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Abstract. The expected error in L1(R) at time T for Glimm’s scheme when applied to a scalar conservation law is bounded
by (

h+
2√
3

(
h

∆t

)1/2

(hT )1/2

)
‖u0‖BV (R),

where h is the mesh size and ∆t is the time step. We show that the error in Godunov’s scheme is bounded by the same
expression and use this result to analyze a variant of a large time step numerical method of LeVeque that may be viewed as a
combination of Godunov’s scheme and a method of Dafermos.

Glimm’s Scheme. Glimm’s scheme [3] is a probabilistic method for proving existence of solutions for

the hyperbolic system of conservation laws,

(C)
ut + f(u)x = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.

Glimm showed that if the total variation of u0 is sufficiently small, the equation is hyperbolic and genuinely

nonlinear in the sense of Lax, then the approximate solution generated by his scheme converges almost

surely to a weak solution of (C); later Harten and Lax [5] showed that any Glimm weak solution satisfies

the entropy condition. Glimm’s scheme has also been applied with some success as a numerical method; see,

for example, [1]. In this note we bound the expectation of the L1 error of the approximate solution in the

special case where (C) is a scalar equation. In particular, we prove the following theorem.

Theorem 1. If un(x, t) is the solution of Glimm’s method for tn ≤ t < tn+1, u(x, t) is the entropy

solution of (C), and T = N∆t, then

E(‖u( · , T )− uN( · , T )‖L1(R)) ≤
(
h+

2√
3

(
h

∆t

)1/2

(hT )1/2

)
‖u0‖BV (R),

where h is the mesh spacing and ∆t is the time step.

A function is in BV (R) if its derivative is a bounded measure. We remark that Hoff and Smoller [7]

have derived certain error bounds for Glimm’s method using equidistributed rather than random sequences

of numbers.

We note first that although Glimm’s scheme is usually defined on alternating meshes (the approximate

solution is piecewise constant on the intervals [ih, (i+ 1)h) at time tn if n is even, and piecewise constant on

[(i− 1/2)h, (i+ 1/2)h) when n is odd) this in no way affects the error estimates given below. Consequently,

a fixed mesh is used for all time as a notational convenience.

We prove our result for the following formulation of Glimm’s scheme. We assume that u0 has bounded

variation, and that ‖f ′‖L∞(R) is finite. Choose a positive mesh size h. For each integer i, let Ii be [ih, (i+1)h),

and let χIi be the characteristic function of Ii. We assume that the time step, ∆t, satisfies 0 < ∆t ≤
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h/(2‖f ′‖L∞(R)), and we define tn = n∆t. For each nonnegative integer n, we define a function Un : Z→ R
of bounded variation in the following way. Let

(1) U0
i =

1

h

∫
Ii

u0(x) dx

for each integer i. If Uni has been defined for all i, solve the initial value problem

(2)

unt + f(un)x = 0, x ∈ R, tn < t < tn+1,

un(x, tn) =
∑
i∈Z

Uni χIi(x), x ∈ R.

Choose a random variable Xn+1, uniformly distributed on [0, h), so that the set of random variables

{X1, . . . , Xn+1} are independent; the values of Un+1
i are then given by

(3) Un+1
i = un(ih+Xn+1, tn+1)

for every i. Chorin [1] seems to have been the first to use exactly one random choice for all intervals Ii.

As can be seen from the definition, Un is itself a random variable that depends on the sequence of

random variables X1, . . . , Xn; we propose to bound the expected value of the error at time tN , E(‖u( · , tN)−
uN( · , tN )‖L1(R)).

Because, for any values of X1 through XN , the approximate solution satisfies the differential equation

exactly for (x, t) ∈ R× (tn, tn+1), the following theorem of Kuznetsov applies (see [8]).

Lemma 2 [Kuznetsov]. If v(x, t) is an exact solution of (C) in every strip tn < t < tn+1 that is right

continuous in t, and supt∈[0,tN ] ‖v(t)‖BV (R) is finite, then

(4) ‖v( · , tN )− u( · , tN )‖L1(R) ≤ ‖u0 − v0‖L1(R) + 2ε‖u0‖BV (R)

+
N∑
n=1

ρε(v(tn), u(tn)) − ρε(v(tn − 0), u(tn))

where ρε(w, z) =
∫
R
∫
R

1
ε
η(x−y

ε
)|w(x) − z(y)| dx dy, and η is any nonnegative smooth function with support

in [−1, 1] and integral one.

From this lemma it follows that

E(‖u( · , tN)− uN ( · , tN)‖L1(R)) ≤ ‖u0( · )− u0( · , 0)‖L1(R) + 2ε‖u0‖BV (R)

+

N∑
n=1

E(ρε(u
n(tn), u(tn))− ρε(un−1(tn), u(tn))).

If we let En(f) denote the conditional expectation of f given X1, . . . , Xn−1, Xn+1, . . . , XN , then (writing t

for tn, X for Xn, and ηε(x) for 1
ε
η(x

ε
)),

En(ρε(u
n(t), u(t))− ρε(un−1(t), u(t)))

≤
∫

[0,h)

∫
R

∑
i∈Z

∫
Ii

ηε(x− y)
1

h

{
|un−1(ih+X, t)− u(y, t)| − |un−1(x, t) − u(y, t)|

}
dx dy dX

≤
∫
R

∑
i∈Z

∫
Ii

∫
Ii

ηε(x− y)
1

h

{
|un−1(z, t)− u(y, t)| − |un−1(x, t) − u(y, t)|

}
dz dx dy

≤ 1

2

∫
R

∑
i∈Z

∫
Ii

∫
Ii

(ηε(x− y)− ηε(z − y))

× 1

h

{
|un−1(z, t)− u(y, t)| − |un−1(x, t) − u(y, t)|

}
dz dx dy

≤ 1

2

∫
R

∑
i∈Z

∫
Ii

∫
Ii

|ηε(x − y)− ηε(z − y)| 1
h
|un−1(z, t)− un−1(x, t)| dz dx dy.
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If we now integrate over y, we find that∫
R
|ηε(x− y)− ηε(z − y)|dy ≤ |z − x|

‖η′‖L1(R)

ε
.

Trivially, |un−1(z, t)− un−1(x, t)| ≤ ‖un−1(t)‖BV (Ii). So it follows that (5) is bounded by

1

2

∑
i∈Z

∫
Ii

∫
Ii

|z − x|
h

dz dx
‖η′‖L1(R)

ε
‖un−1(t)‖BV (Ii)

≤
∑
i∈Z

h2

6

‖η′‖L1(R)

ε
‖un−1(t)‖BV (Ii)

=
h2

6

‖η′‖L1(R)

ε
‖un−1(t)‖BV (R)

The inequality ‖un−1(t)‖BV (R) ≤ ‖u0‖BV (R) is clear, because the choice of the initial data (1), the evolution

of un−1 through (C) (2), and the random choice process (3) are all variation diminishing. Thus,

En(ρε(u
n(t), u(t)) − ρε(un−1(t), u(t))) ≤ h2

6

‖η′‖L1(R)

ε
‖u0‖BV (R)

uniformly with respect to the other random variables X i, implying that E(ρε(u
n(t), u(t))−ρε(un−1(t), u(t)))

is bounded by the same quantity. Therefore, if T = N∆t, by using an obvious bound for the initial error,

we have

(6) E(‖u( · , T )− uN ( · , T )‖L1(R)) ≤ h‖u0‖BV (R) + 2ε‖u0‖BV (R) +
T

∆t

h2

6

‖η′‖L1(R)

ε
‖u0‖BV (R)

By letting η → 1
2χ[−1,1], ‖η′‖L1(R) may be chosen arbitrarily close to 1. Minimizing (6) with respect to ε

gives

(7) E(‖u( · , T )− uN( · , T )‖L1(R)) ≤
(
h+

2√
3

(
h

∆t

)1/2

(hT )1/2

)
‖u0‖BV (R).

The theorem is proved. We remark that if one chooses to interpret Glimm’s method as providing that the

approximate solution is equal to Uni on [ih, (i + 1)h)× [tn, tn+1], then the above inequality still holds with

a small change for the error incurred in at most one time step.

It is well known that monotone finite difference schemes, such as Godunov’s, perform better for problems

with uniformly convex fluxes than for problems with linear fluxes; in fact, Godunov’s method is O(h) accurate

for the problem

(8)
ut + (

u2

2
)x = 0, x ∈ R, t > 0,

u(x, 0) = χ(−∞,0](x).

For problems, such as this one, whose solution consists of a single shock of height one, the expected error in

Glimm’s scheme may be estimated directly by applying the central limit theorem. If the shock speed is s, and

p = s∆t/h, then after N time steps, the probability distribution of the shock location error is approximately

normal with mean 0 and variance σ2 = Np(1− p)h2. Asymptotically, the expected value of the L1(R) error,

which is the absolute value of the shock location error, is
√

8
π
σ, or ( 8

π
p(1−p) h

∆t )
1/2(Th)1/2, where T = N∆t.

Our bound on the ratio ∆t/h implies that 0 ≤ p ≤ 1/2. For example, when Glimm’s scheme is applied to

(8) with ∆t = h/2, p = 1/4, the expected value of the error is about 0.6910( h∆t)
1/2(hT )1/2. Theorem 1 gives

a bound of 1.1547( h∆t)
1/2(hT )1/2 independently of the value of p, a fairly close result.
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Godunov’s Method. Godunov’s finite difference scheme [4] falls into the class of monotone, conserva-

tive, finite difference schemes for (C), a class that has been analyzed previously; see, for example, Kuznetsov’s

paper or Sanders [13]. These papers show that the error at time T is bounded by C(h+ (hT )1/2)‖u0‖BV (R)

when the time step ∆t is proportional to h, but a good estimate of the constant is not available. In the

next theorem we derive a different bound in which the independent effects of ∆t and h appear along with

an explicit determination of a constant C, a result that will prove useful in the next section.

Godunov’s scheme differs from Glimm’s scheme only in that Godunov determines Un+1
i by averaging

un( · , tn+1) over Ii:

(3′) Un+1
i =

1

h

∫ h

0

un(ih+X, tn+1)dX.

The following theorem shows that the error in Godunov’s method is bounded by the same expression that

bounds the expected error in Glimm’s scheme.

Theorem 3. If un(x, t) is the solution of Godunov’s method for tn ≤ t ≤ tn+1, u(x, t) is the entropy

solution of (C), and T = N∆t, then

(9) ‖u( · , T )− uN( · , T )‖L1(R) ≤
(
h+

2√
3

(
h

∆t

)1/2

(hT )1/2

)
‖u0‖BV (R).

Proof. We proceed as in Theorem 1. Again, with t = tn,

ρε(u
n(t), u(t))− ρε(un−1(t), u(t))

≤
∫
R

∑
i∈Z

∫
Ii

ηε(x− y)
{
|Uni − u(y, t)| − |un−1(x, t)− u(y, t)|

}
dx dy

≤
∫
R

∑
i∈Z

∫
Ii

ηε(x− y)

{∣∣∣∣∣ 1h
∫

[0,h)

un−1(ih+X, t) dX − u(y, t)

∣∣∣∣∣− |un−1(x, t)− u(y, t)|
}
dx dy

≤
∫

[0,h)

∫
R

∑
i∈Z

∫
Ii

ηε(x− y)
1

h

{
|un−1(ih+X, t)− u(y, t)| − |un−1(x, t)− u(y, t)|

}
dx dy dX.

One may now follow the series of inequalities in (5) and the subsequent arguments to obtain the estimate in

the statement of the theorem.

The estimate is rather sharp: by exploiting the relationship of the solution of Godunov’s method and

the cumulative probability distribution of a binomial random variable, one can show that Godunov’s scheme

applied to the problem with f(u) = u, u0(x) = χ(−∞,0](x), and ∆t/h = 1/2 has an asymptotic error rate of

( 4
π

)1/2(Th)1/2 = 1.1283(Th)1/2, compared to our estimate of 2
√

2
3 (Th)1/2 = 1.6330(Th)1/2. (That the error

in this example is O(h1/2) may be inferred from results in [6].) Note that our analysis applies even if the

CFL condition ∆t < h/(2‖f ′‖L∞(R)) is violated, as long as the wave interactions in the solution of (2) are

calculated exactly; this will prove important in the next section.

LeVeque’s Method. LeVeque [11] proposed a numerical scheme for scalar conservation laws in one

space dimension whose main idea is to approximate the solution of (C) using piecewise constant states, and

to calculate the trajectories of shocks (straight lines) and their interactions exactly. Expansion waves are

approximated by a series of constant states separated by entropy violating shocks. At the end of each time

step the approximate solution is projected back onto the grid by averaging, as in Godunov’s method. LeVeque
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has shown that a variation of his method is total variation diminishing and that a subsequence of numerical

approximations converges to a weak solution of the conservation law [9]. He has also conjectured that if

entropy satisfying solutions of (C) advance the approximate solution from one time step to the next, then

the weak solution to which the approximations converge would indeed be the entropy weak solution. Among

other things, we show below that even if certain entropy violating weak solutions are used to propagate the

solution between time steps, the numerical approximations still converge to the entropy solution of (C), and

we obtain realistic estimates for the error. LeVeque’s later extensions of his method to systems of equations

chose to ignore the wave interactions rather than to calculate them exactly [10].

Entropy violating shocks used to model expansion waves may be chosen in such a way that LeVeque’s

formulation is equivalent to a method of Dafermos [2], which uses a piecewise linear approximation fh to

the flux f to advance the approximate solution between time steps. Although true shock speeds in the two

methods differ (speeds differ by less than O(h) for weak shocks and O(h2) for strong shocks), the numerical

results of the two methods are qualitatively indistinguishable.

The scheme that we analyze is as follows. Assume that the flux f is C2 and that the initial data u0 is

in BV (R) and is constant outside some finite interval. Let h > 0 be the mesh size and ∆t > 0 be the time

step; define tn = n∆t. Let fh be the continuous, piecewise linear interpolant of f with breakpoints at ih,

for i ∈ Z. It is easily seen that

‖f − fh‖Lip ≤
h

2
‖f ′′‖L∞(R),

where

‖g‖Lip = sup
x 6=y

∣∣∣∣g(x)− g(y)

x− y

∣∣∣∣ .
Define uh0 by

(10) uh(x, 0) = uh0(x) =
∑
i∈Z

∫
Ii

u0(σ) dσ χIi(x).

The complete approximation uh(x, t) is as follows. For every n solve

(11) uht + fh(uh)x = 0, x ∈ R, t ∈ [tn, tn+1),

with

(12) uh(x, tn+1) =
∑
i∈Z

1

h

∫
Ii

uh(σ, tn+1 − 0) dσ χIi(x).

The analysis of the scheme is in two parts, corresponding to the two equations (11) and (12).

First we describe more carefully how to solve (11). In [2] Dafermos gives the entropy solution of (11) as

follows. He first reduces the problem to a Riemann problem because the initial datum is piecewise constant.

If uh0 is specified as

uh0 (x) =

{
ul, if x ≤ 0 ,

ur, if x > 0 .

with ul < ur, then the vertices of the boundary of the convex hull of {(u, v)|ul ≤ u ≤ ur, v ≥ fh(u)} will

consist of a set of points (ul, f
h(ul)), (u1, fh(u1)), . . . , (uk, fh(uk)), (ur, f

h(ur)), where {ui} is a linearly
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ordered subset of {jh}. The solution will then be given by the following set of constant states:

uh(x, t) =



ul, for −∞ <
x

t
≤ fh(u1)− fh(ul)

u1 − ul
,

u1, for
fh(u1)− fh(ul)

u1 − ul
<
x

t
≤ fh(u2)− fh(u1)

u2 − u1
,

...

uk, for
fh(uk)− fh(uk−1)

uk − uk−1
<
x

t
≤ fh(ur)− fh(uk)

ur − uk
,

ur, for
fh(ur)− fh(uk)

ur − uk
<
x

t
<∞.

A similar result may be inferred if ul > ur by considering the convex hull of the set {(u, v)|ur ≤ u ≤ ul, v ≤
fh(u)}. Thus, the general solution of (11) is found as a composition of Riemann problems, all of whose

solutions are shocks. The calculation is started anew whenever two shocks coalesce into one.

We now use the following theorem.

Theorem 4 ([12]). If f and g are Lipschitz continuous, u0 and v0 are in BV (R), and u and v are the

entropy solutions of the equations

ut + f(u)x = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

and
vt + g(v)x = 0, x ∈ R, t > 0,

v(x, 0) = v0(x), x ∈ R,

respectively, then

‖u(t)− v(t)‖L1(R) ≤ ‖u0 − v0‖L1(R) + t‖f − g‖Lipmin(‖u0‖BV (R), ‖v0‖BV (R)).

Thus, if ū is the solution of
ūt + fh(ū)x = 0, x ∈ R, t > 0,

ū(x, 0) = uh0(x), x ∈ R,

then

‖ū(t)− u(t)‖L1(R) ≤
(
t

2
‖f ′′‖L∞(R) + 1

)
h‖u0‖BV (R).

Because uh is the Godunov approximation to ū and ‖uh0‖BV (R) ≤ ‖u0‖BV (R), it follows from the triangle

inequality and (9) that

‖u(T )− uh(T )‖L1(R) ≤
(
h+

Th

2
‖f ′′‖L∞(R) +

2√
3

(
h

∆t

)1/2

(hT )1/2

)
‖u0‖BV (R).

This result implies that if ∆t is about the same size as h, then the error at time T is O(h+hT +(hT )1/2);

for ∆t in this regime, the averaging error of Godunov’s method dominates the error bound, causing the scheme

to be O(h1/2) accurate. However, if only one time step is taken, and ∆t = T , then the error at time T is

O(h+Th), i.e., the method is first order accurate. This explains why LeVeque achieved such good numerical

results when he reduced the number of time steps in his experiments [11].
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