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1. INTRODUCI7ON 
We study certain Sobolev-type regularizations of the hyperbolic conserva- 

tion laws 

that add terms simulating both dissipative and dispersive processes. These evo- 

lution equations have the form 

with the auxiliary specification 

The behaviour in L'(R) of the solutions of problem (S), as well as the value of (S) 

as an approximation to problem (C), is studied. Convergence results, with error  

estimates, are  given as v and tend to zero. In a companion paper [19], finite- 

difference discretizations of (S) are  studied as  an approximation for (C).  

As a tool to  study nonlinear evolution equations posed in L1(R), it  is shown 

that any nonlinear mapping from L1(R) to  itself tha t  preserves the integral, is a 

contraction, and commutes with translations satisfies a maximum principle. 

This lemma gives necessary and sufficient conditions that  solutions of (S) satisfy 

a maximum principle, despite the dispersive nature of (S). 

Copyright O 1985 by Marcel Dekker, lnc. 
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LUCIER 

We apply our Sobolev equation theory to  the study of the singular perturba- 

tion problem, 

and show that solutions of the singularly perturbed problems converge to  the 

solution of the conservation law if the flux f satisfies a certain "compatibility 

condition" discussed by Whitham in [25] for linear problems. 

The plan of this paper is as follows. The remainder of this section intro- 

duces notation and discusses preliminary results. In Section 2, a theorem about 

maximum principles is proved. Other properties of solutions of evolution equa- 

tions are reviewed. In Section 3 we give necessary and sufficient conditions lor 

(S) to generate a contraction semigroup in L 1 ( R ) .  It is then shown that  if these 

conditions are  satisfied, the solution of (C) is recovered in the limit as v and @ 

tend to zero with v 2 / @  held Axed. Error estimates are  provided. In Section 4, 

the results of Section 3 are used to analyze second-order hyperbolic singular 

perturbations of (C).  

Notation and F'reliminary Results 

Translations on Rn will be denoted by 0 :  z +z +y . (Sometimes the notation 

o, will be used.) If u is a function whose domain is R, then ou is defined by 

ou(x)  = u(o(x)) .  An operator A that  maps elements of some function class 

defined on R to  elements of some other function class is said to  commute with 

translations if A(ou) = oA(u). For any set 6, XE is the characteristic function 

for that  set. The symbol C denotes various constants whose values need not be 

the same for each instance of its use. The Frkchet space L I A , ( ~ )  is the space of 

all locally integrable functions on R. 

There is a natural partial ordering on the spaces L1(R) and L&(R)., with 
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CONSERVATION LAWS 3 

u a v  if and only if u ( x )  % v ( x )  a . e .  ( d p ) .  Endowed with the operations 

( U V V ) ( X )  = m a x ( u ( z ) , v ( x ) )  and ( u / \ v ) ( x )  = r n i n ( u ( x ) , u ( x ) ) ,  L 1 ( R )  is a Banach 

lattice, and L&(R) is  a complete vector lattice. Possibly nonlinear operators T 

of a vector lattice to  itself that  preserve the ordering, so that u 2 v implies that  

Tu 2 l'v, are o r d e r  p r e s e r v i n g ,  or m o n o t o n e .  (If T is linear, it is called p o s i t i v e . )  

The space B V ( R n )  of functions of bounded variation is the set  of all measur- 

able functions u whose first distributional derivatives are  finite measures. Two 

equivalent B V ( R )  seminorms are  given by 

and 

1 
s u ~ - l a & d u  -U  / I L ~ ( R )  

v Y ( 1 . 1 )  

(See Volpert [ 2 4 ] . )  The definition of B V ( I ) ,  where I is a bounded interval, and 

B V ( R x 1 )  is directly analogous to ( 1 . 1 ) .  

A mapping A :X+ Y, where X and Y are  Banach spaces, is said to  be 

Lipsch i t z  c o n t i n u o u s  if there is a number C such that  for all u . v in X ,  

IIA(u) - A ( v ) l I y  C u  - v / l x ;  ( 1 . 2 )  

~ / A I I ~ ~ ~  is the least such C. If, instead, for every bounded subset E of X there is a 

number C such that ( 1 . 2 )  holds for u , v  in E, then A is loca l l y  L ipsch i t z  c o n t i n u -  

o w .  

We formulate our differential equations in t e rms  of m-accretive operators 

and contraction semigroups. A good survey of the application of these topics to  

partial differential equations may be found in Evans [ 1 2 ] .  If  X is a Banach space, 

a d u a l i t y  m a p p i n g  J : X + X* has the properties that  for all 2 EX, / l J ( x ) l l x .  = 1 1 ~  i x t  

and J ( x ) ( x )  = 11x1:. A possibly multi-valued operator A ,  defined on some subset 

D ( A )  of X is said to  be a c c r e t i v e  (or, equivalently, -A is d i s s i p a t i v e )  if for every 
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4 LUCIER 

pair o f  e l emen t s  ( x , A ( x ) ) ,  ( y , A ( y ) )  i n  t h e  graph o f  A ,  and for  every  duali ty map-  

ping J on  X ,  

J ( x  - y ) ( A ( z )  - A ( Y ) )  = 0 .  

I f ,  i n  addition, for all positive A, I + AA is a surjection,  t h e n  A i s  m-accre t ive .  

2. A MAXIMUM PRINCIPLE. 

A n u m b e r  o f  t i m e  dependen t  partial d i f ferent ia l  equations,  such  as t h e  heat  

equation,  scalar hyperbolic conservation laws ( s ee  Crandall [5]), and t h e  porous 

m e d i u m  equation ( s e e  Evans [ 1 2 ] ) ,  m a y  b e  formulated  as  

where A is a (possibly mult i-valued) m-accre t ive  operator o n  L1(R) .  The  

Crandall-Liggett t h e o r e m  [ 6 ]  s ta tes  t h a t ,  for  any  fixed t=O, t h e  mapping St t h a t  

assigns t o  uo t h e  value u ( t )  is a nonexpansive mapping on  L1 (R) .  Crandall and 

Tartar [ 8 ]  proved t h e  following use fu l  l e m m a  about  nonexpansive mappings  

T :  L1 (R)  + L 1 ( R ) .  

LEMMA 2.1 (Crandall-Tartar). Let T :  L ' (R )  + L'(R)  be s u c h  t ha t ,  for all u in 

L1(R) ,  

JW d p  = I u  d p .  
n n 

Then T is nonexpansive  o n  L1 (R)  i f  and only  i f  T is order p re seming  o n  L1(I l ) .  

/ / /  

The  n e x t  l e m m a  ex t ends  L e m m a  2.1. 

LEMMA 2.2. (Max imum Principle).  Any contract ion  T f r o m  L' (R)  or ~ ' ( 2 )  ( 2  

denoting the  i n t eger s )  to i t se l f  t ha t  preserves the in tegral  and c o m m u t e s  w i t h  

t rans la t ions  sa t i s f ies  a maximum ( a n d  m i n i m u m )  principle.  That is, 

ess  sup T u  5 ess  sup u 
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CONSERVATION LAWS 

( ess inf Tu 2 ess inf u ) . 

Proof.  Aproof will be given for L'(R), the case of L1(Z) being slightly easier. 

From the previous lemma we know that T is order preserving, so our atten- 

tion may be restricted to  nonnegative functions u by considering uVO. The 

lemma is obviously t rue if ess sup u = m. 

If u,,(z) = ~ [ ~ , , , ~ ( z )  u(z) ,  then 4 u in L1(R) as n + -, and, since T is a 

contraction in L1(R). 'Fun -+ 'Fu in L1(R) as n -, m. Thus, some subsequence of 7!u,, 

converges a.e,  on R, and it suffices to  show that 

ess sup Tu, g ess sup u , 

to prove the lemma. 

Since T commutes with translations, 

IluTu - 'WILqR) = IIT(uu) - %IILi(R) I. IIm -uIILqB) . 

Thus, 1 1  % l l sv(~)  s I I u  I lsv(~). 

If u is any function in L1(R), then 

2ess sup u l l ~  IIBv(R) . (2.2) 

This inequality is clear if ess sup u = 0 or IIuIIBym) = - .  It is also easily seen for 

smooth functions, since if u is smooth, 

1 
ens s u p u  a ? - J I u ' ( ~ ) /  & = ~ I C l l ~ v ( n ~  

2 ,  
(2.3) 

If u is not smooth. let uc = qc * u. where $.(z) = 5(:) and q is a nonnegative. 

smooth, integrable function whose integral is 1. Then u, is smooth, and (2.2) 

holds. Young's inequality implies that  

IImc - u ~ I I ~ I ~ Q ~  IIuu -UIILI[R), 

Therefore, i/u,i/Bv(w 5 Also, uc -, u a . e .  as & tends to  zero, and, for any 

E ,  sup u b  s ess sup u.  Thus esssup u = lim ess sup u , ,  and 
c+o 
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LUCIER 

It is clear from ( 2 . 3 )  that equality in ( 2 . 2 )  is satisfled for smooth functions 

p € L 1 ( R )  if there is an zo  with p 1 ( z ) > O  for z g x o ,  and p 1 ( z ) 4 0  for z z z , ~ .  For any 

n,  pick such a rp with rpru,, a.e, and ess sup rp = ess sup u .  Then T p 2  rflL, a,@., 

and 

ess sup 7&, s ess sup T p  
1 ' ~ I I T ~ I I B V ( B )  

1 
~IIPIIBV(B) 

= ess sup rp 

= ess sup u . 

/ / /  

The simple, but somewhat artificial, example i"u = X L O , ~ ]  J U ( Z ) &  shows 
B 

that the conclusion of the lemma does not hold if we do not assume that T  cum- 

mutes with translations. 

In the preceding lemma, no smoothness properties are assumed of the 

mapping T ,  and T may map smooth functions to discontinuous ones. This 

occurs, for example, when the lemma is applied to the solution operator of a 

scalar conservation law (although the result is well known for these problems), 

or to solutions of (S) with nonsmooth initial data. 

This pair of lemmas says a great deal about the solutions of evolution equa- 

tions in L 1 ( R ) .  If T represents either St for some fixed t ,  or the solution of the 

backward difference equation 

T u  + A t A ( % )  = u , A t > O .  

then the implications indicated in Figure 1 hold. 

It is sometimes simple to establish for an operator A  that ~ A ( u )  = 0 or 
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CONSERVATION LAWS 

for all u , 

B 

for all u , 
fm=J-u 
B Q 
u 2 v a . e .  => 
Tu > Tv a e .  

A is m-accretive in L 1 ( R )  A commutes 
, with translations 

for a l l u ,  V ,  T commutes 
1 1 %  - llL1(R) s 1b "V /ILl(g) with translations 

for a l i u ,  
l I ~ I l ~ v ( g )  ll~llsvm 

u 
for all u ,  

ess sup Fu 5 ess SUP u 

Figure 1. Properties of evolution equations in L1(R) .  

that  A commutes with translations. If one can show that  A is m-accretive on 

L 1 ( R )  in conjunction with these two properties, the  other properties illustrated 

in Figure 1 then follow. These ideas will be exploited in the  following section. 

3. SOBOW EQUATIONS. 

I t  is well known that  solutions of (C) are  not, in general, continuous; see 

Whitham 1251 for a discussion of shocks. Weak solutions of ( C ) ,  defmed by the 

relation. 

are in general not unique. The reader  may refer to  Le Roux [le] for a good 

description of this phenomenon. 

Oleinik [20], Hopf [15], Volpert [24], and Kruzkov [16] provided existence 

and uniqueness results for certain classes of weak solutions of ( C )  through the 

prescription of an extra condition, known as an entropy condition. The theory 

for solutions of (C) used in this paper is expressed in the following theorem. 

D
ow

nl
oa

de
d 

by
 [

Pu
rd

ue
 U

ni
ve

rs
ity

] 
at

 1
8:

57
 2

8 
O

ct
ob

er
 2

01
3 



LUCIER 

'THEOREM 3.1. If f  is locally Lipschitz cont inuous,  t h e n  for a n y  u,,EBV(R) 

and for a n y  T>O there is a un ique  u € B V ( R x [ O , T ] )  such  that  u satisfies (3.1)  

and ,  in addition, satisfies the en t ropy  condition: for all p € C d ( R x [ O , T ] ) ,  w i t h  

pro ,  and for all c ER,  

For a proof, see Volpert [24] ,  Kruzkov [18] ,  Crandall and Majda [ 7 ] .  

Kuznetsov [ 1 7 ]  proposed a general theory of approximation for solutions of 

(3.2)  in an arbitrary number of spatial dimensions. We formulate the one- 

dimensional version as follows. 

THEOREM 3.2. Let u be the entropy solut ion of (C)  w i t h  u 0 € L 1 ( R ) n B V ( R ) ,  

and let  v:Rt-rL1(R) have l e f t  and right l i m i t s  for e v e r y  t and be r ight  cont inu-  

o w .  Pick a positive, s y m m e t r i c  func t ion  q(C) w i t h  support in [-1,1] and 

1 t 1 z  integral  1, positive n u m b e r s  E and to ,  and let  w ( z , t ) =  --(-)--r)(-) &fine 
E,, E,, E E 

the  " K m z k o v  form"  

where S = Rx[O, t ] .  Then 

We next investigate properties of the initial-value problem 

A particular instance of this equation has been used to model the propagation of 

small amplitude, shallow-water waves (see Benjamin e t  al. [I], and Bona e t  al. 

[2]). In this context, t is proportional t o  elapsed time and x is proportional t o  
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CONSERVATION LAWS 9 

distance in the direction of propagation. The t e r m  - vg (u),, models dissipative 

processes, and the te rm -PuZZt models the action of dispersion. (An equation is 

dispersive if waves of differing wavelengths move with different speeds.) The 

equation (3.3) may also be viewed as  a regularization of the hyperbolic conserva- 

tion law (C). It has been used in this way by Douglas e t  al. [ lo ]  to  simulate a 

linear waterflood problem. 

Existence, uniqueness and regularity of solutions of (3.3) have been studied 

by Showalter [23]. Ewing [13] has studied the numerical approximation of solu- 

tions of (3.3) and examined the behaviour of solutions of (3.3) as  one of v o r  @ 

tends to zero. The present theory focuses on the behaviour of solutions of (3.3) 

in L'(R), and on the consequences of allowing v and p to  tend to zero simultane- 

ously. 

Using a different approach (compensated compactness), Schonbek [21] has 

investigated the behaviour of regularizations, like (3.3), that  arise from the addi- 

tion of small dissipative and dispersive terms. Her techniques apply, with some 

degree of success, to  special cases of (3.3). Unlike the methods presented here, 

her methods also have application to the study of (3.3) with the dispersive t e r m  

-flutz; replaced by the Korteweg-de Vries dispersive t e r m  +j3%,. 

Previously, Conley and Smoller [4] had proved the existence of travelling 

wave solutions of regularizations of hyperbolic systems incorporating both dissi- 

pation and a KdV type dispersive term. They also showed that  these travelling 

wave solutions converged t o  weak shock solutions of the Riemann problem for 

the hyperbolic systems. Smoller and Shapiro [22] have considered which viscos- 

ity and dispersion matrices a re  admissible for systems, in  that  the regularized 

equations admit traveling wave solutions that  converge to  shock solutions of (C) 

as the levels of dissipation and dispersion go to zero. 

We will assume throughout this section that  the  functions f and g are  glo- 
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10 LUCXER 

bally Lipschitz continuous and, without loss of generality, that  f ( 0 )  = g ( 0 )  -. 0 .  

The function space that  contains UI, will generally be taken a s  L1(R)  or  BV(R) so 

that solutions of (3 .3 )  are  considered in the following weak sense. Following Ben- 

jamin e t  al. [I], we formally rewrite (3 .3 )  as an integral equation. A scaling 

between the dissipative and dispersive terms is introduced that  redefines g so 

that  (3 .3 )  becomes 

If 0, denotes differentiation with respect to  x ,  (3 .4)  may be written as  

The elliptic operator (1 -a2a:) can be inverted on the real line, subject to  the 

condition that the solution be bounded a t  infinity, by convolution with the func- 

tion 

Thus, we may convert (3.5) to 

where 

The operator on the right-hand side of (3.6), which we will write as  A ( u ) ,  is a 

Lipschitz continuous map from L'(R) to  itself. For, by Young's inequality, 
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CONSERVATION LAWS 11 

Thus, from the  theory of ordinary differential equations in Banach spaces, Equa- 

tion ( 3 . 6 ) ,  posed as an initial-value problem in L1(R) ,  has a unique solution in 

C1( [O , - ) ,L1 (R) )  for any u0 in L'(R) (see Hille and Phillips [ 1 4 ] ) .  

We will consider solutions of the  integral equation ( 3 . 6 )  to  be weak solutions 

of ( 3 . 4 ) .  If u is a solution of the integral equation ( 3 . 6 ) .  then u is a solution of 

( 3 . 4 )  in the sense of distributions. Also, if u is a solution of ( 3 . 6 )  possessing con- 

tinuous, bounded derivatives of up to second order, and f and g have two con- 

tinuous bounded derivatives, one may differentiate ( 3 . 6 )  t o  see tha t  u is a classi- 

cal solution of ( 3 . 4 ) .  Thus, such a n  interpretation of solutions of ( 3 . 4 )  is reason- 

able. 

Qualitatively, the solutions of ( 3 . 3 )  behave differently for various ranges of 

the parameters v and 8. When v and @ are 0, the solutions of ( 3 . 3 )  are  the solu- 

tions of the conservation law ( C ) .  Here, shocks, or discontinuities, develop in the 

solution u (cf. Whitham [25]), and solutions of ( C )  must be considered in the 

weak sense of Theorem 3.1.  If g (u )  = u ,  v is positive, and 8 is still 0 ,  the  solution 

u of ( 3 . 3 )  is smooth for all positive time. When v is small, however, large gra- 

dients arise in the function u near the time when the first shock occurs in the 

solution of the conservation law ( C )  with the same initial data. For each prob- 

lem, the solution operator St is a nonexpansive mapping on L1(R) ,  it satisfy a 

maximum principle, and it  is order preserving on L1(R) .  

Solutions of ( 3 . 3 )  when v is 0 and f3 is positive behave quite differently. 

When 8 is small, near  the time when shocks occur in the  solution of the conser- 

vation law (C), oscillations occur in the solution of ( 3 . 3 )  in about the same posi- 

tion as those shocks. These solutions of ( 3 . 3 )  are  not contraction semigroups on 

L1(R),  they are  not order preserving, and they do not satisfy a maximum princi- 

ple. Thus, i t  is interesting t o  see how the  dissipative and dispersive te rms  

interact. 

D
ow

nl
oa

de
d 

by
 [

Pu
rd

ue
 U

ni
ve

rs
ity

] 
at

 1
8:

57
 2

8 
O

ct
ob

er
 2

01
3 



LUCIER 

The following theorem plays a central role in our analysis. 

THEOREM 3 .3 .  The m a p p i n g  A :  L 1 ( R )  -r L 1 ( R ) ,  de f ined  by  

is dis s ipa t i ve  o n  L 1 ( R )  i f  a n d  o n l y  i f  the  f u n c t i o n s  g (() ~t f ( 6 )  a r e  n o n d e c r e a s i n g  

o n  R. 

The proof of Theorem 4.2 contains the proof that  if A is dissipative on L 1 ( R )  

then the functions g * f are nondecreasing on R. 

F r o o j .  Since the dual of L 1 ( R )  is L"(R),  any duality mapping J for L' (R)  is of 

the form J ( u ) ( v )  = ~ ? ( u ) ( z ) v ( z ) d z  , where 
R 

where a ( z )  is any measurable function with ( a ( z )  ( 5 1 a , e . .  

Writing out the integrals in A ( u )  explicitly gives 

Note that  sgn(u - v ) ( g  (u )  - g ( v ) )  = I g (u)  - g ( v )  1 ,  since g is nondecreasing by 

hypothesis. 

Integrate ( 3 . 9 )  with respect to  z, replace the  quantities in braces with their 

absolute values, and change the order of integration to obtain 
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CONSERVATION LAWS 

If g * f are  nondecreasing on R then 

z l s ( O - g ( 1 ) ) 1  = I - ( f  (0-f (q ) )+g(#) -9 (77) l  + If ( 1 ) - f  (r l )+g(O-g(1))1  

for any 1, q in R, so that  

J (u  - v ) ( A ( u ) - A ( v ) )  S O .  

Thus, A is dissipative. 

/ / /  

THEOREM 3.4. Let the mapping A be given by  (3.8). Then the following condi- 

tions are equivalent: 

(1) The funct ions  g ( ( ) * f  (1)  are nondecreasing on R. 

( 2 )  The mapping -A is accretizle o n  L1(R) .  

( 3 )  The mappings S t : u O + u ( . , t ) ,  where u ( x , t )  is the solution of Equation (3.6), 

aTe contractions in L1(R) .  Since S t  commutes  w i th  translations,  

I S t ( u ) l ~ v ( ~ ) ~  I u / B v ( B ) .  

( 4 )  The mappings St are order preserving o n  L'(R).  

(5) The mappings St sat is fy  a maximum and a minimum principle. 

A o o f .  Theorem 4.1 has a proof that  (1) implies (2). 

Because the operator A is a Lipschitz continuous map in L1(R) ,  the mapping 

-A is not only accretive on L1(R)  but also m-accretive. Thus the Crandall- 

~igget t  theorem [ 6 ]  shows that there exists a semigroup St for which 
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LUCIER 

Since the solution of the differential equation ( 3 . 6 )  is in C1([O,- ) ,L1(R)) ,  Brezis 

and Pazy [ 3 ]  show that  the function S i ( u )  defined by (3 .10a)  is the same as ~ ( t )  

deflned by ( 3 . 6 ) .  Thus property ( 3 )  follows. 

We use Lemma 2.1 to  show that  properties (3) and (4) are  equivalent. This 

requires 

For any u E L ~ ( R ) ,  SA(U)  & = 0 ,  since SK, & = 0 ,  and J M , ~ z  = 1. Thus, i f  v is 
B B R 

t 
the solution of v  - + ( v )  = u ,  dr = ju &. Because the  function S t ( u )  is 

n B 

the limit as n -r - of functions v in LYR) all having the same integral, the map- 

pings St satisfy the hypotheses of Lemma 2.1 .  

Lemma 2.2  may be used to show that  property (4) implies property ( 5 ) .  

This requires tha t  the  mappings St commute with translations. Since the opera- 

tor A commutes with translations, an argument similar to  the one above shows 

that  St commutes with translations. 

Finally, we show that  if property ( 1 )  is false, then property ( 5 )  does not 

hold. 

Assume that ( 1 )  does not hold. Without loss of generality we may assume 

that  there is some q > ( with g ( q )  + f (7) < g  (() + j (1). It must be t rue that  q  > 0  

or ( < 0 ;  assume, again for d e h i t e n e s s  , tha t  q  > 0 .  

Let 
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CONSERVATION LAWS 15 

and define uo linearly on the intervals where it  is not defined above so that  it is  

continuous on R. The positive parameter  R is to be determined. For this initial 

datum, one determines from ( 3 . 6 )  tha t  

where E ( R )  + 0 as R + m. Since the sum of the other terms on the right-hand 

side of ( 3 . 11 )  is positive, for some value of R, ut (0,O) >O. Thus for some t ,  St 

does not satisfy a maximum principle, so that  (5) implies (1). 

/ / / 

Property ( 1 )  of Theorem 3.4 may be s tated in  t e rms  of the original parame- 

ters v  and @ of equation ( 3 . 3 )  as Property ( 1 ) ' .  

( 1 ) '  The functions vg (0 *@Bf ( t )  are  nondecreasing on R. 

I f f  and g are  in C1(R), then Property (1) '  is equivalent to 

for all CER v g  ' ( 6 )  s. @%If ' ( 4 )  I . ( 3 . 12 )  

The quantity on the  right side of this relation measures the interaction between 

the dispersive term (p), and the  nonlinear transport term ( I f  '(0 I ) ,  while the 

expression on the left is a measure of the strength of the dissipative term. This 

condition defines the sense in which the dissipative t e r m  must dominate the 

interaction between the nonlinear and dispersive te rms  so that  the properties of 

Theorem 4.2 hold. Condition ( 3 . 12 )  does no t  say that  dissipation must be large 

with respect to  the initial data. Rather, it is similar t o  certain stability condi- 

tions for flnite-difference equations (see [ 1 9 ] ) .  

The next theorem proves that,  under certain conditions, solutions of ( 3 . 4 )  

converge to  the  entropy solution af the conservation law ( 3 . 1 ) .  

THEOREM 3.5. Assume that  the funct ions  g  i f  are nondecreasing o n  R and  

that T>O is given.  Then for a n y  uocBV(R) there e z i s t s  a  unique  so lut ion u ( z , t )  

of (3.4) w i t h  u €C1([O, T],LLA,(R)) and  1 u ( t )  Bv(Bl uni fo rmly  bounded for 
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16 LUCIER 

0 1 t  I T .  Also, as a 4 0 ,  the solutions u of (3.4) conwwge in ~?([o,T] ,L~: , (R))  to 

the entropy solution o j  ( C )  for the same uo .  

Proof The first par t  of the proof constructs solutions of (3.4) in the  space 

BV(R), and shows that  these solutions satisfy properties analogous to  properties 

( b )  to  (f) of Theorem 3.4. 

For any positive integer k ,  let uk = x [ - ~ , ~ I .  UO.  Then uk is in L1(R) n BV(R). 

luk 1 BV(R) S 1 %  s v p )  + 2 lb~l l~-~~.  and ( I ~ ~ l l ~ - ( ~ )  5 ( I u o ~ I ~ - ~ , .  Thus, by Theorem 

4.2, for every k there is a unique mapping pk€CL([O,T],L1(R))  such that  

p k ( t )  = St (uk) .  A fortiori, pk is in cl([O,  T],L&(R)).  Also, for any positive time t ,  

 PI:(^) ~ B V ( B )  s / U O / B V ( B )  + 2 I I u o / / ~ - ~  (3.13a) 

and 

I I P ~ ( ~ ) I I L - ( ~ )  I I I U O I I L - ~ )  (3.13b) 

Since ltMdL~(R) = llaK,llLl(B) = 1, and I f  ( u )  ~ B V ~ ) '  IlJ /ILip I u I B V ( R ) ,  Equation (3.6) 

yields 

Hence, the functions pk are  equicontinuous in L&(R). 

For every k ,  the range of pk is contained in the set  

S = lu E L A ( R )  I I u 1 BV(B) 5 I uo  I BV(B) + 2 I / ~ o l l ~ - ( ~ ~  and Ilu l l L - n  4 l l ~ o l I ~ - ( & .  15) 

which is precompact in LI:,(R) (see [ I l l ) .  Thus, by the Arzela-Ascoli theorem, 

some subsequence of the pk,  renamed pk ,  converges in ~ ( [ ~ , T ] , L ~ : , ( R ) )  to  a 

function p(t ). 

The functions p k ( t )  + p ( t )  and uk +uo (where u k  and uo are  extended t o  

k [ O , T ]  as constant functions on [O,T])  in CO([O,T] ,L~:~(R) ) .  We now show that  

A ( p k ( t ) )  + A ( p ( t  )) in the same space. 
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CONSERVATION LAWS 17 

Clearly, f ( p k [ t ) )  + f @ ( t ) )  in @([B.T],L~$(R)) if f is Lipschitz continuous. 

If I is any bounded interval in R Ia  = tz 1 1 z -y / S R  for some y in I ] ,  and 

P ( z )  = X [ o , ~ ) e - l r  I r a /  2a t h e n  

In our case, u = f (@(t I), v = f  (pk ( ' t ) )  are uniformly bounded in L"(R), and 

. f ( p k )  - ' f  @) in C ' ( [ O , T ] , L ~ , ( ~ @ ) .  Therefore, the second term of the last expres- 

sion in (3 .16 )  may be made arbitrarily small by letting R be sufficiently large. 

For any fixed R the first term tends  t o  w r o  uniformly for t E [ O ,  TI. Thus, for any 

bounded interval ICR, and E>O, if k is large enough, 

lIKf * I  ( ~ k ) - f  @ ) I I L i ( I )  * E .  

Because the other t e r m s  of A(pk)  may be t reated in the same way. A@h) -'A(p).  

Since p ( t )  is continuous in L d , ( w ,  the  same argument shows tha t  A ( p ( t ) )  is also 

continuous. Thus p ( t )  satisfies 

Differentiating (3 .17)  with respect t a t  shows that  p ( t )  is in C1([0 ,T] ,LI: , (R)) ,  and 

that p ( t )  satisfies (3.6). 

Because of (3.14), l p ( t )  1 sv(a) s + 2 IIuO/IL-o independently of t .  

We now show uniqueness. If o is any solution of (3 .6 )  with initial data  v o  and 

w€C1([O, T] ,Ll : , (R))  with I w 1 sv(a) uniformly bounded for t E [ O ,  TI,  (3 .14a)  shows 

that % t ) l l L i ( q % ~  for some number C independent of t ,  and tha t  
a t  
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LUCIER 

Assume now tha t  there are two solutions p and w of (3.6) corresponding t o  

the same initial data  uo. Then, for any t ,  p ( t )  - ~ ( ~ ) E L ' ( R ) ,  and 

where J :  L1(R)  -+ L"(R) is  the duality mapping of Theorem 

(3.18) 

4.1. The argument 

used in Theorem 4.1 shows that  the right hand side of (3.18) is nonpositive. 

Therefore, p ( t )  = w ( t )  = S t ( u o ) .  More generally, if u - v  is in L1(R) ,  then 

/IS: (u )  - St(v ) i l L ~ ( B ) s  11" -" l l L ~ ( R ) .  

The other properties are  as follows. By setting v = (ML in the last inequality, 

we see that  1 u ( t  ) 1 BV(R) I I u0 l B y ( g p  Hence, if U I ,  is constant, u ( t  ) = uo. Because 

of part ( 4 )  of Theorem 4.2, the mapping u o - + u ( t )  is order preserving by con- 

struction. Thus S t  satisfies a maximum and minimum principle. The inequality 

(3.14a) also applies to  u ,  since u satisfies (3.6). 

The second part  of this proof shows that  the solutions of (3.4) converge to  

the entropy solution of (C) as  a tends to  zero. The dependence on a of the solu- 

tions u of (3.4) will be made explicit by writing ua. 

Note that ,  since (3.14a) and I u a ( t  ) I Bv(g) l I uol sv(B) hold independently of a, 

the functions ua mapping [O,T] into L{:,(R) are  equicontinuous. The range of 

each mapping ua is again contained in the  set  S of (3.15).  Thus there exists a 

sequence of the numbers a tending to zero, such that  the corresponding solu- 

tions of (3.4) converge in @([O,T],Lt:,(R)) to  a function u. A j o ~ t i o r i ,  the func- 

tions ua converge to  u in the weaker topology of L&(RX[O,T] ) .  

This function u €BY(RU[O, T I )  since 

IIu(.+Y B . 1  - u ( . * . ) I I ~ ~ ( ~ ~ ~ , ~ ~ ) ~  TIY I I U O I  BV(B), 

and similarly. 

I ~ U ( .  . . + A ~ ) - U ( ,  , .)IILi(Ir[O,T]) s T IAt 1 (111 IIuP + + / / 9 I I ~ i p )  IUO/BV(Q 
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CONSERVATION LAWS 19 

We now show that  the functions ua satisfy an approximate entropy condition 

and that  u satisfies the entropy condition of Theorem 3.1. 

Fix a  > 0. For any t o ~ [ O ,  T )  and c  ER ,  solve the initial value problem 

v ,  + f  ( v ) ,  - a g ( v ) ,  -a2v,, = 0 ,  t  > t o ,  Z E R ,  (3.19) 
v ( z , t o )  = u a ( z , t o ) V c  , z E R .  

Since the operators St are order preserving, and u and c are  solutions of (3 .19)  

with initial data  u a ( z , t O )  and c ,  respectively, it is t rue that  

v ( z , t )  r u a ( z , t ) V c  for a l l z E R ,  t z t O .  

Therefore, for all t o € [ ~ , t ) ,  

, v t ( z , t o )  2 ( u a ( z , t o ) v c ) t ,  

where the right-hand side may be interpreted as a measure, since u a V c  is also 

in BV(Rx[O,T]) .  But 

ut ( z , t o )  = A ( u a ( t 0 ) v c  HZ), 

so that, as measures, 

( u a V  c  ), 5 A ( u a v  c ) , 

and similarly, 

(ua/ \c ) ;  z A(ua/ \c)  . 

For any nonnegative ~ E C $  (Rx[O, T I ) ,  we may compute 

- ~ 

- ( g ( u a v c ) - g ( u a / \ c ) ) a M a  *prr  dz d t  

= - $1 Iua-c I pt + s d u a  - c ) ( f  ( u a ) - f  ( c ) ) M a  * ( P I  
. 

B [ O . T l  

t sgn (ua  - c ) (g  (u") - g  (C  )) aMa + (o ,  & dt  . 

As a tend to zero, the functions u u  U - C + U -  and 

s g n ( u a - c ) ( f  ( u a )  - f  ( c ) ) +  s g n ( u  - c ) ( f  ( u )  - f  ( c ) )  in L~:,(Rx[O, T I )  and bound- 

edly a . e .   a as sing to  a further subsequence, if necessary). Also, Ma * p ,  +p, and 
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2 0 LUCIER 

aM, * p, +O in L'(R%[O. TI). The Lebesgue dominated convergence theorem 

implies that  

This is the required entropy condition. 

/ I /  

The next  t h e ~ r e m  uses Kuznetsov's ilmx-y to obtain an er ror  e s h a t e .  

THEOREM 3.6. If the assumptions of Theomm 4.3aa-a &id, us is the s01'1LtiDh 

of (3 3), and u is the solution of (C), then them exist a C such that 

~(da+,i.,. 

bounded by c0(jlf / I L i p  t fllg llLip). The argument of Theorem 3.5 shows that,  as a 

measure, 

I u a - c  I t  + A ( u a v c ) ,  -Afua/\c), s 0, 

If one multiplies this inequality by w=o(z"-zl , t"- t ' ) ,  with u a = u a ( z " , t " ) ,  and 

substitutes u = u ( z 1 , t ' )  for c ,  an integration by parts shows that  

-hf0" - ~ ~ a ~ , * [ s ~ n ( u ~ - u )  (g (ua) -g (u))Ie ,qp 
SXS 

+ (Ma-61)*[sgn(ua-u) (f ( u a ) - 3  ( u ) ) ] ~ . ~ & " d t " h ' d t ' .  

Here 61 is the Dirac delta measure. Since 1 ua (  ) I B V m <  Iwl 9yPI) uniformly for 

t E[O,T]  and f and g are  Lipschitz, the f i s t  and s m n d  t e r n s  an the  right can 

be bounded by a t  llg ll~w luolm(it) Il~z4k(~) and a t  lV ll~y I U O  / B V ( ~ )  l l ~ ~ ~ 4 L l ( s ,  

respectively. Because I l w , ~ ~ l l L i ( s , ~  C/ E ,  -&'LD'' is bounded by 

Ct(llf 1 1 ~ ~  + /lg l l ~ i ~ )  / U O (  .,(ma/ E .  By letting E O  tend Lo zero, me see from Theorem 

3.2 that  

llu(t) - u ~ ( ~ ) I I L I ( ~ ) ~ ~ E I u o I B v ( E ) +  B(I1P Il~ip + +I[B l l~gp) l~o l~v(g)a /  8. 
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CONSERVATION LAWS 

Minimizing this expression with respect to  E gives 

l l u ( t )  - u a ( t ) l j L ~ ( R ) g  C I ~ O ~ B V ( ~ ~ ~ / ~ ~ ~ / ~  ( / I f  l l ~ i p  + llg l l ~ i p ) l / ~  

None of the above theorems hold if the  dispersive term -/3uZzt is replaced 

by the KdV dispersive term +/3uzzz. In particular, it is simple enough to show 

that,  no matter  how small the coefficient P ,  for certain initial data the initial 

value problem 

~ t + f ( ~ ) Z - ~ g ( ~ ) z z + / 3 ~ z Z Z  = 0 ,  x € R , t > o ,  ( 3 . 2  1 )  
u(z,O) = u&), X E R ,  

will n o t  satisfy a maximum principle. This initial data can be chosen to be a 

third degree polynomial in the neighborhood of the maximum of u o .  However, 

Schonbek [ 2 1 ]  has used the theory of compensated compactness to  show that  

certain regularizations of the form (3.21) converge to the entropy solution of the 

conservation law (C) .  

The initial data  uo for which ( 3 . 2 1 )  does not satisfy a maximum principle 

has a significant high frequency component a t  its maximum. The KdV equation 

is sensitive to  high frequency waves: the dispersion relation for the linearized 

equation shows that as the wavelength gets shorter,  waves travel with an 

increasing, unbounded speed in the direction of --. The model equation (S) 

does not have this property. Instead, the phase and group velocities of the 

Fourier components of the initial waveform are bounded independently of the 

wavelength. This difference may provide some intuition as to why the KdV model 

does not satisfy a maximum principle. 

4. ON WAVE HIERARCHIES 

In a chapter in [ 2 5 ]  entitled "Wave Hierarchies," Whitham studies a class of 

singular perturbation problems of the form 
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LUCIER 

posed on the quarter-plane z >0, t >O; the positive parameter q>0 is small. Equa- 

tion (4 .1)  can be considered a second-order hyperbolic regularization of the 

&st-order equation 

whereas Equation (4 .2 )  is the reduced equation for Equation (4.1).  

Using Laplace transform techniques, Whitham shows that  Equation (4 .1)  is 

linearly stable if the characteristics of the reduced equation (4 .2)  are  compati- 

ble with the characteristics of Equation (4 .1) ,  in the sense that  c ,  < a  <cz. This 

occurs when, a t  any point (x.y), the first-order characteristics of (4 .2 )  point into 

the cone whose boundary consists of the second-order characteristics of (4 .1) .  

In this case, the fastest and slowest signals in (4 .1 )  travel along the characteris- 

tics with speed cz and c , ,  respectively, while decaying like Ce-t'n, where is the 

characteristic variable. The bulk of the signal travels a t  speed a ,  the wave 

speed of the reduced equation. Finally, any incongruities in the boundary condi- 

tions are  resolved in a boundary layer near z = 0  of width proportional to q .  

Whitham's analysis can also be used to cover the pure initial-value problem in 

which (4.1) is posed on the half-space x ER, t > 0, and initial data  u 0 ( z )  is pro- 

vided on the line t  = 0. 

We use a different approach to provide a thorough analysis for a similar 

nonlinear problem. Consider the conservation law (C) and its second-order 

hyperbolic regularization 

The hyperbolic regularization (4 .3) ,  which results in a singular form of (4 .1) ,  

introduces both dissipative and dispersive effects, and we will show that  it  is a 
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CONSERVATION LAWS 23 

special case of the  Sobolev equations introduced and analyzed in the previous 

section, for which results similar to  those in Section 3  are true. We must first 

show that  Equation (4 .3 )  is well posed with the given initial conditions. 

Because the characteristics of Equation ( 4 . 3 )  are the lines z = c and t  = c 

for any constant c ,  we are specifying initial data  along a characteristic, and the 

solution of (4 .3 )  is not unique. Transform (4 .3 )  by taking (1-qa, )  of each side to  

obtain 

ut + f  (u) ,  -vf tu)zr -v2% = 0. ( 4 . 4 )  

By this device, we have separated the effects of the regularization quzt into its 

purely dissipative part  (-qf ( u ) ~ )  and its purely dispersive par t  (-q2uZt) .  

Because the operator (1 - 7 8 , )  has a non-zero kernel, Equation (4 .4 )  will have 

more solutions than (4 .3) .  

I t  is immediately obvious that  Equation (4 .4 )  is a special case of Equation 

(3 .3 ) .  Our analysis of (3 .3 )  relies on the fact that  the operator 1-q2a$ can be 

inverted, sub jec t  to  boundedness at i n f i n i t y ,  

=la- 
M = l - e  q . Equation ( 4 . 4 )  can therefore 

271 

by convolution with the function 

be transformed into the integral 

equation. 

(K1 = * e  which may be viewed as  an ordinary diflerential equation 
2rl 

on LP(R)  for any I l p  l m. Posed as  an initial-value problem on L1(R) ,  ( 4 . 5 )  has a 

unique solution for any Lipschitz continuous f .  Thus, we choose the "correct" 

solution of (4 .3 )  to  be the unique weak solution of (4 .3 )  with //ut l I L - ( m [ O , T l )  < m  for  

any T>O. 

With this definition, Theorem 3.4  yields the following stability results. 
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LUCIER 

THEOREM 4.1. The following properties are equivalent 

1. The funct ion f is nondecrerzsing o n  R. 

2. The mappings S t : u 0  + u ( . , t ) ,  where u ( z , t )  is the solution of ( 4 ) ,  

are contractions on L1(R) .  S ince St commutes  w i t h  translations,  

this impl ies  that 1 S t  (uo)  BV(R)I uo 1 BV(R). 

3. The mappings  S t  are order preserving o n  L1(R):  i f  u o ( ~ ) ~ v o ( z )  

for all ~ E R ,  then  S t ( u O ) ( x ) ~ S t ( v O ) ( z )  for d l  X E R ,  t>O. 

4. The mappings St satk i fy  maximum and minimum pinc ip les :  

e s s s u p S t ( u o ) ~ e ~ ~ ~ ~ p u ~  and essinf S t ( u o ) z  essinfuo.  

In light of Theorem 4.1, we say that (4.3) is stable i f f  is nondecreasing. 

It seems natural to  require that  f be nondecreasing for stability; otherwise 

the "dissipative" t e rm - q f  (u )== in ( 5 )  is not dissipative on all of L1(R)!  How- 

ever, the proof of the preceding theorem relies on the delicate balance between 

the dissipative and dispersive effects of the regularization in (4.3).  

Once Theorem 4.1 is in hand, the solution operator St can be extended to 

u O € B V ( R )  as a continuous map on the space of locally integrable functions 

LLA,(R). Besides being total variation diminishing, the map S t  has the following 

properties. 

THEOREM 4.2. Assume that the func t ion  f is Lipschitz continuous and nonde- 

creasing. Let S t ( u O )  be the solution of (4.3) w i t h u 0 € B V ( R )  and let u ( z , t )  be the 

entropy solution of ( C ) .  Then there e h t s  a constant C depending on the 

Lipschitz constant for such  that for any  t>O, 

ISt (uo)  - u ( ~ , t ) l I L q I I I ~  C ( T ~ ) " ~ ~ U O / B V ( R ) .  

Theorem 4.2 is a direct consequence of Theorem 3.6. 

The results of our analysis can be compared with the linear analysis of Whit- 

ham. In Equation (4.3),  information travels in the positive z and t directions. 
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CONSERVATION LAWS 2 5 

Whitham's compatibility condition for the regularized equation requires that the 

first-order characteristics point into the first quadrant, ie, tha t  f be nonnega- 

tive, so that f is nondecreasing. This is exactly the stability condition of Part  1 

of Theorem 4.1. If this compatibility condition holds, then Theorem 4.2 provides 

strict error estimates for the full nonlinear problem in te rms  of the regulariza- 

tion parameter ?I.  

The problem 

can be analvzed similarly. The following theorem applies. 

THE OR^ 4.3. Assume that  the funct ion f is Lipschitz continuous and nonin-  

creasing. Let S t ( u o )  be the solution of (4.6) w i t h  u 0 c B V ( R )  and let  u ( x , t )  be the 

entropy solution of ( C ) .  Then there exists a constant C depending on the 

Lipschitz constant for f such  that  for any  t>O, 

l I S t ( ~ o )  - ~ ( . ~ t ) l l ~ ~ ( ~ ~ C ( ~ t ) " ~  I U O ~ B V ( R ) .  

Theorem 4.3's stability condition is that  f be nonincreasing on R and the 

characteristics of (4.6) can be interpreted as pointing in the negative x direc- 

tion and the positive t direction. Whitham's compatibility condition is now that  

the first-order characteristics of (4.6) point into the second quadrant; this is 

equivalent to requiring that  f be nonincreasing on R. 
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