Bull.Soc.Math. de Belgique 45 (1993), 223-244.

ADJOINTS AND POLARS OF SIMPLE COMPLETE IDEALS IN TWO-DIMENSIONAL REGULAR LOCAL RINGS

JOSEPH LIPMAN

Purdue University

CONTENTS

- 0. Introduction
- 1. Preliminaries
- 2. The adjoint ideal
- 3. Covariance of the adjoint
- 4. More properties of the adjoint
- 5. The polar ideal

Introduction. In the study of the singularity of a complex plane curve germ (C, 0), given locally, say, by f(x, y) = 0, important roles are played by the *adjoint* curves (those having a local equation g = 0 such that g restricts on C to an element in the conductor ideal of the one-dimensional local ring $\mathcal{O}_{C,0}$ of germs of holomorphic functions), and by the *polar* curves (those given locally by an equation of the form $af_x + bf_y + cf = 0$ with $a, b, c \in \mathbb{C}$). In this paper, we introduce corresponding complete ideals \mathfrak{C} and \mathfrak{P} in the convergent power series ring $\mathbb{C}\{x, y\}$, and indeed in any two-dimensional regular local ring.

The classical theory of base points of linear systems of curves on smooth surfaces, exposed at length in [4, book 4] and summarized in [16, Chaps. 1 and 2], inspired Zariski to create the theory of complete (=integrally closed) ideals in twodimensional regular local rings [15, pp. 199–201]. Over the past half century, this theory has been further developed, by Zariski himself and others [17, Appendix 5], [6, Chaps. II and V], [7], [5], [12], [8].

A complete ideal \mathfrak{p} in $\mathbb{C}\{x, y\}$ encodes local "base conditions" to be satisfied by certain complete linear systems of curves C through the origin; the *adjoint ideal* $\mathfrak{C}_{\mathfrak{p}}$ (defined in (2.1)) encodes the conditions which are then satisfied by the adjoints of a generic such C, and the *polar ideal* $\mathfrak{P}_{\mathfrak{p}}$ (defined in (5.1)) does the same for curves whose multiplicities at the infinitely near base points of the linear system are at least as big as those of the generic polar of C. These "polar multiplicities" were worked out in [4, pp. 374–381] (and for an extensive modern treatment of local polars of plane curves, see [1], [2], [3]). They are just the integers which make up the *point basis* of \mathfrak{P} , i.e., the s_i prescribed in Theorem (5.2) below in terms of the point basis $\{r_i\}$ of \mathfrak{p} , which $\{r_i\}$ may also be thought of as the sequence

Partially supported by the National Security Agency

of infinitely near multiplicities of the generic curve C (weighted by the degrees of certain field extensions when we work with fields which are not algebraically closed). The factorization of \mathfrak{P} into simple complete ideals is related to the number of irreducible branches of the generic polar, cf. (5.3). The basic results on the adjoint ideal are given in (2.2) and (3.1), and further interesting properties appear in §4.

When our two-dimensional regular local ring, with maximal ideal \mathfrak{m} , has an algebraically closed residue field, then $\mathfrak{C} = \mathfrak{P} : \mathfrak{m}$. The general case is treated in (2.3).

Though the preceding loosely-described background is geometric, all our considerations will be purely algebraic and precise (except for some remarks at the very end). We assume throughout that the complete ideal \mathfrak{p} is *simple*. The extension to more general complete ideals—corresponding to the extension from irreducible plane curve germs to reducible ones—is left to the sufficiently motivated reader.

1. Preliminaries. We first fix some notation and terminology, and recall a few basic facts. More details and references can be found in [7].

(1.1) Let K be a field. Greek letters α , β , γ , ... will denote two-dimensional regular local rings with fraction field K; and such objects will be called "points." A *quadratic transform* of a point α is a localization $\alpha[x^{-1}\mathfrak{m}_{\alpha}]_{\mathfrak{n}}$ where x is an element of the maximal ideal \mathfrak{m}_{α} of α , $x \notin \mathfrak{m}_{\alpha}^{2}$, and \mathfrak{n} is a maximal ideal in the ring $\alpha[x^{-1}\mathfrak{m}_{\alpha}]$. Any such quadratic transform is itself a point, in which \mathfrak{m}_{α} generates a principal prime ideal.

A point β is said to be *infinitely near* to a point α if $\beta \supset \alpha$. There exists then a unique sequence of the form

(1.1.1)
$$\alpha =: \alpha_0 \subset \alpha_1 \subset \cdots \subset \alpha_n := \beta \qquad (n \ge 0)$$

where for each i < n, α_{i+1} is a quadratic transform of α_i . The maximal ideal \mathfrak{m}_{β} contains \mathfrak{m}_{α} , and the residue field extension $\alpha/\mathfrak{m}_{\alpha} \hookrightarrow \beta/\mathfrak{m}_{\beta}$ has finite degree, denoted $[\beta : \alpha]$.

(1.2) For an α -ideal I of finite colength (i.e., I contains some power of \mathfrak{m}_{α}), the transform I^{β} of I in a point $\beta \supset \alpha$ is the ideal $I(I\beta)^{-1}$, which is \mathfrak{m}_{β} -primary unless $I\beta$ is a principal ideal, in which case $I^{\beta} = \beta$. If β is a quadratic transform of α , then the ideal $\mathfrak{m}_{\alpha}\beta$ is principal, and $I^{\beta} = I(\mathfrak{m}_{\alpha}\beta)^{-r}$, where $r := \operatorname{ord}_{\alpha}(I)$ is the largest among those integers s such that $I \subset \mathfrak{m}_{\alpha}^{s}$. Transform is transitive: if $\gamma \supset \beta$ then $(I^{\beta})^{\gamma} = I^{\gamma}$. Transform preserves products: $(IJ)^{\beta} = I^{\beta}J^{\beta}$.

An α -ideal I is complete (i.e., integrally closed) if $IR \cap \alpha = I$ for every valuation ring R such that $K \supset R \supset \alpha$. Any product of complete ideals is complete. I is simple if it is not the product of two other ideals. If the finite-colength ideal I is complete (resp. complete and simple) then so is I^{β} .

The *point basis* of I is the family of integers $\{\operatorname{ord}_{\beta}(I^{\beta})\}_{\beta \supset \alpha}$, where $\operatorname{ord}_{\beta}$ is the unique discrete valuation of K satisfying

(1.2.1)
$$\operatorname{ord}_{\beta}(x) = \max\{n \mid x \in \mathfrak{m}_{\beta}^{n}\} \quad (0 \neq x \in \beta).$$

Two complete finite-colength α -ideals coincide iff they have the same point basis.

The Hoskin-Deligne formula for the colength of an \mathfrak{m}_{α} -primary complete ideal I with point basis $\{r_{\beta}\}_{\beta \supset \alpha}$ is

(1.2.2)
$$\lambda(\alpha/I) = \sum_{\beta \supset \alpha} [\beta : \alpha] r_{\beta}(r_{\beta} + 1)/2$$

 $(\lambda \text{ denotes "length"})$. For such an I, then, there are only finitely many points β with $r_{\beta} \neq 0$. (In fact $r_{\beta} \neq 0$ iff there is a point $\gamma \supset \beta$ such that $\operatorname{ord}_{\gamma}$ is a Rees valuation of I.)

Using (1.2.2)—or otherwise—one can show that

(1.2.3)
$$\lambda(I/\mathfrak{m}_{\alpha}I) = \operatorname{ord}_{\alpha}(I) + 1$$

and

(1.2.4)
$$\lambda((I:\mathfrak{m}_{\alpha})/I) = \operatorname{ord}_{\alpha}(I),$$

cf. $[7, \S 3]$.

(1.3) A valuation v of K dominates α if $v(x) \geq 0$ for all $x \in \alpha$ and v(x) > 0 for all x in the maximal ideal \mathfrak{m}_{α} of α ; in other words, the valuation ring R_v contains α , and its maximal ideal \mathfrak{m}_v contains \mathfrak{m}_{α} . For such a v, a v-ideal in α is an ideal of the form $J \cap \alpha$ where J is a non-zero ideal in R_v . The v-successor of a v-ideal Iin α is the ideal

$$I'_{v} := \{ x \in \alpha \mid xR_{v} \subsetneq IR_{v} \} = \{ x \in \alpha \mid v(x) > v(I) \}$$

where $v(I) := \min\{v(y) \mid y \in I\}$ (which exists since I is finitely generated). The principal ideal IR_v strictly contains I'_vR_v , and it follows that $I'_v = (I'_vR_v) \cap \alpha$, so that I' is a v-ideal, clearly the largest one properly contained in I.

Associated to any v we have then the sequence of v-ideals

(1.3.1)
$$\alpha =: I_0 \supset I_1 (= \mathfrak{m}_{\alpha}) \supset I_2 \supset \cdots \supset I_n \supset \ldots$$

in which I_{j+1} is the *v*-successor of I_j for every $j \ge 0$. (We also say that I_j is the *v*-predecessor of I_{j+1} .) For j > 0, the ideal I_j is \mathfrak{m}_{α} -primary: clearly $I_j \supset \mathfrak{m}_{\alpha} I_{j-1}$ whence, by induction, $I_j \supset \mathfrak{m}_{\alpha}^j$. If *v* is rank-one discrete, then every *v*-ideal appears somewhere in (1.3.1).

(1.4) We'll call a valuation v of K a prime divisor of α if v dominates α and the residue field extension $\alpha/\mathfrak{m}_{\alpha} \hookrightarrow R_v/\mathfrak{m}_v$ is transcendental. For example, if $\beta \supset \alpha$ then $\operatorname{ord}_{\beta}$ is a prime divisor of α , cf. (1.2.1); and in fact every prime divisor of α is of this form for a unique β .

Moreover, there is a one-one correspondence $\mathfrak{p} \leftrightarrow v_{\mathfrak{p}}$ between the set of simple \mathfrak{m}_{α} -primary complete ideals and the set of prime divisors of α [17, p. 391, (E)]. (Actually, $v_{\mathfrak{p}}$ is the unique Rees valuation of \mathfrak{p} , cf. [6, p. 245, (21.3)] or [5, p. 333, Thm. 4.2]).

Thus we have three sets in one-one correspondence:

{prime divisors of
$$\alpha$$
}
 \uparrow
{points infinitely near to α }
 \uparrow
{simple \mathfrak{m}_{α} -primary complete ideals}

The infinitely near point $\beta_{\mathfrak{p}}$ corresponding to a simple \mathfrak{m}_{α} -primary complete ideal \mathfrak{p} (i.e., $\operatorname{ord}_{\beta_{\mathfrak{p}}} = v_{\mathfrak{p}}$) is characterized by any one of the following properties:

 $-\beta_{\mathfrak{p}}$ is the largest among those $\beta \supset \alpha$ such that $\mathfrak{p}^{\beta} \neq \beta$ [17, p. 389, (B)].

 $-\beta_{\mathfrak{p}}$ is the unique point infinitely near to α in which the transform of \mathfrak{p} is the maximal ideal [17, p. 389, (B)].

—A valuation v dominating α dominates $\beta_{\mathfrak{p}}$ iff \mathfrak{p} is a v-ideal. (This follows from [17, p. 390, (D)].)

If $\beta_{\mathfrak{p}} \subset \beta_{\mathfrak{p}'}$ then $\mathfrak{p} \supset \mathfrak{p}'$. (The converse doesn't hold.)

Furthermore, for any $v_{\mathfrak{p}}$ -ideal I in α , the ideal $I\beta_{\mathfrak{p}}$ is principal iff \mathfrak{p} does not divide I (i.e., $I \neq \mathfrak{p}(I:\mathfrak{p})$) [17, p. 392, (F), (2)].

Lemma (1.5). Let $\beta \supset \alpha$, let v be a valuation dominating β , and let I be a v-ideal such that the ideal $I\beta$ is principal. Then the v-successor of I is the ideal $I' := (\mathfrak{m}_{\beta}I) \cap \alpha$. Moreover, the length of the α -module I/I' is $\leq [\beta : \alpha]$.

Proof. Let $z \in I$ be such that $I\beta = z\beta$, and map I α -linearly to $\beta/\mathfrak{m}_{\beta}$ by sending $x \in I$ to $(x/z) + \mathfrak{m}_{\beta}$. It is immediate that the kernel of this map is I', and that the kernel of its composition with the injective map $\beta/\mathfrak{m}_{\beta} \to R_v/\mathfrak{m}_v$ is I'_v . Thus $I'_v = I'$; and we have an $(\alpha/\mathfrak{m}_{\alpha})$ -linear injection $I/I' \to \beta/\mathfrak{m}_{\beta}$, whence the last assertion. \Box

Corollary (1.5.1).¹ For any v dominating $\beta_{\mathfrak{p}}$ (i.e., such that \mathfrak{p} is a v-ideal) the sequence (1.3.1) of v-ideals in α coincides up to and including \mathfrak{p} with the corresponding sequence for $v_{\mathfrak{p}}$.

(1.6) Various proofs of the following useful relation can be found in [6, p. 247, Prop. (21.4)], [13, §7], [5, p. 334, Thm. 4.3], and [8, Cor. (4.8)]:

(1.6.1)
$$\operatorname{ord}_{\alpha}(\mathfrak{p}) = [\beta_{\mathfrak{p}} : \alpha] v_{\mathfrak{p}}(\mathfrak{m}_{\alpha}).$$

Here is one application. Define the *intersection number* of two \mathfrak{m}_{α} -primary ideals I and J, with respective point bases $\{r_{\beta}\}$ and $\{s_{\beta}\}$, to be

$$(I \cdot J) := \sum_{\beta \supset \alpha} [\beta : \alpha] r_{\beta} s_{\beta}.$$

¹Even for "polynomial ideals" this strengthens [15, p. 171, Thm. 6.2.], where only 0-dimensional valuations occur [*ibid.*, bottom of p. 155].

Lemma (1.6.2). For any \mathfrak{m}_{α} -primary ideals \mathfrak{p} , J, with \mathfrak{p} complete and simple, we have

$$(\mathfrak{p} \cdot J) = [\beta_{\mathfrak{p}} : \alpha] v_{\mathfrak{p}}(J).$$

Proof. Since for $\beta \supset \alpha$, $\mathfrak{p}^{\beta} = \beta$ unless $\beta_{\mathfrak{p}} \supset \beta$, therefore

$$\begin{split} (\mathfrak{p} \cdot J) &= \sum_{\beta_{\mathfrak{p}} \supset \beta \supset \alpha} [\beta : \alpha] \mathrm{ord}_{\beta}(\mathfrak{p}^{\beta}) \mathrm{ord}_{\beta}(J^{\beta}) \\ &\stackrel{(1.6.1)}{=} \sum_{\beta_{\mathfrak{p}} \supset \beta \supset \alpha} [\beta : \alpha] [\beta_{\mathfrak{p}} : \beta] v_{\mathfrak{p}}(\mathfrak{m}_{\beta}) \mathrm{ord}_{\beta}(J^{\beta}) \\ &= [\beta_{\mathfrak{p}} : \alpha] v_{\mathfrak{p}}(J), \end{split}$$

the last equality by an easy induction on the number of points between $\beta_{\mathfrak{p}}$ and α , cf. [7, pp. 209–210, Lemma (1.11)]. \Box

We mention in passing a more general form of (1.6.1):

Corollary (1.6.3). (Reciprocity) For any two simple \mathfrak{m}_{α} -primary ideals \mathfrak{p} and \mathfrak{q} ,

$$[eta_{\mathfrak{p}}:lpha]v_{\mathfrak{p}}(\mathfrak{q})=[eta_{\mathfrak{q}}:lpha]v_{\mathfrak{q}}(\mathfrak{p}).$$

Geometrically, (1.6.1) can be understood thus: the left-hand side is the intersection number of the proper transform of a general element of \mathfrak{p} with the closed fiber $f^{-1}{\mathfrak{m}_{\alpha}}$ of any map $f: X \to \operatorname{Spec}(\alpha)$ obtained by a succession of point blowups, while the right hand side is that intersection number when f is the map obtained by successively blowing up all the points between α and $\beta_{\mathfrak{p}}$, inclusive. A more precise intersection-theoretic interpretation of (1.6.3) is given in the proof of [6, p. 247, Prop. (21.4)].

2. The adjoint ideal. We fix a point α , and denote its maximal ideal by \mathfrak{m} . The length of an α -module M will be denoted by $\lambda(M)$. For any simple \mathfrak{m} -primary complete ideal \mathfrak{p} in α , we set

$$f_{\mathfrak{p}} := [\beta_{\mathfrak{p}} : \alpha],$$

the degree of the residue field extension associated with $\beta_{\mathfrak{p}} \supset \alpha$.

By (1.5) and the statement immediately preceding it, if I is a $v_{\mathfrak{p}}$ -ideal not divisible by \mathfrak{p} , and I' is the $v_{\mathfrak{p}}$ -successor of I, then $\lambda(I/I') \leq f_{\mathfrak{p}}$. In particular, if the residue field α/\mathfrak{m} is algebraically closed then $\lambda(I/I') = f_{\mathfrak{p}} = 1$.

Definition (2.1). The adjoint ideal $\mathfrak{C}_{\mathfrak{p}}$ of a simple \mathfrak{m} -primary complete ideal \mathfrak{p} is the largest $v_{\mathfrak{p}}$ -ideal in α containing \mathfrak{p} such that whenever I is a $v_{\mathfrak{p}}$ -ideal with $v_{\mathfrak{p}}$ -successor I' and $\mathfrak{C}_{\mathfrak{p}} \supset I \supset I' \supset \mathfrak{p}$, then

- (i) $v_{\mathfrak{p}}(I') = v_{\mathfrak{p}}(I) + 1$, and
- (ii) $\lambda(I/I') = f_{\mathfrak{p}}$.

Remark. Corollary (2.2.1) below entails that the "conductor property" (i) holds for any successive pair $I \supset I'$ of $v_{\mathfrak{p}}$ -ideals such that $\mathfrak{C}_{\mathfrak{p}} \supset I$. Property (ii), however, doesn't—consider the case $\mathfrak{p} = \mathfrak{m}$. (For more information, see [12, Remark 3.3].) **Theorem (2.2).** Let \mathfrak{p} be a simple \mathfrak{m} -primary complete ideal, and let \mathfrak{q} be the largest among those $v_{\mathfrak{p}}$ -ideals \mathfrak{q}' such that $\operatorname{ord}_{\alpha}(\mathfrak{q}') = \operatorname{ord}_{\alpha}(\mathfrak{p})$. Then $\mathfrak{C}_{\mathfrak{p}} = \mathfrak{q} : \mathfrak{m}$ and $\mathfrak{mC}_{\mathfrak{p}} = \mathfrak{q}$. In particular, $\operatorname{ord}_{\alpha}(\mathfrak{C}_{\mathfrak{p}}) = \operatorname{ord}_{\alpha}(\mathfrak{p}) - 1$.

Corollary (2.2.1). For every integer $n \ge n_0 := v_{\mathfrak{p}}(\mathfrak{C}_{\mathfrak{p}})$, there exists an $x \in \alpha$ such that $v_{\mathfrak{p}}(x) = n$.

Proof. Since $v_{\mathfrak{p}}(z\mathfrak{m}) = v_{\mathfrak{p}}(z) + v_{\mathfrak{p}}(\mathfrak{m})$ for any $z \in \alpha$, it suffices to show that (2.2.1) holds for $n = n_0, n_0 + 1, \ldots, n_0 + v_{\mathfrak{p}}(\mathfrak{m}) - 1$, which by (2.1)(i) follows easily from the relation $\mathfrak{mC}_{\mathfrak{p}} = \mathfrak{q} \supset \mathfrak{p}$.

Proof of (2.2). Setting $v := v_{p}$, we have, by (1.2.4) and (1.6.1),

(2.2.2)
$$\lambda((\mathfrak{q}:\mathfrak{m})/\mathfrak{q}) = \operatorname{ord}_{\alpha}(\mathfrak{q}) = \operatorname{ord}_{\alpha}(\mathfrak{p}) = f_{\mathfrak{p}}v(\mathfrak{m}).$$

In view of the paragraph preceding (2.1), there must then be at least $v(\mathfrak{m})$ v-ideals contained in $\mathfrak{q} : \mathfrak{m}$ and strictly containing \mathfrak{q} . On the other hand, $\mathfrak{m}(\mathfrak{q} : \mathfrak{m}) \subset \mathfrak{q}$ implies that $v(\mathfrak{q}) - v(\mathfrak{q} : \mathfrak{m}) \leq v(\mathfrak{m})$, and so there are at most $v(\mathfrak{m})$ such ideals. Hence there are precisely $v(\mathfrak{m})$ such ideals; and furthermore if I is any one of them, with v-successor I', then (i) and (ii) in (2.1) must hold. Thus $\mathfrak{q} : \mathfrak{m} \subset \mathfrak{C}_{\mathfrak{p}}$, and $v(\mathfrak{q} : \mathfrak{m}) = v(\mathfrak{q}) - v(\mathfrak{m})$. (Incidentally, the same argument applies to any \mathfrak{q}' in (2.2)).

Now let \mathfrak{P} be the *v*-predecessor of \mathfrak{q} , so that $v(\mathfrak{P}) = v(\mathfrak{q}) - 1 = v(\mathfrak{q}:\mathfrak{m}) + v(\mathfrak{m}) - 1$ and $\lambda(\mathfrak{P}/\mathfrak{q}) = f_{\mathfrak{p}}$. Then $\mathfrak{P}:\mathfrak{m}$ is a *v*-ideal containing $\mathfrak{q}:\mathfrak{m}$, and again by (1.2.4) and (1.6.1) we have

$$\lambda \big((\mathfrak{P}:\mathfrak{m})/\mathfrak{P} \big) = \operatorname{ord}_{lpha}(\mathfrak{P}) < \operatorname{ord}_{lpha}(\mathfrak{p}) = f_{\mathfrak{p}}v(\mathfrak{m}),$$

whence $\lambda((\mathfrak{P}:\mathfrak{m})/(\mathfrak{q}:\mathfrak{m})) < f_{\mathfrak{p}}$ (cf. (2.2.2)). So if $\mathfrak{q}:\mathfrak{m} \subsetneqq \mathfrak{C}_{\mathfrak{p}}$, then by (ii) in (2.1) we must have $\mathfrak{P}:\mathfrak{m} = \mathfrak{q}:\mathfrak{m}$, and further, by (i), the *v*-predecessor *I* of $\mathfrak{q}:\mathfrak{m}$ must satisfy $v(I) = v(\mathfrak{q}:\mathfrak{m}) - 1$. But this is impossible, since then

$$v(\mathfrak{m} I) = v(\mathfrak{m}) + v(I) = v(\mathfrak{m}) + v(\mathfrak{q}:\mathfrak{m}) - 1 = v(\mathfrak{P})$$

(see above), whence $\mathfrak{m} I \subset \mathfrak{P}$, i.e., $I \subset \mathfrak{P} : \mathfrak{m} = \mathfrak{q} : \mathfrak{m}$. Thus $\mathfrak{q} : \mathfrak{m} = \mathfrak{C}_{\mathfrak{p}}$.

Now $\operatorname{ord}_{\alpha}(\mathfrak{C}_{\mathfrak{p}}) < \operatorname{ord}_{\alpha}(\mathfrak{p})$ (since $\mathfrak{C}_{\mathfrak{p}} \supseteq \mathfrak{q}$); and

$$\mathfrak{mC}_{\mathfrak{p}} \subset \mathfrak{q} \implies 1 + \operatorname{ord}_{\alpha}(\mathfrak{C}_{\mathfrak{p}}) \geq \operatorname{ord}_{\alpha}(\mathfrak{q}) = \operatorname{ord}_{\alpha}(\mathfrak{p}).$$

So $\operatorname{ord}_{\alpha}(\mathfrak{C}_{\mathfrak{p}}) = \operatorname{ord}_{\alpha}(\mathfrak{p}) - 1$. Finally,

$$\lambda\big((\mathfrak{q}:\mathfrak{m})/\mathfrak{m}\mathfrak{C}_\mathfrak{p}\big) = \lambda(\mathfrak{C}_\mathfrak{p}/\mathfrak{m}\mathfrak{C}_\mathfrak{p}) = \mathrm{ord}_\alpha(\mathfrak{C}_\mathfrak{p}) + 1 = \mathrm{ord}_\alpha(\mathfrak{p}) = \lambda\big((\mathfrak{q}:\mathfrak{m})/\mathfrak{q}\big),$$

the second equality by (1.2.3) and the fourth by (2.2.2), so that $\mathfrak{mC}_{\mathfrak{p}} = \mathfrak{q}$. \Box

Some peculiarities of the case where $\alpha/\mathfrak{m}_{\alpha}$ is not algebraically closed are illustrated by:

Corollary (2.3). With notation as in the proof of (2.2), and $\mathfrak{C} := \mathfrak{C}_{\mathfrak{p}}$, the following conditions are equivalent:

(i) $f_{p} > 1$.

- (ii) $\mathfrak{P}: \mathfrak{m} \neq \mathfrak{C}$.
- (iii) $v(\mathfrak{P}:\mathfrak{m}) = v(\mathfrak{C}) 1.$
- (iv) There exists $z \in \alpha$ with $v(z) = v(\mathfrak{C}) 1$.

Proof. (i) \Leftrightarrow (ii). Since $\mathfrak{q} \subset \mathfrak{P} \subset \mathfrak{C} = \mathfrak{q} : \mathfrak{m}$, therefore

$$\begin{split} f_{\mathfrak{p}} &= \lambda(\mathfrak{P}/\mathfrak{q}) = \lambda(\mathfrak{P}/\mathfrak{m}\mathfrak{C}) \\ &\geq \lambda(\mathfrak{C}/\mathfrak{m}\mathfrak{C}) - \lambda(\mathfrak{C}/\mathfrak{P}) - \lambda\big((\mathfrak{P}:\mathfrak{m})/\mathfrak{C}\big) \\ &= \lambda(\mathfrak{C}/\mathfrak{m}\mathfrak{C}) - \lambda\big((\mathfrak{P}:\mathfrak{m})/\mathfrak{P}\big) \\ &= \operatorname{ord}_{\alpha}(\mathfrak{C}) + 1 - \operatorname{ord}_{\alpha}(\mathfrak{P}) \qquad (\text{cf. } (1.2.3), (1.2.4)) \\ &= 1, \end{split}$$

with equality throughout iff $\mathfrak{P}: \mathfrak{m} = \mathfrak{C}$.

(ii) \Leftrightarrow (iii) follows easily (since $\mathfrak{P} : \mathfrak{m} \supset \mathfrak{C} = \mathfrak{q} : \mathfrak{m}$) from

$$v(\mathfrak{m}) + v(\mathfrak{P}:\mathfrak{m}) = v(\mathfrak{m}(\mathfrak{P}:\mathfrak{m})) \ge v(\mathfrak{P}) = v(\mathfrak{q}) - 1 = v(\mathfrak{m}) + v(\mathfrak{C}) - 1.$$

 $(iii) \Rightarrow (iv) \Rightarrow (i)$. The first implication is obvious. As for the second, with \mathfrak{P}' the v-ideal

$$\mathfrak{P}' := \set{x \in lpha \mid v(x) \geq v(z)}$$

we have $v(\mathfrak{P}') = v(\mathfrak{C}) - 1$, whence by (2.1) and the paragraph preceding it, $f_{\mathfrak{p}} > \lambda(\mathfrak{P}'/\mathfrak{C}) \geq 1$. \Box

3. Covariance of the adjoint. Notation remains as in $\S2$. This section is devoted to the proof of the following key result, to the effect that *adjoint commutes with transform*. Immediate consequences appear in $\S4$.

Theorem (3.1). Assume $\mathfrak{p} \neq \mathfrak{m}$, so that there is a unique quadratic transform β of α dominated by $v_{\mathfrak{p}}$. Denote the transform I^{β} of an \mathfrak{m} -primary ideal I by I'. Then \mathfrak{p}' is a simple \mathfrak{m}_{β} -primary complete ideal, and

$$\mathfrak{C}_{\mathfrak{p}'} = (\mathfrak{C}_{\mathfrak{p}})'.$$

Proof. That \mathfrak{p}' is a simple \mathfrak{m}_{β} -primary complete ideal is proved e.g., in [17, p. 381, Prop. 5 and p. 386, Lemma 6].

Let $\mathfrak{q} = \mathfrak{m}\mathfrak{C}_{\mathfrak{p}}$ be as in (2.2), so that, $\mathfrak{m}\beta$ being principal, $\mathfrak{q}' = (\mathfrak{C}_{\mathfrak{p}})'$. We show first that $\mathfrak{q}' \subset \mathfrak{C}_{\mathfrak{p}'}$. Set $v := v_{\mathfrak{p}} = v_{\mathfrak{p}'}$, and let

$$\mathfrak{q} = \mathfrak{q}_0 > \mathfrak{q}_1 > \mathfrak{q}_2 > \cdots > \mathfrak{q}_n = \mathfrak{p}$$

be the sequence of all the v-ideals between \mathfrak{q} and \mathfrak{p} , cf. (1.3.1). Since all these ideals have the same order, say r, their transforms—obtained by extending to β and then dividing by the principal ideal $(\mathfrak{m}\beta)^{-r}$ —form a descending sequence

$$\mathfrak{q}'=\mathfrak{q}_0'>\mathfrak{q}_1'>\mathfrak{q}_2'>\cdots>\mathfrak{q}_n'=\mathfrak{p}'$$

whose members are v-ideals in β [17, p. 390, (D) (1)]. A similar argument holds for any quadratic transform γ of α ; and so if $\gamma \neq \beta$ then $\mathfrak{q}_i^{\gamma} \supset \mathfrak{p}^{\gamma} = \gamma$ for all *i*. From (1.2.2) and "transitivity of transform" we find then that

$$\lambda_{\alpha}(\alpha/\mathfrak{q}_{i}) = [\beta:\alpha] \left(\frac{1}{2}r(r+1) + \lambda_{\beta}(\beta/\mathfrak{q}'_{i}) \right)$$
$$\lambda_{\alpha}(\alpha/\mathfrak{q}_{i+1}) = [\beta:\alpha] \left(\frac{1}{2}r(r+1) + \lambda_{\beta}(\beta/\mathfrak{q}'_{i+1}) \right).$$

Subtracting the first of these equations from the second, and by (2.1)(ii), we get

$$[\beta:\alpha]\lambda_{\beta}(\mathfrak{q}'_{i}/\mathfrak{q}'_{i+1}) = \lambda_{\alpha}(\mathfrak{q}_{i}/\mathfrak{q}_{i+1}) = f_{\mathfrak{p}},$$

so that

$$\lambda_{\beta}(\mathfrak{q}'_{i}/\mathfrak{q}'_{i+1}) = [\beta:\alpha]^{-1}f_{\mathfrak{p}} = f_{\mathfrak{p}'}$$

Also,

$$v(\mathbf{q}_i) = v(\mathbf{q}_i\beta) = v(\mathbf{q}'_i) + rv(\mathbf{m})$$
$$v(\mathbf{q}_{i+1}) = v(\mathbf{q}_{i+1}\beta) = v(\mathbf{q}'_{i+1}) + rv(\mathbf{m})$$

and so

$$v(\mathfrak{q}'_{i+1}) - v(\mathfrak{q}'_i) = v(\mathfrak{q}_{i+1}) - v(\mathfrak{q}_i) = 1.$$

It follows, by (2.1), that indeed $\mathfrak{q}' \subset \mathfrak{C}_{\mathfrak{p}'}$, i.e., $(\mathfrak{C}_{\mathfrak{p}})' \subset \mathfrak{C}_{\mathfrak{p}'}$.

If $\mathfrak{q}' = \beta$ we are done. Otherwise, let $\mathfrak{P}' \subset \beta$ be the *v*-predecessor of \mathfrak{q}' , and let $\mathfrak{P} \subset \alpha$ be the *inverse transform* of \mathfrak{P}' , i.e., the largest ideal in α whose transform in β is \mathfrak{P}' [17, p. 390]. Clearly, \mathfrak{P} is not divisible by \mathfrak{m} and $\mathfrak{P} = (\mathfrak{m}^s \mathfrak{P}') \cap \alpha$ where $s := \operatorname{ord}_{\alpha}(\mathfrak{P})$.

Now $s < r := \operatorname{ord}_{\alpha}(\mathfrak{q})$; for if not, then we would have

$$\mathfrak{m}^{s-r+1}\mathfrak{C}_{\mathfrak{p}}=\mathfrak{m}^{s-r}\mathfrak{q}\subset (\mathfrak{m}^{s-r}\mathfrak{q}\beta)\cap\alpha=(\mathfrak{m}^{s}\mathfrak{q}')\cap\alpha\subset (\mathfrak{m}^{s}\mathfrak{P}')\cap\alpha=\mathfrak{P};$$

and since $\operatorname{ord}_{\alpha}(\mathfrak{m}^{s-r+1}\mathfrak{C}_{\mathfrak{p}}) = s = \operatorname{ord}_{\alpha}(\mathfrak{P})$, the initial forms of elements in \mathfrak{P} with order s would form an $\alpha/\mathfrak{m}_{\alpha}$ -vector space of dimension > 1, contradicting [17, p. 368, Prop. 3] since \mathfrak{P} is not divisible by \mathfrak{m} . So $t := r - 1 - s \ge 0$, and

$$\begin{aligned} v\big((\mathfrak{C}_{\mathfrak{p}})'\big) - v\big(\mathfrak{P}'\big) &= \big(v(\mathfrak{C}_{\mathfrak{p}}) - (r-1)v(\mathfrak{m})\big) - \big(v(\mathfrak{m}^{t}\mathfrak{P}) - (r-1)v(\mathfrak{m})\big) \\ &= v\big(\mathfrak{C}_{\mathfrak{p}}\big) - v\big(\mathfrak{m}^{t}\mathfrak{P}\big). \end{aligned}$$

If $v((\mathfrak{C}_{\mathfrak{p}})') - v(\mathfrak{P}') > 1$, then by (2.1)(i), $(\mathfrak{C}_{\mathfrak{p}})' = \mathfrak{C}_{\mathfrak{p}'}$, q.e.d. So suppose that $v(\mathfrak{C}_{\mathfrak{p}}) - v(\mathfrak{m}^{t}\mathfrak{P}) = 1$, whence, by (2.1) again, the *v*-predecessor *I* of $\mathfrak{C}_{\mathfrak{p}}$ satisfies $\lambda(I/\mathfrak{C}_{\mathfrak{p}}) < f_{\mathfrak{p}}$. Note that $\mathfrak{m}^{t}\mathfrak{P} = (\mathfrak{m}^{t}\mathfrak{P}\beta) \cap \alpha$ [17, p. 369, Cor. 2], and that

$$\mathfrak{C}_{\mathfrak{p}}\beta = \mathfrak{m}^{r-1}\mathfrak{q}' \subset \mathfrak{m}^{r-1}\mathfrak{P}' = \mathfrak{m}^{t}\mathfrak{P}\beta,$$

so that $\mathfrak{C}_{\mathfrak{p}} \subset \mathfrak{m}^{t}\mathfrak{P} \subset I$. Thus $\lambda(\mathfrak{m}^{t}\mathfrak{P}/\mathfrak{C}_{\mathfrak{p}}) < f_{\mathfrak{p}}$. Moreover, $\mathfrak{m}^{t}\mathfrak{P}$ and $\mathfrak{C}_{\mathfrak{p}}$ have the same order r-1, and since as before $(\mathfrak{C}_{\mathfrak{p}})^{\gamma} = \mathfrak{q}^{\gamma} = \gamma$ for any quadratic transform γ of α other than β , therefore $(\mathfrak{m}^{t}\mathfrak{P})^{\gamma} = \gamma$ too. Applying (1.2.2) to $\mathfrak{C}_{\mathfrak{p}}$ and to $\mathfrak{m}^{t}\mathfrak{P}^{2}$, we conclude as above that

$$\begin{split} \lambda_{\beta}\big(\mathfrak{P}'/(\mathfrak{C}_{\mathfrak{p}})'\big) &= \lambda_{\beta}\big((\mathfrak{m}^{t}\mathfrak{P})'/(\mathfrak{C}_{\mathfrak{p}})'\big) = [\beta:\alpha]^{-1}\lambda_{\alpha}\big(\mathfrak{m}^{t}\mathfrak{P}/\mathfrak{C}_{\mathfrak{p}}\big) \\ &< [\beta:\alpha]^{-1}f_{\mathfrak{p}} = f_{\mathfrak{p}'}. \end{split}$$

So once again we have by (2.1) that $(\mathfrak{C}_{\mathfrak{p}})' = \mathfrak{C}_{\mathfrak{p}'}$. \Box

²Here we use completeness of $\mathfrak{m}^t\mathfrak{P}$; but $\mathfrak{m}^t\mathfrak{P} = (\mathfrak{m}^t\mathfrak{P}\beta) \cap \alpha$ suffices, cf. [7, p. 223, (3.1) etc.].

4. More properties of the adjoint.

Denote the point basis of the simple \mathfrak{m}_{α} -primary complete ideal \mathfrak{p} by $\{r_{\beta}\}$. From (2.2) and (3.1) we get:

Corollary (4.1). The point basis of $\mathfrak{C}_{\mathfrak{p}}$ is $\{r_{\beta} - 1\}$.

Hence, by (1.2.2):

Corollary (4.2).

$$\lambda(\alpha/\mathfrak{C}_{\mathfrak{p}}) = \sum_{\beta \supset \alpha} [\beta : \alpha] r_{\beta}(r_{\beta} - 1)/2.$$

Recall that $f_{\mathfrak{p}} := [\beta_{\mathfrak{p}} : \alpha].$

Corollary (4.3). (Gorenstein property)

$$f_{\mathfrak{p}}v_{\mathfrak{p}}(\mathfrak{C}_{\mathfrak{p}})=2\lambda(lpha/\mathfrak{C}_{\mathfrak{p}}).$$

Proof. By (1.6.2), the left-hand side is $(\mathfrak{p} \cdot \mathfrak{C}_{\mathfrak{p}}) = \sum_{\beta \supset \alpha} [\beta : \alpha] r_{\beta}(r_{\beta} - 1).$

Corollary (4.4). (Noh, [11, Thm. 1]). If $f_{\mathfrak{p}} = 1$ (for example, if $\alpha/\mathfrak{m}_{\alpha}$ is algebraically closed) then the semigroup

$$S_{\mathfrak{p}} := \{ v_{\mathfrak{p}}(x) \mid 0 \neq x \in \alpha \}$$

is symmetric.

Proof. If $f_{\mathfrak{p}} = 1$ then by (2.1) and (2.2.1), $c := v_{\mathfrak{p}}(\mathfrak{C}_{\mathfrak{p}})$ is the conductor of $S_{\mathfrak{p}}$, i.e., $S_{\mathfrak{p}}$ contains every integer $\geq c$, but $c - 1 \notin S_{\mathfrak{p}}$. Symmetry means, by definition, that $c - 1 - s \in S_{\mathfrak{p}}$ for every $s \in S_{\mathfrak{p}}$, or, equivalently, that $S_{\mathfrak{p}}$ contains exactly half of the integers in the interval [0, c - 1]. But when $f_{\mathfrak{p}} = 1$, we have by (1.5) and the statement preceding it that $\lambda(I/I') = 1$ for any two successive $v_{\mathfrak{p}}$ -ideals containing $\mathfrak{C}_{\mathfrak{p}}$. Hence the symmetry of $S_{\mathfrak{p}}$ results from (4.3). \Box

(4.5). Let $\beta \supset \alpha$, and set $\mathfrak{p} := \mathfrak{p}_{\beta}$, $\mathfrak{C} := \mathfrak{C}_{\mathfrak{p}}$. The quadratic sequence

$$\alpha =: \alpha_0 \subset \alpha_1 \subset \dots \subset \alpha_n := \beta \qquad (n \ge 0)$$

in (1.1) gives rise to the sequence of regular surfaces

$$\operatorname{Spec}(\alpha) =: X_0 \xleftarrow{f_0} X_1 \xleftarrow{f_1} \cdots \xleftarrow{f_n} X_{n+1} =: X$$

where $f_i: X_{i+1} \to X_i$ $(0 \le i \le n)$ is obtained by blowing up the geometric point $x_i \in X_i$ whose local ring is α_i . Set $\mathfrak{m}_i := \mathfrak{m}_{\alpha_i}$. Note that $\mathfrak{m}_i \mathcal{O}_X$ is an invertible \mathcal{O}_X -ideal. Also $\mathfrak{p}\mathcal{O}_X$ and $\mathfrak{C}\mathcal{O}_X$ are invertible; indeed, an easy induction yields

$$\mathfrak{p}\mathcal{O}_X = \prod_{0 \le i \le n} \mathfrak{m}_i^{r_i}\mathcal{O}_X \qquad (r_i := \operatorname{ord}_{\alpha_i}(\mathfrak{p}^{\alpha_i}))$$

and similarly, in view of (4.1),

$$\mathfrak{CO}_X = \prod_{0 \leq i \leq n} \mathfrak{m}_i^{r_i - 1} \mathcal{O}_X \,.$$

JOSEPH LIPMAN

Let E'_i be the curve $E'_i := f_i^{-1}\{x_i\}$, and let E_i be the proper transform of E'_i on X, i.e., the unique curve on X mapped isomorphically onto E'_i by the composed map $f_{i+1} \circ f_{i+2} \circ \cdots \circ f_n$. Let $\iota : E_i \hookrightarrow X$ be the inclusion map. For any invertible \mathcal{O}_X -module \mathcal{L} , $(\mathcal{L} \cdot E_i)$ denotes the degree, over $\alpha/\mathfrak{m}_\alpha$, of the invertible sheaf $\iota^*\mathcal{L}$ on the curve E_i . For any divisor D on X, the intersection number $(D \cdot E_i)$ is, by definition, $(\mathcal{O}_X(D) \cdot E_i)$.

Proposition (4.5.1). Set

$$\mathcal{K} := \mathfrak{p}(\mathfrak{C}\mathcal{O}_X)^{-1} = \prod_{0 \le i \le n} \mathfrak{m}_i \mathcal{O}_X.$$

Then

$$(\mathcal{K} \cdot E_j) = (E_j \cdot E_j) + 2[\alpha_j : \alpha] \qquad (0 \le j \le n).$$

*Proof.*³ Standard intersection theory (cf. e.g., $[6, \S13]$) yields the following facts.

—If i < j then the \mathcal{O}_X -module $\mathfrak{m}_i \mathcal{O}_X$ is free (of rank one) in a neighborhood of E_j , and hence $(\mathfrak{m}_i \mathcal{O}_X \cdot E_j) = 0$.

—If i = j then

$$(\mathfrak{m}_i \mathcal{O}_X \cdot E_j) = (\mathfrak{m}_j \mathcal{O}_{X_{j+1}} \cdot E'_j) = -(E'_j \cdot E'_j) = [\alpha_j : \alpha].$$

-If i > j then $(\mathfrak{m}_i \mathcal{O}_X \cdot E_j) = -[\alpha_i : \alpha]$ if x_i lies on the proper transform of E'_j on X_i (in which case we say that α_i is *proximate to* α_j , and write $\alpha_i \succ \alpha_j$); and otherwise $(\mathfrak{m}_i \mathcal{O}_X \cdot E_j) = 0$.

Thus

$$(\mathcal{K} \cdot E_j) = \sum_{j \le i \le n} (\mathfrak{m}_i \cdot E_j) = [\alpha_j : \alpha] \left(1 - \sum_{\alpha_i \succ \alpha_j} [\alpha_i : \alpha_j] \right).$$

Now let E_i^i be the proper transform of E_i' on X_i (i > j). Then

$$(E_j^{i+1} \cdot E_j^{i+1}) = (E_j^i \cdot E_j^i) - [\alpha_i : \alpha] \quad \text{if } \alpha_i \succ \alpha_j$$
$$= (E_j^i \cdot E_j^i) \quad \text{otherwise.}$$

Since

$$(E_{j}^{j+1} \cdot E_{j}^{j+1}) = (E_{j}' \cdot E_{j}') = -[\alpha_{j} : \alpha],$$

we conclude that

$$(E_j \cdot E_j) = -[\alpha_j : \alpha] - \sum_{\alpha_i \succ \alpha_j} [\alpha_i : \alpha] = [\alpha_j : \alpha] \left(-1 - \sum_{\alpha_i \succ \alpha_j} [\alpha_i : \alpha_j] \right),$$

and (4.5.1) results. \Box

³Alternatively, $[\alpha_j : \alpha]$ is the Euler characteristic of \mathcal{O}_{E_j} ; and hence (4.5.1) amounts to saying that $\mathcal{K} = \omega^{-1}$ where ω is the *relative canonical sheaf* for $X \to \text{Spec}(\alpha)$, an assertion proved, in essence, in [10, p. 111] or [9, p. 202 and p. 206, (2.3)]. In particular, $\mathfrak{C} = H^0(X, \mathfrak{p}\omega)$.

Corollary (4.5.2). With $E_{\gamma} := E_i$ when $\gamma = \alpha_i$, the adjoint ideal \mathfrak{C} factors as

$$\mathfrak{C} = \prod_{\alpha \subset \gamma \subsetneqq \beta} \mathfrak{p}_{\gamma}^{c_{\gamma}}$$

where

$$c_{\gamma} = -[\gamma : \alpha]^{-1}(E_{\gamma} \cdot E_{\gamma}) - 2$$

is one less than the number of $\delta \subset \beta$ proximate to γ , each such δ being counted with multiplicity $[\delta : \gamma]$.

Proof. The treatment of factorization of complete ideals given in [6, §§18–19] gives $\mathfrak{C} = \prod_{\alpha \subset \gamma \subsetneq \beta} \mathfrak{p}_{\gamma}^{c_{\gamma}}$ with

$$c_{\gamma} = [\gamma : \alpha]^{-1} (\mathfrak{C}\mathcal{O}_X \cdot E_{\gamma}) \stackrel{(4.5.1)}{=} (\mathfrak{p} \cdot E_{\gamma}) - (\mathcal{K} \cdot E_{\gamma}) = 0 - [\gamma : \alpha]^{-1} (E_{\gamma} \cdot E_{\gamma}) - 2.$$

The rest is contained in the proof of (4.5.1).⁴

5. The polar ideal. Notation remains as in $\S 2$.

Definition (5.1). The polar ideal $\mathfrak{P}_{\mathfrak{p}}$ of a simple \mathfrak{m} -primary complete ideal \mathfrak{p} is the smallest among those \mathfrak{m} -primary $v_{\mathfrak{p}}$ -ideals \mathfrak{P} satisfying $\operatorname{ord}_{\alpha}(\mathfrak{P}) = \operatorname{ord}_{\alpha}(\mathfrak{p}) - 1$, i.e., $\mathfrak{P}_{\mathfrak{p}}$ is the $v_{\mathfrak{p}}$ -predecessor of the ideal $\mathfrak{q} = \mathfrak{m}\mathfrak{C}_{\mathfrak{p}}$ of Theorem (2.2).

Corollary (5.1.1).

$$v_{\mathfrak{p}}(\mathfrak{P}_{\mathfrak{p}}) = v_{\mathfrak{p}}(\mathfrak{C}_{\mathfrak{p}}) + f_{\mathfrak{p}}^{-1} \mathrm{ord}_{\alpha}(\mathfrak{p}) - 1,$$
$$\lambda(\alpha/\mathfrak{P}_{\mathfrak{p}}) = \lambda(\alpha/\mathfrak{C}_{\mathfrak{p}}) + \mathrm{ord}_{\alpha}(\mathfrak{p}) - f_{\mathfrak{p}}.$$

Proof. Since $\mathfrak{P}_{\mathfrak{p}} \subset \mathfrak{C}_{\mathfrak{p}}$, therefore, by (2.1) and (2.2),

$$v_{\mathfrak{p}}(\mathfrak{P}_{\mathfrak{p}}) = v_{\mathfrak{p}}(\mathfrak{q}) - 1 = v_{\mathfrak{p}}(\mathfrak{C}_{\mathfrak{p}}) + v_{\mathfrak{p}}(\mathfrak{m}) - 1 \stackrel{(1.6.1)}{=} v_{\mathfrak{p}}(\mathfrak{C}_{\mathfrak{p}}) + f_{\mathfrak{p}}^{-1} \operatorname{ord}_{\alpha}(\mathfrak{p}) - 1,$$

and also,

$$\lambda(\alpha/\mathfrak{P}_{\mathfrak{p}}) = \lambda(\alpha/\mathfrak{C}_{\mathfrak{p}}) + \lambda(\mathfrak{C}_{\mathfrak{p}}/\mathfrak{m}\mathfrak{C}_{\mathfrak{p}}) - f_{\mathfrak{p}} \stackrel{(1.2.3)}{=} \lambda(\alpha/\mathfrak{C}_{\mathfrak{p}}) + \operatorname{ord}_{\alpha}(\mathfrak{p}) - f_{\mathfrak{p}}.$$

Henceforth, we will write \mathfrak{P} (resp. \mathfrak{C} , v) for $\mathfrak{P}_{\mathfrak{p}}$ (resp. $\mathfrak{C}_{\mathfrak{p}}$, $v_{\mathfrak{p}}$) when there is no possibility of confusion.

Next we describe how to derive the point basis $\{s_{\gamma}\}_{\gamma \supset \alpha}$ of \mathfrak{P} from the point basis $\{r_{\gamma}\}_{\gamma \supset \alpha}$ of \mathfrak{p} . As mentioned in the Introduction, this will explain the appellation "polar ideal."

⁴Another justification—not using geometric methods—of this description of c_{γ} in terms of proximity appears in [8, Example (3.2)].

Let $\beta \supset \alpha$ be the point corresponding to \mathfrak{p} (so that $v = \operatorname{ord}_{\beta}$, cf. (1.4)) and let

$$\alpha =: \alpha_0 \subset \alpha_1 \subset \cdots \subset \alpha_n := \beta$$

be the corresponding quadratic sequence (1.1.1). Then r_{γ} and s_{γ} both vanish unless $\gamma = \alpha_i$ for some *i*. (Such vanishing holds for the point basis of any *v*-ideal, cf. [17, p. 392, (F)].) So setting $r_i := r_{\alpha_i}$, $s_i := s_{\alpha_i}$, we need only look at the sequences $(r_i)_{0 \le i \le n}$.

We say, as in the proof of (4.5.1), that α_i is proximate to α_j , and write $\alpha_i \succ \alpha_j$, if i > j and if the valuation ring of $\operatorname{ord}_{\alpha_j}$ contains α_i . When i > 0, α_i is proximate to α_{i-1} and to *at most* one other α_j (because, for example, the closed points on X_i in (4.5) form a normal-crossing divisor; or, one can use (5.2.2) below). If there is such an α_j , we say that α_i is a *satellite*, and otherwise that α_i is *free*, with respect to (w.r.t.) α .

Set $\mathfrak{m}_i := \mathfrak{m}_{\alpha_i}$. The integers $v(\mathfrak{m}_i) = [\beta : \alpha_i]^{-1}r_i$ (cf. (1.6)) appearing in the following Theorem may be thought of, informally, as representing the infinitely near multiplicities of a general element of \mathfrak{p} . At least that's what they do when $\alpha/\mathfrak{m}_{\alpha}$ is algebraically closed. We also let \mathfrak{P}'_i be the transform \mathfrak{P}^{α_i} (which is a v-ideal in α_i [17, p. 390, (1)]); and we set $\mathfrak{p}_i := \mathfrak{p}^{\alpha_i}$, $\mathfrak{P}_i := \text{polar ideal}{---in \alpha_i} \mathfrak{p}_i$.

Theorem (5.2). With preceding notation, we have the following inductive prescription for determining $r_i - s_i$:

- (i) $\mathfrak{P}_i \supset \mathfrak{P}'_i \supset \mathfrak{p}_i$, so that $r_i s_i = 0$ or 1 $(0 \le i \le n)$.
- (ii) $r_0 s_0 = 1$.

(iii) If $v(\mathfrak{m}_{i+1}) = v(\mathfrak{m}_i)$ then $r_{i+1} - s_{i+1} = r_i - s_i$ unless either i+1 = n or α_{i+1} is a satellite and α_{i+2} is free, in which cases $r_{i+1} - s_{i+1} = 1$ (whether or not $v(\mathfrak{m}_{i+1}) = v(\mathfrak{m}_i)$).

(iv) If $v(\mathfrak{m}_{i+1}) < v(\mathfrak{m}_i)$ then $r_{i+1} - s_{i+1} \neq r_i - s_i$.

Moreover, if $r_i - s_i = 1$ then $\mathfrak{P}'_i = \mathfrak{P}_i$. And $r_i - s_i = 1$ whenever α_{i+1} is free.

Proof. Condition (ii) holds by the definition of \mathfrak{P} . For the rest, we proceed by induction on the number of points between α and β , everything being obvious if $\alpha = \beta$. Suppose $\alpha \neq \beta$ and that we can find a k > 0 such that $\mathfrak{P}'_k = \mathfrak{P}_k$. The inductive hypothesis establishes $(5.2)_k$, the statement (5.2) with the underlying pair $\alpha \subset \beta$ replaced by $\alpha_k \subset \beta$. Such a replacement does not affect \mathfrak{p}_i or \mathfrak{P}'_i for any $i \geq k$ (use transitivity of transform (1.2)), and hence does not affect r_i, s_i, \mathfrak{P}_i , or $v(\mathfrak{m}_i) = \operatorname{ord}_\beta(\mathfrak{m}_i)$. For $i \geq k$ then, assertions (i) and (iv) in (5.2), as well as the assertions following (iv), are clearly implied by the corresponding assertions in $(5.2)_k$. So is assertion (iii), as we see after making the following observation: if w.r.t. α_k, α_{i+1} is a satellite and α_{i+2} is free, then the same is true w.r.t. α_0 —for if $\alpha_{i+2} \succ \alpha_j$ for some j < k, i.e., α_{i+2} is contained in the valuation ring R_j of $\operatorname{ord}_{\alpha_j}$, then also $\alpha_{i+1} \subset R_j$, so that α_{i+1} is proximate to α_j as well as to two other points containing α_k , contradiction.

Thus, to establish (5.2) it will suffice to prove its assertions for i < k, and hence, to prove the following Lemma.

Lemma (5.2.1). Assume $\alpha \neq \beta$. Let $a \geq 0$ and b be the unique integers such that

$$v(\mathfrak{m}_0) = av(\mathfrak{m}_1) + b$$
 $(0 < b \le v(\mathfrak{m}_1)).$

Then:

(i) $\{\alpha_1, \alpha_2, \ldots, \alpha_{a+1}\}$ is the set of all points proximate to α_0 and contained in β ; and so for $2 \le i \le a+1$, α_i is a satellite (w.r.t. α).

- (ii) $v(\mathfrak{m}_1) = v(\mathfrak{m}_2) = \cdots = v(\mathfrak{m}_a) \ge v(\mathfrak{m}_{a+1}) = b.$
- (iii) If $b = v(\mathfrak{m}_1)$ and $1 \leq a \leq n-2$, then α_{a+1} is a satellite and α_{a+2} is free.
- (iv) For $1 \leq i \leq a+1$, $\mathfrak{P}_i \supset \mathfrak{P}'_i \supset \mathfrak{p}_i$, and

$$v(\mathfrak{P}'_i) - v(\mathfrak{P}_i) = \sum_{i < j \le a+1} v(\mathfrak{m}_j).$$

Thus $\mathfrak{P}'_{a+1} = \mathfrak{P}_{a+1}$, $r_{a+1} - s_{a+1} = 1$, and for $1 \leq i \leq a$, $\mathfrak{P}_i \neq \mathfrak{P}'_i$, so that $r_i - s_i = 0$.

Proof. If α_{a+2} is proximate to α_i for some $i \leq a$, then so is α_{a+1} , and therefore i = 0 or i = a. The first possibility is excluded by (i). So is the second under the hypotheses of (iii), since then by (ii), $v(\mathfrak{m}_a) = v(\mathfrak{m}_{a+1})$, and we can replace \mathfrak{m}_0 by \mathfrak{m}_{α} in (i) to conclude. Hence (iii) follows from (i) and (ii).

Now (i) and (ii) follow readily from the next result (applied with $\gamma := \alpha$, δ the largest point between α and β proximate to α , and w := v).

Lemma (5.2.2). Let $\gamma \prec \delta$ be two points, with corresponding quadratic sequence

$$\gamma =: \gamma_0 \subset \gamma_1 \subset \cdots \subset \gamma_d := \delta.$$

If w is any valuation dominating δ , then, with $\mathfrak{m}_i := \mathfrak{m}_{\gamma_i}$,

(5.2.2.1)
$$w(\mathfrak{m}_{\gamma}) \ge w(\mathfrak{m}_{1}) + w(\mathfrak{m}_{2}) + \dots + w(\mathfrak{m}_{d-1}) + w(\mathfrak{m}_{\delta}),$$

with equality iff w does not dominate that quadratic transform of δ which is proximate to γ ; and consequently⁵

(5.2.2.2)
$$w(\mathfrak{m}_{\gamma}) \ge w(\mathfrak{m}_{1}) = w(\mathfrak{m}_{2}) = \cdots = w(\mathfrak{m}_{d-1}) \ge w(\mathfrak{m}_{\delta}).$$

Moreover, $[\gamma_i : \gamma_1] = 1$ for i = 1, 2, ..., d.

Proof. Let $\mathfrak{m}_0\gamma_1 = t\gamma_1$, and let $u \in \gamma_1$ be such that $\{t, u\}$ is a regular system of parameters in γ_1 (*u* exists because $\gamma_1/\mathfrak{m}_0\gamma_1$ is regular). The localization of γ_1 at the prime ideal $\mathfrak{m}_0\gamma_1$ is the valuation ring of $\operatorname{ord}_{\gamma}$, and so $\operatorname{ord}_{\gamma}(t) = 1$, $\operatorname{ord}_{\gamma}(u) = 0$.

We show next, by induction on i, that for $1 \leq i \leq d$, $\{t/u^{i-1}, u\}$ is a regular system of parameters in γ_i , and $[\gamma_i : \gamma_1] = 1$; and that for $1 \leq i < d$, $\mathfrak{m}_i \gamma_{i+1} = u \gamma_{i+1}$. Indeed, if i < d and if $\{t/u^{i-1}, u\}$ is a regular system of parameters in γ_i , then since $\operatorname{ord}_{\gamma}$ is non-negative on δ (by definition of the condition $\gamma \prec \delta$),

⁵(5.2.2.2) can be deduced from the preceding statement with γ_i in place of γ_0 $(1 \le i \le d-2)$, since γ_{i+2} , being proximate to γ_0 and γ_{i+1} , can't be proximate to γ_i .

hence on γ_{i+1} , and since $\operatorname{ord}_{\gamma}(u^i/t) < 0$, therefore γ_{i+1} cannot be a localization of the ring $\gamma_i[(t/u^{i-1})^{-1}\mathfrak{m}_i]$, so γ_{i+1} must be the localization of $\gamma_i[u^{-1}\mathfrak{m}_i]$ at its maximal ideal $(t/u^i, u)$.

Now for $i \leq i < d$, we have $w(\mathfrak{m}_i) = w(\mathfrak{m}_i \gamma_{i+1}) = w(u)$, which is independent of *i*, proving (5.2.2.2). Furthermore,

$$w(\mathfrak{m}_{\gamma}) = w(t) = (d-1)w(u) + w(t/u^{d-1})$$

= $w(\mathfrak{m}_1) + w(\mathfrak{m}_2) + \dots + w(\mathfrak{m}_{d-1}) + w(t/u^{d-1}).$

As above, the unique quadratic transform δ' of δ which is proximate to γ is the localization of the ring $\delta[t/u^d, u]$ at its maximal ideal $(t/u^d, u)$; and w dominates this δ' iff $w(t/u^d) > 0$, i.e., iff $w(t/u^{d-1}) > w(u)$. Since

$$w(\mathfrak{m}_{\delta}) = w((t/u^{d-1}, u)\delta) = \min\{w(t/u^{d-1}), w(u)\},\$$

the rest of (5.2.2) follows. \Box

It remains to prove (iv) in Lemma (5.2.1). We proceed by induction, beginning with i = 1. Since \mathfrak{P} contains the inverse transform \mathfrak{p}_0 of \mathfrak{p}_1 , and since \mathfrak{P} is contained in the inverse transform of \mathfrak{P}'_1 [17, p. 390, (3)], therefore [*ibid*, (4)] gives $\mathfrak{P}'_1 \supset \mathfrak{p}_1$. Let \mathfrak{C}_i be the adjoint ideal in α_i of \mathfrak{p}_i . From (2.2) and (3.1) we get $\mathfrak{m}_0^{r_0-1}\mathfrak{C}_1 = \mathfrak{C}_0\alpha_1$. Also, $\mathfrak{m}_0^{r_0-1}\mathfrak{P}'_1 = \mathfrak{P}_0\alpha_1$. So

$$v(\mathfrak{m}_{1}\mathfrak{C}_{1}) = v(\mathfrak{m}_{1}) + v(\mathfrak{C}_{0}) - (r_{0} - 1)v(\mathfrak{m}_{0}),$$
$$v(\mathfrak{P}'_{1}) = v(\mathfrak{P}_{0}) - (r_{0} - 1)v(\mathfrak{m}_{0}) = v(\mathfrak{m}_{0}) + v(\mathfrak{C}_{0}) - 1 - (r_{0} - 1)v(\mathfrak{m}_{0})$$

(cf. proof of (5.1.1)). Hence

$$v(\mathfrak{P}'_1) - v(\mathfrak{P}_1) = v(\mathfrak{P}'_1) - v(\mathfrak{m}_1\mathfrak{C}_1) + 1 = v(\mathfrak{m}_0) - v(\mathfrak{m}_1) = (a-1)v(\mathfrak{m}_1) + b.$$

Having already proved (ii) in (5.2.1), we then deduce (iv) for i = 1.

If n = 1 we are done. Otherwise, $v(\mathfrak{m}_0) > v(\mathfrak{m}_1)$, so $\mathfrak{P}_1 \not\supseteq \mathfrak{P}'_1 \supset \mathfrak{p}_1$, so $\mathfrak{m}_1 \mathfrak{C}_1 \supset \mathfrak{P}'_1$ and $\operatorname{ord}_{\alpha_1}(\mathfrak{P}'_1) = \operatorname{ord}_{\alpha_1}(\mathfrak{p}_1)$. Since as in the proof of (5.1.1), $v(\mathfrak{P}_i) = v(\mathfrak{m}_i \mathfrak{C}_i) - 1$, the rest follows from the next Lemma.

Lemma (5.2.3). Let L be a v-ideal in α_i $(1 \le i < n)$ such that $\mathfrak{m}_i \mathfrak{C}_i \supset L \supset \mathfrak{p}_i$. Then $L^{\alpha_{i+1}} \supset \mathfrak{p}_{i+1}$, and

$$v(L^{\alpha_{i+1}}) - v(\mathfrak{m}_{i+1}\mathfrak{C}_{i+1}) = v(L) - v(\mathfrak{m}_i\mathfrak{C}_i) - v(\mathfrak{m}_{i+1}).$$

Proof. From (2.2) and (3.1), we see that

$$\mathfrak{m}_{i+1}\mathfrak{C}_{i+1} = \mathfrak{m}_{i+1}(\mathfrak{m}_i\mathfrak{C}_i)^{\alpha_{i+1}} = \mathfrak{m}_{i+1}\mathfrak{m}_i\mathfrak{C}_i(\mathfrak{m}_i\alpha_{i+1})^{-r_i}$$

where

$$r_i := \operatorname{ord}_{\alpha_i}(\mathfrak{p}_i) = \operatorname{ord}_{\alpha_i}(\mathfrak{m}_i \mathfrak{C}_i) = \operatorname{ord}_{\alpha_i}(L),$$

so that $L^{\alpha_{i+1}} = L(\mathfrak{m}_i \alpha_{i+1})^{-r_i}$. The conclusion results. \Box

This completes the proof of Lemma (5.2.1) and of Theorem (5.2).

Remarks. (A) Let

$$\mathfrak{m} := \mathfrak{p}_0 \supset \mathfrak{p}_1 \supset \cdots \supset \mathfrak{p}_n := \mathfrak{p}$$

be the sequence of simple complete ideals in α corresponding to the quadratic sequence (1.1.1) (where $\beta = \beta_{\mathfrak{p}}$, cf. (1.4)). The *v*-ideal $\mathfrak{P} := \mathfrak{P}_{\mathfrak{p}}$ factors uniquely as

$$\mathfrak{P} = \prod_{i=1}^n \mathfrak{p}_i^{a_i},$$

cf. [17, p. 392, (2)]. Here $a_n = 0$ since $\mathfrak{P} \supseteq \mathfrak{p}_n = \mathfrak{p}$. The remaining exponents a_i can be characterized in terms of the point basis $\{s_i\}_{1 \leq i \leq n}$ of \mathfrak{P} , by means of proximity:

$$a_i = s_i - \sum_{\alpha_j \succ \alpha_i} [\alpha_j : \alpha_i] s_j,$$

cf. [8, Cor. (3.1)]. Hence [2, §1] yields the following geometric interpretation when α is the local ring of a smooth point on an algebraic surface over an algebraically closed characteristic 0 field:

Let f be a generic element of \mathfrak{p} , and let ζ be a generic polar of the curve germ f = 0. Then ζ has $\sum_{i=1}^{n} a_i$ irreducible branches, of which precisely a_i pass through the infinitely near points⁶ $\alpha_1, \alpha_2, \ldots, \alpha_i$ but not through α_{i+1} .

(B) Now observe, keeping in mind that transform preserves products (1.2) and consequently "point basis" takes products to sums, that for any finite-colength α -ideal L,

$$(\mathfrak{P} \cdot L) = \sum_{i=1}^{n} a_i(\mathfrak{p}_i \cdot L) \stackrel{(1.6.2)}{=} \sum_{i=1}^{n} a_i[\alpha_i : \alpha] \operatorname{ord}_{\alpha_i}(L).$$

Assume, for simplicity, that $[\beta : \alpha] = 1$ (so that $[\alpha_i : \alpha] = 1$ for all *i*). Set $\mathfrak{m} := \mathfrak{m}_{\alpha}$. Define:

$$\overline{e}_i := \operatorname{ord}_{\alpha_i}(\mathfrak{p}) - \operatorname{ord}_{\alpha_i}(\mathfrak{m}) \qquad (1 \le i \le n),$$

$$\overline{m}_i := \operatorname{ord}_{\alpha_i}(\mathfrak{m}) \qquad (1 \le i \le n).$$

The integers $\overline{e}_i, \overline{m}_i$ are the same as the integers e_q, m_q associated by Teissier [14, p. 270] to any one of the a_i branches ζ_q of ζ which part company at α_i with the curve f = 0. To prove this, one needs to know that except for the α_i , all other infinitely near points on ζ are nonsingular on ζ and free w.r.t. α , cf. [2, p. 4, Thm. 2.1].

With $v = \operatorname{ord}_{\beta}$ as before, we have then

$$\sum_{i=1}^{n} a_i \overline{m}_i = (\mathfrak{P} \cdot \mathfrak{m}) = \operatorname{ord}_{\alpha}(\mathfrak{P}) = \operatorname{ord}_{\alpha}(\mathfrak{p}) - 1,$$

⁶A curve germ "passes through" a point α_j if it has a defining equation g = 0 ($g \in \alpha$) with $g\alpha_j \neq \mathfrak{m}^t \alpha_j$ ($t := \operatorname{ord}_{\alpha}(g)$), i.e., the proper transform of g in α_j is a non-unit.

and

 \boldsymbol{n}

$$\sum_{i=1}^{n} a_i \overline{e}_i = (\mathfrak{P} \cdot \mathfrak{p}) - (\mathfrak{P} \cdot \mathfrak{m}) \stackrel{(1.6.2)}{=} v(\mathfrak{P}) - \operatorname{ord}_{\alpha}(\mathfrak{P})$$

$$\stackrel{(5.1)}{=} (v(\mathfrak{m}) + v(\mathfrak{C}) - 1) - (\operatorname{ord}_{\alpha}(\mathfrak{p}) - 1)$$

$$\stackrel{(1.6.2)}{=} v(\mathfrak{C})$$

$$\stackrel{(4.3)}{=} 2\lambda(\alpha/\mathfrak{C})$$

$$\stackrel{(4.2)}{=} \sum_{i=1}^n r_i(r_i - 1).$$

These relations are in accord with the equations near the top of p. 270 in [14].

References

- E. Casas-Alvero, Infinitely near imposed singularities and singularities of polar curves, Math. Ann. 287 (1990), 429–454.
- 2. ____, Base points of polar curves, Ann. Inst. Fourier 41 (1991), 1–10.
- 3. _____, Singularities of polar curves, preprint.
- F. Enriques and O. Chisini, Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche, vol. II, N. Zanichelli, Bologna, 1918.
- C. Huneke, Complete ideals in two-dimensional regular local rings, Commutative Algebra, Proceedings of a Microprogram held June 15–July 2, 1987, Springer-Verlag, New York, 1989, pp. 325–337.
- J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Publ. Math. Inst. Hautes Études Sci. 36 (1969), 195–279.
- 7. _____, On complete ideals in regular local rings, Algebraic Geometry and Commutative Algebra, vol. I, in honor of Masayoshi Nagata, Kinokuniya, Tokyo, 1988, pp. 203–231.
- 8. _____, Proximity inequalities for complete ideals in two-dimensional regular local rings, Commutative Algebra week, Mount Holyoke College, July 1992, Proceedings, to appear in Contemporary Mathematics.
- 9. _____ and A. Sathaye, Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math. J. 28 (1981), 199–222.
- 10. _____ and B. Teissier, *Pseudo-rational local rings and a theorem of Briançon-Skoda*, Michigan Math. J. **28** (1981), 97–116.
- 11. S. Noh, The value semigroups of prime divisors of the second kind on 2-dimensional regular local rings, Transactions Amer. Math. Soc. (to appear).
- 12. S. Noh, Sequence of valuation ideals of prime divisors of the second kind in 2-dimensional regular local rings, J. Algebra (to appear).
- 13. M. Spivakovsky, Valuations in function fields of surfaces, Amer. J. Math 112 (1990), 107–156.
- B. Teissier, Variétés polaires I. Invariants polaires des singularités d'hypersurfaces, Inventiones Math. 40 (1977), 267–292.
- O. Zariski, Polynomial ideals defined by infinitely near base points, Amer. J. Math. 60 (1938), 151–204.
- 16. _____, Algebraic Surfaces (2nd supplemented edition), Springer-Verlag, New York, 1971.
- 17. _____ and P. Samuel, Commutative Algebra, vol. 2, D. van Nostrand, Princeton, 1960.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, W. LAFAYETTE, IN 47907, USA *E-mail address*: lipman@math.purdue.edu