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ABSTRACT

Lee, Namyong. Ph.D., Purdue University, December 1997. Wavelet-Vaguelette
Decompositions and Homogeneous Equations. Major Professor: Bradley J. Lucier.

We describe the wavelet-vaguelette decomposition (WVD) for solving a homo-

geneous equation Y = Af + Z, where A satisfies Â∗Af(ξ) = |ξ|−2α
f̂(ξ) for some

α ≥ 0. We find a sufficient condition on functions to have a WVD. This result

generalizes Daubechies’s work on the discrete wavelet transform. We examine the

relation between the WVD-based method and variational problems for solving a

homogeneous equation. Algorithms are derived as exact minimizers of variational

problems of the form; given observed function Y , minimize over all g in the Besov

space Bβ0

1,1(Rd) the functional ‖Y −Ag‖2Y+2γ|g|
B
β0
1,1

, where Y is a separable Hilbert

space. We use the theory of nonlinear wavelet approximation in L2(Rd) to derive ac-

curate error bounds for recovering f through wavelet shrinkage applied to observed

data Y corrupted with independent and identically distributed mean zero Gaussian

noise Z. We give a new proof of the rate of convergence of wavelet shrinkage that

allows us to estimate rather sharply the best shrinkage parameter. We conduct

tomographic reconstruction computations that support the hypothesis that near-

optimal shrinkage parameters can be derived if one knows (or can estimate) only

two parameters about a phantom image f : the largest β for which f ∈ Bβp,p(R2),

p = 3
β+3/2 , and the seminorm |f |

B
β
p,p

. Both theoretical and experimental results

indicate that our choice of shrinkage parameters yields uniformly better results than

Kolaczyk’s procedure and classical filtered backprojection method.
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CHAPTER 1

INTRODUCTION

For a given linear operator A : L2(Rd) −→ Y between two separable Hilbert

spaces L2(Rd) and Y, where throughout this thesis A always satisfies

(1.1) Â∗Af(ξ) = |ξ|−2α
f̂(ξ)

for some α ≥ 0, we wish to recover f ∈ L2(Rd) from Af . In practice we are only

able to observe noisy data of the form

(1.2) Y = Af + Z,

where Z represents a perturbed data error in our observation procedure. We assume

that Z is a mean zero Gaussian noise.

Such linear inverse problems arise in various scientific fields. The noise removal

problem in image processing takes the form of Y = f + Z. In this case the

underlying operator is the identity operator, which obviously satisfies (1.1) with

α = 0. The Radon transform, which plays an important role in modeling the

measurement procedure of medical imaging, satisfies (1.1) with α = 1/2. On the

other hand, the 2π multiple of the one-dimensional integration operator also satisfies

(1.1) with α = 1.

Despite the simple description (1.1) of A via the Fourier transform, linear

filtering methods based on (1.1) such as filtered backprojection often exhibit degra-

dation in recovering f from noisy data. The Fourier transform diagonalizes any

convolution-type operator, and this property has been an advantage of Fourier

transform methods in deconvolution problems such as (1.2). However, poor repre-

sentation of nonsmooth function via the Fourier transform often yields an unaccept-
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able decision rule, which considers any low-frequency structure to be information

and any high-frequency structure to be noise, in recovering f from (1.2). This is

largely due to the lack of smoothness characterization in the Fourier transform.

Very recently, there has been great interest in the use of wavelet bases to rep-

resent functions, and many important advantages of wavelet bases have been dis-

covered. One of the key features of wavelet bases is smoothness characterization for

various function spaces in terms of wavelet coefficients. This property has been used

in several image processing and statistical applications, such as data compression

[13], [14], [33], noise removal [4], [17], and nonparametric estimation in statistics [3],

[23], [25], [26], etc.

Even though the convolution-type operator, in general, is not diagonalizable

with respect to wavelet bases, the operator satisfying (1.1) can be diagonalized with

the help of a wavelet-vaguelette system. In [22] Donoho proved that there exists a

wavelet-vaguelette system {ψλ, Uλ, Ũλ} such that {ψλ} is an orthogonal wavelet

basis of L2(Rd), {Uλ} and {Ũλ} are biorthogonal Riesz bases of Y, and for any

f ∈ L2(Rd),

(1.3) f =
∑
λ

cλ[Af, Uλ]ψλ

for known scalars {cλ}, where [·, ·] is the inner product of Y.

Applying the wavelet-vaguelette decomposition (1.3) in solving (1.2), Donoho

suggested the wavelet shrinkage method (see, e.g., [22], [23], and [31]), which shrinks

cλ[Y, Uλ] towards zero by a certain amount, and proved that if the true solution f

is known to lie in Besov space Bβq,p(Rd) (for the definition, see [15] and Theorem

3.2.1), where β > (2α + d)(1/p− 1/2), then the suggested method converges to f

with the optimal rate if one uses the optimal shrinkage parameter (although Donoho

did not give a method for finding that parameter). For details, see [22] or Theorem

9.1.1 in this thesis.

In this thesis we consider a family of variational problems for solving (1.2).

These variational problems take the form: Given a positive parameter γ and a
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function space B, find a function f̃ that minimizes over all possible functions g in

B the functional

(1.4) ‖Y −Ag‖2Y + 2γ|g|B ,

where ‖ · ‖Y is the norm defined by the inner product [·, ·] of Y and | · |B is the

semi-norm of B.

The function space B differs from usual smoothness subspaces in regulariza-

tion techniques (see, e.g., [42]), because B could be a function space which is not

embedded in L2(Rd). The parameter γ balances importances between the difference

‖Y −Ag‖2Y in Y and the smoothness |g|B of g in B.

A fast way of solving (1.4) is required for practical algorithms. We suggest using

vaguelettes and wavelets in (1.4), to characterize ‖Y −Ag‖Y and |g|B , respectively.

Using L2-stability of vaguelettes and smoothness characterization of wavelets, we

derive an equivalent expression involving wavelet coefficients to (1.4), which can

be minimized quickly. In particular, if we choose B = Bβ0

1,1(Rd) in (1.4), then the

exact minimizer, denoted by f̃∗γ,β0
, of the resulting equivalent sequence minimization

problem has the same form as the wavelet shrinkage method proposed by Donoho

[22] with possibly different shrinkage parameters.

We prove a sufficient condition on regularity and vanishing moments (for the

definition, see Chapter 3) of functions to have a wavelet-vaguelette system. This

sufficient condition is weaker than in [22] (see Theorem 6.1.4 and Theorem 6.3.1),

and allows more wavelets such as Daubechies’s compactly supported orthogonal

wavelets [8] and symmetric biorthogonal wavelets [5] to be used for solving (1.2).

These compactly supported wavelets are generated from scaling functions by re-

finement equations (see (4) of Definition 3.1.2); thus vaguelette coefficients can be

obtained in a recursive manner as wavelet coefficients can be.

We give a new proof of the rate of convergence of f̃∗γ,β0
that allows us to estimate

rather sharply the best wavelet shrinkage parameter for solving (1.2) in the presence

of Gaussian noise. Our analysis reveals that the parameter β0 depends only on the
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ill-posedness of (1.2), and for given β0 the parameter γ2k(β0−d/2+2α) represents the

wavelet shrinkage amount.

We show through tomographic reconstruction experiments that with a rota-

tional averaging technique (see Chapter 10) the wavelet shrinkage method f̃∗γ,β0
,

where parameters γ and β0 are determined from our analysis, leads to a better re-

construction in the presence of Gaussian noise than the traditional filtered backpro-

jection method. As compared with the shrinkage parameter suggested by Kolaczyk

[31], which is motivated by the VisuShrink method by Donoho and Johnstone, our

shrinkage parameter leads to a better reconstructioni, which removes less noise, but

keeps more image features.
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CHAPTER 2

PRELIMINARIES

In this chapter we review some notations, definitions, theorems, and inequalities

that are needed in this thesis.

2.1 Definitions and Notations

The translation operator Th: For h ∈ Rd,

Thf(x) = f(x− h).

The dilation operator Da: For a > 0,

Daf(x) = f(x/a).

The convolution operator T associated with h:

(2.1) Tf(x) =

∫
Rd
f(x− y)h(y) dy.

The shrinkage operator Sµ : R −→ R: For µ ≥ 0,

(2.2) Sµ(x) =


x− µ, if x > µ,

0, if |x| ≤ µ,

x+ µ, if x < −µ.

LetH be a separable Hilbert space. For real-valued functions S1 and S2 defined

on H, we denote S1(f) � S2(f) if there are positive constants C1 and C2 such that

for all f ∈ H

C1S1(f) ≤ S2(f) ≤ C2S1(f).
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A collection of functions {ϕn} in H is said to be L2-stable if

‖ϕ‖2H �
∑
n

|〈ϕ, ϕn〉|2.

An L2-stable basis of H is also called a Riesz basis.

Let X1 and X2 be normed vector spaces. The space X1 is said to be embedded in

the space X2, denoted by X1 ↪→ X2, if for each f ∈ X1, f ∈ X2 and there is a

constant C such that for all f ∈ X1

‖f‖X2
≤ C‖f‖X1

.

The Kronecker delta function δ is defined by

δx,x′ =

{
1, if x = x′,

0, if x 6= x′.

2.2 Theorems and Inequalities

We denote by S(Rd) the space of rapidly decreasing C∞ functions on Rd and

by S′(Rd) its topological dual, the space of tempered distributions. The Fourier

transform f̂ of a function f ∈ S(Rd) is defined by

f̂(ξ) =

∫
Rd
e−2πiξ·xf(x) dx,

while the inverse Fourier transform gives f back from f̂ by

f(x) =

∫
Rd
e2πix·ξf̂(ξ) dξ.

One then, extends the Fourier transform and its inverse from S(Rd) to S′(Rd) by

duality.

The Fourier transform has the following properties: For f ∈ S(Rd) and g ∈
S′(Rd),

(2.3)

∫
Rd
f(x)g(x)dx =

∫
Rd
f̂(ξ)ĝ(ξ)dξ,
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(2.4) T̂hg(ξ) = e−2πiξ·hĝ(ξ),

(2.5) D̂ag(ξ) = adĝ(aξ),

(2.6)
∂̂f

∂xk
(ξ) = 2πiξkf̂(ξ),

and

(2.7)
∂f̂

∂ξk
(ξ) =

∫
Rd
e−2πiξ·x(−2πixk)f(x) dx.

In particular, by (2.4) and (2.5),

(2.8) ĝk,j(ξ) = 2−kd/2e−2πiξ·j2−k ĝ(2−kξ),

if gk,j = 2kd/2g(2k · −j).
If p(x) be a function defined on [0, L]d, then

(2.9) L−d
∑
j∈Zd

∣∣∣∣ ∫
[0,L]d

e2πix·j/Lp(x) dx

∣∣∣∣2 =

∫
[0,L]d

|p(x)|2 dx.

For the convolution operator T associated with h as (2.1),

(2.10) T̂ f(ξ) = ĥ(ξ)f̂(ξ).

Conversely, if T can be characterized as the right hand side of (2.10), then T is the

convolution operator associated with h.

For a countable index set Λ and a sequence (an), n ∈ Λ, we define

‖(an)‖`p =

(∑
n∈Λ

|an|p
)1/p
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and

`p(Λ) = {(an) : n ∈ Λ, ‖(an)‖`p <∞}

for 0 < p ≤ ∞, where ‖(an)‖`∞ is understood as supn{|an|}. We omit Λ in `p(Λ)

whenever this does not make any confusion.

We define

‖f‖Lp =


(∫

Rd |f(x)|p dx
)1/p

, if 0 < p <∞,

supx |f(x)|, if p =∞.

Throughout this thesis, supx |f(x)| is understood as the essential supremum of f

(for the definition, see [39]). The space Lp(Rd) is the set of real-valued functions f

with ‖f‖Lp <∞.

Let 1 ≤ p ≤ ∞. If 1/p+ 1/p′ = 1, then

(2.11)

∣∣∣∣∑
n

anbn

∣∣∣∣ ≤ ‖(an)‖`p‖(bn)‖`p′

and

(2.12)

∣∣∣∣ ∫
Rd
f(x)g(x)dx

∣∣∣∣ ≤ ‖f‖Lp‖g‖Lp′ .
Let 0 < p ≤ p′ ≤ ∞. Then for any (an),

(2.13)

(∑
n

|an|p
′
)1/p′

≤
(∑

n

|an|p
)1/p

.
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CHAPTER 3

WAVELETS AND BESOV SPACES

In this chapter we briefly review basic wavelet theory. Throughout this thesis

we consider only compactly supported wavelets such as Daubechies’ orthogonal

wavelets [8], symmetric biorthogonal wavelets by Cohen, Daubechies, and Feauveau

[5] and Herley and Vetterli [28], and modified wavelets [6] and [30], which are

designed to deal with functions defined on a bounded domain.

The main advantage of wavelets is smoothness characterization. It means that

we can determine the membership of a function in many different function spaces

by examining its wavelet coefficients. For details, see, e.g., [15], [20], [27], [30], [32],

and [35]. We utilize this property to define Besov spaces.

3.1 Biorthogonal Wavelets

We begin with biorthogonal wavelets on R.

Definition 3.1.1. Let ψ and ψ̃ be bounded and compactly supported functions

on R. We define ψk,j(x) = 2k/2ψ(2kx− j), and similarly for ψ̃k,j. The collections

of functions {ψk,j}k∈Z,j∈Z and {ψ̃k,j}k∈Z,j∈Z are called biorthogonal wavelets if they

are biorthogonal Riesz bases of L2(R), i.e., for any f ∈ L2(R),

(1)

f =
∑
k∈Z

∑
j∈Z
〈f, ψ̃k,j〉ψk,j =

∑
k∈Z

∑
j∈Z
〈f, ψk,j〉ψ̃k,j,

(2)

‖f‖2L2 �
∑
k∈Z

∑
j∈Z
|〈f, ψ̃k,j〉|

2
�
∑
k∈Z

∑
j∈Z
|〈f, ψk,j〉|2,
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(3) they are biorthogonal, i.e., for all (k, j) and (k′, j′),

〈ψk,j, ψ̃k′,j′〉 = δ(k,j),(k′,j′).

For orthogonal wavelets, ψ = ψ̃ and we have equality in (2) in Definition 3.1.1.

The equations in (1) of Definition 3.1.1 are called wavelet decompositions of f .

While wavelet theory about the existence of ψ and ψ̃ can be found in [5] and

[10], we need only the so-called fast wavelet transform in this thesis. To explain it,

we need a scaling function φ and a dual scaling function φ̃.

Definition 3.1.2. Let φ and φ̃ be bounded and compactly supported functions

on R. Let φk,j(x) = 2k/2φ(2kx − j), and similarly for φ̃k,j. We call φ a scaling

function and φ̃ a dual scaling function of biorthogonal wavelets {ψk,j} and {ψ̃k,j}
if

(1) for all j and j′,

〈φk,j, φ̃k,j′〉 = δj,j′ ,

(2) for any f ∈ L2(Rd),

f =
∑
k≥k0

∑
j∈Z
〈f, ψ̃k,j〉ψk,j +

∑
l∈Z
〈f, φ̃k0,l〉φk0,l,

(3)

‖f‖2L2 �
∑
k≥k0

∑
j∈Z
|〈f, ψ̃(i)

k,j〉|
2

+
∑
l∈Z
|〈f, φ̃k0,l〉|

2
,

(4) there exist finite sequences (hn) and (h̃n) such that
∑
n hnh̃n+2k = δk,0

and

φ =
∑
n

hnφ1,n, φ̃ =
∑
n

h̃nφ̃1,n,

ψ =
∑
n

gnφ1,n, ψ̃ =
∑
n

g̃nφ̃1,n,

where gn = (−1)n+1h̃−n+1 and g̃n = (−1)n+1h−n+1.
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For orthogonal wavelets, φ = φ̃ and ψ = ψ̃, and we have equality in (3) of

Definition 3.1.2. We call (2) of Definition 3.1.2 an inhomogeneous wavelet decom-

position of f . We also call four equations in (4) of Definition 3.1.2 refinement

equations associated with φ, φ̃, ψ, and ψ̃.

Notice that by (4) of Definition 3.1.2, one can have

ψ̃k,j(x) = 2k/2ψ̃(2kx− j)

= 2k/2
∑
n

g̃n21/2φ̃(2(2kx− j)− n).

Thus we have

(3.1)

ψ̃k,j(x) =
∑
n

g̃n2(k+1)/2φ̃(2k+1x− (n+ 2j))

=
∑
n

g̃nφ̃k+1,n+2j

=
∑
n

g̃n−2jφ̃k+1,n,

and similarly

(3.2) φ̃k,j(x) =
∑
n

h̃n−2j φ̃k+1,n.

With (3.1) and (3.2), we have

(3.3) 〈f, ψ̃k,j〉 =
∑
n

g̃n−2j〈f, φ̃k+1,n〉

and

(3.4) 〈f, φ̃k,j〉 =
∑
n

h̃n−2j〈f, φ̃k+1,n〉.

Using (3.3) and (3.4) successively, we can get {〈f, ψ̃k,j〉}{k0≤k<m,j} and {〈f, φ̃k0,n〉}n
from {f, φ̃m,l}l. This is the fast wavelet transform associated with {ψ̃k,j}.

The fast wavelet transform is reversible. To show this, we need the following

lemma.
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Lemma 3.1.3. 〈φ̃m,l, ψk,j〉 = 0 if k ≥ m.

Proof. We represent φ̃m,l as

φ̃m,l =
∑
k≥m

∑
j

〈φ̃m,l, ψk,j〉ψ̃k,j +
∑
n

〈φ̃m,l, φm,n〉φ̃m,n

by using (2) of Definition 3.1.2 with k0 = m. (Here we switched roles of (φ, ψ) and

(φ̃, ψ̃).) By (1) of Definition 3.1.2, we have

φ̃m,l =
∑
k≥m

∑
j

〈φ̃m,l, ψk,j〉ψ̃k,j + φ̃m,l.

Thus ∑
k≥m

∑
j

〈φ̃m,l, ψk,j〉ψ̃k,j = 0.

Since {ψ̃k,j} is a Riesz basis of L2(R), 〈φ̃m,l, ψk,j〉 = 0 if k ≥ m.

Notice that for any f ∈ L2(R), using (2) of Definition 3.1.2 with k0 = m− 1,

we can compute 〈f, φ̃m,l〉 by

〈 ∑
k≥m−1

∑
j

〈f, ψ̃k,j〉ψk,j +
∑
n

〈f, φ̃m−1,n〉φm−1,n , φ̃m,l

〉
=
∑
j

〈f, ψ̃m−1,j〉〈ψm−1,j, φ̃m,l〉+
∑
n

〈f, φ̃m−1,n〉〈φm−1,n, φ̃m,l〉,

where we have used Lemma 3.1.3. With a similar argument used for ψ̃k,j in (3.1),

we have

ψm−1,j =
∑
l′

gl′−2jφm,l′ and φm−1,j =
∑
l′

hl′−2jφm,l′ .

Thus 〈f, φ̃m,l〉 is

∑
j

〈f, ψ̃m−1,j〉〈
∑
l′

gl′−2jφm,l′ , φ̃m,l〉+
∑
n

〈f, φ̃m−1,n〉〈
∑
l′

hl′−2nφm,l′ , φ̃m,l〉.
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Therefore, using (1) of Definition 3.1.2, we have

(3.5) 〈f, φ̃m,l〉 =
∑
j

gl−2j〈f, ψ̃m−1,j〉+
∑
n

hl−2n〈f, φ̃m−1,n〉.

Thus we can get {〈f, φ̃m,l〉}l from {〈f, ψ̃k,j〉}{k0≥k<m,j} and {〈f, φ̃k0,n〉}n, by using

(3.5) successively. This is the inverse fast wavelet transform associated with {ψ̃k,j}.
For biorthogonal wavelet basis on L2(Rd) with d > 1, we use the tensor product

of ψ, φ, ψ̃, and φ̃. We shall explain it for d = 2. The general case will follow in the

same manner. We define

ψ(1)(x1, x2) = φ(x1)ψ(x2),

ψ(2)(x1, x2) = ψ(x1)φ(x2),

ψ(3)(x1, x2) = ψ(x1)ψ(x2),

and similarly for ψ̃(1), ψ̃(2), and ψ̃(3). We define ψ
(i)
k,j = 2kψ(i)(2k ·−j), and similarly

for ψ̃
(i)
k,j . Then sets of functions {ψ(i)

k,j} and {ψ̃(i)
k,j} form biorthogonal Riesz bases of

L2(R2). Thus any function f ∈ L2(R2) can be written as

f =
∑
k∈Z

∑
j∈Z2

∑
i=1,2,3

〈f, ψ̃(i)
k,j〉ψ

(i)
k,j =

∑
k∈Z

∑
j∈Z2

∑
i=1,2,3

〈f, ψ(i)
k,j〉ψ̃

(i)
k,j.

We define Φ by

Φ(x1, x2) = φ(x1)φ(x2),

similarly for Φ̃. As we did for ψ
(i)
k,j, we define Φk,j and Φ̃k,j . The two-dimensional

fast wavelet transform and its inverse transform associated with {ψ̃(i)
k,j} can be

obtained by the same methods used for one-dimensional ones.
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Lemma 3.1.4. Let j = (j1, j2) and n = (n1, n2).

Fast wavelet transform:

〈f, Φ̃k,j〉 =
∑
n1,n2

h̃n1−2j1 h̃n2−2j2〈f, Φ̃k+1,n〉,

〈f, ψ̃(1)
k,j〉 =

∑
n1,n2

h̃n1−2j1 g̃n2−2j2〈f, Φ̃k+1,n〉,

〈f, ψ̃(2)
k,j〉 =

∑
n1,n2

g̃n1−2j1 h̃n2−2j2〈f, Φ̃k+1,n〉,

〈f, ψ̃(3)
k,j〉 =

∑
n1,n2

g̃n1−2j1 g̃n2−2j2〈f, Φ̃k+1,n〉.

Inverse fast wavelet transform:

〈f, Φ̃k+1,j〉 =
∑
n1

h̃j1−2n1

(∑
n2

h̃j2−2n2〈f, Φ̃k,n〉+
∑
n2

g̃j2−2n2〈f, ψ̃
(1)
k,n〉

)
+
∑
n1

g̃j1−2n1

(∑
n2

h̃j2−2n2〈f, ψ̃
(2)
k,n〉+

∑
n2

g̃j2−2n2〈f, ψ̃
(3)
k,n〉

)
.

For L2(Rd), we make 2d functions by

(3.6) ϕ1(x1) · ϕ2(x2) · · ·ϕd(xd), either ϕi = φ or ϕi = ψ.

Among them, we denote φ(x1) · · ·φ(xd) by Φ, and remaining 2d−1 functions by ψ(i)

with i = 1, 2, · · · , 2d−1. With φ̃ and ψ̃, we can have Φ̃ and ψ̃(i) for i = 1, 2, · · · , 2d−1

with the same method used in (3.6). We define Φk,j = 2kd/2Φ(2k ·−j), and similarly

for ψ
(i)
k,j , Φ̃k,j , and ψ̃

(i)
k,j . Then any f ∈ L2(Rd) can be written as

(3.7) f =
∑
k≥k0

∑
j∈Zd

∑
i=1,··· ,2d−1

〈f, ψ̃(i)
k,j〉ψ

(i)
k,j +

∑
l∈Zd
〈f, Φ̃k0,l〉Φk0,l.

Moreover, we have

(3.8) ‖f‖2L2 �
∑
k≥k0

∑
j∈Zd

∑
i=1,··· ,2d−1

|〈f, ψ̃(i)
k,j〉|

2
+
∑
l∈Zd
|〈f, Φ̃k0,l〉|

2
.
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When one is concerned with a bounded domain, for example, the unit cube Ω

in Rd, then one does not consider all shifts j ∈ Zd, but only those shifts for which

ψ̃
(i)
k,j intersects Ω nontrivially. Moreover, one must adapt wavelets that overlap the

boundary of Ω to preserve L2-stability on the domain. For details, see, e.g., [6] and

[30]. To ignore all complication of this sort, we shall use indices without precisely

specifying the domains of the indices of the sums whenever this abbreviation does

not cause any confusion.

Remark 3.1.5. If f is a compactly supported function, then the number of j

for which 〈f, ψ̃(i)
k,j〉 6= 0 is less than C2kd for fixed k and i, and the number of l for

which 〈f, Φ̃k0,l〉 6= 0 is less than C2k0d in (3.7) for a constant C, since all ψ̃(i) and

Φ̃ are compactly supported.

3.2 Besov Spaces

For any h ∈ Rd and f : Rd → R, we define 40
hf(x) = f(x) and

4k+1
h f(x) = 4khf(x+ h)−4khf(x)

for k = 0, 1, · · · .
Let X be a quasi-normed, complete, and translation-invariant space of real-

valued functions on Rd. For a positive integer r, the r-th modulus of smoothness

of a function f ∈ X is defined by

ωr(f, t)X = sup
|h|≤t

‖4rhf(·)‖X .

Definition 3.2.1. Let X be a quasi-normed, complete, and translation-invariant

space of real-valued functions on Rd. Let also 0 < β < ∞, 0 < q ≤ ∞, and r be

a positive integer such that r − 1 ≤ β < r. The Besov space Bβq (X ) is the set of

functions f such that their Besov space norm

‖f‖
B
β
q (X ) = ‖f‖X + |f |

B
β
q (X ) <∞,
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where the Besov space semi-norm is defined by

|f |
B
β
q (X ) =

(∫ ∞
0

(t−βωr(f, t)X )
q dt

t

)1/q

,

with an essential supremum when q =∞.

In this thesis we are interested in Besov spaces Bβq (Lp(Rd)) for 1 < p ≤ ∞
and Bβq (Hp(Rd)) for 0 < p ≤ 1, where Hp(Rd) is the real Hardy space (for the

definition, see, e.g., [43]). To simplify our presentation, throughout this thesis we

shall use the following convention:

Bβq,p(Rd) =

{
Bβq (Lp(Rd)), if 1 < p ≤ ∞,

Bβq (Hp(Rd)), if 0 < p ≤ 1.

With this convention, we can get more familiar spaces by changing parameters.

When p = q = 2, Bβ2,2(Rd) is the Sobolev space Wβ(Rd), and when 0 < β < 1 and

1 ≤ p ≤ ∞, Bβ∞,p(Rd) is the Lipschitz space Lip(β, Lp(Rd)).

When 0 < p < 1 or 0 < q < 1, then Bβq,p(Rd) are no longer Banach spaces.

However, they are always quasi-Banach spaces: The triangle inequality does not

hold, but for each space Bβq,p(Rd) there exists a constant C such that for all f and

g in Bβq,p(Rd),

‖f + g‖
B
β
q,p
≤ C

(
‖f‖

B
β
q,p

+ ‖g‖
B
β
q,p

)
.

With a certain abuse of terminology, we shall continue to call these quasi-norms

norms.

We can determine whether f is in Bβq,p(Rd) simply by examining its wavelet co-

efficients. To have such smoothness characterization via the inhomogeneous wavelet

decomposition of f , the scaling function φ and the dual scaling function φ̃ need to

satisfy certain conditions. See Corollary 5.2.23 and Corollary 6.7.5 in [32]. All the

conditions therein, except regularity condition on φ and Strang-Fix condition on

φ̃, are automatically satisfied for φ and φ̃ in Definition 3.1.2. We now summarize

smoothness characterization via the inhomogeneous wavelet decomposition in the

following theorem.
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Theorem 3.2.2. Let ψ, ψ̃, φ, and φ̃ be univariate functions described in Sec-

tion 3.1. Suppose φ has R-th continuous derivative and φ̃ satisfies Strang-Fix con-

dition of order M + 1, i.e.,

̂̃
φ(0) 6= 0 and

dν
̂̃
φ

dξν
(n) = 0 for all integers ν and n such that 1 ≤ ν < M + 1 and n 6= 0.

We assume that ψ(i), ψ̃(i),Φ, and Φ̃ are functions described in Section 3.1. Then as

long as β < min(R,M), for any k0,

(3.9) |f |
B
β
q,p
�
( ∑
k≥k0

2k(β+d(1/2−1/p))q

[∑
j,i

|〈f, ψ̃(i)
k,j〉|

p
]q/p)1/q

and

(3.10) ‖f‖
Bβq,p
� |f |

Bβq,p
+ 2k0d(1/2−1/p)

(∑
l

|〈f, Φ̃k0,l〉|
p
)1/p

.

The proof of Theorem 3.2.2 can be found in Chapter 5 and 6 of [32] for or-

thogonal wavelets. For biorthogonal wavelets, one can follow the same argument

in Chapter 5 and 6 in [32] to prove Theorem 3.2.2. While doing so, one can also

replace Strang-Fix condition on φ̃ of order M + 1 by vanishing moments of ψ̃ of

order M , i.e., ∫
R
xmψ̃(x) dx = 0, for m = 0, 1, · · · ,M ,

in Theorem 3.2.2.

Remark 3.2.3. Throughout this thesis we use the right hand side of (3.9) as

the definition of |f |
B
β
q,p

and the right hand side of (3.10) as the definition of ‖f‖
B
β
q,p

for a fixed integer k0. We also assume that k0 is a fixed nonnegative small integer

throughout this thesis to avoid any possible confusion.
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CHAPTER 4

EMBEDDING, INTERPOLATION, AND

DUALITY BETWEEN BESOV SPACES

In this chapter we study embedding, interpolation, and duality between Besov

spaces Bβq,p(Rd) based on the wavelet sequence norm in Chapter 3.

Throughout this chapter we implicitly assume that ψ, ψ̃, φ, and φ̃ satisfy all

conditions in Theorem 3.2.2 so that the Besov space Bβq,p(Rd) norm is equivalent to

the associated sequence norm.

4.1 Embedding

Theorem 4.1.1.

(1) If q′ > q, then

Bβq,p(Rd) ↪→ Bβq′,p(R
d).

(2) If β′ < β and (β − β′)/d = 1/p− 1/p′, then

Bβq,p(Rd) ↪→ Bβ
′

q,p′(R
d)

(3) For any q1 and q2, if β′ < β, then

Bβq1,p(R
d) ↪→ Bβ

′

q2,p
(Rd).

Proof. Recall that by definition of Besov norm in this thesis,

|f |
B
β
q,p

=

( ∑
k≥k0

2k(β+d(1/2−1/p))q

[∑
j,i

|〈f, ψ̃(i)
k,j〉|

p
]q/p)1/q
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and

‖f‖
B
β
q,p

= |f |
B
β
q,p

+ 2k0d(1/2−1/p)

(∑
l

|〈f, Φ̃k0,l〉|
p
)1/p

.

Notice that the second part of ‖f‖
B
β
q,p

only depends on the parameter p. Since k0

is a fixed integer, by (2.13) one can find a constant C such that for all f ,

(a) 2k0d(1/2−1/p′)

(∑
l

|〈f, Φ̃k0,l〉|
p′
)1/p′

≤ C2k0d(1/2−1/p)

(∑
l

|〈f, Φ̃k0,l〉|
p
)1/p

,

if 0 < p ≤ p′ ≤ ∞.

(1): Let

ak = 2k(β+d(1/2−1/p))

(∑
j,i

|〈f, ψ̃(i)
k,j〉|

p
)1/p

.

By (2.13), ‖(ak)‖`q′ ≤ ‖(ak)‖`q , since q′ > q. Notice that by definition of (ak),

‖(ak)‖`q′ = |f |
B
β

q′,p
and ‖(ak)‖`q = |f |

B
β
q,p

. Combining these results and (a), we

have ‖f‖
B
β

q′,p
≤ C‖f‖

B
β
q,p

. This proves (1).

(2): By hypothesis, p < p′ and β + d(1/2− 1/p) = β′ + d(1/2− 1/p′). Hence

by (2.13), we have

(b)

|f |q
B
β′
q,p′

=
∑
k≥k0

2k(β′+d(1/2−1/p′))q

(∑
j,i

|〈f, ψ̃(i)
k,j〉|

p′
)q/p′

≤
∑
k≥k0

2k(β+d(1/2−1/p))q

(∑
j,i

|〈f, ψ̃(i)
k,j〉|

p
)q/p

= |f |q
Bβq,p

.

Combining (a) and (b), we have ‖f‖
Bβ
′
q,p′
≤ C‖f‖

B
β
q,p

. This proves (2).

(3): Recall that β′ < β. It is not difficult to show that

Bβq1,p(R
d) ↪→ Bβ

′

q2,p
(Rd) for q1 = q2.

For q2 > q1, we use (1) of this theorem, and have

Bβq1,p(R
d) ↪→ Bβq2,p(R

d) ↪→ Bβ
′

q2,p
(Rd).
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For q2 < q1, we write

|f |q2
B
β′
q2,p

=
∑
k≥k0

2k(β′+d(1/2−1/p))q2

(∑
j,i

|〈f, ψ̃(i)
k,j〉|

p
)q2/p

=
∑
k≥k0

2k(β′−β)q2 · 2k(β+d(1/2−1/p))q2

(∑
j,i

|〈f, ψ̃(i)
k,j〉|

p
)q2/p

.

We now use (2.11) on the sum over k with q1/(q1 − q2) and q1/q2. Then

|f |q2
B
β′
q2,p

≤
( ∑
k≥k0

2k(β′−β)q2q1/(q1−q2)

)(q1−q2)/q1

×
( ∑
k≥k0

2k(β+d(1/2−1/p))q1

[∑
j,i

|〈f, ψ̃(i)
k,j〉|

p
]q1/p)q2/q1

.

Since (β′−β)q2q1/(q1−q2) < 0 and the second term in the right hand side of above

equation is |f |q2
Bβq1,p

, we finally have

(d) |f |q2
Bβ
′
q2,p

≤ C|f |q2
Bβq1,p

for a constant C. Combining (a) and (d), we have ‖f‖
B
β′
q2,p
≤ C‖f‖

B
β
q1,p

. Thus we

completed the proof of (3).

This theorem shows that the parameter q in Bβq,p(Rd) is not as important as p

or β. From now on, we consider only Besov spaces of type Bβp,p(Rd).

It is well known (see, e.g., [15] and [20]) that

(4.1) Bβp,p(Rd) ↪→ L2(Rd) if and only if β + d(1/2− 1/p) ≥ 0 and β ≥ 0.

For instance, Bβτ,τ (Rd) with 1/τ = β/d + 1/2 and β ≥ 0 is embedded to L2(Rd);

since 2 ≥ τ for β ≥ 0, using (2.13) one has

(4.2)

( ∑
k≥k0

∑
j,i

|〈f, ψ̃(i)
k,j〉|

2
)1/2

≤
( ∑
k≥k0

∑
j,i

|〈f, ψ̃(i)
k,j〉|

τ
)1/τ
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and

(4.3)

(∑
l

|〈f, Φ̃k0,l〉|
2
)1/2

≤
(∑

l

|〈f, Φ̃k0,l〉|
τ
)1/τ

.

Collecting (3) of Definition 3.1.2, (4.2), and (4.3), we have ‖f‖L2 ≤ C‖f‖Bβτ,τ for a

constant C. Thus

Bβτ,τ(Rd) ↪→ L2(Rd) if 1/τ = β/d+ 1/2 and β ≥ 0.

These Besov spaces Bβτ,τ (Rd) have been used in [4], [13], and [17] for image

compression, noise removal, etc. The spaces Bβτ,τ (Rd) are quite natural when con-

sidering approximation in L2(Rd), because these spaces have minimal smoothness

to be embedded in L2(Rd). This means that given a pair β and 1/τ = β/d + 1/2,

there is no β′ < β or τ ′ < τ such Bβ
′

τ,τ(Rd) or Bβτ ′,τ ′(Rd) is embedded into L2(Rd).

More importantly, with Bβτ,τ (Rd), where 1/τ = β/d+ 1/2, the approximation order

of functions can be related to their smoothness order β explicitly:

Remark 4.1.2. If f can be approximated to O(N−β/d) in L2(Rd) by sums with

N nonzero wavelet coefficients, then f is necessarily in Bβτ,τ(Rd), 1/τ = β/d+ 1/2.

(Because of certain technicalities, this statement only approximates the truth; see

[13] for precise statements.) Conversely, if f is in Bβτ,τ (Rd), 1/τ = β/d+ 1/2, then

scalar quantization of the wavelet coefficients yields compression algorithms with

convergence rate of O(N−β/d) in L2(Rd).

4.2 Interpolation

This is a standard argument from interpolation theory. Suppose f ∈ L∞(Rd) ∩
Bβp,p(Rd). Notice that any wavelets described in Chapter 3 satisfy

‖ψ̃(i)
k,j‖L1(Rd)

=

∫
Rd
|2kd/2ψ̃(i)(2kx− j)| dx

= 2−kd/2
∫
Rd
|ψ̃(i)(x)|dx

≤ C2−kd/2
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for a constant C. Thus we have

(4.4)
|〈f, ψ̃(i)

k,j〉| ≤ ‖f‖L∞(Rd)‖ψ̃
(i)
k,j‖L1(Rd)

(by (2.12))

≤ C2−kd/2‖f‖L∞(Rd).

For any pair (β′, p′) such that β′ < β and β′p′ = βp, we have

(4.5)

|f |p
′

B
β′
p′,p′

=
∑
k≥k0

2k(β′+d(1/2−1/p′))p′
∑
j,i

|〈f, ψ̃(i)
k,j〉|

p′

=
∑
k≥k0

2k(β′+d(1/2−1/p′))p′
∑
j,i

|〈f, ψ̃(i)
k,j〉|

p
· |〈f, ψ̃(i)

k,j〉|
p′−p

.

We now apply (4.4) to |〈f, ψ̃(i)
k,j〉|

p′−p
in (4.5). Then

(4.6)

|f |p
′

Bβ
′
p′,p′
≤ C′‖f‖p

′−p
L∞

∑
k≥k0

2k(β′+d(1/2−1/p′))p′2−kd/2(p′−p)
∑
j,i

|〈f, ψ̃(i)
k,j〉|

p

= C′‖f‖p
′−p
L∞

∑
k≥k0

2k(β+d(1/2−1/p))p
∑
j,i

|〈f, ψ̃(i)
k,j〉|

p

= C′‖f‖p
′−p
L∞ |f |

p

B
β
p,p
.

With a similar argument, we can show that

(4.7) 2k0d(1/2−1/p′)p′
∑
l

|〈f, Φ̃k0,l〉|
p′

≤ C′′‖f‖p
′−p
L∞ 2k0d(1/2−1/p)p

∑
l

|〈f, Φ̃k0,l〉|
p
.

Using (4.6) and (4.7), we prove the following theorem:

Theorem 4.2.1. If f ∈ L∞(Rd) ∩ Bβp,p(Rd), then f ∈ Bβ
′

p′,p′(Rd), where

β′ < β and β′p′ = βp. Moreover,

|f |
B
β′
p′,p′
≤ C‖f‖1−p/p

′

L∞ |f |p/p
′

B
β
p,p

for a constant C.
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4.3 Duality

In analogy with the special case of Sobolev spaces Wβ(Rd), the Besov space

Bβp,p(Rd) with β < 0 is understood as the dual space of Bβ
′

p′,p′(Rd), where β′ = −β
and 1/p + 1/p′ = 1. (Here we assume that 1 ≤ p ≤ ∞.) We extend the wavelet-

dependent sequence norm to Besov spaces Bβq,p(Rd) with negative β. To do so,

we assume that both φ and φ̃ have R-th continuous derivative, and satisfy Strang-

Fix condition of order M + 1. If |β| < min(R,M), then the duality between the

distribution f ∈ Bβp,p(Rd) and the test function g ∈ Bβ
′

p′,p′(Rd) is defined by

〈f, g〉 =
∑
k≥k0

∑
j,i

〈f, ψ̃(i)
k,j〉〈ψ

(i)
k,j, g〉+

∑
l

〈f, Φ̃k0,l〉〈Φk0,l, g〉.

Since β + d(1/2− 1/p) = −β′ − d(1/2− 1/p′), by (2.12) one can have∣∣∣∣∑
j,i

〈f, ψ̃(i)
k,j〉〈ψ

(i)
k,j, g〉

∣∣∣∣ ≤ (∑
j,i

|〈f, ψ̃(i)
k,j〉|

p
)1/p(∑

j,i

|〈ψ(i)
k,j, g〉|

p′
)1/p′

= ak · bk,

where

ak = 2k(β+d(1/2−1/p))

(∑
j,i

|〈f, ψ̃(i)
k,j〉|

p
)1/p

and

bk = 2k(β′+d(1/2−1/p′))

(∑
j,i

|〈g, ψ(i)
k,j〉|

p′
)1/p′

.

Notice that ‖(ak)‖`p = |f |
Bβp,p

and ‖(bk)‖`p′ = |g|
B
β′
p′,p′

, where we have switched

roles of ψ̃(i) and ψ(i) in obtaining the equivalent wavelet sequence sums to |g|β
′

p′,p′ .

Thus we have

(4.8)

∣∣∣∣ ∑
k≥k0

∑
j,i

〈f, ψ̃(i)
k,j〉〈ψ

(i)
k,j, g〉

∣∣∣∣ ≤ ∑
k≥k0

ak · bk

≤
( ∑
k≥k0

|ak|p
)1/p( ∑

k≥k0

|bk|p
′
)1/p′

= |f |
B
β
p,p
|g|

Bβ
′
p′,p′

.
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With a similar argument, we can show that

(4.9)

∣∣∣∣∑
l

〈f, Φ̃k0,l〉〈Φk0,l, g〉
∣∣∣∣ ≤ 2k0d(1/2−1/p)

(∑
l

|〈f, Φ̃k0,l〉|
p
)1/p

× 2k0d(1/2−1/p′)

(∑
l

|〈g,Φk0,l〉|
p′
)1/p′

,

since d(1/2 − 1/p) = −d(1/2 − 1/p′). Again, we switch the roles of (Φ̃, ψ̃(i)) and

(Φ, ψ(i)) in obtaining the equivalent wavelet sequence sums to ‖g‖
Bβ
′
p′,p′

. Then

combining (4.8) and (4.9), we have

|〈f, g〉| ≤ ‖f‖
B
β
p,p
‖g‖

Bβ
′
p′,p′

.

This inequality implies that Bβp,p(Rd) is indeed the dual space of Bβ
′

p′,p′(Rd) and

extended definitions can characterize Bβp,p(Rd) with negative β.
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CHAPTER 5

LINEAR HOMOGENEOUS EQUATIONS

In this chapter we examine three examples for A satisfying Â∗Af(ξ) = |ξ|−2α
f̂(ξ),

the identity operator on L2(Rd), α = 0,

the Radon transform on L2(R2), α = 1/2,

the 2π × integration operator on L2(R), α = 1.

The classical method for solving (1.2) has been filtered backprojection based on

a description of A in the frequency domain. We study this in detail in Section 5.2.

5.1 Examples

The identity operator on L2(Rd) satisfies (1.1) with α = 0. In this case, we

have

Y = f + Z

in (1.2). Recovering f can be viewed as a noise removal problem.

The Radon transform R : L2(R2) −→ L2([0, π), L2(R)) is defined by

Rf(θ, u) =

∫
Lθ,u

f(x, y) ds(x, y),

where ds(x, y) is the Euclidean measure on the line

Lθ,u = {(x, y) | x cos θ + y sin θ = u}.

The inner product [·, ·] in L2([0, π), L2(R)) is assumed as

[F,G] =

∫ π

0

∫
R
F (θ, u)G(θ, u)du dθ.
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Theorem 5.1.1. (Fourier slice theorem)

(5.1) Rf(θ, ·)∧(w) = f̂(w cos θ, w sin θ),

where Rf(θ, ·)∧(w) is the one-dimensional Fourier transform of Rf(θ, u) as a func-

tion of u, and f̂ is the two-dimensional Fourier transform of f .

Proof. See [37].

Notice that

(5.2)

[Rf,Rg] =

∫ π

0

∫
R
Rf(θ, u)Rg(θ, u)du dθ

=

∫ π

0

∫
R
Rf(θ, ·)∧(w)Rg(θ, ·)∧(w) dw dθ (by (2.3))

=

∫ π

0

∫
R
f̂(w cos θ, w sin θ)ĝ(w cos θ, w sin θ) dw dθ (by (5.1))

=

∫
R2

|ξ|−1
f̂(ξ)ĝ(ξ)dξ.

Since 〈R∗Rf, g〉 = [Rf,Rg], using (2.3) for 〈R∗Rf, g〉, we have∫
R2

R̂∗Rf(ξ)ĝ(ξ)dξ =

∫
R2

|ξ|−1
f̂(ξ)ĝ(ξ)dξ.

Since g can be arbitrary, we can write

R̂∗Rf(ξ) = |ξ|−1
f̂(ξ).

Thus the Radon transform satisfies (1.1) with α = 1/2.

By setting f = g in (5.2), one can show that the Radon transform R is well-

defined for all functions f such that∫
R2

|ξ|−1|f̂(ξ)|
2
dξ < ∞.

Thus the domain of R, denoted by D(R), is L2(R2) ∩ S−1/2(R2), where

(5.3) Sβ(Rd) =

{
f ∈ S′(Rd) |

∫
Rd
|ξ|2β |f̂(ξ)|

2
dξ < ∞

}
.
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Here S′(Rd) denotes the space of tempered distributions on Rd. For the future use,

we define

(5.4) |f |2Sβ =

∫
Rd
|ξ|2β|f̂(ξ)|

2
dξ.

We define I : L2(R) −→ L2(R) by

If(x) = 2π

∫ x

−∞
f(t) dt.

Obviously, the operator I cannot be defined for all functions in L2(R). To specify

D(I), notice that by (2.6), one can have

2πf̂(ξ) = 2πiξ Îf (ξ),

since 2πf(x) = (If)′(x). Thus

(5.5) Îf(ξ) = −iξ−1f̂(ξ)

and D(I) = L2(R) ∩ S−1(R).

Notice that

〈I∗If , g〉 = 〈If , Ig〉

=

∫
R
Îf(ξ) Îg(ξ)dξ (by (2.3))

=

∫
R
(−iξ−1)f̂(ξ)(iξ−1)ĝ(ξ)dξ (by (5.5))

=

∫
R
|ξ|−2

f̂(ξ)ĝ(ξ)dξ.

This implies that

Î∗If(ξ) = |ξ|−2
f̂(ξ).

Thus the operator I on L2(R) satisfies (1.1) with α = 1.
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5.2 Filtered Backprojection Methods

From (1.1), one’s first attempt to solve (1.2) might be

(5.6) f̃(x) =

∫
Rd
e2πiξ·x|ξ|2αÂ∗Y (ξ) dξ.

For α > 0, however, the solution method in (5.6) generates an unacceptable solu-

tion for (1.2) due to instability in high frequency information of f . To avoid this

phenomenon, one can consider a filtered solution f̃w such that

(5.7) f̃w(x) =

∫
Rd
e2πiξ·xw(ξ)|ξ|2αÂ∗Y (ξ) dξ,

where the weight filter w(ξ) satisfies 0 ≤ w(ξ) ≤ 1 and w(ξ) → 0 as |ξ| → ∞. For

example, the famous filtered backprojection (FBP) method for inverting the Radon

transform in medical image processing takes the form (5.7) with α = 1/2.

Finding a proper weight filter w(ξ) is very important for the performance of

f̃w. We consider a family of weight filters {wM} such that

wM (ξ) =

{
1, if |ξ| ≤M,

0, otherwise.

Then the mean square error of f̃wM is

(5.8) ‖f − f̃wM‖
2

L2 =

∫
|ξ|≤M

|ξ|4α|Â∗Z(ξ)|
2
dξ +

∫
|ξ|>M

|f̂(ξ)|
2
dξ.

We assume that

(5.9) Z = σW,

where W is the white noise process defined on the underlying space of functions in

Y. To deal with this noise model, let us consider the following companion problem

to (1.2):

y = Ãf + z,
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where Ã : L2(Rd) −→ L2(Rd) satisfies

̂̃
Af(ξ) = |ξ|−αf̂(ξ).

Let

f̃∗wM (x) =

∫
Rd
e2πiξ·xwM (ξ)|ξ|2α̂̃A∗y(ξ) dξ

and

(5.10) z = σW̃ ,

where W̃ is the white noise process defined on Rd. Since Ã∗Ã = A∗A, and f̃wM and

f̃∗wM are obtained by using backprojection methods, the statistical performance (in

mean square error measurement) of f̃wM with the noise model (5.9) is equal to that

of f̃∗wM with the noise model (5.10), i.e.,

(5.11) E‖f − f̃wM‖
2

L2 = E‖f − f̃∗wM‖
2

L2 .

Thus we can estimate an upper bound for E‖f − f̃wM‖
2

L2 by doing same thing

for E‖f − f̃∗wM‖
2

L2 . While doing that, we determine M that minimizes that upper

bound.

We assume that the true solution f is in Wβ(Rd), β > 0. Notice that for β > 0,

(5.12) Wβ(Rd) = L2(Rd) ∩ Sβ(Rd) and |f |Wβ = |f |Sβ .

With a similar argument used to get (5.8), one can have

(5.13) E‖f − f̃∗wM‖
2

L2 = E

∫
|ξ|≤M

|ξ|4α|̂̃A∗z(ξ)|2dξ +

∫
|ξ|>M

|f̂(ξ)|
2
dξ.

Since

|̂̃A∗z|2 = |ξ|−2α|ẑ(ξ)|2,
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the first term in the right hand side of (5.13) is

(5.14) σ2

∫
|ξ|≤M

|ξ|2αdξ = Cσ2M2α+d

for a constant C.

One can have

(5.15)

∫
|ξ|>M

|f̂(ξ)|
2
dξ ≤M−2β

∫
|ξ|>M

|ξ|2β|f̂(ξ)|
2
dξ

≤M−2β

∫
Rd
|ξ|2β |f̂(ξ)|

2
dξ

≤M−2β|f |2Wβ . (see (5.4) and (5.12))

Combining (5.11), (5.13), (5.14), and (5.15), we have

E‖f − f̃wM‖
2

L2 ≤ C′
(
σ2M2α+d +M−2β|f |2Wβ

)
.

By comparing the two dominant terms σ2M2α+d and M−2β|f |2Wβ , we can get a

simple approximation to the critical M . One can determine M so that

σ2M2α+d = M−2β|f |2Wβ

or

(5.16) M =

(
|f |Wβ

σ

)1/(β+d/2+α)

.

With this M , we have

E‖f − f̃wM‖
2

L2 ≤ C|f |(2α+d)/(β+d/2+α)

Wβ σ2r,

with rate exponent

(5.17) r =
β

β + d/2 + α
.



31

It is known (see [22] or Theorem 9.1.1) that the rate of convergence of any

method for recovering f ∈Wβ(Rd) is at most r (5.17), thus no filtered backprojec-

tion methods can provide an asymptotically better solution than does f̃wM with M

idetermined by (5.16).

The filtered backprojection method f̃wM considers any low-frequency structure

to be signal, and any high-frequency structure to be noise, no many how large |f̂(ξ)|
might be. This is not acceptable when we wish to recover the function which can be

more meaningfully characterized by its discontinuities, for example, an image with

several edges and small extent, since such information lies in the high-frequency

domain. Even with more general weight filter w, we cannot avoid this kind of

degradation in recovering nonsmooth functions, since w(ξ)→ 0 as |ξ| → ∞.
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CHAPTER 6

WAVELET-VAGUELETTE DECOMPOSITIONS

In this chapter, we study wavelet-vaguelette decomposition. The terminology

vaguelette was used by Meyer in [36] to describe a collection of functions which are

wavelet-like. In [22] Donoho constructed a wavelet-vaguelette system for solving

homogeneous equations described in Section 5.1 and gave a sufficient condition on

wavelets to generate a wavelet-vaguelette system.

We present the definition of the wavelet-vaguelette system in the setting of

biorthogonal wavelets in Section 6.1. In Section 6.2 we study some properties of

biorthogonal Riesz bases. These properties are useful in finding a sufficient condition

on regularity and vanishing moment of biorthogonal wavelets to generate a wavelet-

vaguelette system in Section 6.3. The proof in Section 6.3 generalizes Daubechies’s

work [9] in the discrete wavelet transform.

Throughout this chapter we always assume that A is weakly invertible, i.e.,

Af = 0 implies f = 0, and A(L2(Rd)) = Y.

6.1 Definition and Background

Definition 6.1.1. A collection of functions {ψ(i)
k,j, ψ̃

(i)
k,j, U

(i)
k,j, Ũ

(i)
k,j} is called a

wavelet-vaguelette system of A : L2(Rd) −→ Y, where Â∗Af(ξ) = |ξ|−2α
f̂(ξ), if

(1) {ψ(i)
k,j} and {ψ̃(i)

k,j} are biorthogonal wavelets of L2(Rd),

(2) {U (i)
k,j} and {Ũ (i)

k,j} are biorthogonal Riesz bases of Y,

(3) A∗U
(i)
k,j = 2−kαψ̃

(i)
k,j and Aψ

(i)
k,j = 2−kαŨ

(i)
k,j for all k, j, i.

Once we have a wavelet-vaguelette system of A, we can determine wavelet

coefficients 〈f, ψ̃(i)
k,j〉 of f from vaguelette coefficients [Af, U

(i)
k,j] of Af . Notice that
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by (3) of Definition 6.1.1,

(6.1)
〈f, ψ̃(i)

k,j〉 = 2kα〈f, A∗U (i)
k,j〉

= 2kα[Af, U
(i)
k,j].

Plugging (6.1) into (1) of Definition 3.1.1, we have the following reproducing formula

via the wavelet-vaguelette system {ψ(i)
k,j, ψ̃

(i)
k,j, U

(i)
k,j, Ũ

(i)
k,j} of A:

(6.2) f =
∑
k,j,i

2kα[Af, U
(i)
k,j]ψ

(i)
k,j.

We call (6.2) a wavelet-vaguelette decomposition of f .

We now consider how to construct a wavelet-vaguelette system of A. Notice

that any operator A satisfying Â∗Af(ξ) = |ξ|−2α
f̂(ξ) has following two properties:

Lemma 6.1.2. A∗A is translation-invariant, i.e.,

A∗ATh = ThA
∗A.

Proof. Notice that for each f ∈ L2(Rd),

̂A∗AThf(ξ) = |ξ|−2α
T̂hf(ξ)

= |ξ|−2α
e−2πiξ·hf̂(ξ) (by (2.4))

= e−2πiξ·h|ξ|−2α
f̂(ξ)

= e−2πiξ·hÂ∗Af(ξ)

= ̂ThA∗Af(ξ). (by (2.4))

Since f is arbitrarily chosen, A∗ATh = ThA
∗A.

Lemma 6.1.3. A∗A is homogeneous of order 2α, i.e.,

A∗ADa = a2αDaA
∗A.
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Proof. Notice that for each f ∈ L2(Rd),

̂A∗ADaf(ξ) = |ξ|−2α
D̂af(ξ)

= |ξ|−2α
adf̂(aξ) (by (2.5))

= a2αad|aξ|−2α
f̂(aξ)

= a2α ̂DaA∗Af(ξ). (by (1.1) and (2.5))

Since f is arbitrarily chosen, A∗ADa = a2αDaA
∗A.

On Rd, all elements of {ψ̃(i)
k,j} are generated by dilation and translation of basic

2d − 1 functions {ψ̃(i)} as

ψ̃
(i)
k,j = 2kd/2D2−kTj2−k ψ̃

(i).

We define π(i) by

(6.3) A∗Aπ(i) = ψ̃(i)

or equivalently

π̂(i)(ξ) = |ξ|2α̂̃ψ(i)(ξ).

Let

π
(i)
k,j = 2kd/2D2−kTj2−kπ

(i).

Then we have

A∗Aπ
(i)
k,j = A∗A2kd/2D2−kTj2−kπ

(i)

= 2−2kα2kd/2D2−kA
∗ATj2−kπ

(i) (by Lemma 6.1.3)

= 2−2kα2kd/2D2−kTj2−kA
∗Aπ(i) (by Lemma 6.1.2)

= 2−2kα2kd/2D2−kTj2−k ψ̃
(i) (by (6.3))

= 2−2kαψ̃
(i)
k,j .
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Hence

(6.4) A∗(2kαAπ
(i)
k,j) = 2−kαψ̃

(i)
k,j.

Furthermore,

(6.5)

[2kαAπ
(i)
k,j, Ũ

(i′)
k′,j′ ] = 2(k+k′)α[Aπ

(i)
k,j, Aψ

(i′)
k′,j′ ] (by (3) of Definition 6.1.1)

= 2(k+k′)α〈A∗Aπ(i)
k,j, ψ

(i′)
k′,j′〉

= 2−(k−k′)α〈ψ̃(i)
k,j, ψ

(i′)
k′,j′〉 (by (6.4))

= δ(k,j,i),(k′,j′,i′).

It implies that if {2kαAπ(i)
k,j} and {Ũ (i)

k,j} form L2-stable bases of Y simultaneously,

then by setting

(6.6) U
(i)
k,j = 2kαAπ

(i)
k,j,

we have a wavelet-vaguelette system {ψ(i)
k,j, ψ̃

(i)
k,j, U

(i)
k,j, Ũ

(i)
k,j} of A. It is not difficult

to show that this construction is the only way of having a wavelet-vaguelette system

of A for given biorthogonal wavelets {ψ(i)
k,j} and {ψ̃(i)

k,j}. From now on we use the

right-hand side of (6.6) as the definition of U
(i)
k,j.

In [22] Donoho gave a sufficient condition for the existence of the wavelet-

vaguelette system. We state it with a slight modification to be fitted into our

setting.

Theorem 6.1.4. (Donoho) Let ψ̃ and ψ be univariate functions described in

Section 3.1. We assume that ψ̃ has the R-th continuous derivative and ψ has van-

ishing moments of order M . If α+ d+ 1 < min(R,M), then {ψ(i)
k,j, ψ̃

(i)
k,j, U

(i)
k,j, Ũ

(i)
k,j}

forms the wavelet-vaguelette system of A.

This theorem demands high regularity and large vanishing moments for wave-

lets to be used for the wavelet-vaguelette system. For instance, R ≥ 4 for the Radon

transform in R2. Notice that none of first ten Daubechies’s compactly supported
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orthogonal wavelets have this amount of regularity. Many symmetric biorthogonal

wavelets with relatively small support size are not included in Theorem 6.1.4 to

generate a wavelet-vaguelette system for the Radon transform, either. See, e.g., [5],

[11] and [12].

There are several disadvantage in using smoother wavelets in approximating

a function that is much less smooth than the given wavelets: First, as long as

Theorem 3.2.1 holds, there is no gain in approximation order with smoother wave-

lets. Second, since smoother wavelets have wider support, they are not as good as

less smooth wavelets, which have smaller support, in approximating functions with

discontinuities.

As an alternative to Theorem 6.1.4, in Section 6.3 we shall give a sufficient

condition that demands lower regularity order on ψ̃ and fewer vanishing moments

on ψ to generate a wavelet-vaguelette system of A.

6.2 Biorthogonal Riesz Bases

The collection of functions {ϕn} in a separable Hilbert space H is said to be

near-orthogonal if for any (an) ∈ `2,∥∥∥∥∑
n

anϕn

∥∥∥∥2

H

�
∑
n

|an|2.

The concept of near-orthogonality is closely related to that of L2-stability in

the following way:

Lemma 6.2.1. Let H be a separable Hilbert space. The collections of functions

{ϕn} and {ϕ̃n} are biorthogonal Riesz bases of H if and only if

(1) 〈ϕm, ϕ̃n〉 = δm,n,

(2) ‖ϕ‖2H =
∑

n〈ϕ, ϕ̃n〉〈ϕn, ϕ〉 for all ϕ ∈ H,

(3) both {ϕn} and {ϕ̃n} are near-orthogonal.

Proof. Without loss of generality, we can assume that the index set of n in

{ϕn} and {ϕ̃n} is the set of positive integers, since H is a separable Hilbert space.
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(→) : The proof of (1) immediately follows since {ϕn} and {ϕ̃n} are biortho-

gonal Riesz bases.

Let ϕ ∈ H. As being a Riesz basis of H, {ϕn} represents ϕ with a sequence

(an) as ϕ =
∑
n anϕn. Notice that 〈ϕ, ϕ̃n〉 = an by biorthogonality between {ϕn}

and {ϕ̃n}. Thus we can represent any ϕ ∈ H as

ϕ =
∑
n

〈ϕ, ϕ̃n〉ϕn.

In particular,

〈ϕ, ϕ〉 =
∑
n

〈ϕ, ϕ̃n〉〈ϕn, ϕ〉.

Let (an) ∈ `2. Notice that by L2-stability of {ϕ̃n}, one can have

(a)

∥∥∥∥ ∑
n≤N

anϕn

∥∥∥∥2

H

�
∑
m≤N

∣∣∣∣〈∑
n≤N

anϕn, ϕ̃m〉
∣∣∣∣2

=
∑
m≤N

|am|2

for any positive integer N . Since the equivalence relation in (a) does not depend

on N , by letting N →∞, one can show that∥∥∥∥∑
n

anϕn

∥∥∥∥2

H

�
∑
n

|an|2.

Thus {ϕn} is near-orthogonal. With a similar argument, we can also show that

{ϕ̃n} is near-orthogonal.

(←) : Let

H′ =

{∑
n

anϕn | (an) ∈ `2
}
.

Suppose ϕN =
∑
n a

N
n ϕn → ϕ in H as N → ∞, where aN = (aNn ) ∈ `2. Then

near-orthogonality of {ϕn} implies that there exists a sequence a = (an) ∈ `2 such

that aN → a in `2. Let ϕ∗ =
∑
n anϕn. Then for any N ,

‖ϕ− ϕ∗‖H ≤ ‖ϕ− ϕN‖H + ‖ϕN − ϕ∗‖H.
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As N → ∞, ‖ϕ− ϕN‖H → 0 by given hypothesis, and ‖ϕN − ϕ∗‖H → 0, since

‖ϕN − ϕ∗‖2H �
∑
n |aNn − an|

2
and aN → a in `2. Thus ϕ = ϕ∗ ∈ H′. We have

shown that every limit function of convergent functions in H′ belongs to H′. There-

fore H′ is closed in H.

Since H′ is closed in H, one can decompose H by

(b) H = H′ ⊕H′′,

where H′′ is the orthogonal complement of H′ in H. Notice that for any ϕ′′ ∈ H′′,

‖ϕ′′‖2 =
∑
n

〈ϕ′′, ϕ̃n〉〈ϕn, ϕ′′〉

= 0.

(by hypothesis)

(since 〈ϕ′′, ϕn〉 = 0)

It implies that H′′ = {0}, and hence {ϕn} spans H. With a similar argument, we

can also show that {ϕ̃n} spans H.

Let ϕ ∈ H. Since {ϕn} spans H, one can find a sequence (an) such that

ϕ =
∑

n anϕn. Moreover, biorthogonality between {ϕn} and {ϕ̃n} implies that

an = 〈ϕ, ϕ̃n〉. Thus we can represent ϕ as

ϕ =
∑
n

〈ϕ, ϕ̃n〉ϕn.

Since {ϕn} is near orthogonal, one can show that

‖ϕ‖2H �
∑
n

|〈ϕ, ϕ̃n〉|2.

Thus {ϕ̃n} is L2-stable. With a similar argument, we can also show that {ϕn} is

L2-stable. Therefore {ϕn} and {ϕ̃n} are biorthogonal Riesz bases of H.

While proving Lemma 6.2.1, we have shown that any ϕ ∈ H can be written as

ϕ =
∑
n

〈ϕ, ϕ̃n〉ϕn,

if {ϕn} and {ϕ̃n} are biorthogonal Riesz bases of H.
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Lemma 6.2.2. Let {%n} and {%̃n} be collections of functions in a separable

Hilbert space S equipped with the inner product (·, ·). We assume that

(%m, %̃n) = δm,n and ‖%‖2S =
∑
n

(%, %̃n)(%n, %)

for all % ∈ S. Let collections of functions {ϕn} and {ϕ̃n} be biorthogonal Riesz

bases of a separable Hilbert space H. If

(%m, %n) = 〈ϕm, ϕn〉 and (%̃m, %̃n) = 〈ϕ̃m, ϕ̃n〉

for all m,n, then {%n} and {%̃n} are biorthogonal Riesz bases of S.

Proof. Without loss of generality, we can assume that the index set of n in

{%n} and {%̃n} is the set of positive integers, since S is a separable Hilbert space.

Let (an) ∈ `2. Notice that for any positive integer N ,

(a)

(
∑
n≤N

an%̃n,
∑
m≤N

am%̃m) =
∑
n≤N

∑
m≤N

an(%̃n, %̃m)am

=
∑
n≤N

∑
m≤N

an〈ϕ̃n, ϕ̃m〉am (by hypothesis)

= 〈
∑
n≤N

anϕ̃n,
∑
m≤N

amϕ̃m〉

�
∑
n≤N
|an|2. (by Lemma 6.2.1)

Since the equivalence in (a) does not depend on N , by letting N → ∞, one can

show that for all (an) ∈ `2, ∥∥∥∥∑
n

an%̃n

∥∥∥∥2

S

�
∑
n

|an|2.

Thus {%̃n} is near-orthogonal. With a similar argument, we can also show that {%n}
is near-orthogonal. Moreover, by hypothesis, {%n} and {%̃n} is biorthogonal and

‖%‖2S =
∑
n(%, %̃n)(%n, %). Thus, by Lemma 6.2.1, {%n} and {%̃n} are biorthogonal

Riesz bases of S.
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Lemma 6.2.3. Let {ϕn} and {ϕ̃n} be collections of functions in a separable

Hilbert space H. We assume that ‖ϕ‖2H =
∑
n〈ϕ, ϕ̃n〉〈ϕn, ϕ〉 for all ϕ ∈ H. If for

all ϕ ∈ H, ∑
n

|〈ϕ, ϕn〉|2 ≤ C1‖ϕ‖2H

and ∑
n

|〈ϕ, ϕ̃n〉|2 ≤ C2‖ϕ‖2H

for positive constants C1 and C2, then

C−1
2 ‖ϕ‖

2
H ≤

∑
n

|〈ϕ, ϕn〉|2

and

C−1
1 ‖ϕ‖

2
H ≤

∑
n

|〈ϕ, ϕ̃n〉|2

for all ϕ ∈ H.

Proof. Let ϕ ∈ H. Notice that by hypothesis, we have

‖ϕ‖2H =
∑
n

〈ϕ, ϕ̃n〉〈ϕn, ϕ〉

≤
(∑

n

|〈ϕ, ϕ̃n〉|2
)1/2(∑

n

|〈ϕ, ϕn〉|2
)1/2

(by (2.11))

≤ C1/2
2 ‖ϕ‖H

(∑
n

|〈ϕ, ϕn〉|2
)1/2

. (by hypothesis)

Thus we have

C−1
2 ‖ϕ‖

2
H ≤

∑
n

|〈ϕ, ϕn〉|2.

With a similar argument, we can also prove that

C−1
1 ‖ϕ‖

2
H ≤

∑
n

|〈ϕ, ϕ̃n〉|2

for all ϕ ∈ H.
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6.3 Sufficient Condition

We assume that ψ and ψ̃ satisfy

(6.7)
|ψ̂(w)| ≤ C|w|a1(1 + |w|2)

−(b1+a1)/2
,

|̂̃ψ(w)| ≤ C|w|a2(1 + |w|2)
−(b2+a2)/2

,

for some a1 > 0, a2 > 0, b1 > 1/2, and b2 > 1/2. The conditions b1 > 1/2 and

b2 > 1/2 insure that ψ ∈ L2(R) and ψ̃ ∈ L2(R).

The constants b1 and b2 in (6.7) are closely related to regularity of ψ and

ψ̃, respectively. We note that for any integer n such that 0 ≤ n < b1 − 1/2,

(2πiw)n
̂̃
ψ(w) ∈ L2(R). Thus one can consider the inverse Fourier transform of

(2πiw)
n ̂̃
ψ(w), and by (2.6), it is the n-th derivative ψ̃(n) of ψ̃. Thus larger b1 and

b2 in (6.7) imply smoother ψ and ψ̃, respectively.

On the other hand, the constants a1 and a2 in (6.7) are closely related to the

number of vanishing moments of ψ and ψ̃, respectively. Notice that by (2.7),

dnψ̂

dwn
(w) =

∫
R
e−2πiwx(−2πix)nψ(x) dx.

Thus if ψ has vanishing moments of order M , i.e.,

∫
R
xnψ(x) dx = 0, whenever n = 0, 1, · · · ,M,

then

dnψ̂

dwn
(0) = 0, whenever n = 0, 1, · · · ,M.

It implies that ψ̂(w) can be written as

(6.8) ψ̂(w) = |w|M ĝ(w),

for some g ∈ L2(R). Conversely, if ψ satisfies (6.8), then ψ necessarily has vanishing

moments of order M . Hence, the conditions a1 > 0 and a2 > 0 in (6.7) insure that
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ψ and ψ̃ have at least vanishing moments of order 0, respectively. Obviously, larger

a1 and a2 in (6.7) imply ψ and ψ̃ with higher vanishing moments, respectively.

Since ψ and ψ̃ are finite linear combinations of {φ1,n} and {φ̃1,n}, respectively,

we naturally assume that

(6.9)
|φ̂(w)| ≤ C(1 + |w|2)

−b1/2
, and

|̂̃φ(w)| ≤ C(1 + |w|2)
−b2/2

,

with the same b1 and b2 in (6.7). Notice that these decay conditions (6.9) also hold

for ψ and ψ̃ accordingly.

As we mentioned earlier, this section is devoted to find a sufficient condition

on ψ and ψ̃, in terms of their regularity and vanishing moments, to generate a

wavelet-vaguelette system {ψ(i)
k,j , ψ̃

(i)
k,j, U

(i)
k,j, Ũ

(i)
k,j} of A. We shall find regions for

a1, a2, b1, and b2 in (6.7) that insure the existence of the wavelet-vaguelette system

{ψ(i)
k,j, ψ̃

(i)
k,j, U

(i)
k,j, Ũ

(i)
k,j} of A, more specifically, L2-stability of {U (i)

k,j} and {Ũ (i)
k,j}, from

ψ and ψ̃ satisfying (6.7).

We begin with θ(i) and θ̃(i) such that

θ̂(i)(ξ) = |ξ|α̂̃ψ(i)(ξ) and
̂̃
θ(i)(ξ) = |ξ|−αψ̂(i)(ξ)

for i = 1, · · · , 2d − 1. We define

θ
(i)
k,j = 2kd/2θ(i)(2k · −j),

and similarly for θ̃
(i)
k,j. Notice that by (2.8), one can have

(6.10)
θ̂

(i)
k,j(ξ) = 2−kd/2e−2πiξ·j2−k θ̂(i)(2−kξ)

= 2−k(d/2+α)e−2πiξ·j2−k |ξ|α̂̃ψ(i)(2−kξ),

and similarly

(6.11) π̂
(i)
k,j(ξ) = 2−k(d/2+2α)e−2πiξ·j2−k |ξ|2α̂̃ψ(i)(2−kξ).
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Using (6.10) and (6.11), we can compute 〈θ(i)
k,j , θ

(i′)
k′,j′〉 by

2−(k+k′)(d/2+α)

∫
Rd
e−2πiξ·(j2−k−j′2−k′)|ξ|α̂̃ψ(i)(2−kξ)|ξ|α ̂̃ψ(i′)(2−k′ξ)dξ

= 2−(k−k′)α
∫
Rd

̂̃
ψ

(i)
k,j(ξ)π̂

(i′)
k′,j′(ξ) dξ

= 2−(k−k′)α〈ψ̃(i)
k,j, π

(i′)
k′,j′〉.

Since ψ̃
(i)
k,j = 22kαA∗Aπ

(i)
k,j (see (6.4)), one has

(6.12)
〈θ(i)
k,j, θ

(i′)
k′,j′〉 = 2(k+k′)α〈A∗Aπ(i)

k,j, π
(i′)
k′,j′〉

= [U
(i)
k,j , U

(i′)
k′,j′ ]. (by (6.6))

With a similar argument, we have

(6.13) 〈θ̃(i)
k,j, θ̃

(i′)
k′,j′〉 = [Ũ

(i)
k,j , Ũ

(i′)
k′,j′ ]

and

(6.14) 〈θ(i)
k,j, θ̃

(i′)
k′,j′〉 = [U

(i)
k,j , Ũ

(i′)
k′,j′ ].

Notice that for any f ∈ L2(Rd),

∑
k,j,i

[Af, U
(i)
k,j][Ũ

(i)
k,j, Af ] =

∑
k,j,i

〈f, A∗U (i)
k,j〉[2kαAψ

(i)
k,j, Af ]

=
∑
k,j,i

〈f, ψ̃(i)
k,j〉〈ψ

(i)
k,j, A

∗Af〉 (by (6.4) and (6.6))

= 〈f, A∗Af〉 = ‖Af‖2Y .

Since A(L2(Rd)) = Y, we have

(6.15) ‖Y ‖2Y =
∑
k,j,i

[Y, U
(i)
k,j][Ũ

(i)
k,j, Y ]

for any Y ∈ Y.
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We now summarize what we have proved so far: The collections of functions

{U (i)
k,j} and {Ũ (i)

k,j} of Y satisfy

(1) [U
(i)
k,j , Ũ

(i′)
k′,j′ ] = δ(k,j,i),(k′,j′,i′), ((6.5), (6.6))

(2) ‖Y ‖2Y =
∑
k,j,i[Y, U

(i)
k,j][Ũ

(i)
k,j , Y ] for all Y ∈ Y, ((6.15)),

(3) [U
(i)
k,j , U

(i′)
k′,j′ ] = 〈θ(i)

k,j, θ
(i′)
k′,j′〉 and [Ũ

(i)
k,j, Ũ

(i′)
k′,j′ ] = 〈θ̃(i)

k,j, θ̃
(i′)
k′,j′〉. ((6.12), (6.13))

Therefore if {θ(i)
k,j} and {θ̃(i)

k,j} are biorthogonal Riesz bases of L2(Rd), then by

Lemma 6.2.2, {U (i)
k,j} and {Ũ (i)

k,j} are biorthogonal Riesz bases of Y. Thus our goal

is finding regions for a1, a2, b1, and b2 in (6.7) that insure that {θ(i)
k,j} and {θ̃(i)

k,j}
are L2-stable, simultaneously.

Let ξ = (ξ1, · · · , ξd) ∈ Rd. From our definition of d-dimensional biorthogonal

wavelets, for each ψ̃(i) there is at least one ni such that

ψ(i)(x1, · · · , xni , · · · , xd) = ϕ1(x1) · · ·ψ(xni) · · ·ϕd(xd),

where ϕn is ψ̃ or φ̃ for n 6= ni. Notice that

(6.16) |ϕ̂n(ξn)| ≤ C(1 + |ξn|2)
−b2/2

,

whether ϕn = ψ̃ or ϕn = φ̃. Using (6.16) for n 6= ni and (6.7) for n = ni, we can

bound |θ̂(i)(ξ)| by

C|ξ|α(1 + |ξ1|2)
−b2/2 · · · |ξni |

a2(1 + |ξni |
2)
−(b2+a2)/2 · · · (1 + |ξd|2)

−b2/2
.

Using the fact that |ξ| ≤ (1 + |ξ1|2)
1/2 · · · (1 + |ξd|2)

1/2
, we have

|θ̂(i)(ξ)|

≤ C|ξni |
a2(1 + |ξ1|2)

−(b2−α)/2 · · · (1 + |ξni |
2)
−(b2+a2−α)/2 · · · (1 + |ξd|2)

−(b2−α)/2

≤ C|ξni |
r2(1 + |ξ1|2)

−(b2−α)/2 · · · (1 + |ξni |
2)
−(b2+r2−α)/2 · · · (1 + |ξd|2)

−(b2−α)/2

for any r2 such that 0 ≤ r2 < a2. Thus we have

(6.17) |θ̂(i)(ξ)| ≤ C|ξ|r2(1 + |ξ1|2)
−(b2−α)/2 · · · (1 + |ξd|2)

−(b2−α)/2
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for any r2 such that 0 ≤ r2 < a2. In particular, if we take r2 = 0 in (6.17), then we

have

(6.18) |θ̂(i)(ξ)| ≤ C(1 + |ξ1|2)
−(b2−α)/2 · · · (1 + |ξd|2)

−(b2−α)/2
.

For θ̃(i), we note that

|̂̃θ(i)(ξ)| ≤ C|ξ|−α(1 + |ξ1|2)
−b1/2 · · · |ξni |

a1(1 + |ξni |
2)
−(b1+a1)/2 · · · (1 + |ξd|2)

−b1/2

≤ C|ξni |
a1−α(1 + |ξ1|2)

−b1/2 · · · (1 + |ξni |
2)
−(b1+a1)/2 · · · (1 + |ξd|2)

−b1/2

≤ C|ξni |
r1(1 + |ξ1|2)

−b1/2 · · · (1 + |ξni |
2
)
−(b1+α+r1)/2 · · · (1 + |ξd|2)

−b1/2

for any r1 such that 0 ≤ r1 < a1 − α. Thus we have

(6.19) |̂̃θ(i)(ξ)| ≤ C|ξ|r1(1 + |ξ1|2)
−b1/2 · · · (1 + |ξd|2)

−b1/2

for any r1 such that 0 ≤ r1 < a1−α. In particular, if we take r1 = 0 in (6.19), then

we have

(6.20) |̂̃θ(i)(ξ)| ≤ C(1 + |ξ1|2)
−b1/2 · · · (1 + |ξd|2)

−b1/2
.

From (6.18) and (6.20), it is obvious that θ(i) and θ̃(i) are in L2(Rd) if

(6.21) b1 > 1 and b2 > α+ 1.

Moreover, if

(6.22) a1 > α and a2 > 0,

then θ(i) and θ̃(i) have vanishing moments of at least order 0, since we can take

positive r1 and r2 in (6.19) and (6.17), respectively. Obviously, conditions on

b1 and b2 are more than enough to show that θ(i) and θ̃(i) are well-defined. It
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turns out that stronger conditions (6.21) and (6.22) are sufficient to show that

{ψ(i)
k,j, ψ̃

(i)
k,j, U

(i)
k,j, Ũ

(i)
k,j} is a wavelet-vaguelette system of A. From now to the end of

this section, we assume that a1, a2, b1, and b2 satisfy (6.21) and (6.22).

Notice that for f ∈ L2(Rd),

∑
k,j,i

|〈f, θ(i)
k,j〉|

2
=
∑
k,j,i

∣∣∣∣ ∫
Rd
f̂(ξ)2−kd/2e2πiξ·j2−k θ̂(i)(2−kξ) dξ

∣∣∣∣2 (by (2.8))

=
∑
k,j,i

2−kd
∣∣∣∣ ∫
Ik

e2πiξ·j2−k
∑
l

f̂(ξ + l2k)θ̂(i)(2−kξ + l) dξ

∣∣∣∣2,
where Ik = [0, 2k]d. Since

∑
l f̂(ξ+ l2k)θ̂(i)(2−kξ + l) is periodic in Ik, one has from

(2.9)

∑
j

2−kd
∣∣∣∣ ∫
Ik

e2πiξ·j2−k
∑
l

f̂(ξ + l2k)θ̂(i)(2−kξ + l) dξ

∣∣∣∣2
=

∫
Ik

∣∣∣∣∑
l

f̂(ξ + l2k)θ̂(i)(2−kξ + l)

∣∣∣∣2dξ.
Using this result, we have

∑
k,j,i

|〈f, θ(i)
k,j〉|

2

=
∑
k,i

∫
Ik

∣∣∣∣∑
l

f̂(ξ + l2k)θ̂(i)(2−kξ + l)

∣∣∣∣2dξ
=
∑
k,i

∫
Ik

∑
l

f̂(ξ + l2k)θ̂(i)(2−kξ + l)
∑
n

f̂(ξ + n2k)θ̂(i)(2−kξ + n) dξ

=
∑
k,n,i

∫
Rd
f̂(ξ)f̂(ξ + n2k)θ̂(i)(2−kξ)θ̂(i)(2−kξ + n) dξ.

Let

(6.23) Cθ(ξ) =
∑
k,i

|θ(i)(2−kξ)|2
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and

R(f) =
∑

n6=(0,··· ,0)

∑
k,i

∫
Rd
f̂(ξ)f̂(ξ + n2k)θ̂(i)(2−kξ)θ̂(i)(2−kξ + n) dξ.

Then we have

(6.24)
∑
k,j,i

|〈f, θ(i)
k,j〉|

2
=

∫
Rd
|f̂(ξ)|

2
Cθ(ξ) dξ +R(f).

Notice that

(6.25)

|R(f)| ≤
∑

n6=(0,··· ,0)

∑
k,i

∫
Rd

∣∣∣∣f̂(ξ)f̂(ξ + n2k)θ̂(i)(2−kξ)θ̂(i)(2−kξ + n)

∣∣∣∣ dξ
≤

∑
n6=(0,··· ,0)

∑
k,i

(∫
Rd
|f̂(ξ)|

2
|θ̂(i)(2−kξ)θ̂(i)(2−kξ + n)| dξ

)1/2

×
(∫

Rd
|f̂(ξ′)|

2
|θ̂(i)(2−kξ′)θ̂(i)(2−kξ′ − n)| dξ′

)1/2

;

here we have used (2.12) and change of variables ξ′ = ξ − n2k in the second factor.

We now use (2.11) on the sum over k for the right hand side of the last equation of

(6.25). Then

(6.26)

|R(f)| ≤
∑

n6=(0,··· ,0)

∑
i

(∑
k

∫
Rd
|f̂(ξ)|

2
|θ̂(i)(2−kξ)θ̂(i)(2−kξ + n)| dξ

)1/2

×
(∑

k′

∫
Rd
|f̂(ξ′)|

2
|θ̂(i)(2−k

′
ξ′)θ̂(i)(2−k

′
ξ′ − n)|dξ′

)1/2

.

Let

νi(s) = sup
ξ

∑
k

|θ̂(i)(2−kξ)θ̂(i)(2−kξ + s)|.

Then from (6.26), we have

|R(f)| ≤
∑

n6=(0,··· ,0)

∑
i

(
νi(n)

∫
Rd
|f̂(ξ)|

2
dξ

)1/2(
νi(−n)

∫
Rd
|f̂(ξ′)|

2
dξ′
)1/2

≤ ‖f‖2L2

∑
n6=(0,··· ,0)

∑
i

νi(n)1/2νi(−n)1/2.
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Putting above result and (6.24) together, we have

(6.27)
∑
k,j,i

|〈f, θ(i)
k,j〉|

2
≤ ‖f‖2L2

(
sup
ξ

Cθ(ξ) +
∑

n6=(0,··· ,0)

∑
i

νi(n)1/2νi(−n)1/2

)
.

We now use the decay condition of θ̂(i) in (6.17) to estimate the right hand side

of (6.27). Notice that from (6.23), we can have

Cθ(ξ) ≤ sup
1≤|ξr|≤2

∑
k,i

|θ̂(i)(2−kξ)|
2

.

Using (6.17) for k < 0 with r2 = 0 and for k ≥ 0 with r∗2 such that 0 < r∗2 < a2, we

have

Cθ(ξ) ≤ C sup
1≤|ξr|≤2

( −1∑
k=−∞

(1 + |2−kξ1|
2
)
−(b2−α)

· · · (1 + |2−kξd|
2
)
−(b2−α)

+
∞∑
k=0

|2−kξ|2r
∗
2 (1 + |2−kξ1|

2
)
−(b2−α)

· · · (1 + |2−kξd|
2
)
−(b2−α)

)

≤ C′
( −1∑
k=−∞

22k(b2−α)d +
∞∑
k=0

2−2kr∗2

)
.

Since b2 > α+ 1, the first term is finite. Thus we have

(6.28) sup
ξ
Cθ(ξ) ≤ C(r∗2) <∞,

for any r∗2 such that 0 < r∗2 < a2.

For νi in (6.27), we note that

νi(s) = sup
1≤|ξn|≤2

∑
k

|θ̂(i)(2−kξ)θ̂(i)(2−kξ + s)|.

To have an upper bound of |θ̂(i)(2−kξ)|, we use (6.17) for k < 0 with r2 = 0 and for

k ≥ 0 with same r∗2 used for estimating Cθ(ξ). For |θ̂(i)(2−kξ + s)|, we use (6.17)

with r2 = 0 for any k. Then

νi(s) ≤ C sup
1≤|ξn|≤2

( −1∑
k=−∞

T1 · T2 +
∞∑
k=0

T3 · T2

)
,
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where

T1 = (1 + |2−kξ1|
2
)
−(b2−α)/2

· · · (1 + |2−kξd|
2
)
−(b2−α)/2

,

T2 = (1 + |2−kξ1 + s1|
2
)
−(b2−α)/2

· · · (1 + |2−kξd + sd|
2
)
−(b2−α)/2

,

T3 = |2−kξ|r
∗
2 (1 + |2−kξ1|

2
)
−(b2−α)/2

· · · (1 + |2−kξd|
2
)
−(b2−α)/2

.

Notice that for any ε2 such that 0 < ε2 < b2 − α, we can have

(6.29) T2 ≤ (1 + |2−kξ1 + s1|
2
)
−(b2−α−ε2)/2

· · · (1 + |2−kξd + sd|
2
)
−(b2−α−ε2)/2

.

We now consider the following inequality; for any x and y in R,

(6.30)
1 + y2

1 + (x− y)
2 ≤ 1 + (x+ y)

2
,

since for any x and y, either y2 ≤ (x− y)2 or y2 ≤ (x+ y)2.

For each (1 + |2−kξr + sr|
2
) in (6.29), we apply (6.30) with x = 2−kξr + sr/2

and y = sr/2. Then

(6.31) (1 + s4
r/4)(1 + |2−kξr|

2
)
−1
≤ 1 + |2−kξr + sr|

2
.

Using (6.29) and (6.31), we can bound T2 by T ∗2 such that

(6.32)
T ∗2 = (1 + s2

1/4)
−(b2−α−ε2)/2 · · · (1 + s2

d/4)
−(b2−α−ε2)/2

× (1 + |2−kξ1|
2
)
(b2−α−ε2)/2

· · · (1 + |2−kξd|
2
)
(b2−α−ε2)/2

.

With (6.32), we have

(6.33) νi(s) ≤ C sup
1≤|ξn|≤2

( −1∑
k=−∞

T1 · T ∗2 +
∞∑
k=0

T3 · T ∗2
)
.

Notice that

(6.34)
T1 · T ∗2 = (1 + s2

1/4)
−(b2−α−ε2)/2 · · · (1 + s2

d/4)
−(b2−α−ε2)/2

× (1 + |2−kξ1|
2
)
−ε2/2

· · · (1 + |2−kξd|
2
)
−ε2/2
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and

(6.35)
T3 · T ∗2 = (1 + s2

1/4)
−(b2−α−ε2)/2 · · · (1 + s2

d/4)
−(b2−α−ε2)/2

× |2−kξ|r
∗
2 (1 + |2−kξ1|

2
)
−ε2/2

· · · (1 + |2−kξd|
2
)
−ε2/2

.

Plugging (6.34) and (6.35) in (6.33), we have

νi(s) ≤ C(1 + |s1|2/4)
−(b2−α−ε2)/2 · · · (1 + |sd|2/4)

−(b2−α−ε2)/2

× sup
1≤|ξn|≤2

( −1∑
k=−∞

(1 + |2−kξ1|
2
)
−ε2/2

· · · (1 + |2−kξ1|
2
)
−ε2/2

+
∞∑
k=0

|2−kξ|r
∗
2 (1 + |2−kξ1|

2
)
−ε2/2

· · · (1 + |2−kξ1|
2
)
−ε2/2

)
≤ C′(1 + |s1|2/4)

−(b2−α−ε2)/2 · · · (1 + |sd|2/4)
−(b2−α−ε2)/2

×
( −1∑
k=−∞

2kε2d +
∞∑
k=0

2−kr
∗
2

)
.

Thus if 0 < ε2 < b2 − α and 0 < r∗2 < a2, then

(6.36) νi(s) ≤ C(r∗2, ε2)(1 + |s1|2/4)
−(b2−α−ε2)/2 · · · (1 + |sd|2/4)

−(b2−α−ε2)/2

for a constant C(r∗2 , ε2).

With (6.36), we have

∑
n6=(0,··· ,0)

∑
i

νi(n)1/2νi(−n)1/2

≤ C′(r∗2, ε2)(2d − 1)
∑

n1,··· ,nd
(1 + n2

1/4)
−(b2−α−ε2)/2 · · · (1 + n2

d/4)
−(b2−α−ε2)/2

≤ C′′(r∗2, ε2)

( ∞∑
m=−∞

(1 +m2/4)−(b2−α−ε2)/2

)d
.

Therefore if we take ε∗2 such that b2 − α− ε∗2 > 1, then we have

(6.37)
∑

n6=(0,·,0)

∑
i

νi(n)1/2νi(−n)1/2 ≤ C′′′(r∗2 , ε∗2) <∞.
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Combining (6.27), (6.28), and (6.37), we have

∑
k,j,i

|〈f, θ(i)
k,j〉|

2
≤ C∗(r∗2, ε∗2)‖f‖2L2 ,

where C∗(r∗2, ε
∗
2) <∞, if 0 < r∗2 < a2 and 0 < ε∗2 < b2 − α− 1.

Since in estimating
∑
k,j,i |〈f, θ

(i)
k,j〉|

2
we have used only the decay condition on

θ̂(i) in (6.17), we can easily estimate
∑
k,j,i |〈f, θ̃

(i)
k,j〉|

2
simply by replacing b2−α by

b1 and a2 by a1 − α in each step. To be more specific, we have

∑
k,j,i

|〈f, θ̃(i)
k,j〉|

2
≤ C̃∗(r∗1, ε∗1)‖f‖2L2 ,

where C̃∗(r∗1, ε
∗
1) <∞, if 0 < r∗1 < a1 − α and 0 < ε∗1 < b1 − 1.

Notice that for any f ∈ L2(Rd),

(6.38)

‖f‖2L2 =

∫
Rd
f̂(ξ)f̂(ξ)dξ

=

∫
Rd
|ξ|αf̂(ξ) · |ξ|−αf̂(ξ)dξ.

For any f1 and f2, we can compute 〈f1, f2〉 by

(6.39)

∑
k,j,i

〈f1, ψ̃
(i)
k,j〉〈ψ

(i)
k,j, f2〉 =

∑
k,j,i

∫
Rd
f̂1(ξ)2−kd/2e2πiξ·j2−k̂̃ψ(i)(2−kξ) dξ

×
∫
Rd

2−kd/2e−2πiξ′·j2−k ψ̂(i)(2−kξ′)f̂2(ξ′) dξ′.

We apply (6.39) with f̂1(ξ) = |ξ|αf̂(ξ) and f̂2(ξ) = |ξ|−αf̂(ξ). Then from (6.38),

we have

‖f‖2L2 =
∑
k,j,i

∫
Rd
|ξ|αf̂(ξ)2−kd/2e2πiξ·j2−k̂̃ψ(i)(2−kξ)dξ

×
∫
Rd

2−kd/2e−2πiξ′·j2−k ψ̂(i)(2−kξ′)|ξ′|−αf̂(ξ′) dξ′

=
∑
k,j,i

∫
Rd
f̂(ξ)|2−kξ|α2−kd/2e2πiξ·j2−k̂̃ψ(i)(2−kξ)dξ

×
∫
Rd

2−kd/2e−2πiξ′·j2−k |2−kξ′|−αψ̂(i)(2−kξ′)f̂(ξ′) dξ′.
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Since

θ̂
(i)
k,j(ξ) = 2−kd/2e−2πiξ·j2−k |2−kξ|αψ̂(i)(2−kξ)

and ̂̃
θ

(i)
k,j(ξ) = 2−kd/2e−2πiξ·j2−k |2−kξ|−αψ̂(i)(2−kξ)

we have

‖f‖2L2 =
∑
k,j,i

〈f, θ(i)
k,j〉〈θ̃

(i)
k,j, f〉.

We now summarize what we proved for {θ(i)
k,j} and {θ̃(i)

k,j}:
(1) 〈θ(i)

k,j , θ̃
(i′)
k′,j′〉 = δ(k,j,i),(k′,j′,i′).

(2) For any f ∈ L2(Rd), ‖f‖2L2 =
∑

k,j,i〈f, θ
(i)
k,j〉〈θ̃

(i)
k,j, f〉.

(3) If a1 > α, b1 > 1, a2 > 0, and b2 > α+ 1, then

∑
k,j,i

|〈f, θ(i)
k,j〉|

2
≤ C‖f‖2L2 and

∑
k,j,i

|〈f, θ̃(i)
k,j〉|

2
≤ C̃‖f‖2L2 .

Therefore, by Lemma 6.2.3, {θ(i)
k,j} and {θ̃(i)

k,j} are biorthogonal Riesz bases of

L2(Rd). Finally, we summarize what we proved in this section as follows:

Theorem 6.3.1. Let ψ, ψ̃, φ, and φ̃ be univariate functions described in Sec-

tion 3.1. Let {ψ(i)
k,j, ψ̃

(i)
k,j, U

(i)
k,j, Ũ

(i)
k,j} be the collections of functions described in Sec-

tion 6.1. If

|ψ̂(w)| ≤ C|w|a1(1 + |w|2)
−(b1+a1)/2

, a1 > α , b1 > 1,

|̂̃ψ(w)| ≤ C|w|a2(1 + |w|2)
−(b2+a2)/2

, a2 > 0 , b2 > α+ 1,

|φ̂(w)| ≤ C(1 + |w|2)
−b1/2

, and

|̂̃φ(w)| ≤ C(1 + |w|2)
−b2/2

,

then {ψ(i)
k,j , ψ̃

(i)
k,j, U

(i)
k,j, Ũ

(i)
k,j} are the wavelet-vaguelette system of A.
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Obviously, Theorem 6.3.1 allows more wavelets to be used in wavelet-vaguelette

system for a given operator A than Theorem 6.1.4 does. More importantly, sufficient

conditions listed in Theorem 6.3.1 do not depend on dimension d.
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CHAPTER 7

VAGUELETTE COEFFICIENTS AND VARIATIONAL PROBLEMS

In this chapter we study a recursive algorithm in computing vaguelette coeffi-

cients [Y, U
(i)
k,j] for given Y ∈ Y. This recursive algorithm is naturally derived when

wavelets that are obtained from scaling functions as in (4) of Definition 3.1.2 are

used for a wavelet-vaguelette system of A.

We consider a family of variational problems to solve (1.2). The main idea is

based on a smoothness characterization of Besov space Bβ0

1,1(Rd) via wavelets and

the L2-stability of vaguelettes for Y.

From now on, we assume that univariate functions ψ, ψ̃, φ, and φ̃ satisfy

(7.1)

|ψ̂(w)| ≤ C|w|a1(1 + |w|2)
−(b1+a1)/2

, a1 > 2α, b1 > max(1, |β0|),

|̂̃ψ(w)| ≤ C|w|a2(1 + |w|2)
−(b2+a2)/2

, a2 > max(0, |β0|), b2 > 2α+ 1,

|φ̂(w)| ≤ C(1 + |w|2)
−b1/2

, and

|̂̃φ(w)| ≤ C(1 + |w|2)
−b2/2

.

The conditions in (7.1) are more than enough to have a wavelet-vaguelette system of

A (see Theorem 6.3.1), but additional assumptions are required to have a smooth-

ness characterization of Bβ0

1,1(Rd) via wavelets (see Theorem 3.2.2). and stability in

computing vaguelette coefficients by the recursive algorithm.

7.1 Vaguelette Coefficients

In this section we consider the case d = 2. The multi-dimensional algorithm

can follows easily from the 2-dimensional one. Throughout this section we assume

that A(L2(R2)) = Y.
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We define ρ ∈ S′(R2) by

(7.2) ρ̂(ξ) = |ξ|2α ̂̃Φ(ξ).

Let ρk,j = 2kρ(2k · −j). We define

(7.3) Vk,j = 2kαAρk,j.

Then by following the same argument used to show A∗Aπ
(i)
k,j = 2−2kαψ̃

(i)
k,j in (6.4),

one can show that A∗Aρk,j = 2−2kαΦ̃k,j. Thus

2kα[Af, Vk,j] = 22kα[Af,Aρk,j]

= 22kα〈f, A∗Aρk,j〉

= 〈f, Φ̃k,j〉.

Moreover, since 2kα[Af, U
(i)
k,j] = 〈f, ψ̃(i)

k,j〉 for i = 1, 2, 3, by using the fast wavelet

transform associated with {ψ̃(i)
k,j}, one can get {2kα[Af, U

(i)
k,j]}{k0≤k<m, j, i=1,2,3} and

{2k0α[Af, Vk0,n]}n from {2mα[Af, Vm,l]}l. Since A(L2(R2)) = Y, we can summarize

it as follows:

Theorem 7.1.1. For each Y ∈ Y, we have

(7.4)

2(k−1)α[Y, Vk−1,j] =
∑
n1,n2

h̃n1−2j1 h̃n2−2j22kα[Y, Vk,j],

2(k−1)α[Y, U
(1)
k−1,j] =

∑
n1,n2

h̃n1−2j1 g̃n2−2j22kα[Y, Vk,j],

2(k−1)α[Y, U
(2)
k−1,j] =

∑
n1,n2

g̃n1−2j1 h̃n2−2j22kα[Y, Vk,j],

2(k−1)α[Y, U
(3)
k−1,j] =

∑
n1,n2

g̃n1−2j1 g̃n2−2j22kα[Y, Vk,j].

Using (7.4) successively on {2kα[Y, Vk,j]}, we can get {2kα[Y, U
(i)
k,j]}{k0≤k<m, j, i=1,2,3}

and {2k0α[Y, Vk0,n]}n from {2mα[Y, Vm,l]}l.

As analogy with the inhomogeneous wavelet decomposition, we can have an

inhomogeneous wavelet-vaguelette decomposition:
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Theorem 7.1.2. Let {ψ(i)
k,j , ψ̃

(i)
k,j, U

(i)
k,j, Ũ

(i)
k,j} be a wavelet-vaguelette system of

A. Then

f =
∑
k≥k0

∑
j,i

2kα[Af, U
(i)
k,j]ψ

(i)
k,j +

∑
l

2k0α[Af, Vk0,l]Φk0,l.

7.2 Variational Problems

We consider a family of variational problems, which naturally give rise to a

parametrized solution class f̃γ,β0 : Given a positive parameter γ and Besov space

Bβ0

1,1(Rd), find a function f̃γ,β0 that minimizes over all possible functions g in

Bβ0

1,1(Rd) the functional

(7.5) ‖Y −Ag‖2Y + 2γ‖g‖
B
β0
1,1
.

Using L2-stability of {U (i)
k,j} and smoothness characterization of wavelets, we have

‖Y −Ag‖2Y �
∑
k,j,i

|[Y −Ag, U (i)
k,j]|

2

=
∑
k,j,i

|[Y, U (i)
k,j]− [Ag, U

(i)
k,j]|

2

=
∑
k,j,i

|[Y, U (i)
k,j]− 2kα〈g, A∗Aπ(i)

k,j〉|
2

(by (6.6))

=
∑
k,j,i

|[Y, U (i)
k,j]− 2−kα〈g, ψ̃(i)

k,j〉|
2

(by (6.4))

and

|g|
B
β0
1,1

=
∑
k≥k0

∑
j,i

2k(β0−d/2)|〈g, ψ̃(i)
k,j〉|.

Combining these sequence sums, we have following equivalent sequence sums to the

functional (7.5):

(7.6)
∑
k,j,i

2−2kα|2kα[Y, U
(i)
k,j]− 〈g, ψ̃

(i)
k,j〉|

2
+ 2γ

∑
k≥k0

∑
j,i

2k(β0−d/2)|〈g, ψ̃(i)
k,j〉|,
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which can be minimized by minimizing each term separately. Notice that a|b− x|2+

2c|x|, where a > 0, c > 0, is minimized when

x =


b− c/a, if b− c/a,

0, if |b| ≤ c/a,

b+ c/a, if b+ c/a.

With the shrinkage operator Sµ in (2.2), we can denote this minimum point simply

by Sc/a(b). We apply this to the case where a = 2−2kα, b = 2kα[Y, U
(i)
k,j], and

c = γ2k(β0−d/2) for k ≥ k0, then (7.6) is minimized by choosing the function f̃∗γ,β0

such that

(7.7) f̃∗γ,β0
=
∑
k,j,i

Sµk(2kα[Y, U
(i)
k,j])ψ

(i)
k,j,

where

(7.8) µk =

{
γ2k(β0−d/2+2α), for k ≥ k0,

0, for k < k0.

Since µk = 0 if k < k0, one can rewrite (7.7) as

(7.9) f̃∗γ,β0
=
∑
k≥k0

∑
j,i

Sµk(2kα[Y, U
(i)
k,j])ψ

(i)
k,j +

∑
l

2k0α[Y, Vk0,l]Φk0,l.

With equivalence between function norm and wavelet sequence sums, we now sug-

gest f̃∗γ,β0
as a solution method for solving (1.2).
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CHAPTER 8

DISCRETIZATION AND NOISE MODEL

In this chapter we discretize the functional form (1.2). For the perturbation

data error in observation procedure, we assume a statistical noise model.

8.1 Discretization

We recall the given problem (1.2) of this thesis:

(1.2) Y = Af + Z.

In practice we are only able to have finitely many data {Yi}i=0,1,··· ,N−1 for

Y . For this data set, we assume that sufficiently many data {Yi}i=0,1,··· ,N−1 are

observed to approximate the underlying Y with a negligible error.

We wish to approximate the true solution f by

(8.1) f̃∗γ,β0,m
=

m−1∑
k≥k0

∑
j,i

Sµk(2kα[Y, U
(i)
k,j])ψ

(i)
k,j +

∑
l

2k0α[Y, Vk0,l]Φk0,l.

In this approach, we have three different types of errors. First, in approximating

Y from {Yi}{i=0,1,··· ,N−1} and computing [Y, U
(i)
k,j] and [Y, Vk0,l] from the approxi-

mation to Y , we cannot avoid a certain error. However, we shall ignore this type

of error in this thesis. Second, an error is introduced in having finite m in f̃∗γ,β0,m

(8.1). Notice that the smallest error we can have with f̃∗γ,β0,m
(8.1) in the mean

square measurement is equivalent to the sequence sums

∑
k≥m

∑
j,i

|〈f, ψ̃(i)
k,j〉|

2
.
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The integer m in (8.1) is closely related to N , the number of data. Increasing m for

fixed N does not necessarily give a better solution since it may generate another

error in computing [Y, U
(i)
k,j] and [Y, Vk0,l]. We assume that we can take a positive

integer m in (8.1) such that

2md = N.

Again, we ignore this type of error in this thesis. Third, the solution method f̃∗γ,β0,m

(8.1) itself makes an error in approximating

(8.2) fm =

m−1∑
k≥k0

∑
j,i

〈f, ψ̃(i)
k,j〉ψ

(i)
k,j +

∑
l

〈f, Φ̃k0,l〉Φk0,l.

Since

(8.3)

‖fm − f̃∗γ,β0,m
‖

2

L2 �
m−1∑
k=k0

∑
j,i

|〈f, ψ̃(i)
k,j〉 − Sµk(2kα[Y, U

(i)
k,j])|

2

+
∑
l

|〈f, Φ̃k0,l〉 − 2k0α[Y, Vk0,l]|
2
,

it suffices to consider the right hand side of (8.3) to control the error between fm

and f̃∗γ,β0,m
. In this thesis we are only interested in this type of error.

8.2 Noise Model

We assume that a white noise model for the observation error Z in (1.2). Let

(8.4) Z = σW

for a constant σ > 0, where W is the white noise process defined on the underlying

space of functions in Y. This assumption naturally impose a noise model for the

discrete data {Yi} such that

Yi = (Af)i + Zi,
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where Zi are independent and identically distributed as N(0, σ2
0) for some σ0 > 0.

Since the number of data is N , it is reasonable to assume that

(8.5)
σ2

0 = Nσ2

= 2mdσ2.

We now examine the effect from this noise model (8.4) in [Y, U
(i)
k,j] and [Y, Vk0,l]

in f̃∗γ,β0,m
. Notice that for the white noise process W , [W,U

(i)
k,j] are mean zero

Gaussian random variables for all k, j, i and

Var[W,U
(i)
k,j] = ‖U (i)

k,j‖
2

Y .

Since

‖U (i)
k,j‖

2

Y = [2kαAπ
(i)
k,j, 2

kαAπ
(i)
k,j] (by (6.6))

= 22kα〈π(i)
k,j, A

∗Aπ
(i)
k,j〉

= 〈π(i)
k,j , ψ̃

(i)
k,j〉 (by (6.4))

=

∫
Rd
π̂

(i)
k,j(ξ)

̂̃
ψ

(i)
k,j(ξ)dξ (by (2.3))

= 2−kd
∫
Rd
π̂(i)(2−kξ)

̂̃
ψ(i)(2−kξ)dξ (by (2.8))

= 2−kd
∫
Rd
|2−kξ|2α|̂̃ψ(i)(2−kξ)|

2

dξ

=

∫
Rd
|ξ′|2α|̂̃ψ(ξ′)|

2

dξ′,

one can show that [Z,U
(i)
k,j] are mean zero Gaussian random variables with

Var[Z,U
(i)
k,j] = σ2

∫
Rd
|ξ|2α|̂̃ψ(i)(ξ)|

2

dξ.

Similarly, we have mean zero Gaussian random variables [Z, Vk0,l] such that

(8.6) Var[Z, Vk0,l] = σ2

∫
Rd
|ξ|2α|̂̃Φ(ξ)|

2

dξ.
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Notice that

2kα[Y, U
(i)
k,j] = 2kα[Af + Z,U

(i)
k,j] (by (1.2))

= 2kα〈f, A∗U (i)
k,j〉+ 2kα[Z,U

(i)
k,j]

= 2kα〈f, A∗2kαAπ(i)
k,j〉+ 2kα[Z,U

(i)
k,j] (by (6.6))

= 〈f, ψ̃(i)
k,j〉+ 2kα[Z,U

(i)
k,j]. (by (6.4))

With a similar argument, we have

2k0α[Y, Vk0,l] = 〈f, Φ̃k0,l〉+ 2k0α[Z, Vk0,l].

Thus the solution method f̃∗γ,β0,m
(8.1) can be rewritten as

(8.7)

f̃∗γ,β0,m
=

∑
k0≤k<m

∑
j,i

Sµk(〈f, ψ̃(i)
k,j〉+ 2kα[Z,U

(i)
k,j])ψ

(i)
k,j

+
∑
l

(〈f, Φ̃k0,l〉+ 2k0α[Z, Vk0,l])Φk0,l.

Before we close this section, we define some notations for the future use. Let

(8.8) ci =

∫
Rd
|ξ|2α|̂̃ψ(i)(ξ)|

2

dξ

for i = 1, · · · , 2d − 1,

(8.9) c0 =

∫
Rd
|ξ|2α|̂̃Φ(ξ)|

2

dξ,

(8.10) c∗ = min(c1, · · · , c2d−1),

and

(8.11) c∗ = max(c1, · · · , c2d−1).
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CHAPTER 9

ERROR ESTIMATES

In this chapter we determine γ and β0 that minimize an upper bound of

E‖fm − f̃∗γ,β0,m
‖

2

L2
, where the expectation operator E is needed to deal with the

statistical noise model proposed in Chapter 8.

9.1 Background

In [22] Donoho assumed the same white noise model as in this thesis, and

suggested

(9.1) f̃(ak,j,i) =
∑
k≥k0

∑
j,i

Sak,j,i(2
kα[Y, U

(i)
k,j])ψ

(i)
k,j +

∑
l

2k0α[Y, Vk0,l]

as a solution method for solving (1.2). This is exactly same as f̃∗γ,β0
(7.9) except for

possibly different shrinkage parameters. For the performance of f̃(ak,j,i), he proved

the following theorem:

Theorem 9.1.1. (Donoho) If the true solution f is known to lie in a ball

F(C) = {f | ‖f‖
Bβq,p
≤ C} of the Besov space Bβq,p(Rd) with

β > (2α+ d)(1/p− 1/2),

then

inf
(ak,j,i)

sup
f∈F(C)

E‖f − f̃(ak,j,i)‖
2

L2 � σ2rM

as σ → 0, with rate exponent

rM =
β

β + d/2 + α
.
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Moreover, this wavelet shrinkage method attains the optimal rate of convergence:

inf
(ak,j,i)

sup
f∈F(C)

E‖f − f̃(ak,j,i)‖
2

L2
≤ Constant · inf

f̃

sup
f∈F(C)

E‖f − f̃‖
2

L2
,

where f̃ ranges over all possible methods. This is faster than the rate of convergence

of any linear methods:

inf
f̃∗

sup
f∈F(C)

E‖f − f̃∗‖
2

L2
� σ2rL

as σ → 0, where f̃∗ ranges over all possible linear methods, with rate exponent

rL =
β + d(1/2− 1/p∗)

β + d(1− 1/p∗) + α
,

where p∗ = min(2, p), which is smaller than rM in case p < 2.

This theorem implies that if one uses the optimal shrinkage parameter, then the

corresponding wavelet shrinkage method is the best estimator in minimax sense.

(For definitions of these statistical terminologies, see, e.g., [1].) However, Donoho

in [22] did not give a method for finding that parameter.

In [31] Kolaczyk used the shrinkage parameter

(9.2) ak,j,i =
√

2 log(22k)2k/2σc
1/2
i ,

in (9.1) for the tomographic reconstruction. For the definition of ci, see (8.8). This

choice of shrinkage amount is motivated by the VisuShrink method of Donoho and

Johnstone [23]. For details, see, e.g., [23] and [31].

One may ask what is the optimal shrinkage parameter to attain the optimal

rate of convergence in Theorem 9.1.1 and what is the rate of convergence through

(9.1) in solving (1.2) when the true solution f is known to lie in Bβp,p(Rd) with

d(1/p− 1/2) ≤ β ≤ (2α+ d)(1/p− 1/2).
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For these questions, we present an error estimation of f̃∗γ,β0,m
(8.1) for f ∈ Bβp,p(Rd),

d(1/p− 1/2) ≤ β ≤ (2α+d)(1/p− 1/2) with an explicit shrinkage parameter in the

next section.

9.2 Error Estimates of f̃∗γ,β0,m

In this section we estimate an upper bound of E‖fm − f̃∗γ,β0,m
‖

2

L2
. While doing

that, we determine β0, which gives the main effect on the wavelet shrinkage proce-

dure, and then we choose γ, which corresponds to a subtle part of the algorithm.

Throughout this section, we assume that f is compactly supported in the unit

cube of Rd. Thus we need only j and l for which 〈f, ψ̃(i)
k,j〉 6= 0 and 〈f, Φ̃k0,l〉 6= 0 in

(8.1). Moreover, the number of such j ≤ C2kd for fixed k and i, and that of such

l ≤ C2k0d for a constant C. Having these results in mind, we start to estimate an

upper bound of E‖fm − f̃∗γ,β0,m
‖

2

L2
.

From (8.2) and (8.7), we note that fm − f̃∗γ,β0,m
is

m−1∑
k=k0

∑
〈f,ψ̃(i)

k,j〉6=0

(
〈f, ψ̃(i)

k,j〉 − Sµk(〈f, ψ̃(i)
k,j〉+ 2kα[Z,U

(i)
k,j])

)
ψ

(i)
k,j

+
∑

〈f,Φ̃k0,l
〉6=0

2k0α[Z, Vk0,l]Φk0,l.

Hence using (3.8) one can bound E‖fm − f̃∗γ,β0,m
‖

2

L2
by a constant multiple of

m−1∑
k=k0

∑
〈f,ψ̃(i)

k,j〉6=0

E|〈f, ψ̃(i)
k,j〉 − Sµk(〈f, ψ̃(i)

k,j〉+ 2kα[Z,U
(i)
k,j])|

2

+
∑

〈f,Φ̃k0,l
〉6=0

22k0αVar[Z, Vk0,l].

We note that by (8.6) and (8.9), Var[Z, Vk0,l] = c0σ
2 for all l. Thus we can bound

E‖fm − f̃∗γ,β0,m
‖

2

L2
by a constant multiple of

m−1∑
k=k0

∑
〈f,ψ̃(i)

k,j〉6=0

E|〈f, ψ̃(i)
k,j〉 − Sµk(〈f, ψ̃(i)

k,j〉+ 2kα[Z,U
(i)
k,j])|

2
+ c02k0(2α+d)σ2,
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where we have used the fact that the number of l for which 〈f, Φ̃k0,l〉 6= 0 is less

than C2k0d for a constant C.

Lemma 9.2.1. If X ∼ N(0, τ2), then

E|t− Sµ(t+X)|2 ≤
{
µ2 + τ2, if |t| > µ,

t2 +E|Sµ(X)|2, if |t| ≤ µ,

where

E|Sµ(X)|2 = 2τ2

∫
y>µ

τ

(y − µ

τ
)
2
P (y) dy. (P (y) =

1√
2π
e−y

2/2)

Proof. See [4] and [24].

Let

Λk = {(j, i)||〈f, ψ̃(i)
k,j〉| > µk}

and

Λ̃k = {(j, i)|0 < |〈f, ψ̃(i)
k,j〉| ≤ µk}.

We apply Lemma 9.2.1 to the case where t = 〈f, ψ̃(i)
k,j〉, X = 2kα[Z,U

(i)
k,j],

τ2 = 22kαciσ
2, and µ = µk (see (7.8)). Then we have

(9.3) E‖fm − f̃∗γ,β0,m
‖

2

L2 ≤ C
(
S0(f) + S1(f) + S2(f) + S3(f) + S4(f)

)
,
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where

S0(f) = c02k0(2α+d)σ2,

S1(f) =
m−1∑
k=k0

∑
(j,i)∈Λk

µ2
k,

S2(f) =
m−1∑
k=k0

∑
(j,i)∈Λk

ci2
2kασ2,

S3(f) =
m−1∑
k=k0

∑
(j,i)∈Λ̃k

|〈f, ψ̃(i)
k,j〉|

2
, and

S4(f) =
m−1∑
k=k0

∑
(j,i)∈Λ̃k

22kα+1ciσ
2

∫
t>tk,i

(t− tk,i)2
P (t) dt,

where tk,i = c
−1/2
i 2k(β0−d/2+α) γ

σ
. For the definition of ci, see (8.8).

Let f ∈ Bβp0,p0
(Rd), where

(9.4) p0 =
2α+ d

β + d/2 + α
.

For S1(f), notice that

S1(f) =
m−1∑
k=k0

∑
(j,i)∈Λk

µ2−p0

k · µp0

k

=
m−1∑
k=k0

2−k(β+d(1/2−1/p0))p0µ2−p0

k 2k(β+d(1/2−1/p0))p0

∑
(j,i)∈Λk

µp0

k .

Let

(9.5) a =
γ

σ
.

Since µk = aσ2k(β0−d/2+2α) (see (7.8) and (9.5)), one has

(9.6) S1(f) ≤ a2−p0σ2−p0T (β0, β, p0)
m−1∑
k=k0

2k(β+d(1/2−1/p0))p0

∑
(j,i)∈Λk

µp0

k ,



67

where

T (β0, β, p0) = max
k0≤k<m

{
2k((β0−d/2+2α)(2−p0)−(β+d(1/2−1/p0))p0)

}
.

By arranging the exponent of 2, we have

T (β0, β, p0) = max
k0≤k<m

{
2k(β0(2−p0)+4α−2αp0−βp0)

}
.

Thus we have

(9.7) S1(f) ≤ |f |p0

B
β
p0,p0

a2−p0σ2−p0T (β0, β, p0),

because in (9.6),

m−1∑
k=k0

2k(β+d(1/2−1/p0))p0

∑
(j,i)∈Λk

µp0

k ≤
m−1∑
k=k0

2k(β+d(1/2−1/p0))p0

∑
j,i

|〈f, ψ̃(i)
k,j〉|

p0

≤ |f |p0

Bβp0,p0

.

For S2(f), since σ2 = a−22−2k(β0−d/2+2α)µ2
k (see (7.8) and (9.5)), one has

S2(f) ≤ c∗
m−1∑
k0=k

∑
(j,i)∈Λk

22kαa−22−k(2β0−d+4α)µ2
k.

We use the same argument that is used for S1(f). Then we have

S2(f) ≤ c∗
m−1∑
k0=k

a−22−k((β+d(1/2−1/p0))p0+2β0−d+2α)µ2−p0

k

× 2k(β+d(1/2−1/p0))p0

∑
(j,i)∈Λk

µp0

k .

Moreover, since a−2µ2−p0

k = a−p0σ2−p02k(β0−d/2+2α)(2−p0), we have

S2(f) ≤ c∗a−p0σ2−p0T ∗(β0, β, p0)
m−1∑
k0=k

2k(β+d(1/2−1/p0))p0

∑
(j,i)∈Λk

µp0

k ,
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where

T ∗(β0, β, p0) = max
k0≤k<m

{
2−k((β+d(1/2−1/p0))p0+2β0−d+2α−(β0−d/2+2α)(2−p0))

}
.

By arranging the exponent of 2, we can write

T ∗(β0, β, p0) = max
k0≤k<m

{
2−k(β0p0+βp0−2α−d+2αp0)

}
.

With a similar argument used for S1(f), we have

m−1∑
k=k0

2k(β+d(1/2−1/p0))p0

∑
(j,i)∈Λk

µp0

k ≤ |f |
p0

B
β
p0,p0

.

Thus

(9.8) S2(f) ≤ c∗|f |p0

B
β
p0,p0

a−p0σ2−p0T ∗(β0, β, p0).

For S3(f), we can bound them as follows:

S3(f) =
m−1∑
k0=k

∑
(j,i)∈Λ̃k

|〈f, ψ̃(i)
k,j〉|

2

≤
m−1∑
k0=k

∑
(j,i)∈Λ̃k

|〈f, ψ̃(i)
k,j〉|

p0 · µ2−p0

k

=
m−1∑
k0=k

2−k(β+d(1/2−1/p0))p0µ2−p0

k 2k(β+d(1/2−1/p0))p0

∑
(j,i)∈Λ̃k

|〈f, ψ̃(i)
k,j〉|p0 .

We now use the same argument used for S1(f). Then we have

(9.9) S3(f) ≤ |f |p0

Bβp0,p0

a2−p0σ2−p0T (β0, β, p0).

Combining (9.7), (9.8), and (9.9), for f ∈ Bβp0,p0
(Rd), we can bound S1(f) +

S2(f) + S3(f) by

(9.10) |f |p0

B
β
p0,p0

σ2−p0

(
2a2−p0T (β0, β, p0) + c∗a−p0T ∗(β0, β, p0)

)
.
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We now consider the case when f ∈ Bβp,p(Rd), where

(9.11) d(1/p− 1/2) ≤ β < (2α+ d)(1/p− 1/2).

Notice that if β = (2α + d)(1/p − 1/2), then Bβp,p(Rd) is the same as Bβp0,p0
(Rd)

with p0 in (9.4). We define

(9.12) β∗ =

{ α+d/2
α

(β + d(1/2− 1/p)), if α > 0,

β, if α = 0,

and

(9.13) p∗0 =
2α+ d

β∗ + d/2 + α
.

Notice that for any pair (β, p) satisfying (9.11), β∗ < β and (β−β∗)/d = 1/p−1/p∗0

if α > 0. Thus by (2) of Theorem 4.1.1, we have

(9.14) Bβp,p(Rd) ↪→ Bβ
∗

p∗0 ,p
∗
0
(Rd) and |f |

B
β∗
p∗
0
,p∗

0

≤ |f |
B
β
p,p
.

If α = 0, we bound S1(f)+S2(f)+S3(f) by (9.10) by replacing p0 with d/(β+d/2).

From the relations (9.12), (9.13) between β∗ and p∗0, it is obvious that by

following the same routine as we did for f ∈ Bβp0,p0
(Rd), we can have

S1(f)+S2(f)+S3(f) ≤ |f |p
∗
0

B
β∗
p∗
0
,p∗

0

σ2−p∗0
(

2a2−p∗0T (β0, β
∗, p∗0) + c∗a−p

∗
0T ∗(β0, β

∗, p∗0)

)

for f ∈ Bβ
∗

p∗0,p
∗
0
(Rd). Furthermore, using (9.14), we can bound S1(f) +S2(f) +S3(f)

by

(9.15) |f |p
∗
0

B
β
p,p

σ2−p∗0
(

2a2−p∗0T (β0, β
∗, p∗0) + c∗a−p

∗
0T ∗(β0, β

∗, p∗0)

)
for f ∈ Bβp,p(Rd).

We now determine β0, which minimizes S1(f) +S2(f) +S3(f) for a fixed a. To

do so, we examine the exponents of 2 in T (β0, β
∗, p∗0) and T ∗(β0, β

∗, p∗0). Obviously,



70

to reduce the contributions from S1(f) +S2(f) + S3(f), it is desirable if our choice

of β0 satisfies

(9.16) β0(2−p∗0)+4α−2αp∗0−β∗p∗0 ≤ 0 and β0p
∗
0+β∗p∗0−2α−d+2αp∗0 ≥ 0,

so that T (β0, β
∗, p∗0) and T ∗(β0, β

∗, p∗0) are bounded independently of m. Notice

that

(9.17)

β0(2− p∗0) + 4α− 2αp∗0 − β∗p∗0

=
2β0β

∗

β∗ + d/2 + α
+

4αβ∗

β∗ + d/2 + α
− (2α+ d)β∗

β∗ + d/2 + α

= (β0 − d/2 + α)
2β∗

β∗ + d/2 + α

and

(9.18)

β0p
∗
0 + β∗p∗0 − 2α− d+ 2αp∗0 = (β0 + β∗ + 2α)

2α+ d

β∗ + d/2 + α
− 2α− d

= (β0 − d/2 + α)
2α+ d

β∗ + d/2 + α
.

From (9.16), (9.17), and (9.18), it is obvious that we must take

β0 = β∗0 = d/2− α.

With this β∗0 , we have

T (β∗0 , β
∗, p∗0) = T ∗(β∗0 , β

∗, p∗0) = 1.

Therefore, from (9.15), we have

(9.19) S1(f) + S2(f) + S3(f) ≤ |f |p
∗
0

B
β
p,p

σ2−p∗0 (2a2−p∗0 + c∗a−p
∗
0 )

for f ∈ Bβp,p(Rd).
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For S4(f), we note that tk,i = c
−1/2
i 2k(β∗0−d/2+α)a ≤ c

−1/2
∗ a with our choice

for β∗0 = d/2 − α. Notice that as a function of x,
∫
t>x

(t − x)2P (t) dt is strictly

decreasing for x > 0. Thus by bounding |Λ̃k| by (2d − 1)2kd, we have

(9.20) S4(f) ≤ 2c∗(2d − 1)
m−1∑
k=k0

2k(2α+d)σ2

∫
t>c
−1/2
∗ a

(t− c−1/2
∗ a)

2
P (t) dt

Finally, combining (9.3), (9.19), and (9.20), we can bound E‖f − f̃∗γ,β∗0 ,m‖
2

L2

by a constant multiple of

(9.21)

|f |p
∗
0

Bβp,p
σ2−p∗0 (2a2−p∗0 + c∗a−p

∗
0 )

+
2c∗(2d − 1) · 2m(2α+d)σ2

22(d/2+α) − 1

∫
t>c
−1/2
∗ a

(t− c−1/2
∗ a)

2
P (t)dt,

for f ∈ Bβp,p(Rd). Obviously, we ignored the contribution from S0(f), which is

fixed and small. We now find the parameter γ = aσ in f̃∗γ,β∗0 ,m by choosing a that

minimizes (9.21).

The equation (9.21) is our main upper bound of E‖fm − f̃∗γ,β∗0 ,m‖
2

L2
. We

emphasize that given only two parameters characterizing the smoothness of f

(β and |f |
B
β
p,p

), the known parameter α that determines the ill-posedness of the

reconstruction procedure, the known constants c∗ and c∗, and an estimate of the

standard deviation σ of the noise in the observation procedure, one can numerically

compute the minimum point a∗ of the equation (9.21) as a function of a and use

γ∗ = a∗σ to determine f̃∗γ∗,β∗0 ,m that minimizes our upper bound on the error.

To have an asymptotic result for (9.21), we use following inequality; for any

x ≥ 0,

(9.22)

∫
t>x

(t− x)2
P (t) dt ≤

√
2π

2
P (x).

This is rather rough estimation since one can replace the right hand side of (9.22)

by 2x−3P (x) for x ≥ 1 (see, e.g., [4]).
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Using (9.22), we can bound 2·2m(2α+d)σ2
∫
t>c
−1/2
∗ a

(t− c−1/2
∗ a)

2
P (t) dt in (9.21)

by

2m(2α+d)σ2e−c
−1
∗ a2/2.

We now compare two dominant terms |f |p
∗
0

B
β
p,p

σ2−p∗0 and 2m(2α+d)σ2e−c
−1
∗ a2/2 to get

a simple approximation to the critical a. If

|f |
B
β
p,p

σ
≤ 2md(2α+d)/p∗0 ,

then by setting

|f |p
∗
0

B
β
p,p

σ2−p∗0 = 2m(2α+d)σ2e−c
−1
∗ a2/2,

we can get the critical point a1 such that

a1 = c
1/2
∗

√
(
4α

d
+ 2− p∗0) log 2md − 2p∗0 log

|f |
B
β
p,p

σ0
,

where σ2
0 = 2mdσ2. With this a1, we have

(9.23) E‖fm − f̃∗γ,β∗0 ,m‖
2

L2
≤ C|f |p

∗
0

B
β
p,p

σ2−p∗0
([

(4α/d+ 2− p∗0) ln 2md
]R

+ 1

)
,

where

R =

{
(2− p∗0)/2, if a1 ≥ 1,

p∗0/2, if a1 < 1.

On the other hand, if

|f |
Bβp,p

σ
> 2m(2α+d)/p∗0 ,

then the first term in (9.21) dominates the whole sum. In this case we can take

a = 1. Thus we can have

(9.24) E‖fm − f̃∗γ,β∗0 ,m‖
2

L2
≤ C′|f |p

∗
0

B
β
p,p

σ2−p∗0 .
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As we mentioned earlier, we find a near-optimal a∗ by minimizing (9.21). How-

ever, with (9.23) and (9.24), we can have following asymptotic result by ignoring

the logarithm term in (9.23):

Theorem 9.2.1. Let f be a compactly supported function in Bβp,p(Rd), where

d(1/p− 1/2) ≤ β ≤ (2α+ d)(1/p− 1/2).

Then with β∗0 = d/2− α and γ∗ = a∗σ, where a∗ is the minimum point of (9.21),

E‖fm − f̃∗γ∗,β∗0 ,m‖
2

L2
� σ2r,

as σ → 0, with the exponent

r =
β + d(1/2− 1/p)

β + d(1/2− 1/p) + α
, if α > 0,

or

r =
β

β + d/2
, if α = 0.

Proof. From (9.23) and (9.24), it is obvious that the rate of convergence is

1− p∗0/2. If α > 0, then

1− p∗0/2 =
β∗

β∗ + d/2 + α
.

Since β∗ = α+d/2
α

(β + d(1/2− 1/p)) for α > 0,

r =
β + d(1/2− 1/p)

β + d(1/2− 1/p) + α
,

if α > 0. For α = 0, p∗0 = d/(β + d/2). Thus we have

r =
β

β + d/2
,

if α = 0.
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We now assume that the true solution f is not only compactly supported but

also bounded. Suppose f ∈ Bβp,p(Rd), where d(1/p−1/2) ≤ β < (2α+d)(1/p−1/2).

Using (2) of Theorem 4.2.1, we can show that

(9.25) f ∈ Bβ
′

p′,p′(R
d) and |f |

Bβ
′
p′,p′
≤ ‖f‖1−p/p

′

L∞ |f |p/p
′

B
β
p,p

for any pair (β′, p′) satisfying β′ < β, β′p′ = βp, and

(9.26) p′ =
2α+ d

β′ + d/2 + α
.

From (9.26), by replacing β∗ by β′ and p∗0 by p′ we can follow the same routine as

we did to get (9.21) for f ∈ Bβ
∗

p∗0 ,p
∗
0
(R), where p∗0 = 2α+d

β∗+d/2+α . Thus we can bound

E‖f − f̃∗γ,β∗0 ,m‖
2

L2
by a constant multiple of

(9.27)

|f |p
′

B
β′
p′,p′

σ2−p′(2a2−p′ + c∗a−p
′
)

+
2c∗(2d − 1) · 2m(2α+d)σ2

22(d/2+α) − 1

∫
t>c
−1/2
∗ a

(t− c−1/2
∗ a)

2
P (t)dt.

Theorem 9.2.2. Let f be a compactly supported function on Rd. We assume

that f ∈ L∞(Rd) ∩Bβp,p(Rd), where

d(1/p− 1/2) ≤ β ≤ (2α+ d)(1/p− 1/2).

Then with β∗0 = d/2− α and γ∗ = a∗σ, where a∗ is the minimum point of (9.27),

(9.28) E‖fm − f̃∗γ∗,β∗0 ,m‖
2

L2
� σ2r∗ ,

as σ → 0, with the exponent

r =
βp

2α+ d
.

In particular, for f ∈ Bβτ,τ(Rd), where 1/τ = β/d+ 1/2, we have

r =
d

2α+ d
· β

β + d/2
.
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Proof. As we did to get the asymptotic result for (9.21), with a rough estima-

tion for a near optimal a, we can have

E‖fm − f̃γ,β0,m‖
2

L2 � σ2−p′ .

Since

1− p′/2 = 1− α+ d/2

β′ + d/2 + α

=
β′

β′ + d/2 + α

=
β′p′

2α+ d

=
βp

2α+ d
,

we have

r =
βp

2α+ d

as the rate of convergence for f ∈ L∞(Rd) ∩Bβp,p(Rd).
For f ∈ L∞(Rd) ∩Bβτ,τ (Rd), since

r =
βτ

2α+ d
,

we have

r =
d

2α+ d
· β

β + d/2
,

since 1/τ = β/d+ 1/2.
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CHAPTER 10

COMPUTATIONS: TOMOGRAPHIC RECONSTRUCTION

We conducted tomographic reconstruction (α = 1/2) experiments using f̃∗γ∗,β∗0 ,m

in (8.1) with β∗0 = 1/2 and γ∗ = a∗σ, where a∗ is chosen as the (numerical) min-

imum point of (9.21). Our main conclusion is that this shrinkage parameter leads

to smaller error and better reconstruction than using the parameter suggested by

Kolaczyk [31]. The wavelet shrinkage method often exhibits certain artifacts, which

do not appear in reconstructed images from the filtered backprojection method.

Those artifacts in the wavelet shrinkage method are largely due to the fact that

wavelet bases are not rotationally invariant. However, “ rotational averaging tech-

nique ”associated with the wavelet shrinkage method reduces those artifacts dramat-

ically, and outperforms not only the standard wavelet shrinkage method but also the

traditional filtered backprojection method in the mean square error measurement.

Our main computations are applied to the phantom image f8 of 256 × 256

pixels in Figure 1. With the assumption that the true intensity field f of the digital

image f8 is bounded, we scaled f8 to have 256 as the brightest pixel and 1 as the

darkest one. We computed Radon projection data, Rf , at uniformly spaced 256

angles, and at uniformly spaced 256 points for each angle. Thus, the number of

data, N = 65536, and m = 8 in f̃∗γ∗,β∗0 ,m.

We added independent and identically distributed Gaussian noise with stan-

dard deviations σ
(25)
0 = 4.0734, σ

(20)
0 = 7.2434, and σ

(15)
0 = 12.8813 to Rf . Here

the superscripts in standard deviations denote signal-to-noise ratio (SNR) defined

by

SNR = 10 log10

(∑255
i=0

∑255
j=0 |Rf(θi, uj)|2

65536× σ2
0

)
.
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Fig. 1. Original image.

We use biorthogonal wavelets 3φ̃, 3,9ψ̃, 3,9φ, and 3,9ψ illustrated on page 276

of [10]. These functions satisfy Theorem 6.3.1 for the Radon transform in two

dimension. i We modified biorthogonal wavelets at the boundary in a way equivalent

to assuming that the phantom image is periodic. We also choose k0 = 4 in (8.1).

We assume that f ∈ Bβp,p(R2) for β > 0, where

(10.1) p =
3

β + 3/2
.

To estimate the smoothness order β of f , we note that

(10.2)

∑
k≥4

∑
|〈f,ψ̃(i)

k,j〉|<2k/2γ

|〈f, ψ̃(i)
k,j〉|

2
=
∑
k≥4

∑
|〈f,ψ̃(i)

k,j〉|<2k/2γ

|〈f, ψ̃(i)
k,j〉|

2−p
· |〈f, ψ̃(i)

k,j〉|
p

≤ γ2−p
∑
k≥4

2k(2−p)/2
∑
j,i

|〈f, ψ̃(i)
k,j〉|

p

= γ2−p|f |p
Bβp,p

,

where we have used the fact

(10.3)

(β + 2(1/2− 1/p))p = βp+ p− 2

= (3/p− 3/2)p+ p− 2 (by (10.1))

= (2− p)/2
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in (10.2). Let

E(γ) =

(∑
k≥4

∑
|〈f,ψ̃(i)

k,j〉|<2k/2γ

|〈f, ψ̃(i)
k,j〉|

2
)1/2

.

Then from (10.2), we have

(10.4) E(γ)2 ≤ γ2−p|f |p
B
β
p,p
.

On the other hand, if we denote the number of (j, i) for which |〈f, ψ̃(i)
k,j〉| ≥ 2k/2γ

by Nk(γ), then we have

(10.5)

∑
k≥4

Nk(γ)(2k/2γ)p2k(β+2(1/2−1/p))p

≤
∑
k≥4

2k(β+2(1/2−1/p))p
∑
j,i

|〈f, ψ̃(i)
k,j〉|

p

= |f |p
B
β
p,p
.

Notice that 2k(β+2(1/2−1/p)+1/2)p = 2k by (10.3). We define

N(γ) =
∑
k≥4

Nk(γ)2k.

Then from (10.5), we have

(10.6) γp ≤ N(γ)−1|f |p
B
β
p,p
.

Combining (10.1), (10.4), and (10.6), we have

(10.7) E(γ) ≤ N(γ)−β/3|f |
Bβp,p

.

It is remarked in [7] that (10.7) is invertible, i.e., if we observe

(10.8) E(γ) ≤ CN(γ)−β/3
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Fig. 2. logN(γ) vs logE(γ).

for some β and C, then one can conclude that f ∈ Bβp,p(R2), p = 3
β+3/2 , and

one can define an equivalent semi-norm on Bβp,p(R2) such that in this semi-norm

|f |
B
β
p,p

= C. (This statement is not correct, but is close enough to the truth to be

used in practice; see [7] for the precise statement.) We use (10.7) in estimating the

smoothness order β of f . We compute E(γ) and N(γ) for several γ, and estimate

β and |f |
B
β
p,p

from logE(γ) and logN(γ) graph at Figure 2. With this approach,

we estimated

β ≈ 0.8040

and

|f |
B
β
p,p
≈ 337.6403

with p = 1.3021.

We computed c1 in (8.8) numerically by

c1 =

∫
R2

√
ξ2
1 + ξ2

2|
̂̃
ψ(ξ1)|

2

|̂̃φ(ξ2)|
2

dξ1dξ2

≈ 0.2525,

and similarly we have c2 ≈ 0.2525 and c3 ≈ 0.4400. Thus we take 0.2525 as the

approximated value for c∗ and 0.4400 for c∗.
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We compute the minimum point of (9.21) as a function of a, with p∗0 = p =

1.3021, α = 1/2, |f |p
∗
0

B
β
p,p

(≈ 1960.2), c∗ (≈ 0.4400), and c∗ (≈ 0.2525), by the

bisection method for each σ = 2−8σ0. We denote the resulting algorithm f̃∗γ∗,β∗0 ,m

by fC , i.e.,

fC =
7∑

k≥4

∑
j,i

Saσ2k/2(2k/2[Y, U
(i)
k,j])ψ

(i)
k,j +

∑
l

22[Y, Vk0,l]Φ4,l,

where a is chosen as the numerical minimum point of (9.21) for given σ = 2−8σ0,

and E‖f8 − fC‖2L2 by EC .

We also consider

f
(R)
C =

1

r

R−1∑
r=0

( 7∑
k≥4

∑
j,i

Saσ2k/2(2k/2[Y (θ − πr/2R, ·), U (i)
k,j])ψ

(i)
k,j

+
∑
l

22[Y (θ − πr/2R, ·), Vk0,l]Φ4,l

)
,

where a is, again, chosen as the numerical minimum point of (9.21) for each σ with

same estimated values (α, p∗0, p, |f |
p∗0
Bβp,p

, c∗, and c∗) used in fC . Thus f
(R)
C is the

average of R images reconstructed from

Y (θ, ·), Y (θ − π/2R, ·), · · · , Y (θ − π(R− 1)/2R, ·)

applying fC to each rotated data set. We conducted experiments using f
(2)
C . The

mean square error E‖f8 − f (2)
C ‖

2

L2 is denoted by E
(2)
C .

In [31] Kolaczyk used the shrinkage parameter

(10.8) ak,j,i =
√

2 log(22k)2k/2σc
1/2
i

in (9.1) for the tomographic reconstruction. This choice of shrinkage parameter

is motivated by the VisuShrink method of Donoho and Johnstone [23]. For the

comparison purpose, we define

fV =
7∑
k=6

∑
j,i

Sak,j,i(2
k/2[Y, U

(i)
k,j])ψ

(i)
k,j +

∑
l

23[Y, V6,l]Φ6,l,
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Fig. 3. Hamming weight filter.

Notice that fV only shrinks the first two highest level wavelet coefficients. This

is what Kolaczyk [31] suggested for tomographic reconstruction. (In [31] Meyer’s

wavelets are used for experiments.) The mean square error ‖f8 − fV ‖2L2 is denoted

by EV .

We also consider the filtered backprojection method using the Hamming weight

filter wH (see, e.g., [40]) with cutoff 0.5. We plotted wH for 512 points in Figure 3.

We define fF by

fF =

∫
R2

e2πiξ·xwH(ξ)|ξ|R̂∗Y (ξ)dξ.

We denote E‖f8 − fF ‖2L2 by EF .

In fC and fV , we first compute

24[Y, V8,l] = 24[Y, 24Rρ8,l]

= 28〈R∗Y, ρ8,l〉

=

∫
R2

R̂∗Y (ξ)e2πiξ·j2−8

ρ̂(2−8ξ) dξ,

= 2−8

∫
R2

|ξ|R̂∗Y (ξ)e2πiξ·j2−8 ̂̃
Φ(2−8ξ) dξ (see (7.2))

and use the recursive algorithm described in Section 7.1 to get {2k/2[Y, U
(i)
k,j]}{4≤k<7,j}

and {22[Y, V4,l]}l.
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For R∗Y , we note that

R̂∗Rf(w cos θ, w sin θ) = |w|−1
f̂(w cos θ, w sin θ)

= |w|−1Rf(θ, ·)∧(w). (by Theorem 5.1.1)

Thus we can compute R∗Y by

R̂∗Y (w cos θ, w sin θ) = |w|−1
Y (θ, ·)∧(w).

In numerical computations involving the Fourier transform, we used the fast

Fourier transform (see, e.g., [29]). To reduce the artifacts from the fast Fourier

transform, we zero-padded the projection data of 256 × 256 to 256 × 512 (see, e.g.,

[40]).

Table 1

SNR E EC E
(2)
C EV EF

25 2205.8 690.3 652.2 699.2 658.8

20 3731.5 753.4 680.1 845.8 1195.2

15 5584.0 932.6 791.1 1214.2 2413.6

Table 1 contains the results of our tests. We calculated mean square errors

EC , E
(2)
C , EV , and EF with three different SNR 25, 20, and 15. The second column

in Table 1 show mean square errors of the direct backprojection method (without

filtering or wavelet shrinkage) for each noise level. We also report that ‖f8‖2L2 =

10100.

Figures 4-(a), 4-(b), and 4-(c) show 256 × 256 reconstructions based on fC

for data with SNR 25, 20, and 15, respectively. The algorithm fC has a certain

drawback in reconstruction. We can see “ square blocks ”’near edges in Figure 4.

This is largely due to the fact that wavelet bases are not rotationally invariant.

The algorithm f
(2)
C is designed to reduce this phenomenon. Figure 5-(a), 5-(b),

and 5-(c) show 256 × 256 reconstruction based on f
(2)
C for data with SNR 25, 20,



83

and 15, respectively. Most of the artifacts in the reconstructed images of Figure 4

are disappeared in those of Figure 5. Moreover, f
(2)
C overally outperforms fC , fV ,

and fF .

The algorithm fV has less artifacts, but it is outperformed by fC and f
(2)
C .

Since fV employs the wavelet shrinkage method for the first two highest wavelet

coefficients, it can be viewed a combined method of the filtered backprojection

described in Section 5.2 and wavelet shrinkage. Figures 6-(a), 6-(b), and 6-(c) show

256×256 reconstructions based on fV for data with SNR 25, 20, and 15, respectively.

Figures 7-(a), 7-(b), and 7-(c) show 256× 256 reconstructions based on fF for

data with SNR 25, 20, and 15, respectively. For high noise levels, fF is outperformed

by the other three methods with significant differences in the mean square error

measurement.

We applied f
(2)
C to real positron emission tomography (PET) data set. Four

images in Figure 8 show reconstruction using f
(2)
C with four different shrinkage pa-

rameters. We also present images reconstructed from the same PET data in Figure

9. The images in Figure 9 are reconstructed by using the filtered backprojection

method, but we do not know exactly what weight filter is employed. We leave it to

the reader to compare the overall visual quality of reconstructions in Figure 8 and

Figure 9.

We believe that minimizing our bound on the error (9.27) leads to near-optimal

shrinkage parameters for tomographic reconstruction with wavelet shrinkage. More-

over, our technique for estimating the smoothness of images leads to accurate es-

timates of the true smoothness of images. We also can predict accurately the

performance of the wavelet tomographic reconstruction algorithm using only two

smoothness parameters β and |f |
Bβp,p

. We also believe that rotational averaging

techniques in f
(2)
C remove most of the artifacts of wavelet shrinkage methods such

as in fC and fV , while preserving a great amount of noise removal.
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Fig. 4-(a). fC with SNR = 25.

Fig. 4-(b). fC with SNR = 20.

Fig. 4-(c). fC with SNR = 15.
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Fig. 5-(a). f
(2)
C with SNR = 25.

Fig. 5-(b). f
(2)
C with SNR = 20.

Fig. 5-(c). f
(2)
C with SNR = 15.
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Fig. 6-(a). fV with SNR = 25.

Fig. 6-(b). fV with SNR = 20.

Fig. 6-(c). fV with SNR = 15.
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Fig. 7-(a). fF with SNR = 25.

Fig. 7-(b). fF with SNR = 20.

Fig. 7-(c). fF with SNR = 15.
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Fig. 8. reconstructed images with f
(2)
C .

Fig. 9. reconstructed images with FBP.
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