu) \in W$ (see (2.1), noting that π is β followed by the projection $\left.V \times \mathbb{C}^{1} \rightarrow V\right)$, and let $w^{\prime}:=f(w) \in W^{\prime}$. Choose neighborhoods V^{*} of w in V and $V^{\prime *}$ of w^{\prime} in V^{\prime} such that $f\left(V^{*}\right) \subset V^{\prime *}$ and such that $\left(V^{*}, W \cap V^{*}, w\right)$ and $\left(V^{\prime *}, W^{\prime} \cap V^{\prime *}, w^{\prime}\right)$ can be embedded into $\left(\mathbb{C}^{r} \times \mathbb{C}^{s}, \mathbb{C}^{r}, 0\right)$ and $\left(\mathbb{C}^{r^{\prime}} \times \mathbb{C}^{s^{\prime}}, \mathbb{C}^{r^{\prime}}, 0\right)$ respectively, as in (1.2). Then $\mathbf{V}^{*}:=\pi^{-1}\left(V^{*}\right)$ is the specialization of V^{*} to $C\left(V^{*}, W \cap V^{*}\right)$. From the definition of \mathbf{f} and the relation between β and π, we see that $f \pi=\pi^{\prime} \mathbf{f}$, so that $\mathbf{f} \operatorname{maps}_{\mathbb{R}} \mathbf{V}^{*}-\mathbf{V}_{0}$ into $\mathbf{V}^{\prime *}:=\pi^{\prime-1}\left(V^{\prime *}\right)$. Hence we may-and do-assume that $\left(V, V^{\prime}, \mathbf{V}, \mathbf{V}^{\prime}\right)=\left(V^{*}, V^{\prime *}, \mathbf{V}^{*}, \mathbf{V}^{\prime *}\right)$, coordinatized as in (1.2) and (2.2). We may assume further, because W is a submanifold of V, that W is actually identical with the flat space L in (1.2).

Uniqueness of the extension holds because ${ }_{\mathbb{R}} \mathbf{V}-\mathbf{V}_{0}$ is dense in ${ }_{\mathbb{R}} \mathbf{V}$, as follows via (2.2.1) and (2.2.2) from Proposition (1.3): setting $v_{i}=\left(x_{i}, y_{i}\right)$ there, and with a_{i} real and positive, the sequence $\left(x_{i}, a_{i} y_{i}, a_{i}^{-1}\right)$ in $_{\mathbb{R}} \mathbf{V}-\mathbf{V}_{0}$ has limit $(w, z, 0)$. (Since $y_{i} \rightarrow 0$, therefore $a_{i} \rightarrow \infty$ if $z \neq 0$; and if $z=0$ then we can take $y_{i}=0$ and $a_{i}=i$ for all i.)

Commutativity of the right half of (3.3.1) can be checked on the dense set ${ }_{\mathbb{R}} \mathbf{V}-\mathbf{V}_{0}$, where it holds by the definition of \mathbf{f}. The left half can be also be checked outside of \mathbf{V}_{0} (since $W \times(\mathbb{R}-\{0\})$ is dense in $W \times \mathbb{R}$), and there it is obvious because β^{\prime} is bijective and $\beta \circ \alpha=i \times$ id, etc., see $\S 2$.

Now let us show that the asserted extension of \mathbf{f} exists. The question comes down to the existence, for each $\nu \in \mathbf{V}_{0}$, of a point $\nu^{\prime} \in \mathbf{V}^{\prime}$ such that every sequence $\left(\nu_{i}\right)_{i>0}$ in ${ }_{\mathbb{R}} \mathbf{V}-\mathbf{V}_{0}$ with $\nu_{i} \rightarrow \nu$ satisfies $\lim \mathbf{f}\left(\nu_{i}\right)=\nu^{\prime}$. After embedding $\mathbb{R}^{\mathbf{R}} \mathbf{V}$ into $\mathbb{C}^{r} \times \mathbb{C}^{s} \times \mathbb{R}^{1}$ as above, we have $\nu=(0, z, 0)$ for some $z \in \mathbb{C}^{s}$, and $\nu_{i}=\left(x_{i}, y_{i}, a_{i}\right)$. The description of β preceding (2.2.1) gives an expression for \mathbf{f} in coordinates:

$$
\mathbf{f}(x, y, a)=\left(\xi, a^{-1} \eta, a\right), \quad \text { where } \quad(\xi, \eta):=f(x, a y)
$$

The question thus becomes whether the sequence $\mathbf{f}\left(x_{i}, y_{i}, a_{i}\right)=\left(\xi_{i}, a_{i}^{-1} \eta_{i}, a_{i}\right)$ has a limit depending only on z. Since $x_{i} \rightarrow 0, y_{i} \rightarrow z$, and $a_{i} \rightarrow 0$, and since f is continuous, therefore $\left(\xi_{i}, \eta_{i}\right) \rightarrow f(0,0)=(0,0)$, so that $\xi_{i} \rightarrow 0$. It remains to investigate $\lim a_{i}^{-1} \eta_{i}$.

By the definition of C^{1} map, there exists a neighborhood U^{*} of $(0,0)$ in $\mathbb{C}^{r} \times \mathbb{C}^{s}$ and a $\mathrm{C}^{1} \operatorname{map} F: U^{*} \rightarrow \mathbb{C}^{r^{\prime}} \times \mathbb{C}^{s^{\prime}}$ agreeing with f on $V \cap U^{*}$. To simplify, we multiply F by a \mathbb{C}^{∞} function $\psi: \mathbb{C}^{r} \times \mathbb{C}^{s} \rightarrow \mathbb{R}$ which takes the value 1 on a small neighborhood U_{1} of $(0,0)$ and vanishes outside a compact subset \bar{U} of U^{*}; then after replacing V by $V \cap U_{1}$, and F by the extension of ψF which takes the value $(0,0)$ outside \bar{U}, we may assume that $U^{*}=\mathbb{C}^{r} \times \mathbb{C}^{s}$. We may also assume that $F\left(\mathbb{C}^{r} \times\{0\}\right) \subset \mathbb{C}^{r^{\prime}} \times\{0\}$ (take $U_{1} \subset U$ where U is as in (1.2), recall that $L=W$, see above, and that $\left.f(W) \subset W^{\prime}\right)$.

Denote the derivative of F at (x, y)-a real-linear map from $\mathbb{C}^{r} \times \mathbb{C}^{s}$ to $\mathbb{C}^{r^{\prime}} \times \mathbb{C}^{s^{\prime}}$ — by $D F_{(x, y)}$. Set $F\left(x_{i}, 0\right)=:\left(x_{i}^{\prime}, 0\right)$. Let $\operatorname{pr}_{2}: \mathbb{C}^{r^{\prime}} \times \mathbb{C}^{s^{\prime}} \rightarrow \mathbb{C}^{s^{\prime}}$ be the projection, let $q^{j}\left(1 \leq j \leq 2 s^{\prime}\right)$ be the real coordinate functions on $\mathbb{C}^{s^{\prime}}$, and set $F^{j}:=q^{j} \circ \operatorname{pr}_{2} \circ F$. We are concerned with the limits (as $i \rightarrow \infty$):
$\lim _{i} q^{j}\left(a_{i}^{-1} \eta_{i}\right)=\lim _{i} a_{i}^{-1} q^{j} \operatorname{pr}_{2}\left(\left(\xi_{i}, \eta_{i}\right)-\left(x_{i}^{\prime}, 0\right)\right)=\lim _{i} a_{i}^{-1}\left(F^{j}\left(x_{i}, a_{i} y_{i}\right)-F^{j}\left(x_{i}, 0\right)\right)$.

But a_{i} being real, the Mean Value Theorem gives

$$
\begin{aligned}
\lim _{i} a_{i}^{-1}\left(F^{j}\left(x_{i}, a_{i} y_{i}\right)-F^{j}\left(x_{i}, 0\right)\right) & =\lim _{i} D F_{\left(x_{i}, b_{i j} a_{i} y_{i}\right)}^{j}\left(0, y_{i}\right) \quad\left(0<b_{i j}<1\right) \\
& =D F_{(0,0)}^{j}(0, z)
\end{aligned}
$$

the last equality by continuity of $D F$ (needed only at points of W). Thus, the extended \mathbf{f} exists.

It is clear that \mathbf{f} maps \mathbf{V}_{0} into \mathbf{V}_{0}^{\prime}. Commutativity of (3.3.2) follows, via (2.2.2), (1.2.2), and (1.2.3), from the description of \mathbf{f}_{0} entailed by the foregoing, viz.

$$
\begin{equation*}
\mathbf{f}_{0}(0, z, 0)=\left(0, \operatorname{pr}_{2} D F_{(0,0)}(z), 0\right) \tag{3.3.3}
\end{equation*}
$$

This description also shows that the restriction of \mathbf{f}_{0} to $p^{-1}(w)$ is real-analytic (even real-linear in these coordinates).

For any subvariety (i.e., reduced analytic subspace) V_{1} of V, set $W_{1}:=W \times_{V} V_{1}$, so that the deformation of V_{1} to $C\left(V_{1}, W_{1}\right)$ is canonically embedded in \mathbf{V}. If in the preceding proof we have $(0, z, 0) \in C\left(V_{1}, W_{1}\right)$, then by (1.3), we can choose $\left(x_{i}, y_{i}, a_{i}\right) \rightarrow(0, z, 0)$ such that $\left(x_{i}, a_{i} y_{i}\right) \in V_{1}$, and consequently:

Corollary (3.4). If V_{1} and V_{1}^{\prime} are subvarieties of V and V^{\prime} respectively, and if $f\left(V_{1}\right) \subset V_{1}^{\prime}$, then \mathbf{f}_{0} maps $C\left(V_{1}, W_{1}\right)$ continuously into $C\left(V_{1}^{\prime}, W_{1}^{\prime}\right)$.
Remark (3.5). The same proof as in (3.3) shows that the C^{1} map \mathbf{F} defined by

$$
\mathbf{F}(x, y, a):=\left(\xi, a^{-1} \eta, a\right) \quad((\xi, \eta):=F(x, a y)) \quad\left(x \in \mathbb{C}^{r}, y \in \mathbb{C}^{s}, 0 \neq a \in \mathbb{R}\right)
$$

extends continuously to a map (still denoted \mathbf{F}) from $\mathbb{C}^{r} \times \mathbb{C}^{s} \times \mathbb{R}$ to $\mathbb{C}^{r^{\prime}} \times \mathbb{C}^{s^{\prime}} \times \mathbb{R}$ such that $\mathfrak{t}^{\prime} \circ \mathbf{F}=\mathfrak{t}$, where now \mathfrak{t} and \mathfrak{t}^{\prime} denote the respective projections to \mathbb{R}.
4. Multiplicities of components of $\boldsymbol{C}(\boldsymbol{V}, \boldsymbol{W})$. By component of a complex analytic space Z (not necessarily reduced) is meant an irreducible component of the reduced space $Z_{\text {red }}$. Let Y be such a component, with inclusion map $j: Y \hookrightarrow Z$, and let \mathcal{P} be the defining \mathcal{O}_{Z}-ideal of Y, i.e., the kernel of the natural map $\mathcal{O}_{Z} \rightarrow j_{*} \mathcal{O}_{Y}$. Let y be any point of Y. Then the stalk \mathcal{P}_{y} is an intersection of finitely many minimal prime ideals P_{i} in $\mathcal{O}_{Z, y}$, corresponding to the local components of Y at y.

Proposition-Definition (4.1). The length e of the local artin ring $\left(\mathcal{O}_{Z, y}\right)_{P_{i}}$ depends only on Y, and not on y or P_{i}. This integer is called the multiplicity of Y in Z, and denoted $e_{Y, Z}$.
Proof. For each $n \geq 0$, set $\mathcal{G}_{n}:=j^{*}\left(\mathcal{P}^{n} / \mathcal{P}^{n+1}\right)$, a coherent \mathcal{O}_{Y}-module. Let k be the residue field of $\left(\mathcal{O}_{Z, y}\right)_{P_{i}}$, and set

$$
e_{n}:=\operatorname{dim}_{k}\left(\mathcal{G}_{n, y}\right) \otimes_{\mathcal{O}_{Y, y}} k
$$

so that $e_{n}=0$ for $n \gg 0$ and $e=\sum_{n=0}^{\infty} e_{n}$. Then by [Ho, p. 20-10, Prop. 6] the module \mathcal{G}_{n} is locally free of rank e_{n} outside a nowhere dense analytic subspace of Y. Thus e_{n} (for given n), and hence e, depends only on Y.

Remark (4.1.1). If U is an open subset of Z, and Y_{1}, \ldots, Y_{r} are the components of $Y \cap U$, then clearly $e_{Y_{i}, U}=e_{Y, Z}$ for all i.
(4.2). Let (V, W) be as in (1.1), and let $\left(V_{\lambda}\right)_{\lambda \in \Lambda}$ be the family of all components of V. For each λ, let $W_{\lambda}:=\left(W \times_{V} V_{\lambda}\right) \subset V_{\lambda}$, and let \mathcal{I}_{λ} be the defining $\mathcal{O}_{V_{\lambda}}$-ideal of W_{λ}. Set

$$
\mathcal{R}_{\lambda}:=\oplus_{n \in \mathbb{Z}} \mathcal{I}_{\lambda}^{n} T^{-n} \subset \mathcal{O}_{V_{\lambda}}\left[T, T^{-1}\right]
$$

and

$$
\mathbf{V}_{\lambda}:=\operatorname{Specan}\left(\mathcal{R}_{\lambda}\right),
$$

the specialization of $\left(V_{\lambda}, W_{\lambda}\right)$ to $C\left(V_{\lambda}, W_{\lambda}\right)$. With notation as in $\S 2$, there is an obvious commutative diagram, whose vertical arrows are closed immersions:

The \mathbf{V}_{λ} are all the components of \mathbf{V} : this need only be verified outside the nowhere dense analytic subset \mathbf{V}_{0}, where it follows from (2.1)(ii).

With \mathfrak{t}_{λ} the restriction of \mathfrak{t} to \mathbf{V}_{λ} we have

$$
C(V, W)=\mathfrak{t}^{-1}(0)=\bigcup_{\lambda} \mathfrak{t}_{\lambda}^{-1}(0)=\bigcup_{\lambda} C_{\lambda}\left(V_{\lambda}, W_{\lambda}\right) .
$$

Now W is covered by open subsets $U \subset V$ meeting only finitely many V_{λ}, and for such a $U, p^{-1}(U) \subset C(V, W)$ meets $C\left(V_{\lambda}, W_{\lambda}\right)$ only for those same λ; so the family $C\left(V_{\lambda}, W_{\lambda}\right)$ is locally finite in $C(V, W)$. Hence every component of $C(V, W)$ is a component of $C\left(V_{\lambda}, W_{\lambda}\right)$ for at least one and at most finitely many λ. Conversely, if $\operatorname{dim} V_{\lambda}=\operatorname{dim} V$ then every component of $C\left(V_{\lambda}, W_{\lambda}\right)$ is a component of $C(V, W)$ (since $\operatorname{dim} C(V, W)=\operatorname{dim} V$, by (2.1)).

Proposition (4.2.2). Assume that V is equidimensional, i.e., all the components V_{λ} of V have the same dimension. Let C_{*} be a component of $C(V, W)$. Then

$$
e_{C_{*}, C(V, W)}=\sum_{\lambda}^{*} e_{C_{*}, C\left(V_{\lambda}, W_{\lambda}\right)}
$$

the sum being over all λ such that C_{*} is a component of $C\left(V_{\lambda}, W_{\lambda}\right)$.
Proof. Note that after fixing $y \in C_{*}$ we can replace V by any open subset V^{*} containing $p(y)(p: C(V, W) \rightarrow W$ the canonical map): first, by (4.1.1), the component of $C_{*} \cap p^{-1}\left(W \cap V^{*}\right)$ containing y has multiplicity $e_{C_{*}, C(V, W)}$ in $p^{-1}\left(W \cap V^{*}\right)=$ $C\left(V^{*}, W \cap V^{*}\right)$, and similarly for $C\left(V_{\lambda} \cap V^{*}, W_{\lambda} \cap V^{*}\right)$; and second, though $V_{\lambda} \cap V^{*}$ may no longer be irreducible, that doesn't matter because (4.2.2) is clearly equivalent to a similar statement in which we assume only that $V=\cup V_{\lambda}$ where each V_{λ} is a union of components of V (all having the same dimension as V) and no two V_{λ} have a common component. So pick V^{*} as in (1.2), and embed \mathbf{V} in \mathbb{C}^{r+s+1} as in (2.2).

Now let B_{*} be a local component of C_{*} at y, and let P be the prime ideal in $\mathcal{O}_{\mathbf{V}, y}$ consisting of germs of functions vanishing on B_{*}. Let $t \in \mathcal{O}_{\mathbf{V}, y}$ be the germ of the function $\mathfrak{t}: \mathbf{V} \rightarrow \mathbb{C}$, so that $\mathcal{O}_{\mathbf{V}, y} /(t)=\mathcal{O}_{C(V, W), y}$, see (2.1). Then $e_{C_{*}, C(V, W)}$ is, by definition, the length of the artin local ring $\left(\mathcal{O}_{\mathbf{V}, y} /(t)\right)_{P}$, i.e., (since \mathfrak{t} is flat and hence t is not a zero-divisor in $\left.\mathcal{O}_{\mathbf{V}, y}\right)$ the multiplicity of the ideal $t\left(\mathcal{O}_{\mathbf{V}, y}\right)_{P}$. But by the equality of algebraic and topological intersection numbers (see e.g., [GL, p. 184, Fact $])$, that multiplicity is the intersection number $i\left(\left(\mathbb{C}^{r+s} \times\{0\}\right) \cdot \mathbf{V}, C_{*}\right)$ defined in [BH, p. 482, 4.4]. (The intersection takes place in \mathbb{C}^{r+s+1}.) Similarly, with $\mathbf{V}_{\lambda} \subset \mathbf{V}$ as in (4.2.1), we have $e_{C_{*}, C\left(V_{\lambda}, W_{\lambda}\right)}=i\left(\left(\mathbb{C}^{r+s} \times\{0\}\right) \cdot \mathbf{V}_{\lambda}, C_{*}\right)$. So the conclusion results from the equality

$$
i\left(\left(\mathbb{C}^{r+s} \times\{0\}\right) \cdot \mathbf{V}, C_{*}\right)=\sum_{\lambda}^{*} i\left(\left(\mathbb{C}^{r+s} \times\{0\}\right) \cdot \mathbf{V}_{\lambda}, C_{*}\right)
$$

given in [BH, p. 483].
(4.3) Suppose next that we have two equidimensional reduced analytic spaces V and V^{\prime}, along with complex submanifolds $W \subset V$ and $W^{\prime} \subset V^{\prime}$. We consider a situation as in $\S 3$, where there is a $C^{1} \operatorname{map} f:(V, W) \rightarrow\left(V^{\prime}, W^{\prime}\right)$; and we assume that f is invertible, i.e., that there is a $C^{1} \operatorname{map} g:\left(V^{\prime}, W^{\prime}\right) \rightarrow(V, W)$ such that $f \circ g$ and $g \circ f$ are both identity maps. Then by Theorem (3.3), f and g naturally induce inverse homeomorphisms \mathbf{f} and \mathbf{g} between \mathbf{V} and \mathbf{V}^{\prime}, restricting to homeomorphisms \mathbf{f}_{0} and \mathbf{g}_{0} between the respective subspaces $C(V, W)$ and $C\left(V^{\prime}, W^{\prime}\right) .^{3}$

Theorem (4.3.1). Under the preceding circumstances, the homeomorphism \mathbf{f}_{0} gives a one-one multiplicity-preserving correspondence between the components of $C(V, W)$ and those of $C\left(V^{\prime}, W^{\prime}\right)$.

Proof. The one-one correspondence obtains because any homeomorphism of analytic spaces maps each component of the source onto a component of the target, [GL, p. 172, (A8)]. We need to show that corresponding components C_{*} and C_{*}^{\prime} have the same multiplicity (in $C(V, W), C\left(V^{\prime}, W^{\prime}\right)$ respectively). The proof which follows is essentially the same as that in [GL, $\S D]$, to which we refer for more details.

Let $y \in C_{*} \subset \mathbf{V}_{0}$, and, $\pi: \mathbf{V} \rightarrow V$ being the canonical map, let $v:=\pi(y)$. Using (4.1.1), and arguing as in the beginning of the proof of (3.3), we find that we may replace \mathbf{V} by $\pi^{-1}\left(V^{*}\right)$ where V^{*} is an "embeddable" neighborhood of v (i.e., V^{*} is as in (1.2)) such that $V^{\prime *}:=f\left(V^{*}\right)$ is also embeddable; and we may replace \mathbf{V}^{\prime} by $\pi^{-1}\left(V^{\prime *}\right)$. Thus we reduce to where V and V^{\prime} are embedded in some \mathbb{C}^{n} and $\mathbb{C}^{n^{\prime}}$ respectively, with $W=L$, see (1.2), and similarly for W^{\prime}. Then as in the proof of (3.3) we can assume, after replacing V by a smaller neighborhood of v if necessary, that there is a C^{1} map $F_{n}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n^{\prime}}$ agreeing with f on V; and similarly assume that there is a $\mathrm{C}^{1} \operatorname{map} G_{n^{\prime}}: \mathbb{C}^{n^{\prime}} \rightarrow \mathbb{C}^{n}$ agreeing with g on V^{\prime}. We

[^2]then define inverse C^{1} maps
$$
\mathbb{C}^{n} \times \mathbb{C}^{n^{\prime}} \underset{G}{\stackrel{F}{\rightleftarrows}} C^{n^{\prime}} \times \mathbb{C}^{n}
$$
by
\[

$$
\begin{aligned}
F(x, y) & :=\left(y+F_{n}(x), x-G_{n^{\prime}}\left(y+F_{n}(x)\right)\right) \\
G\left(x^{\prime}, y^{\prime}\right) & :=\left(y^{\prime}+G_{n^{\prime}}\left(x^{\prime}\right), x^{\prime}-F_{n}\left(y^{\prime}+G_{n^{\prime}}\left(x^{\prime}\right)\right)\right)
\end{aligned}
$$
\]

and verify that for $x \in V$ (resp. $\left.x^{\prime} \in V^{\prime}\right)$ we have

$$
F(x, 0)=(f(x), 0) \quad \text { resp. } \quad G\left(x^{\prime}, 0\right)=\left(g\left(x^{\prime}\right), 0\right)
$$

Hence, if we embed V and V^{\prime} in $\mathbb{C}^{n+n^{\prime}}$ by

$$
V \xrightarrow{\sim} V \times\{0\} \hookrightarrow \mathbb{C}^{n} \times \mathbb{C}^{n^{\prime}} \quad \text { resp. } \quad V^{\prime} \xrightarrow{\sim} V^{\prime} \times\{0\} \hookrightarrow \mathbb{C}^{n^{\prime}} \times \mathbb{C}^{n}
$$

and correspondingly embed ${ }_{\mathbb{R}} \mathbf{V}$ and $\mathbb{R}^{\prime} \mathbf{V}^{\prime}$ in $\mathbb{C}^{n+n^{\prime}} \times \mathbb{R}$, see (2.2), then (3.5) gives us inverse homeomorphisms

$$
\mathbb{C}^{n+n^{\prime}} \times \mathbb{R} \underset{\mathbf{G}}{\stackrel{\mathbf{F}}{\rightleftarrows}} \mathbb{C}^{n+n^{\prime}} \times \mathbb{R}
$$

with $\mathbf{F}\left({ }_{\mathbb{R}} \mathbf{V}\right) \subset{ }_{\mathbb{R}} \mathbf{V}^{\prime}$ and $\mathbf{G}\left({ }_{\mathbb{R}} \mathbf{V}^{\prime}\right) \subset{ }_{\mathbb{R}} \mathbf{V}$. And finally, in view of (4.2.2) and (3.4) we can replace V by a component V_{λ}, i.e., we may assume V to be irreducible, of dimension, say, d.

Now the underlying idea is that, as we have just seen, the multiplicity of a component is an intersection multiplicity, and as such should be invariant under the homeomorphism \mathbf{F}. Technical complications arise from working with ${ }_{\mathbb{R}} \mathbf{V}$ rather than with \mathbf{V} (which has been necessitated by the real derivatives of f and g being not necessarily complex-linear).

Setting $N:=n+n^{\prime}$, we first deduce from [BH, p. 475, 2.15], applied to the inclusion of $\mathbb{C}^{N} \times \mathbb{R}^{1}$ (with fixed orientation) into $\mathbb{C}^{N} \times \mathbb{C}^{1}$, and to the smooth locus U of $\mathbf{V}-\mathbf{V}_{0}$ (which has real codimension ≥ 2 in $Y:=\mathbf{V}$), that ${ }_{\mathbb{R}} \mathbf{V}$ has a fundamental class ρ in the Borel-Moore homology $H_{2 d+1}(\mathbb{R} \mathbf{V})$. Using the projection formula, we see further that $\pm \rho$ is the intersection of the fundamental classes of $\mathbb{C}^{N} \times \mathbb{R}$ and of \mathbf{V}. (Strictly speaking, the intersection class lies in $H_{2 d+1}^{\Phi}\left(\mathbb{C}^{N} \times \mathbb{C}^{1}\right)$ where Φ is the family of closed subsets of $\mathbb{R}^{\mathbf{V}} \mathbf{V}$; but that group is canonically isomorphic to $\left.H_{2 d+1}(\mathbb{R} \mathbf{V}).\right)^{4}$ Then associativity of the intersection product and the relation

$$
\mathbf{V}_{0}=\left(\mathbb{C}^{N} \times\{0\}\right) \cap_{\mathbb{R}} \mathbf{V}=\left(\mathbb{C}^{N} \times i \mathbb{R}^{1}\right) \cap_{\mathbb{R}} \mathbf{V}=\left(\mathbb{C}^{N} \times i \mathbb{R}^{1}\right) \cap\left(\mathbb{C}^{N} \times \mathbb{R}^{1}\right) \cap \mathbf{V} \quad(i=\sqrt{-1})
$$

show that $e_{C_{*}, C(V, W)}$ is the intersection number $i\left(\left(\mathbb{C}^{N} \times\{0\}\right) \cdot \mathbb{R}^{\mathbf{V}}, C_{*}\right)\left(\right.$ in $\left.\mathbb{C}^{N} \times \mathbb{R}^{1}\right)$, see [GL, p. 176, (B.5.2)]. Given the topological invariance (up to sign) of intersection numbers, the principal remaining problem is to show that the map

[^3]$\mathbf{F}_{*}: H_{2 d+1}\left({ }_{\mathbb{R}} \mathbf{V}\right) \rightarrow H_{2 d+1}\left({ }_{\mathbb{R}} \mathbf{V}^{\prime}\right)$ induced by \mathbf{F} takes ρ to \pm the fundamental class ρ^{\prime} of $\mathbb{R}^{\prime} \mathbf{V}^{\prime}$. (The corresponding statement for $\mathbb{C}^{N} \times\{0\}$ is straightforward.) One can proceed as in $[\mathrm{GL}, \S(\mathrm{D} .4)]$. Another way, since \mathbf{F}_{*} is an isomorphism, is to show that
$$
H_{2 d+1}(\mathbb{R} \mathbf{V}) \cong \mathbb{Z} \cong H_{2 d+1}\left(\mathbb{R}^{\mathbf{V}}\right)
$$
generated, necessarily, by ρ and ρ^{\prime} respectively. This we now do.
Recall that for any locally compact space X, there are canonical isomorphisms
$$
H_{i}\left(X \times \mathbb{R}^{1}\right) \xrightarrow{\sim} H_{i-1}(X) \quad(i \in \mathbb{Z})
$$

These arise, upon identification of \mathbb{R}^{1} with the open unit interval $(0,1)$, from the following exact sequence associated to the inclusion of the pair of points $\{0,1\}$ into the closed unit interval $I:=[0,1]$, see $[\mathrm{BH}, \mathrm{p} .465,1.6]$:

$$
\begin{aligned}
\cdots \longrightarrow H_{i}(X) \oplus H_{i}(X) \xrightarrow{\alpha} & H_{i}(X \times I) \longrightarrow H_{i}\left(X \times \mathbb{R}^{1}\right) \\
& \xrightarrow{\beta} H_{i-1}(X) \oplus H_{i-1}(X) \xrightarrow{\gamma} H_{i-1}(X \times I) \longrightarrow \cdots
\end{aligned}
$$

The point is that the (proper) projection $X \times I \rightarrow X$, being a homotopy equivalence, induces for every i an isomorphism $H_{i}(X \times I) \xrightarrow{\sim} H_{i}(X)$, whose inverse is given by $H_{i}(X) \xrightarrow{\sim} H_{i}(X \times\{a\}) \longrightarrow H_{i}(X \times I)$ for any $a \in I[\mathrm{BH}, \mathrm{p} .465,1.5]$; hence α is surjective, and β maps $H_{i}\left(X \times \mathbb{R}^{1}\right)$ isomorphically onto the kernel of γ, which is isomorphic to $H_{i-1}(X)$ (diagonally embedded in \oplus).

As a corollary, we note that for any integers $i \neq j$, with $j \geq 0$, we have

$$
\begin{equation*}
H_{i}\left(\mathbb{R}^{j}\right) \cong H_{i-j}\left(\mathbb{R}^{0}\right)=0 \tag{4.3.2}
\end{equation*}
$$

the last equality by $[\mathrm{BH}, \mathrm{p} .464,1.3]$. (Similarly, $H_{j}\left(\mathbb{R}^{j}\right)=\mathbb{Z}$.)
Now consider the exact sequence

$$
0=H_{2 d+1}\left(\mathbf{V}_{0}\right) \longrightarrow H_{2 d+1}(\mathbb{R} \mathbf{V}) \longrightarrow H_{2 d+1}\left(\mathbb{R} \mathbf{V}-\mathbf{V}_{0}\right) \xrightarrow{\delta} H_{2 d}\left(\mathbf{V}_{0}\right) \xrightarrow{\epsilon} H_{2 d}(\mathbb{R} \mathbf{V})
$$

see $[\mathrm{BH}, \mathrm{p} .465,1.6]$. Note that \mathbf{V}_{0} has complex dimension d, by (2.1)(i), hence cohomological dimension $2 d$ [$\mathrm{BH}, \mathrm{p} .475,3.1]$, whence the vanishing of $H_{2 d+1}\left(\mathbf{V}_{0}\right)$ see $[\mathrm{BH}, \mathrm{p} .467,(1)]$. By $(2.1)(\mathrm{ii}),{ }_{\mathbb{R}} \mathbf{V}-\mathbf{V}_{0}$ is homeomorphic to the disjoint union of two copies of $V \times \mathbb{R}^{1}$. Since V is, by assumption, irreducible, we have

$$
H_{2 d+1}\left(V \times \mathbb{R}^{1}\right) \cong H_{2 d}(V) \cong \mathbb{Z}
$$

the first isomorphism as above, the second by $[\mathrm{BH}, \mathrm{p} .476,3.3]$. Thus $H_{2 d+1}(\mathbb{R} \mathbf{V})$ is free, of rank 1 or 2 . (The rank is >0 because $\rho \neq 0$, since as above, ρ gives rise via intersection to $e_{C_{*}, C(V, W)}>0$.) Moreover, $H_{2 d}\left(\mathbf{V}_{0}\right)$ is torsion-free [BH, p. 482, 4.3]. It will therefore suffice to show that δ is not the zero map. We do this by noting, with $\left[C_{\mu}\right]$ the fundamental class of the component C_{μ} of $C(V, W)=\mathbf{V}_{0}$, that

$$
\begin{equation*}
\epsilon\left(\sum_{\mu} \pm e_{C_{\mu}, C(V, W)}\left[C_{\mu}\right]\right)=0 \tag{4.3.3}
\end{equation*}
$$

Indeed, with the right choice of \pm, the left side is the image under ϵ of the intersection class $\left(\mathbb{C}^{N} \times\{0\}\right) \cdot{ }_{\mathbb{R}} \mathbf{V}$ (see above). But by compatibility of intersections with "enlargement of families of supports" [BH, p.468, 1.12], we have a commutative diagram, where $H^{Z}(-)$ stands for the Borel-Moore homology of $\mathbb{C}^{N} \times \mathbb{R}^{1}$ with supports in closed subsets of Z :

in which the lower left corner vanishes, by (4.3.2); and (4.3.3) results.

5. Relative complexification of the normal cone.

We now construct the relative complexification of a cone C, and for $C=C(V, W)$ establish C^{1} functorial properties of this complexification (Theorem (5.3.1)).

Let C be a cone over a complex space W, i.e., $C=\operatorname{Specan}(\mathcal{G})$ for some finitely presented graded \mathcal{O}_{W}-algebra \mathcal{G}, see (1.1.1). Assume that all the irreducible components of C have the same dimension, and that all the fibers of the canonical map $C \rightarrow W$ have positive dimension. For example, if $V \supset W$ is as in (1.1), with V equidimensional and W nowhere dense in V, then (2.1) implies that $C(V, W)$ is equidimensional, of dimension $\operatorname{dim} C=\operatorname{dim} V>\operatorname{dim} W$, and hence the fibers of $p: C(V, W) \rightarrow W$ are all positive-dimensional.

Recall that a subset of a complex space X is Zariski-open if its complement is an analytic subset of X. (Analytic subsets of X are understood to be closed, defined locally by the vanishing of sections of \mathcal{O}_{X}.)

Lemma (5.1). There exists a unique analytic subset \widetilde{C} of $C \times{ }_{W} C$ such that with $\tilde{p}: \widetilde{C} \rightarrow W$ the natural composition $\widetilde{C} \hookrightarrow C \times{ }_{W} C \rightarrow W$,
(i) for any open dense $U \subset W, \tilde{p}^{-1}(U)$ is dense in \widetilde{C}; and
(ii) there is a dense Zariski-open subset W_{0} of W such that for every $w \in W_{0}$, the reduced fiber $\widetilde{C}_{w}:=\tilde{p}^{-1}(w)_{\mathrm{red}}$ is

$$
\widetilde{C}_{w}=\bigcup_{i \in I_{w}} C_{w}^{i} \times C_{w}^{i} \subset C \times_{W} C
$$

$\left(C_{w}^{i}\right)_{i \in I_{w}}$ being the family of irreducible components of the cone $C_{w}:=p^{-1}(w)$.
In fact \widetilde{C} is a union of irreducible components of $C \times{ }_{W} C$, and so is stable under the natural $\mathbb{C}^{1} \times \mathbb{C}^{1}$ action (given by μ in (1.1.1)).

We will call $\tilde{p}: \widetilde{C} \rightarrow W$ the relative complexification of $p: C \rightarrow W$. That's because for almost all $w \in W$ (e.g., $w \in W_{0}$), \widetilde{C}_{w} is real-analytically isomorphic to a reduced complexification of $\left(C_{w}\right)_{\text {red }}$, see (5.3.0). For example, if \mathcal{G} is the symmetric algebra of a finite-rank locally free \mathcal{O}_{W}-module, i.e., C is a complex vector bundle over W, then $\widetilde{C}=C \times{ }_{W} C$ together with the natural addition on the fibers and the \mathbb{C}^{1} action specified immediately before Thm. (5.3.1) below, is just the usual complexification of the real vector bundle underlying C.

Proof. Uniqueness is immediate: if $\left(\widetilde{C}^{\prime}, W_{0}^{\prime}\right)$ and $\left(\widetilde{C}^{\prime \prime}, W_{0}^{\prime \prime}\right)$ are two pairs satisfying the conditions of (5.1), then $W_{0}^{\prime} \cap W_{0}^{\prime \prime}$ is open and dense in W, and so \widetilde{C}^{\prime} and $\widetilde{C}^{\prime \prime}$ are both equal to the closure in $C \times{ }_{W} C$ of

$$
\bigcup_{w \in W_{0}^{\prime} \cap W_{0}^{\prime \prime}}\left(\bigcup_{i \in I_{w}} C_{w}^{i} \times C_{w}^{i}\right)
$$

As for existence, with $\sigma: W \rightarrow C$ as in (1.1.1) let C^{*} be the reduced space $C_{\text {red }}-\sigma(W)$, on which \mathbb{C}^{*} acts freely, preserving fibers of p; and set

$$
P:=C^{*} / \mathbb{C}^{*}=\operatorname{Projan}(\mathcal{G})_{\mathrm{red}}
$$

(Projan is constructed, in analogy with Specan, by pasting together subspaces of relative projective spaces $W_{\alpha} \times \mathbb{P}^{N_{\alpha}}$, with $\left(W_{\alpha}\right)$ a suitable open cover of W.) Let \bar{P} be the normalization of P, and let

$$
\phi: \bar{P} \rightarrow W, \quad \Phi: \bar{P} \times_{W} \bar{P} \rightarrow W
$$

be the natural maps, both of which are proper. Consider the commutative diagram

whose sides are the Stein factorizations of ϕ and Φ respectively [Fi, p. 71], where Δ is the diagonal map, and where δ corresponds to the natural map of \mathcal{O}_{W}-algebras

$$
\Phi_{*} \mathcal{O}_{\bar{P} \times_{W} \bar{P}} \rightarrow \Phi_{*} \Delta_{*} \mathcal{O}_{\bar{P}}=\phi_{*} \mathcal{O}_{\bar{P}}
$$

Since S is proper over W, the map δ is proper (in fact, finite), and so $\delta(S)$ is an analytic subset of T. Let $\bar{Z}:=\Phi^{\prime-1} \delta(S)$, an analytic subset of $\bar{P} \times{ }_{W} \bar{P} .{ }^{5}$ Let \widetilde{Z} be the image of \bar{Z} under the natural finite map $\bar{P} \times_{W} \bar{P} \rightarrow P \times_{W} P$, so that \widetilde{Z} is an analytic subset of $P \times_{W} P$. Let $\widetilde{C}^{*} \subset C^{*} \times_{W} C^{*}$ be the inverse image of \widetilde{Z} under the quotient map $C^{*} \times_{W} C^{*} \rightarrow P \times_{W} P$.

For any $w \in W$, the fiber P_{w} is non-empty (since C_{w} has positive dimension); the points in S_{w} correspond to the connected components of \bar{P}_{w} (since S_{w} is finite and the fibers of $\phi^{\prime}: \bar{P} \rightarrow S$ are non-empty and connected); the points of T_{w} correspond to the connected components of $\bar{P}_{w} \times \bar{P}_{w}$; and from commutativity of (5.1.1) it

[^4]follows for any $s \in S_{w}$ that if $\phi^{\prime-1}(s)=\bar{D}$ (a connected component of \bar{P}_{w}), then $\Phi^{\prime-1}(\delta s)=\bar{D} \times \bar{D}$ (the connected component of $\bar{P}_{w} \times \bar{P}_{w}$ containing $\left.\Delta \bar{D}\right)$. Thus
\[

$$
\begin{equation*}
\bar{Z}_{w}=\bigcup_{i=1}^{m_{w}} \bar{D}_{w}^{i} \times \bar{D}_{w}^{i} \tag{5.1.2}
\end{equation*}
$$

\]

where m_{w} is the cardinality of S_{w}, and $\bar{D}_{w}^{1}, \ldots, \bar{D}_{w}^{m_{w}}$ are the connected components of \bar{P}_{w}.

Now, there exists a dense Zariski-open subspace W_{0} of W such that:
(a) W_{0} is locally irreducible (as holds, e.g., at any smooth point of $W_{\text {red }}$).
(b) The natural (proper) map $\varphi: \widetilde{Z}_{\text {red }} \rightarrow W_{\text {red }}$ is flat everywhere on $\varphi^{-1}\left(W_{0}\right)$ (Frisch's generic flatness theorem $[\mathrm{BF},(1.17)(2),(2.4),(2.5)(2),(2.7)(1)])$.
(c) For each $w \in W_{0}$, the fiber C_{w} is equidimensional, of dimension equal to the codimension c_{w} of $\sigma(W)$ in C at $\sigma(w)$, see (1.1.1). (Apply generic flatness of the proper map $P \rightarrow W_{\text {red }}$, keeping in mind that C-and hence P-is equidimensional.)
(d) For each $w \in W_{0}$, the fiber P_{w} is reduced and the natural map $\pi_{w}: \bar{P}_{w} \rightarrow P_{w}$ is a normalization of P_{w}. (Generic simultaneous normalization for the map $P \rightarrow W_{\text {red }}$, see $[\mathrm{BF}$, Theorem (2.13)].)
In view of (d), for $w \in W_{0}$, if $D_{w}^{1}, \ldots, D_{w}^{n_{w}}$ are the irreducible components of P_{w}, then $n_{w}=m_{w}$, see above, and after relabeling we have $\pi_{w}^{-1}\left(D_{w}^{i}\right)=\bar{D}_{w}^{i}$ for all i. Hence the decomposition of \widetilde{Z}_{w} into irreducible components is

$$
\begin{equation*}
\widetilde{Z}_{w}=\bigcup_{i=1}^{m_{w}} D_{w}^{i} \times D_{w}^{i} \quad\left(w \in W_{0}\right) \tag{5.1.3}
\end{equation*}
$$

Since the fibers of $C^{*} \times_{W} C^{*} \rightarrow P \times_{W} P\left(\right.$ resp. $\left.C^{*} \rightarrow P\right)$ are all isomorphic to the manifold $\mathbb{C}^{*} \times \mathbb{C}^{*}\left(\right.$ resp. $\left.\mathbb{C}^{*}\right)$, it follows, for $w \in W_{0}$, that the irreducible components of \widetilde{C}_{w}^{*} are the reduced spaces $C_{w}^{* i} \times C_{w}^{* i}$, where the $C_{w}^{* i}$ are the irreducible components of $C_{w}^{*}:=C_{w}-\sigma(w)$. So we are approaching our goal.

Any irreducible component Γ^{*} of $\widetilde{C}^{*} \cap q^{-1}\left(W_{0}\right)\left(q: C \times{ }_{W} C \rightarrow W\right.$ the natural map) is contained in a component Γ of $C \times{ }_{W} C$. By (c) and (5.1.3), the fibers \widetilde{Z}_{w} are equidimensional, each component having dimension $2 \operatorname{dim} P_{w}=2\left(c_{w}-1\right)$. It follows then from (a) and (b) that for any irreducible component Z^{*} of $\widetilde{Z} \cap \varphi^{-1}\left(W_{0}\right)$ and any $z \in Z^{*}$,

$$
\operatorname{dim}_{z} Z^{*}=\operatorname{dim}_{w} W+2\left(c_{w}-1\right) \quad(w=\varphi(z))
$$

and therefore for any $x \in \Gamma^{*}$,

$$
\begin{equation*}
\operatorname{dim} \Gamma^{*}=\operatorname{dim}_{w} W+2 c_{w} \geq \operatorname{dim} \Gamma \quad(w=q(x)) \tag{5.1.4}
\end{equation*}
$$

Hence $\operatorname{dim} \Gamma^{*}=\operatorname{dim} \Gamma$ and

$$
\begin{equation*}
\Gamma^{*}=\Gamma \cap\left(C^{*} \times_{W} C^{*}\right) \cap q^{-1}\left(W_{0}\right), \tag{5.1.5}
\end{equation*}
$$

so that Γ is Zariski open in Γ^{*}.

Finally, let \widetilde{C} be the union of all those components Γ of $C \times{ }_{W} C$ which contain a component, say Γ^{*}, of $\widetilde{C}^{*} \cap q^{-1}\left(W_{0}\right)$. Every such Γ-and hence \widetilde{C}-is mapped into itself under the $\mathbb{C}^{1} \times \mathbb{C}^{1}$ action, since the image of the multiplication map $\mathbb{C}^{1} \times \mathbb{C}^{1} \times \Gamma \rightarrow C \times{ }_{W} C$ is irreducible and contains Γ.

Let r be the restriction of $\tilde{p}:=\left.q\right|_{\widetilde{C}}$ to the Zariski open subset $\widetilde{C}^{*} \cap q^{-1}\left(W_{0}\right)$ of \widetilde{C}. In view of (5.14), in which

$$
2 c_{w}=2\left(\operatorname{dim} P_{w}+1\right)=2 \operatorname{dim} C_{w}=\operatorname{dim}_{x} q^{-1} q(x) \geq \operatorname{dim}_{x} r^{-1} r(x)
$$

a theorem of Remmert [Fi, p.142, 3.9], guarantees that r is an open map. So for any open dense $U \subset W, r^{-1}\left(U \cap W_{0}\right)$ is dense in $\widetilde{C}^{*} \cap q^{-1}\left(W_{0}\right)$, which is in turn dense in \widetilde{C}. Thus (5.1)(i) holds.

To finish, observe for $w \in W_{0}$ that the components C_{w}^{i} of C_{w} are given by $C_{w}^{i}=C_{w}^{* i} \cup\{\sigma(w)\}\left(1 \leq i \leq m_{w}\right)$, and that by (5.1.5),

$$
\begin{aligned}
\widetilde{C}_{w}^{*} \subset \widetilde{C}_{w} & \subset \widetilde{C}_{w}^{*} \cup\left(\{\sigma(w)\} \times C_{w}\right) \cup\left(C_{w} \times\{\sigma(w)\}\right) \\
& =\bigcup_{i=1}^{m_{w}}\left[\left(C_{w}^{* i} \times C_{w}^{* i}\right) \cup\left(\{\sigma(w)\} \times C_{w}^{i}\right) \cup\left(C_{w}^{i} \times\{\sigma(w)\}\right)\right] \\
& =\bigcup_{i=1}^{m_{w}}\left(C_{w}^{i} \times C_{w}^{i}\right)
\end{aligned}
$$

Since $\widetilde{C}_{w}^{*}=\cup_{i}\left(C_{w}^{* i} \times C_{w}^{* i}\right)$ is dense in $\cup_{i}\left(C_{w}^{i} \times C_{w}^{i}\right)$, and \widetilde{C}_{w} is closed, therefore (5.1)(ii) results.

Example (5.2). Again let $\mathcal{G}=\oplus_{m \geq 0} \mathcal{G}_{m}\left(\mathcal{G}_{0}=\mathcal{O}_{W}\right)$ be a finitely-presentable \mathcal{O}_{W}-algebra, set $C:=\operatorname{Specan}(\mathcal{G}), P:=\overline{\operatorname{Projan}}(\mathcal{G})$, and let $p: C \rightarrow W, \wp: P \rightarrow W$ be the canonical maps. Points $x \in P$ correspond to \mathbb{C}^{1}-orbits of points in $C \backslash \sigma(W)$: the "line" L_{x} corresponding to x lies in the fiber $C_{\wp(x)}$.

Assume that $\mathcal{G}_{m}=\mathcal{G}_{1}^{m}$ for all $m \gg 0$. Let $\mathcal{L} \xrightarrow{\pi} C$ be the proper map obtained by blowing up $\sigma(W)$ where $\sigma: W \rightarrow C$ is the vertex section (see (1.1.1)). Then $\mathcal{L} \cong \operatorname{Specan}\left(\operatorname{Sym} \mathcal{O}_{P}(1)\right)$ is the canonical line bundle on P, and $\pi^{-1} \sigma(W)=\epsilon(P)$ where $\epsilon: P \rightarrow \mathcal{L}$ is the zero-section (cf. [GD, (8.7.8)]).

For any $x \in P, \pi$ maps the fiber \mathcal{L}_{x} bijectively onto the line $L_{x} \subset C_{\wp(x)}$.
The map π is compatible with the multiplication maps $\mu_{\mathcal{L}}, \mu_{C}$ of (1.1), i.e., the following diagram commutes:

as can be checked, e.g., via commutativity of the diagrams

Now consider the proper map

$$
\pi \times \pi: \mathcal{L} \times{ }_{P} \mathcal{L} \hookrightarrow \mathcal{L} \times{ }_{W} \mathcal{L} \rightarrow C \times{ }_{W} C
$$

The restriction of this map to the complement of $\epsilon(P) \times{ }_{P} \epsilon(P)(\cong P)$ is clearly injective. From (5.1)(ii) it follows that for any $x \in \wp^{-1}\left(W_{0}\right)$ the image of the induced map $\mathcal{L}_{x} \times \mathcal{L}_{x} \rightarrow C_{\wp(x)} \times C_{\wp(x)}$ lies in \widetilde{C}. Hence, \widetilde{C} being closed in $C \times{ }_{W} C$, if $\wp^{-1}\left(W_{0}\right)$ is dense in P (i.e., every component of P meets $\left.\wp^{-1}\left(W_{0}\right)\right)$ then the entire image of $\pi \times \pi$ lies in \widetilde{C}. Furthermore, if the fibers C_{w} all have dimension 1, then the maps \wp and $\pi \times \pi$ are both finite, the image of $\pi \times \pi$ is \widetilde{C} itself, and $\pi \times \pi$ induces a homeomorphism

$$
\left(\mathcal{L} \times{ }_{P} \mathcal{L}\right) \backslash P \xrightarrow{\sim} \widetilde{C} \backslash W
$$

where we have identified P (resp. W) with $\epsilon(P) \times_{P} \epsilon(P)$ (resp. $\sigma(W) \times_{W} \sigma(W)$).
All this happens, e.g., for $C:=C(V, W)$ when W is a codimension-one submanifold of a reduced complex space V and V is equimultiple along W, because of Schickhoff's theorem [Li, p. 121, (2.6)].
(5.3). Every complex space $\left(V, \mathcal{O}_{V}\right)$ has a conjugate space \bar{V}, equal to $\left(V, \mathcal{O}_{V}\right)$ as a topological space with a sheaf of rings, but with $\mathcal{O}_{\bar{V}}=\mathcal{O}_{V}$ considered to be a \mathbb{C}-algebra via the composition

$$
\mathbb{C} \xrightarrow{\text { conjugation }} \mathbb{C} \xrightarrow{\text { natural }} \mathcal{O}_{V}
$$

see [Hi, Definition (1.10)]. The identity map $V \rightarrow \bar{V}$ is a real-analytic isomorphism. Complex conjugation ρ_{n} in \mathbb{C}^{n}, along with the sheaf-isomorphism $\mathcal{O}_{\overline{\mathbb{C}^{n}}} \xrightarrow{\sim} \rho_{n *} \mathcal{O}_{\mathbb{C}^{n}}$ taking a holomorphic function $f(z)$ on an open set U to the holomorphic function $\rho_{1} f\left(\rho_{n} z\right)$ on $\rho_{n}^{-1}(U)$, is a complex-analytic isomorphism of \mathbb{C}^{n} onto $\overline{\mathbb{C}^{n}}$. Hence for any analytic subset V of $\mathbb{C}^{n}, \rho_{n}(V)$ can be regarded as an analytic subset of $\overline{\mathbb{C}^{n}}$ isomorphic to V, or as an analytic subset of \mathbb{C}^{n} isomorphic to \bar{V}.

With $\left(V_{i}\right)_{i \in I}$ the family of (reduced) irreducible components of V, we set

$$
\begin{equation*}
V^{\mathrm{c}}:=\bigcup_{i \in I}\left(V_{i} \times \overline{V_{i}}\right) \subset(V \times \bar{V}) \tag{5.3.0}
\end{equation*}
$$

We call V^{c} the reduced complexification of V, or simply the complexification of V when V itself is reduced. The reduced space $V_{\text {red }}$ can be identified via the diagonal map with a real-analytic subvariety of V^{c}.

For example, with reference to (5.1), for each $w \in W$, there are natural inclusions

$$
\left(C_{w}\right)^{\mathrm{c}} \underset{j_{w}}{\hookrightarrow} C_{w} \times \overline{C_{w}} \underset{l_{w}}{\hookrightarrow} C \times{ }_{W} C
$$

where l_{w} is a real-(but not necessarily complex-)analytic embedding. For $w \in W_{0}$, we have $l_{w} j_{w}\left(\left(C_{w}\right)^{\mathrm{c}}\right)=\widetilde{C}_{w}$.

From now on, when we regard a reduced fiber $\widetilde{C}_{w}\left(w \in W_{0}\right)$ as a complex space, we mean it to be identical as such with $\left(C_{w}\right)^{\text {c }}$. (Thus we do not mean it to be a complex subspace of $C \times{ }_{W} C$.) And when we refer to a \mathbb{C}^{1} action on $C \times{ }_{W} C$ or on one of its analytic subsets (for instance, \widetilde{C}) we mean the one given on point sets by

$$
a\left(x, x^{\prime}\right)=\left(a x, \bar{a} x^{\prime}\right) \quad(\text { see }(1.1 .1))
$$

where now \bar{a} is the complex conjugate of $a \in \mathbb{C}$. This action is real-analytic, being obtained from the natural $\mathbb{C}^{1} \times \mathbb{C}^{1}$ action on $C \times{ }_{W} C$ via the (real-analytic) map $a \mapsto(a, \bar{a})$ from \mathbb{C}^{1} to $\mathbb{C}^{1} \times \mathbb{C}^{1}$ 。

The next result allows us to regard \widetilde{C} as a "differential functor."
Consider a $\mathrm{C}^{1} \operatorname{map} f:(V, W) \rightarrow\left(V^{\prime}, W^{\prime}\right)$ where now V and V^{\prime} are reduced equidimensional complex analytic spaces and W (resp. W^{\prime}) is a nowhere-dense submanifold of $V\left(\right.$ resp. $\left.V^{\prime}\right)$. Let

$$
\mathbf{f}_{0}: C:=C(V, W) \rightarrow C\left(V^{\prime}, W^{\prime}\right)=: C^{\prime}
$$

be the continuous map in Theorem (3.3).
Let C_{g} (" g " for "generic") be the union of those components of C whose image in W is not nowhere-dense. ${ }^{6}$ Note that the (locally finite) union of the images of all the remaining components of C is nowhere dense in W, so that the fibre $\left(C_{g}\right) w$ is the same as C_{w} for all w in some dense open subset of W. Identify C with the diagonal in $C \times{ }_{W} C$. Lemma (5.1) implies that the non-empty (hence dense) Zariski open subset $\tilde{p}^{-1} W_{0} \cap C_{g}$ of C_{g} is contained in \widetilde{C}; and hence $C_{g} \subset \widetilde{C}$.

Assume further that the open subset of W on which the induced map $W \rightarrow W^{\prime}$ is a submersion is dense in W, so that, submersions being open maps, the inverse image of any nowhere-dense subset of W^{\prime} is nowhere dense in W. It follows that $\mathbf{f}_{0}\left(C_{g}\right) \subset C_{g}^{\prime}$; and we set $\mathbf{f}_{0 g}:=\left.\mathbf{f}_{0}\right|_{C_{g}}$.
Theorem (5.3.1). In the preceding situation, let U be a dense open subset of W_{0} such that $\left(C_{g}\right)_{w}=C_{w}$ for all $w \in U$. Then $\mathbf{f}_{0 g}$ extends uniquely to a continuous map $\tilde{f}: \widetilde{C} \rightarrow \widetilde{C}^{\prime}$, not depending on the choice of W_{0} or of U, such that the following diagram commutes,

and such that for each $w \in U$ the resulting map of (reduced) fibers $\widetilde{C}_{w} \rightarrow \widetilde{C}_{f(w)}^{\prime}$ is complex-analytic. Moreover, \tilde{f} commutes with the \mathbb{C}^{1} actions on \widetilde{C} and \widetilde{C}^{\prime}.

[^5]Remark (5.3.2). Let $(V, W) \xrightarrow{f}\left(V^{\prime}, W^{\prime}\right) \xrightarrow{g}\left(V^{\prime \prime}, W^{\prime \prime}\right)$ be two maps satisfying the hypotheses of (5.3.1). Then $g f$ also satisfies these hypotheses, because a composition of submersions is a submersion, and because submersions being open maps, the inverse image under f of a dense open subset of W^{\prime} is dense and open in W.

Since, clearly, $(\mathbf{g f})_{0}=\mathbf{g}_{0} \mathbf{f}_{0}$, we conclude from uniqueness in (5.3.1) and the denseness of $f^{-1}\left(W_{0}^{\prime}\right) \cap W_{0}$ in W_{0} that $\widetilde{g f}=\tilde{g} \tilde{f}$.

To begin the proof of Theorem (5.3.1), we recall some simple facts.
Lemma (5.3.3). Let $V^{c} \subset V \times \bar{V}$ be the complexification of a reduced complex space V, so that $V^{\text {c }}$ contains the diagonal $\Delta_{V} \subset V \times V=V \times \bar{V}$ as a realanalytic subspace. Then the only complex-analytic subset Z of $V^{\text {c }}$ containing Δ_{V} is V^{c} itself.

Proof. Let V_{0} be the (open, dense) smooth locus of V. Then $\overline{V_{0}}$ is the smooth locus of \bar{V}, for example because smoothness at a point $v \in V$ means that the local ring $\mathcal{O}_{V, v}=\mathcal{O}_{\bar{V}, v}$ is regular. Then $\left(V_{0}\right)^{\mathrm{c}}$ is a dense open subset of V^{c}, and the closed set $Z \cap\left(V_{0}\right)^{\text {c }}$ contains $\Delta_{V_{0}}$; hence we can replace V by V_{0}, i.e., we may assume that V is a manifold.

If $Z \neq V^{\mathrm{c}}$ then for some i, Z intersects the connected open and closed subspace $\left(V_{i} \times \overline{V_{i}}\right)$ of V^{c} nowhere densely; so there exists for some $u \in \Delta_{V}$ a neighborhood U together with an isomorphism $\theta:(U, u) \xrightarrow{\sim}(B, 0)$ where B is an open ball in some \mathbb{C}^{n}, and a non-zero holomorphic function $h: U \times \bar{U} \rightarrow \mathbb{C}$ vanishing on $Z \cap(U \times \bar{U})$, hence on $\Delta_{U} \cap(U \times \bar{U})$. There is a holomorphic open immersion $\Theta: U \times \bar{U} \rightarrow \mathbb{C}^{n} \times \mathbb{C}^{n}$ given, with $\rho=$ complex conjugation, by

$$
\Theta(v, w)=\left(\frac{\theta(v)+\rho \theta(w)}{2}, \frac{\theta(v)-\rho \theta(w)}{2 \sqrt{-1}}\right)
$$

taking Δ_{U} onto an open subset of $\mathbb{R}^{n} \times \mathbb{R}^{n} \subset \mathbb{C}^{n} \times \mathbb{C}^{n}$. All the derivatives of the holomorphic function $h \circ \Theta^{-1}: \Theta(U \times \bar{U}) \rightarrow \mathbb{C}$ vanish everywhere on $\Theta\left(\Delta_{U}\right)$, and hence h vanishes everywhere in a neighborhood of Δ_{U}, contradicting the assumption that h is non-zero (since $U \times \bar{U}$ is connected).
Corollary (5.3.3.1). If a holomorphic map $\varphi: V^{\mathrm{c}} \rightarrow Y$ maps Δ_{V} into an analytic subset W of Y, then φ maps all of V^{c} into W.

Corollary (5.3.3.2). If two complex-analytic maps from V^{c} to a complex space X agree on Δ_{V}, then they must be identical.

Proofs. For (5.3.3.1), let Z in (5.3.3) be $\varphi^{-1}(W)$.
For (5.3.3.2), let $\varphi: V^{\mathrm{c}} \rightarrow X \times X$ in (5.3.3.1) be the map whose coordinates are the two maps in question, and let W be the diagonal of $X \times X$.

Uniqueness in Theorem (5.3.1) follows, in view of (5.1)(i), from (5.3.3.2) applied to each of the fibers $\widetilde{C}_{w}(w \in U)$. (For independence from W_{0} and U, note that the intersection of two dense open subsets of W is again a dense open subset ...) This uniqueness guarantees that it is enough to prove existence with W replaced by an arbitrary member of an open covering $\left(W_{\alpha}\right)$ of W. (The global \tilde{f} over all of W can then be obtained from the local maps $\tilde{f}_{\alpha}: \widetilde{C} \times{ }_{W} W_{\alpha} \rightarrow \widetilde{C}^{\prime}$ by pasting.) Thus,
as in $\S(1.2)$, we can identify W with an open neighborhood of the origin in \mathbb{C}^{r}, embed C in $W \times \mathbb{C}^{s}(p: C \rightarrow W$ being induced by projection to the first factor $)$, and hence embed $C \times{ }_{W} C$ in $\mathbb{C}^{r} \times \mathbb{C}^{s} \times \mathbb{C}^{s}$; and similarly for $p^{\prime}: C^{\prime} \rightarrow W^{\prime}, \ldots$

Let $\lambda: \mathbb{C}^{s} \times \mathbb{C}^{s} \rightarrow \mathbb{C}^{s} \times \mathbb{C}^{s}$ be the real-linear automorphism taking (y, z) to (u, v), where with $i=\sqrt{-1}$ and \bar{z} the complex conjugate of z,

$$
u=\frac{y+\bar{z}}{2}, \quad v=\frac{y-\bar{z}}{2 i}
$$

The inverse automorphism is given by

$$
y=u+i v, \quad z=\bar{u}+i \bar{v}
$$

Then $y=z$ if and only if u and v are both real, i.e., λ maps the diagonal of $\mathbb{C}^{s} \times \mathbb{C}^{s}$ onto $\mathbb{R}^{s} \times \mathbb{R}^{s} \subset \mathbb{C}^{s} \times \mathbb{C}^{s}$.

Now recall from (3.3.3) that we can represent \mathbf{f}_{0} locally by

$$
\mathbf{f}_{0}(w, z)=\left(f(w), L_{w}(z)\right)
$$

where

$$
\begin{equation*}
L_{w}: \mathbb{C}^{s}=\mathbb{R}^{2 s} \rightarrow \mathbb{R}^{2 s^{\prime}}=\mathbb{C}^{s^{\prime}} \tag{5.3.4}
\end{equation*}
$$

is a real-linear map which depends continuously on w. In view of the relation $\lambda(y, y)=(\operatorname{re}(y), \operatorname{im}(y))$, we see that the preceding identification of \mathbb{C}^{s} (diagonally embedded in $\mathbb{C}^{s} \times \mathbb{C}^{s}$) with $\mathbb{R}^{2 s}$ is given by λ. Hence, if L_{w}^{c} is the \mathbb{C}-linear map

$$
L_{w}^{\mathrm{c}}:=L_{w} \otimes_{\mathbb{R}} \mathbb{C}: \mathbb{C}^{2 s} \rightarrow \mathbb{C}^{2 s^{\prime}}
$$

then the continuous map $\tilde{f}: W \times \mathbb{C}^{2 s} \rightarrow W^{\prime} \times \mathbb{C}^{2 s^{\prime}}$ defined by

$$
\begin{equation*}
\tilde{f}(w, x)=\left(f(w), \lambda^{-1} L_{w}^{\mathrm{c}} \lambda(x)\right) \tag{5.3.5}
\end{equation*}
$$

is an extension of \mathbf{f}_{0} such that $q^{\prime} \tilde{f}=f q$ (with q, q^{\prime} the respective projections to W and W^{\prime}).

As before, complex conjugation $\rho_{s}: \mathbb{C}^{s} \rightarrow \mathbb{C}^{s}$ induces a complex-analytic isomorphism $\bar{B} \xrightarrow{\sim} \rho_{s}(B)$ for any analytic subset $B \subset \mathbb{C}^{s}$. The composition $\bar{\lambda}$ of λ with the real-linear map $\mathbb{C}^{s} \times \mathbb{C}^{s} \rightarrow \mathbb{C}^{s} \times \mathbb{C}^{s}$ taking (y, \bar{z}) to (y, z) is complex-linear. Thus if A and B are analytic subsets of \mathbb{C}^{s}, then λ induces a complex-analytic isomorphism of $A \times \bar{B}$ onto the analytic subset $\lambda(A \times B)=\bar{\lambda}(A \times \bar{B})$ of \mathbb{C}^{s}. In particular, λ maps $\mathbb{C}^{s} \times \overline{\mathbb{C}^{s}}$ isomorphically onto $\mathbb{C}^{s} \times \mathbb{C}^{s}$. Hence for every $w \in W$, \tilde{f} induces a complex-analytic map

$$
\left(C_{w}\right)^{\mathrm{c}} \subset C_{w} \times \overline{C_{w}} \subset \mathbb{C}^{s} \times \overline{\mathbb{C}^{s}} \rightarrow \mathbb{C}^{s^{\prime}} \times \overline{\mathbb{C}^{s^{\prime}}}
$$

Moreover, one checks that \tilde{f} commutes with the \mathbb{C}^{1} action on $W \times \mathbb{C}^{s} \times \overline{\mathbb{C}^{s}}$ (resp. $\left.W \times \mathbb{C}^{s^{\prime}} \times \overline{\mathbb{C}^{s^{\prime}}}\right)$ given by $c\left(w, x_{1}, x_{2}\right)=\left(w, c x_{1}, \bar{c} x_{2}\right)$.

We need only show now that $\tilde{f}(\widetilde{C}) \subset \widetilde{C}^{\prime}$. Set $U:=f^{-1}\left(W_{0}^{\prime}\right) \cap W_{0}$. Because of (5.3.3.1), it suffices, since $\tilde{p}^{-1}(U)$ is dense in \widetilde{C}, see (5.1)(i) and (5.3.2), that $\tilde{f}\left(C_{w}\right) \subset \widetilde{C}^{\prime}$ for each $w \in U$; and that's so since

$$
\tilde{f}\left(C_{w}\right)=\mathbf{f}_{0}\left(C_{w}\right) \subset C_{f(w)}^{\prime} \subset\left(C_{f(w)}^{\prime}\right)^{\mathrm{c}}=\widetilde{C}_{f(w)}^{\prime}
$$

(5.4). A certain subvariety $\Lambda(C) \subset \widetilde{C}$ will play an important role in the subsequent discussion of Segre classes.

Recall from Example (5.2) the canonical line bundle $\mathcal{L} \rightarrow P:=\operatorname{Projan}(\mathcal{G})$. Assume that every component of P meets $\wp^{-1}\left(W_{0}\right)$, where $\wp: P \rightarrow W$ is the canonical map; or equivalently, that every component of C meets $p^{-1}\left(W_{0}\right)$, where $p: C \rightarrow W$ is the canonical map. (This assumption holds, e.g., for $C:=C(V, W)$ when W is a submanifold of a reduced complex space V and V is equimultiple along W, by a theorem of Schickhoff [Li, p. 121, (2.6)].) Then (5.2) gives a natural $\operatorname{map} \mathcal{L} \times{ }_{P} \mathcal{L} \rightarrow \widetilde{C}$. Also, since \widetilde{C}_{w} contains the diagonal of $C_{w} \times C_{w}$ for all $w \in W_{0}$ (see Lemma (5.1)(ii)), therefore \widetilde{C} contains the dense subset $\left\{(x, x) \mid p(x) \in W_{0}\right\}$ of the diagonal of $C \times{ }_{W} C$, and so \widetilde{C} contains the entire diagonal of $C \times{ }_{W} C$.

Let \mathcal{L}^{*} be the real-analytic complex line bundle conjugate to \mathcal{L}, got by replacing every local trivialization $\varphi_{U}: U \times \mathbb{C}^{1} \xrightarrow{\sim} \mathcal{L}_{\mid U}(U$ open in $P)$ by its composition with $U \times \mathbb{C}^{1} \xrightarrow{\operatorname{id}_{U} \times \rho} U \times \mathbb{C}^{1}$ ($\rho:=$ complex conjugation). Via the family $\left\{\operatorname{id}_{U} \times \rho\right\}$ we get an isomorphism of real-analytic spaces $\rho_{\mathcal{L}}: \mathcal{L} \xrightarrow{\sim} \mathcal{L}^{*}$. This preserves fibers over P, and addition on the fibers, but is not a line-bundle isomorphism since

$$
\rho_{\mathcal{L}}(a x)=\bar{a} x \quad(a \in \mathbb{C}, x \in \mathcal{L})
$$

Indeed, in the topological category \mathcal{L} is isomorphic to a unitary bundle $[\mathrm{Hz}, \mathrm{p} .51$, III], and so \mathcal{L}^{*} is isomorphic to the dual bundle $\mathcal{L}^{-1}:=\operatorname{Specan}\left(\operatorname{Sym} \mathcal{O}_{P}(-1)\right)$.

We identify the rank-two complex vector bundle $\mathcal{L} \oplus \mathcal{L}^{*}$ over P with $\mathcal{L} \times{ }_{P} \mathcal{L}^{*}$. The composition

$$
\gamma: \mathcal{L} \times{ }_{P} \mathcal{L}^{*} \xrightarrow{\text { id } \times \rho_{\mathcal{L}}} \mathcal{L} \times{ }_{P} \mathcal{L} \xrightarrow{(5.2)} \widetilde{C}
$$

commutes with the respective \mathbb{C}^{1} actions. The image $\Lambda=\Lambda(C)$ of γ is an analytic subset of \widetilde{C}, being the image of the proper map $\pi \times \pi$ of $\S 5.2$. It consists of all points $\left(x, x^{\prime}\right) \in C \times{ }_{W} C$ such that $x=a x^{\prime}(a \in \mathbb{C})$ or $x^{\prime}=a^{\prime} x\left(a^{\prime} \in \mathbb{C}\right)$. In other words (verification left to reader):

$$
\begin{equation*}
\Lambda(C)=\left\{\left(b^{\prime} c x, b \bar{c} x\right) \mid b^{\prime}, b \in \mathbb{R}, c \in \mathbb{C}, x \in C\right\} \tag{5.4.1}
\end{equation*}
$$

Recalling that λ identifies the diagonal of $\mathbb{C}^{s} \times \mathbb{C}^{s}$ with $\mathbb{R}^{2 s}$, we see from (5.3.4) etc. that the map \tilde{f} of Theorem (5.3.1) takes the diagonal of $C \times{ }_{W} C$ into the diagonal of $C^{\prime} \times{ }_{W^{\prime}} C^{\prime}$. Moreover \tilde{f} commutes with the \mathbb{C}^{1} action on \widetilde{C}, as well as with the natural $\mathbb{R} \times \mathbb{R}$ action (since the maps L_{w}^{c} and λ used to construct \tilde{f} both commute with the $\mathbb{R} \times \mathbb{R}$ action on $\mathbb{C}^{s} \times \mathbb{C}^{s}$). Hence:

Corollary (5.4.2). Under the assumptions of Theorem (5.3.1), $\tilde{f}(\Lambda(C)) \subset \Lambda\left(C^{\prime}\right)$.
6. Segre classes. As in $\S 5, C:=\operatorname{Specan}(\mathcal{G})$ is a cone, with \mathbb{C}^{1} action on $C \times{ }_{W} C$ given on point sets by

$$
a\left(x, x^{\prime}\right)=\left(a x, \bar{a} x^{\prime}\right)
$$

Assume that all the irreducible components of the complex space W have the same dimension, say r. We identify W with its image under $\Delta \circ \sigma$ where $\sigma: W \rightarrow C$ is the vertex section and $\Delta: C \rightarrow C \times{ }_{W} C$ is the diagonal map.
(6.1) For any closed analytic \mathbb{C}^{1}-stable subset Υ of $C \times_{W} C,{ }^{7}$ all of whose irreducible components have the same complex dimension, we define the topological Segre classes

$$
s_{i}(\Upsilon) \in H_{2(r-i)}(W):=H_{2(r-i)}(W, \mathbb{Z}) \quad \text { (Borel-Moore homology) }
$$

as follows.
Let Q be the topological quotient of $\Upsilon \backslash W$ under the induced (free) \mathbb{C}^{*} action. The action preserves fibers over W, so the canonical map $(\Upsilon \backslash W) \rightarrow W$ induces a map $\nu: Q \rightarrow W$, which is proper. To see this, since Q is closed in the \mathbb{C}^{*}-quotient of $\left(C \times_{W} C\right) \backslash W$, we may assume $\Upsilon=C \times{ }_{W} C$, and then, since the question is local over W, the definition of Specan allows us to assume that C is a closed subset of $W \times \mathbb{C}^{s}$ for some s (the zero-set of finitely many homogeneous polynomials in s variables, with coefficients which are analytic functions on W-see (1.2)). Then $C \times{ }_{W} C$ is closed in $W \times \mathbb{C}^{s} \times \mathbb{C}^{s}$, so we may assume $\Upsilon=W \times \mathbb{C}^{s} \times \mathbb{C}^{s}$ (and $\Delta \sigma(W)=W \times\{0\} \times\{0\})$, with \mathbb{C}^{*} action given by

$$
\begin{equation*}
a\left(w, z, z^{\prime}\right)=\left(w, a z, \bar{a} z^{\prime}\right) \tag{6.1.1}
\end{equation*}
$$

For this action, every point in $\left(W \times \mathbb{C}^{s} \times \mathbb{C}^{s}\right) \backslash(W \times\{0\} \times\{0\})$ is equivalent to a point in $W \times S^{4 s-1}$ where $S^{4 s-1}$ is the unit sphere in $\mathbb{C}^{2 s}$; so there is a surjection $W \times S^{4 s-1} \rightarrow Q$ whose composition with ν is the (proper) projection $W \times S^{4 s-1} \rightarrow W$, whence ν itself is proper.

Next, the quotient map $q: \Upsilon \backslash W \rightarrow Q$ is a principal real-analytic \mathbb{C}^{*}-bundle. One can verify this via an open covering $\left(U_{\iota}\right)$ of Q together with commutative diagrams

where each ϕ_{ι} is a real-analytic homeomorphism commuting with the respective \mathbb{C}^{*} actions (the action on $U_{\iota} \times \mathbb{C}^{*}$ being given by multiplication in \mathbb{C}^{*}). As before we reduce to consideration of the action (6.1.1) on $W \times \mathbb{C}^{s} \times \mathbb{C}^{s}$. The real-analytic homeomorphism $\left(w, z, z^{\prime}\right) \mapsto\left(w, z, \overline{z^{\prime}}\right)$ transforms the action into the relative diagonal one of $W \times\left(\mathbb{C}^{2 m} \backslash\{0\}\right)$ over W, the quotient of which is $W \times \mathbb{C P}^{2 m-1}$, and here everything becomes straightforward.

[^6]Lemma (6.1.2). The quotient map q takes the non-singular locus V of $\Upsilon \backslash W$ onto an open subset $U \subset Q$ which is naturally a $2 n$-dimensional real-analytic oriented manifold, and such that $Q \backslash U$ has topological dimension $\leq 2 n-2$.

The proof is given below.
Lemma (6.1.2) guarantees that Q has a fundamental class $[Q] \in H_{2 n}(Q)[\mathrm{BH}$, p. 469, Prop. 2.3]. Now let $c \in H^{2}(Q, \mathbb{Z})$ be the first Chern class of the principal C^{*}-bundle $q: \Upsilon \backslash W \rightarrow Q$, and, with $r:=\operatorname{dim} W$, set

$$
s_{i}(\Upsilon):=\nu_{*}\left([Q] \cap c^{i+n-r}\right) \in H_{2 r-2 i}(W),
$$

where \cap denotes "cap product" $[\mathrm{BH}, \mathrm{p} .505$, Thm. 7.2], and

$$
\nu_{*}: H_{2 r-2 i}(Q) \rightarrow H_{2 r-2 i}(W)
$$

is defined because ν is proper [$\mathrm{BH}, \mathrm{p} .465,1.5$].
Example (6.1.3). If C is a vector bundle over W, with conjugate C^{*} (cf. (5.4)), then $C \times{ }_{W} C$ with its \mathbb{C}^{*} action (cf. (6.1.1)) can be identified with the bundle $C \oplus C^{*}$ with its standard (diagonal) \mathbb{C}^{*} action; and the total Segre class

$$
s\left(C \oplus C^{*}\right):=\sum_{i \geq 0} s_{i}\left(C \oplus C^{*}\right) \in \oplus_{i \geq 0} H_{2 r-2 i}(W)
$$

is the cap product of the fundamental class [W] with the multiplicative inverse (in the graded cohomology ring $\left.\oplus_{j} H^{j}(W)\right)$ of the total Chern class $\operatorname{ch}\left(C \oplus C^{*}\right)$ (cf. [Fn, p. 71, Prop.4.1], where everything is algebraic, but corresponds to topological constructs as in ibid. Chap. 19). And since C^{*} is topologically isomorphic to the dual bundle of $C[\mathrm{~Hz}, \mathrm{p} .51, \mathrm{III}]$, we have, with $c_{j} \in H^{2 j}(W)$ the j-th Chern class of C,

$$
\operatorname{ch}\left(C \oplus C^{*}\right)=\left(1+c_{1}+c_{2}+c_{3}+\ldots\right)\left(1-c_{1}+c_{2}-c_{3}+\ldots\right),
$$

the total Pontrjagin class of C [Hz, p. 65, Thm. 4.5.1].
In particular, this applies to $C(V, W)$ when V is a complex manifold and W is a submanifold (so that $C(V, W)$ is the normal bundle).

Proof of (6.1.2). The singular locus $S:=\operatorname{Sing}(\Upsilon)$ is a closed analytic C^{1}-stable subset of Υ, of complex dimension $\leq n$. As above, $S \backslash W$ is a principal \mathbb{C}^{*}-bundle over $q(S \backslash W)$, and so $q(S \backslash W)=Q \backslash q(V)$ has topological dimension $\leq 2 n-2$. So we can prove Lemma (6.1.2) by choosing for each $z \in V$ an open neighborhood $V_{z} \subset V$ in such a way that the sets $q\left(V_{z}\right)$ (which are open, since q is an open map) carry charts for a $2 n$-dimensional canonically orientable real-analytic manifold structure on $q(V)$.

Let $N \subset \Upsilon$ be any neighborhood of the point $z_{0}:=\lim _{a \rightarrow 0} a z\left(a \in \mathbb{C}^{*}\right)$. Replacing z by $a z$ for suitable a, we may assume that $z \in N$. Thus we may assume that $\Upsilon \subset W \times \mathbb{C}^{s} \times \mathbb{C}^{s}, W$ being identified with $W_{0} \times\{0\} \times\{0\}$ where W_{0} is an open neighborhood of the origin in some \mathbb{C}^{r}, that $z_{0}=(0,0,0)$, and that Υ is given in a polydisk neighborhood N_{0} of z_{0} by the vanishing of finitely many convergent power series

$$
f_{i}(w, x, y)=\sum_{\alpha, \beta} c_{i \alpha \beta}(w) x^{\alpha} y^{\beta}
$$

where $x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$, etc. Moreover, the \mathbb{C}^{*} action is as in (6.1.1). For any $\left(w_{0}, x_{0}, y_{0}\right) \in N_{0}$ and $t \in(0,1)$, then (since Υ is \mathbb{C}^{1}-stable),

$$
\sum_{\alpha, \beta} c_{i \alpha \beta}\left(w_{0}\right) x_{0}^{\alpha} y_{0}^{\beta}=0 \Longrightarrow \sum_{\alpha, \beta} t^{|\alpha|+|\beta|} c_{i \alpha \beta}\left(w_{0}\right) x_{0}^{\alpha} y_{0}^{\beta}=0 \quad\left(|\alpha|:=\alpha_{1}+\cdots+\alpha_{s}, \ldots\right)
$$

and it follows easily that for each $m \geq 0$,

$$
\sum_{|\alpha|+|\beta|=m} c_{i \alpha \beta}\left(w_{0}\right) x_{0}^{\alpha} y_{0}^{\beta}=0
$$

So we may assume that the f_{i} are homogeneous polynomials in x and y.
Furthermore (see (6.1.1)), for each $\theta \in \mathbb{R}$,

$$
\sum_{|\alpha|+|\beta|=m} e^{\sqrt{-1} \theta(|\alpha|-|\beta|)} c_{i \alpha \beta}\left(w_{0}\right) x_{0}^{\alpha} y_{0}^{\beta}=0
$$

and it follows, for fixed i, that $|\alpha|-|\beta|$ has the same value for all α, β such that $|\alpha|+|\beta|=m$ and $c_{i \alpha \beta} \neq 0$; in other words, f_{i} is a bihomogeneous polynomial in the two sets of variables x, y.

Now, on the open set O_{1} where the coordinate x_{1} does not vanish, q is induced by the map $\widetilde{q}: W \times \mathbb{C}^{s} \times \mathbb{C}^{s} \rightarrow W \times \mathbb{C}^{s-1} \times \mathbb{C}^{s}$ given by

$$
\widetilde{q}\left(w, x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{s}\right)=\left(w, \frac{x_{2}}{x_{1}}, \ldots, \frac{x_{s}}{x_{1}}, \frac{y_{1}}{\overline{x_{1}}}, \ldots, \frac{y_{s}}{\overline{x_{1}}}\right)
$$

where "-" denotes "complex conjugate." And since $f_{i}(w, x, y)=\sum_{\alpha, \beta} c_{i \alpha \beta}(w) x^{\alpha} y^{\beta}$ is bihomogeneous,

$$
f_{i}(w, x, y)=x_{1}^{|\alpha|} \overline{x_{1}}|\beta| f_{i}\left(w, 1, \frac{x_{2}}{x_{1}}, \ldots, \frac{x_{s}}{x_{1}}, \frac{y_{1}}{\overline{x_{1}}}, \ldots, \frac{y_{s}}{\overline{x_{1}}}\right) .
$$

Hence $q\left(\Upsilon \cap O_{1}\right)$ is homeomorphic to the complex-analytic variety U_{1} defined by the vanishing of the power series $f_{i}\left(w, 1, \xi_{2}, \ldots, \xi_{s}, \eta_{1}, \ldots, \eta_{s}\right)$. Standard arguments show that for any $x \in V \cap O_{1}$, U_{1} is a manifold in a neighborhood of $q(x)$.

Had we used a different embedding of Υ into $W \times \mathbb{C}^{s} \times \mathbb{C}^{s}$ (but with the same projection to W, and the same \mathbb{C}^{*} action (6.1.1)), then the resulting chart would be complex-analytically equivalent to the one just described-that is a special case of the fact that if two graded \mathcal{O}_{W}-algebras have isomorphic Specans, then they are isomorphic and so have isomorphic Projans.

Similarly, working in O_{i}, where x_{i} doesn't vanish, we get another manifold chart; but on the overlap $O_{i} \cap O_{1}$ the two charts differ by a real-analytic coordinate transformation, of the form

$$
\left(\ldots, \xi_{i}, \ldots, \xi_{j}, \ldots, \eta_{k}, \ldots\right) \mapsto\left(\ldots, \frac{1}{\xi_{i}}, \ldots, \frac{\xi_{j}}{\xi_{i}}, \ldots, \frac{\eta_{k}}{\overline{\xi_{i}}}, \ldots\right)
$$

Similar remarks apply to the open sets O_{k}^{\prime} where y_{k} doesn't vanish, and to the overlaps $O_{i} \cap O_{k}^{\prime}$.
It should now be more or less apparent how $U:=q(V)$ can be made into a real-analytic $2 n$-dimensional manifold. The manifold U is canonically orientable because, q being a \mathbb{C}^{*}-bundle map, for each $u \in U$ there is an open set $O \subset \mathbb{C}^{n}$ together with a real-analytic homeomorphism ψ from O onto an open neighborhood U_{u} of u in U fitting into a commutative diagram

where ϕ is an orientation-preserving homeomorphism commuting with the respective \mathbb{C}^{*} actions; and one checks that the charts ψ provide an orientation for U.
(6.2) We return to the situation in (5.4), assuming as we did there that every irreducible component of the cone C meets $p^{-1}\left(W_{0}\right)$. We assume further that both C (hence P) and W are equidimensional, with $\operatorname{dim} W<\operatorname{dim} C$. We are going to relate the Segre classes of components of $\Lambda(C)$ with the Segre classes of components of C, as described, algebraically, in [Fn, Chap. 4].

More specifically, the Segre classes $s_{i}\left(C_{j}\right) \in H_{2} \operatorname{dim} W-2 i(W)$ of the irreducible components C_{j} of C can be defined topologically as above (and more easily, because we need only deal with the complex-analytic \mathbb{C}^{1}-action given by μ in (1.1.1)), cf. [Fn, Chap. 19]): viz., if P_{j} is the component of P corresponding to C_{j} (P_{j} is topologically the \mathbb{C}^{*}-quotient of $C_{j} \backslash \sigma(W)$), and $\iota_{j}: P_{j} \hookrightarrow P$ is the inclusion; if $\mathcal{L}_{j}:=\iota_{j}^{*} \mathcal{L}$ and c_{j} is its first Chern class; and if $\wp: P \rightarrow W$ is, as before, the canonical map, then

$$
s_{i}\left(C_{j}\right):=\wp_{*} \iota_{j *}\left(\left[P_{j}\right] \cap c_{j}^{\operatorname{dim} C-1-\operatorname{dim} W+i}\right)=\wp_{*}\left(\iota_{j *}\left[P_{j}\right] \cap c^{\operatorname{dim} C-1-\operatorname{dim} W+i}\right)
$$

where, with c the first Chern class of \mathcal{L}-so that $c_{j}=\iota_{j}^{*} c$ - the equality is given by the projection formula $[\mathrm{BH}, \mathrm{p} .507,7.5]$. (Note that C_{j} is a cone, P_{j} is its projectivization, and \mathcal{L}_{j} is the canonical line bundle on P_{j}.)

Now the construction of Segre classes in $\S 6.1$ applies in particular when $W=P$ and $C=\mathcal{L}$, in which case $C \times{ }_{W} C$ with its \mathbb{C}^{*} action can be identified with the rank two bundle $\mathcal{L} \oplus \mathcal{L}^{*}$ with its standard (diagonal) \mathbb{C}^{*} action. As noted in (5.4), \mathcal{L}^{*} is topologically isomorphic to \mathcal{L}^{-1}, so the total Chern class $\operatorname{ch}\left(\mathcal{L}_{j} \oplus \mathcal{L}_{j}^{*}\right)$ is $1-c_{j}^{2}$ where c_{j} is the first Chern class of \mathcal{L}_{j}. Hence (see Example (6.1.3))

$$
s\left(\mathcal{L}_{j} \oplus \mathcal{L}_{j}^{*}\right)=\left[P_{j}\right] \cap\left(1+c_{j}^{2}+c_{j}^{4}+\ldots\right) .
$$

As noted in (5.4), the proper map $\gamma:\left(\mathcal{L} \oplus \mathcal{L}^{*}\right) \backslash P \rightarrow \Lambda(C) \backslash W$ is bijective, hence is a homeomorphism, and it commutes with the respective \mathbb{C}^{*} actions, but since it involves one complex conjugation it reverses the natural orientations. Since homeomorphisms of analytic spaces take components to components [GL, p. 172, (A8)], it follows that any irreducible component of $\Lambda(C)$ is \mathbb{C}^{1}-stable, so that its total Segre class is defined, and indeed can be obtained by applying $-\wp_{*}$ to the Segre class of the corresponding component of $\mathcal{L} \oplus \mathcal{L}^{*}$. The components in question correspond to those of P, and so to those of C. Hence, for the component of $\Lambda(C)$ corresponding to the component C_{j} the total Segre class is

$$
-\wp_{*} \iota_{j *} s\left(\mathcal{L}_{j} \oplus \mathcal{L}_{j}^{*}\right)=-\sum_{i \geq 0} s_{2 i-\operatorname{dim} C+1+\operatorname{dim} W}\left(C_{j}\right) \in \oplus_{i \geq 0} H_{2(\operatorname{dim} C-2 i-1)}(W)
$$

We can thus recover from $\Lambda(C)$ about half of the total Segre class $s\left(C_{j}\right)$. To recover the rest, proceed likewise with $\Lambda\left(C \times \mathbb{C}^{1}\right)$, noting that

$$
s\left(C \times \mathbb{C}^{1}\right)=s(C)
$$

(cf. [Fn, p. 71, 4.1.1]), and of course

$$
\operatorname{dim}\left(C \times \mathbb{C}^{1}\right)=\operatorname{dim} C+1
$$

Here $C \times \mathbb{C}^{1}$ is viewed as the cone corresponding to the grading of $\mathcal{G}[T]$ (T an indeterminate) with degree n piece $\oplus_{i=0}^{n} \mathcal{G}_{i} T^{n-i}$, a cone whose components are naturally in one-one correspondence with those of C.

Theorem (6.3). Let V and V^{\prime} be reduced equidimensional complex spaces, and let $W \subset V$ and $W^{\prime} \subset V^{\prime}$ be nowhere dense equidimensional complex submanifolds. Let $f: V \rightarrow V^{\prime}$ be a C^{1} homeomorphism such that f^{-1} is C^{1} and $f(W)=W^{\prime}$. Let C_{j} be an irreducible component of $C:=C(V, W)$ and let C_{j}^{\prime} be the corresponding component of $C^{\prime}:=C\left(V^{\prime}, W^{\prime}\right)$ (see Theorem (4.3.1)). Then

$$
f_{*} s\left(C_{j}\right)= \pm s\left(C_{j}^{\prime}\right)
$$

Proof. As in Corollary (5.4.2), f induces a homeomorphism $\tilde{f}: \Lambda(C) \rightarrow \Lambda\left(C^{\prime}\right)$ which takes W to W^{\prime} (see (5.3.5)), and which commutes with the \mathbb{C}^{*} actions. Similarly, the map $f \times 1: V \times \mathbb{C}^{1} \rightarrow V^{\prime} \times \mathbb{C}^{1}$ induces a homeomorphism

$$
\Lambda\left(C\left(V \times \mathbb{C}^{1}, W \times\{0\}\right)\right)=\Lambda\left(C \times \mathbb{C}^{1}\right) \rightarrow \Lambda\left(C^{\prime} \times \mathbb{C}^{1}\right)=\Lambda\left(C\left(V^{\prime} \times \mathbb{C}^{1}, W^{\prime} \times\{0\}\right)\right)
$$

These homeomorphisms respect irreducible components [GL, p. 172, (A8)], and so the induced homology maps take fundamental classes of components to fundamental classes of components, up to multiplication by ± 1.

The theorem results easily now from the foregoing procedure to recover the Segre classes of components of C from those of the corresponding components of $\Lambda(C)$ and $\Lambda\left(C \times \mathbb{C}^{1}\right)$.

References

[BF] J. Bingener and H. Flenner, On the fibers of analytic mappings, Complex Analysis and Geometry, Univ. Ser. Math., Plenum, New York, 1993, pp. 45-101.
[BH] A. Borel and A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. math. France 89 (1961), 461-513.
[Fi] G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer Verlag, New York, 1976.
[Fn] W. Fulton, Intersection Theory, Springer Verlag, New York, 1984.
[GD] A. Grothendieck and J. Dieudonné, Publ. Math. Inst. Hautes Études Scientifiques 8 (1961).
[GL] Y.-N Gau and J. Lipman, Differential invariance of multiplicity on analytic varieties, Invent. math. 73 (1984), 165-188.
[Hi] H. Hironaka, Normal cones in analytic Whitney stratifications, Publ. Math. Inst. Hautes Études Scientifiques 36 (1969), 127-138.
[Hi2] _ , Introduction to the Theory of Infinitely Near Singular Points, Memorias de Matematica del Instituto "Jorge Juan," 28, Instituto "Jorge Juan" de Matematica, Madrid, 1974.
[Ho] C. Houzel, Géomt́rie analytique locale,, Familles d'Espaces Complexes et Fondements de la Géométrie Analytique, Séminaire Henri Cartan, 1960/61, fascicule 2, Institut Henri Poincaré, Paris, 1962.
[Hz] F. Hirzebruch, Topological Methods in Algebraic Geometry, Third enlarged edition, Springer Verlag, New York, 1966.
[Li] J. Lipman, Equimultiplicity, reduction, and blowing up, Commutative Algebra (R. Draper, ed.), Lecture Notes Pure Appl. Math. 68,, Marcel Dekker, New York, 1982, pp. 111-147.
[LT] D. T. Lê and B. Teissier, Limites d'espaces tangents en géométrie analytique, Comment. Math. Helvetici 63 (1988), 540-578.
[MT] M. Lejeune and B. Teissier, Contributions à l'Étude des Singularités, Thèse d'État, Centre de Mathématiques, École Polytechnique, Paris, 1973.

[^0]: 1991 Mathematics Subject Classification. 32C25, 32S20.
 Second author partially supported by the National Security Agency.
 ${ }^{1}$ When V and W are algebraic varieties, this definition connects to the algebraic one in [Fn, Chap. 4] via the cycle map of ibid., §19.1.

[^1]: ${ }^{2}$ See also Remark (5.4.3) below.

[^2]: ${ }^{3}$ Continuity of the derivative of f (resp. g) need only hold at points of W (resp. W^{\prime}), see proof of (3.3).

[^3]: ${ }^{4}$ Cf. [GL, p. 175, (B.3.5)], where the second $\bar{S}\left(={ }_{\mathbb{R}} \mathbf{V}\right)$ should be $S(=\mathbf{V})$.

[^4]: ${ }^{5} \bar{Z}$ can be defined without reference to Stein factorization as being the support of the cokernel of the natural map $\Phi^{*} \Phi_{*} \mathcal{J} \rightarrow \mathcal{O}_{\bar{P} \times{ }_{W} \bar{P}}$, where \mathcal{J} is the kernel of $\mathcal{O}_{\bar{P} \times{ }_{W} \bar{P}} \rightarrow \Delta_{*} \mathcal{O}_{\bar{P}}$. We do need Stein factorization to derive (5.1.2) below; but there might well be a more elementary argument.

[^5]: ${ }^{6}$ In fact the image is the same as that of the corresponding component of the projectivized normal cone $P(V, W)$, and so is an analytic subset of W. Thus any component of C_{g} maps onto a component of W.

[^6]: ${ }^{7}$ From (5.3.3.2) it follows that Υ is actually $\mathbb{C}^{1} \times \mathbb{C}^{1}$-stable.

