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Abstract. Using the notion of asymptotic homomorphism due to Connes and Higson we construct 
bivariant homology-cohomology theories for separable C*-algebras, which satisfy general excision 
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1. Introduction 

The aim of this note is to introduce some nonperiodic homology and cohomology 
theories satisfying the excision property and defined on the category of separable 
C'algebras. These theories are relevant even for commutative C*-algebras in 
which case they correspond to flexible extensions of stable homotopy theory. The 
(co)cycles of these theories are based on asymptotic homomorphisms, a notion due 
to Connes and Higson [2]. All the excision (co)homology theories that have been 
previously known were derived from KK-theory or E-theory and therefore were 
periodic. E-theory is due to Connes and Higson [2]. Its abstract existence was 
proven earlier by Higson [6]. The E-theory group E(A, B) is defined in terms of 
homotopy classes of asymptotic homomorphisms from SA ® ~ to SB ® K:. E- 
theory coincides with Kasparov's KK-theory on K-nuclear C*-algebras. However 
in general they are distinct as shown by Skandalis [12]. 

Consider the following exact sequence of separable C*-algebras: 

O ~  J ~ A & A / J  ~ O  

A central result in E-theory is the homotopy equivalence via asymptotic homomor- 
phisms between SJ  ® I~ and SCp @ IC. Here Cp is the mapping cone of p, K: is the 
C*-algebra of compact operators and S stands for the suspension functor. In this 
note we refine this result by removing the compact operators i.e. we show that SJ  
is homotopy equivalent to SCp via asymptotic homomorphisms. Then, in analogy 
with [10], we provide Puppe sequences for the homotopy classes of asymptotic 
homomorphisms. By putting these two facts together we get a bivariant functor 
from separable C*-algebras to abelian groups which is exact in each variable. 
This functor is a flexible extension of stable homotopy to separable C*-algebras. 
Moreover, its restriction to stable C*-algebras coincides with E-theory. 

The commutative case is also of special interest because the homotopy theory 
based on asymptotic homomorphisms gives rise to a nice extension of classical 
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homotopy theory to singular spaces. For instance, the Warshaw circle is homotopy 
equivalent to the standard circle within this theory, whereas there are no interesting 
continuous maps from the standard circle to the Warshaw circle. While very flex- 
ible the homotopy theory based on asymptotic homomorphisms is stronger than 
shape theory which is the classical substitute for the homotopy theory of singular 
spaces. In particular an asymptotic homomorphism between compact metrizable 
spaces induces a map on (~ech cohomology or more generally on any continuous 
cohomology theory. 

After this paper was completed the author learned that independently A. Connes 
and N. Higson proved the unstable excision SCp ~,, S J  and developed the general 
theory that follows from this [13], [14]. Following the ramification of these results 
in the commutative case A. Connes and J. Kaminker showed how to extend a gener- 
alized homology theory defined by a spectrum to a generalized Steenrod homology 
theory, by using a homotopy theory based on asymptotic homomorphisms [13], 
[15]. This gives a short proof for a theorem of Kahn, Kaminker and Schochet 
whose original approach was based on duality [17]. 

In a forthcoming paper [16], we prove that the homotopy theory based on 
asymptotic homomorphisms is equivalent to a strong shape theory. In particular, its 
restriction to commutative C*-algebras is equivalent to the approaching homotopy 
category of Quigley [18]. 

2. Asymptotic Homomorphisms 

In this section we shall review the construction of the category of separable C*- 
algebras and homotopy classes of asymptotic homomorphisms due to Connes and 
Higson [2]. 

DEFINITION 1. Let A, B be two C*-algebras. An asymptotic homomorphism 
from A to B is a family of maps ~t: A ~ B, indexed by t E T = [1, +e~), 
subject to the following conditions: 

(1) For all a E A the map t ~ ~t(a)  from T to B is continuous. 
(2) For all a, b E A and A E C one has 

lim ]]¢pt(a + b) - ~t(a) - ~t(b)[] = O, 

lira [[~t(Aa)- A~(a)[] = O, 

lira [[~(ab) - ~t(a)~t(b)H = O, 
t-..~oo 

lim [I~(a*) - Tt(a)*[] = O. 

The standard notation for an asymptotic homomorphism from A to B will be 
(~t):  A -~ B.  

LEMMA 2. ([2]) Forany  a E A,  limsuptll~(a)lt llall. 



A NOTE ON ASYMPTOTIC HOMOMORPHISMS 467 

The boundedness property of asymptotic homomorphisms given in Lemma 2 
is reminiscent of automatic contractivity of ,-homomorphisms. Actually the proof 
that shows that for any ,-homomorphism 7r E Horn(a, B) one has [17r(a)[I ~ Ilall 
for all a E A, [9], can be easily modified to derive the statement of Lemma 2. One 
uses the semicontinuity of the spectrum of qDt(a) with respect t. 

Denote by C6(T, B) the C*-algebra of all continuous bounded functions from 
T to/3. Let Co(T, B) be the closed ideal of Cb(T, B) consisting of functions 
vanishing at infinity. The quotient C*-algebra Cb(T, B)/Co(T,  B) is denoted by 
Boo. Then one has the following exact sequence 

0 --* Co(T, B) ~ Cb(T, B) q Boo ~ O. 

Lemma 2 enables us to identify any asymptotic homomorphism (~t): A ~ B with 
a map ~: A -~ Cb(T, B) given by T(a)(t) = qot(a) for all a E A and t E T. it is 
clear that ~2 satisfies the following conditions: 

For all a, b E A and )~ E C, one has 

v(a  + b) - ~(a) - V(b) e Co(T, B), 

qo(~a)- ~qo(a) E Co(T, B), 
~(ab) - ~(a)~(b) • Co(T, B), 
~(a*)-  ~(a)* • Co(T, B). 

In the sequel, we are going to use freely both notation (qDt): A ~ B and qa: A 
Cb(T, B) for asymptotic homomorphisms. With any asymptotic homomorphism 
(qot): A ~ /3 one associates a ,-homomorphism ~ E Hom(A, Boo) given by 
qb(a) = q(~(a )), where q is the quotient map of Cb( T, 13) onto/3o¢. 

Two asymptotic homomorphisms (~Pt), (¢t): A --+ /3 are equivalent, written, 
(~t) ~ (~]J~) if for any a E A one has limt._,~ll~t(a ) - ¢~(a)lt = 0. Equivalently, 
~2 ~ ~ iff ¢p(a) - ~(a)  E C0(T, B) for all a E A. The correspondence ¢p ~ ~5 
induces a bijection between the equivalence classes of asymptotic homomorphisms 
from A to/3 and Hom(A, Boo). Any map ~: A ~ Cb(T, /3) that lifts a given 

E Hom(A, Boo) is automatically an asymptotic homomorphism. Any two 
liftings are equivalent. 

Remarks, (1) Using the selection theorem of Bartle and Graves one can find a 
continuous (in general nonadditive, but homogeneous) cross-section for the quo- 
tient map q. This shows that any asymptotic homomorphism is equivalent to an 
asymptotic homomorphism given by a continuous map ~: A ~ Cb(T, t3). 

(2) Suppose that the C*-algebra A is separable and nuclear. Then, by Choi-Effros 
theorem [1], any homomorphism ~: A ~ Boo has a linear completely positive 
lifting ~: A ~ Cb(T, 13). One concludes that any asymptotic homomorphism 
from A to/3 is equivalent to a linear completely positive map qa: A --* Cb(T, B) 
satisfying q~(ab) - ~(a)~(b) E Co(T, B). 
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For a C*-algebra B denote by B[0, I] the C*-algebra of continuous functions 
from the unit interval to B. For s E [0, 1] let e~: B[0, 1] ~ B denote the evaluation 
map at s. We still use e~ to denote the map Cb(T, B[0, 1]) ~ Cb(T, B) induced 
by e~. Suppose that q~: A --. Cb(T,/3[0, 1]) is an asymptotic homomorphism. Then 
the composition e ~ :  A ~ Cb(T, /3) is an asymptotic homomorphism. 

DEFINITION 3. Two asymptotic homomorphisms (qot), (el):  A ~ / 3  are said to 
be homotopy equivalent, written (9t) "~ (el) ,  if there is an asymptotic homomor- 
phism (~t): A ~ /3[0, 1] such that the restrictions of (~t) at 0 and 1 are equal 
with (~t) and (~bt), respectively. That is e0~ = ~ and e i~  = ¢. 

Note that equivalent asymptotic homomorphisms are homotopy equivalent. 
Indeed if ~t ~ ¢~ then ~t(a)(s) = (1 - s)~t(a) + s~bt(a) is a homotopy 
between the two asymptotic homomorphisms. Since Boo [0, 1] is not the same with 
B[0, 1]~, a homotopy equivalence 9 "~ ¢ does not correspond to a homotopy of 
• -homomorphisms, between ~3 and ~. However, if ~b is homotopy equivalent to ¢,  
then 9 "~ ¢.  

The homotopy classes of asymptotic homomorphisms from A to B are denoted 
by [[A, B]]. The homotopy class of an asymptotic homomorphisrn (Tt): A 
B is denoted by [[Tt]] or [[9]]- The notation for the homotopy classes of . -  
homomorphisms from A to /3 is [A, B]. From now on, we restrict our con- 
siderations to separable C*-algebras. There is a composition law of homotopy 
classes of asymptotic homomorphisms. We are going to describe briefly this com- 
position. One starts with arbitrary asymptotic homomorphisms (~t): A ~ B and 
(¢ , ) :B ~ C. As noticed above, after replacing these asymptotic homomorphisms 
by equivalent asymptotic homomorphisms if necessary, one may assume that the 
maps 9: A --+ Cb(T, B) and ¢: /3 --+ Cb(T, C) are continuous. Let A ~ be a dense 
,-subalgebra of A which is a countable union of compacts. It is proven in [2] that 
there is an increasing continuous function r: T --+ T such that for any increasing 
continuous function s: T ~ T with s(t) >/ r(t),  the composition O~ = ~b~(t) o qo~ 
is an asymptotic homomorphism from A' to C. Moreover, lim supllO (a)ll Ilall 
for all a E A'. Thus, the associated map ~: A' --+ Cb(T, C) is well defined and 
~r: A ~ ~ Co~ is a bounded .-homomorphism that extends to a .-homomorphism 
on A. Let (Or) be any lifting of 0. By definition [[¢t]] o [[~t]] = [[/9,]]. 

PROPOSITION 4. ([2]) Any extension (Or) of ( ¢s(t) o qot ) is an asymptotic homo- 
morphism. The homotopy class of[[Ot]] in [[A, C]] depends only on the homotopy 
classes of  [[T,]] E [[A, t3]] and [[¢t]] E [[/3, C]]. Moreover the composition of 
homotopy classes [[¢t]] o [[qot]] is associative. 

Proposition 4 shows that there is a well defined associative composition law 

[[a, B]] x [[B, C]]-+ [[A, C]]. 

It is natural then to consider the category denoted here by ..4, whose objects are 
all the separable C*-algebras and whose morphisms are homotopy classes of 
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asymptotic homomorphisms. It tums out that this category is interesting even for 
commutative C*-algebras as a flexible substitute for the homotopy category of 
singular spaces (see Section 6). 

There is a natural notion of tensor product for asymptotic homomorphisms that 
is defined up to an equivalence. Suppose that (~t): A --+ C and (~bt): B --+ C are 
asymptotic homomorphisms such that the commutator [qot(a), ~t(b)] converges in 
norm to 0 for all a E A and b E B. Then there exists an asymptotic homomorphism 
(0t): A @max B ---+ C,  uniquely defined up to an equivalence by the condition 
limdl0t(a ® b) - - -  0 .  Indeed q~(a) commutes with ~(b) in Coo 
and, therefore, there is a unique ,-homomorphism 0: A ®max B -+ Coo such that 
O(ab) = (o(a)~b(b) for all a E A and b C B. One takes (Or) to be any lifting of 0. In 
particular for given asymptotic homomorphisms (qot): A --+ C and ~t: B --+ D one 
gets an asymptotic homomorphism (S& ® ~bt): A ®max B ---+ C ®max D ,  defined up 
to an equivalence. This construction allows us to construct the suspension functor 
S. S takes a C*-algebra A to its suspension SA = C0(0, 1) ® A, and takes an 
asymptotic homomorphism (~t): A + B to (idco(0,1) ® qot): SA --+ SB.  

3. Puppe Sequences 

In this section we introduce the additive category of separable C*-algebras and sta- 
ble homotopy classes of asymptotic homomorphisms denoted by -A~. This category 
is a very flexible generalization of the stable homotopy category of polyhedra. 

The objects of .A s are separable C*-algebras. The set of morphisms from A to 
B is by definition 

{{A, B}} = likm[[SkA, SkB]], 

where [[SkA, SkB]] maps to [[Sk+IA, Sk+IB]] via the suspension functor. As 
in the case of homomorphisms, one has a group structure on [[A, SB]] induced 
by the loop composition. To be specific, given the asymptotic homomorphisms 
(~t), (~b,): A --+ SB  we define [[qot]] [[~t] to be the homotopy class of the asymp- 
totic homomorphism (0,): A --+ SB  given by 

{ O,(a ) ( , )  = 1), 
if0~<a~< 1/2, 

i f l / 2 ~ < s ~ < l ,  

where s is the suspension parameter. The class of the null-homotopic asymptotic 
homomorphisms acts as the identity element. Like for ordinary homotopy the group 
[[A, S2B]] is Abelian. It is convenient to introduce the higher-order groups 

{{A, U}}q = likm{{,k+qA, SkB}}, 

where q E Z. It follows that {{A, B}}q is an Abelian group. 
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We shall write B[0, 1] for C[0, I] ® B and C B  = B[0, 1) for C0[0, 1) ® B. 
Let p: A --~ B be a ,-homomorphism. The mapping cone of p is the C*-algebra 
@ = {(f,  a) E B[0, 1) ® A: f(0)  = p(a)}. There is a short exact sequence of 
C*-algebras 

O - - , S B L C p L A - - , O ,  

where 5(f)  = (f,  0) for f E SB and k( f ,  a) = a for (f,  a) E Cp. 
Let J denote the kernel o fp  and let i: J ~ Up denote the map i(x) = (0, x). 
Next we are going to exhibit Puppe exact sequences in both variables. Every- 

thing is quite similar to the corresponding exact sequences for homotopy classes 
of ,-homomorphisms given in [10]. 

PROPOSITION 5. Let A, B, C be C*-algebras andp: A ~ B a ,-homomorphism. 
Then the following sequence of  pointed sets is exact in the middle. 

[[C, Cp]] k .  [[C, A]] P'; [[C, B]]. 

Proof Let (gh): C --+ A such that (po ~t): C --+ B is null homotopic. Thus there 
is an asymptotic homomorphism ( ht): C --* B[0, 1 ] such that ht (c)( 0 ) = p(~t (c) ) 
and ht(e)(1) = 0 for all t E T and c E C. It is clear that (ht) takes values in 
B[0, 1). Define (¢ t ) :C  ~ Cp by Ct(e) = (ht(e), ~t(e)). It is easily seen that 
(¢t) is a well defined asymptotic homomorphism. To finish the proof we check 
that (~t) is a lifting of (~t): 

PROPOSITION 6. Let A, B, C be C*-algebras and p: A --+ B a ,-homo- 
morphism. Then the following sequence of groups and pointed sets is exact. 

• - - -+ [[C, SA]] (sp)¢ [[C, SB]] 6 ,  [[C, Cp]] a..)[[C, A]] P~', [[C, B]]. 

Proof Using the proof of Theorem 3.8 in [10], we derive the following com- 
mutative diagram of C*-algebras and ,-hornomorphisms 

Ck . . . . . . . .  Cp k , A  " . B  

C~ , S B ~ , Cp 

SA sp , SB 
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with all the vertical arrows inducing homotopy equivalences. Passing to homotopy 
classes of asymptotic homomorphisms, we get a commutative diagram with all the 
vertical arrows isomorphisms. 

[[C, Ck]] • [[C, Cp]] k . .  [[C, A]] P*, [[C, B]] 

[[c,  c~]] . [[c,  SB]] ~*. [[c, cp]] 

[[C, SA]] s , .  [[C, SB]] 

By Proposition 5 the first two upper rows are exact. This concludes the proof. [] 

THEOREM 7. Let A, B, C be C*-algebras and p: A ~ B a ,-homomorphism. 
Then there is a long exact sequences of Abelian groups 

• -. -+ {{C, B}}q_, 6., {{C, Cp}}q k ,  {{C, A}}q P*, {{C, B}}q 

-~ {{c,  cp})q+, --, . . .  

Proof. The exact sequence of Proposition 6 is natural with respect suspensions 
and inductive limits of exact sequences are exact sequences. Thus, Theorem 7 is a 
straightforward consequence of Proposition 6. 

Let A, B, D be C*-algebras and p: A --+ B a ,-homomorphism. Consider the 
following diagram 

P'. [[d, D]] lIB, D]] 

Susp[ 

[[cp, SD]] ~ ' .  [[SB, SD]] 

where the vertical map is induced by the suspension functor. 

PROPOSITION 8. The suspension map maps the kernel of p* into the image of 6*. 
Proof Suppose that (99t): B + D is an asymptotic homomorphism such that 

(~t o p): A --+ D is null homotopic. Therefore there is an asymptotic homomor- 
phism (gt): A ---+ D[0, 1] such that gt(a)(1) = qot(p(a)) and gt(a)(O) : 0. Note 
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that ~t(0) E C0(T, D) since ~t is asymptotically additive. Thus by replacing qot 
by ~p~(.) - cy~(0) we may assume that ~t(0) = 0. Similarly we may assume that 
gt(O) = 0. A lifting of (S~t) is produced as follows. Define (at): Cp --+ SD by 

gt(a)(2s), 
at(f, a)(s)= ~2t(f(2s- 1)) 

if0~<s4%< 1/2, 

i f l / 2 ~ < s  ~< 1. 

It is not hard to check that (at) is a well defined asymptotic homomorphism. 
We claim that the restriction of (at) to SB is homotopic to (S~t). We have 
5*[[crt]] = [[at o 6]] and 

(a to6) ( f ) ( s )= { O, 
~pt(f(2s - 

i f 0  ~< s ~< 1 / 2 ,  

1)) if  1/2 s 1. 

The equality [[at o 6]] = [[Scyt]] follows since the above formula shows that [[at o 6]] 
is equal to the sum of [[0]] with [[S~t]] in [[SB, SD]]. [] 

THEOREM 9. Let A, B, D be C*-algebras and p: A --+ B a ,-homomorphism. 
Then there is a long exact sequence of Abelian groups 

p* k* 
• -- , {{Cp, D}}q-I 5"> {{B, D}}q > {{A, D}}q --+ {{Cp, D}}q 

6 "  { { B ,  D } } q + l  ) " ' "  

Proof. The , -homomorphism 5 o Sp: S A -~ Cp is null homotopic. Combining 
this with Proposition 8, it follows that the , -homomorphism p: A ~ B induces a 
sequence 

p* 
{{Cp, D})q - I  6"  {{B, D}}q ; {{A, D}}q 

exact in the middle. Recall that the map 5 appears in the mapping cone extension 

O--+ SB ~ C p  k~ A ~0. 

We are going to apply this result for the , -homomorphism k: Cp --+ A. We get that 
the sequence 

5* k* 
{{Ck, D)}q_,  ....... '~ {{A, D)}q ,~ {{Cp, D)}q 

is exact in the middle. The map (51 appears in the mapping cone extension 

0 --, SA -f~ Ck h Cp ""+ O. 
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Like in the commutative case 61 can be identified with Sp, modulo the homotopy 
identification of Ck with SB.  This is again contained in the proof of Theorem 3.8 
in [10]. Thus the above sequence becomes 

{ { S B ,  D } } q - i  p* k* ) {{A, D) )q  ) {{Cp, D) )q  

or  

p* k*) 
{{B, D}}q , {{A, D}}q {{Cp, D}}q. 

The final part of the proof is similar to the proof of Theorem 7. We just apply the 
functor {{., D})q to the first commutative diagram from the proof of Proposition 
6. 

4. Excision 

All the C*-algebras to be considered in this section are separable. In [2] Connes 
and Higson associated an asymptotic homomorphism (Tt): SB ~ d with any short 
exact sequence 

O ~ J - - + A & B ~ O  (7) 

They use this construction to show that SCp ® IC is isomorphic to S J  ® IC in the 
category .4 (see Section 2). In this section we show that the isomorphism still holds 
after removing the compacts operators. 

We begin by reviewing the construction of (7t)- Let 0 <~ ut ~< 1 be an approx- 
imate unit of J which is quasicentral in A. Thus limt--.ooilx - utx[] = 0 for all 
x E d and l i m t ~ l l a u t  - uta[I = 0 for all a E A. We may assume that the map 
t --+ ut is continuous. An obvious way to construct (ut) is by linear interpolation 
of a discrete approximative unit (un) with the same properties [9]. 

Define an asymptotic homomorphism (#t): SA ~ d such that # , ( f  ® a) = 
f(u~)a for f E C0(0, 1) and a E A. This is well defined by the discussion on tensor 
products of asymptotic homomorphisms. Since ut is an approximate unit in d one 
has that l im,~o~#,(g) = 0 for all g E SJ.  Thus (#,) descends to an asymptotic 
homomorphism (Tt): S B  ---+ J. Let a: B ~ A be any right inverse for p. Then up 
to an equivalence 7 , ( f  ® b) = f(ut)a(b) for all f E C0(0, 1) and b E B. No 
continuity assumption on a is necessary. The homotopy class of 7t depends only 
on the exact sequence (7). Indeed another choice (u~) of an approximate unit in d 
which is quasicentral in A gives an asymptotic homomorphism (7~) homotopic to 
(7*) via the homotopy (Ht): S B  ~ d[0, 1], defined by H,( f  ® b)(s) = f ( (1  - 
8)u, + 

Next we give some functorial properties of [[7,]]- 

PROPOSITION 10. Suppose that the diagram 
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(7) 0 , J , A P , B • 0 

(7') 0 • J , A '  P' , B '  , 0 

has exact rows, is commutative and i is injective. Then [[Tt o si]] = [[7;]]. 
Proof. We will think of A' as being a subalgebra of A. Let or' be a right inverse 

of p' and let (ut) be an approximate unit of J which is quasicentral in A. Of course 
(ut) is quasicentral in A' too. Thus we may put 7~(f @ b') = f ( u t ) # ( b ' ) ,  for 
f E C0(0, 1) and b' E B'.  Via the embedding of A' in A, # ( b ' )  is a lifting of 
i(b'). It follows that 

(7t o S i ) ( f  ® b') = 7 t ( f  ® i(b')) = f(ut)cr'(b') 

Thus (fit o S i ) ( f  @ b') = 7~(f @ b'). [] 

PROPOSITION 11. Suppose that the diagram 

(7') 0 J '  A' P' , , , B  , 0  

(7) 0 • J • A P • B , 0 

has exact rows, is commutative and i is an injection. Then [[Tt]] = [[i o 7~]]. 
Proof  We will identify A' with its image in A. Let or' be a right inverse of p'. 

Let (ut) be an approximate unit of J which is quasicentral in A and let (u~) be 
an approximate unit of J~ which is quasicentral in Aq Consider the corresponding 
asymptotic homomorphisms (Tt): S B  --+ J and (7~): S B  -+ J~. One has 7 t ( f  ® 
b) = f(ut)cr'(b) and i oT~(f®b ) = f( i (u~))a'(b) .  Define a homotopy (Ht): S B  
J[O, 1] by H t ( f  @ b)(s) = f( (1  - s)i(u~t) + sut)cr'(b). It is clear that ( l i t )  is a 
homotopy from (i o 7~)to (Tt). [] 

The following remark stated here as a Lemma is made in [2]. A proof is included 
for the sake of completeness. 

LEMMA 12. [2] Let A be a C*-algebra. The homotopy class o f  the asymptotic 
homomorphism defined by the exact sequence 

O -+ S A --, C A -+ A -* O 
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is equal to [[idsA]]. 
Proof  Let (vt) and (ut) be approximate units of C0(0, 1) and A respectively. 

Then (vt ® ut) is an approximate unit of S A ,  quasicentral in CA.  For a E A, 
the map s ~ (1 - s)a is a lifting of a in CA.  With these choices the asymptotic 
homomorphism defined by the given exact sequence in 7t ( f  @ a) = f (vt  @ ut)(  1 - 
s)a,  for all f E C0(0, 1) and a E A. Note that 

lim [lf(vt @ ut)(1 - s)a - f(vt)(1 - s)a]l = o 
t--~OO 

since (ut)  is an approximate unit for A. This is easily seen by approximating f 
with polynomials. Hence, we may take 7 t ( f  ® a) = f ( v t ) ( 1  - s)a. This shows that 
7t = 70® idA, where (70): Co(0, 1) --+ Co(0, 1) is the asymptotic homomorphism 
corresponding to A = C. Thus it suffices to show that [[70]] = [[idco(o,1)]]. After 
adjoining a unit to C0(0, 1) and extending 3 '0 to an unital asymptotic homomor- 
phism, 

7°(e 2~i~) = e2~i~t(s)(1 - s) + s. 

Let 

t s ,  

vt(s)  = 1, 

t ( l  - s), 

i f O < . s < .  1/ t ,  

i f l / t < < s ~ l - 1 / t ,  

i f l - 1 / t < ~ s < .  1. 

_Ol~2~ris'~ C(S1) is With this choice of vt, it is easy to check that for fixed t, ~rtkc ) E a 
degree 1 function. This implies that [[7°]] = [[idvo(0,1)]], (see Corollary 17 below). 

THEOREM 13. The map Si: S J --+ SCp is an isomorphism in the category A .  
Proof  We show that the asymptotic homomorphism ?t defined by the extension 

0 ~ S J  --+ C A  -+ Cp -+ 0 

is an inverse in A for Si .  Consider the following commutative diagram with exact 
r o w s :  

0 ,, S J  , C A  

0 , S J  , C J  

It follows from Proposition 10 and Lemma 12 that 

[[Tt o Si]] = [[idsj]]. 

, Cp , 0  

, o  r , 0  
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This shows that [[Tt]] is a left inverse for Si. To show that [[7t]] is a right inverse 
for Si, consider the following commutative diagram with exact rows. 

0 , SJ  

o • 

. C A  , C p  - 0  

The map CA --+ CCp takes a(s) to (p(a(s + t - st)), a(s)). 
It follows from Proposition 11 and Lemma 12 that [[Si o 7t]] = [[idscp]]. [] 

5. Homology and Cohomology Theories for C*-algebras 

We shall use the results of the previous sections to obtain nonperiodic homology 
and cohomology theories satisfying general excision properties. These theories are 
defined on the category of separable C*-algebras. 

A general discussion on axiomatic homology for C*-algebras is provided in 
[11]. Recall that a homology theory on the category of separable C*-algebras is a 
sequence of covariant functors {hq } from separable C*-algebras to Abelian groups 
which satisfy the following axioms: 

(1) Homotopy axiom: Suppose that % ~b: A ~ B are homotopy equivalent , -  
homomorphisms. Then ~ ,  = ¢, :  hq(A) ~ hq(B) for all q. 

(2) Exactness axiom: Let 

O ~ J ~ A ~ B ~ O  

be an exact sequence of separable C*-algebras. Then there is a boundary map 
hq(B) --+ hq-l(J)  and a long exact sequence 

...--+ h~(J) - ~  hq(A) --~ hq(B) --~ hq-l(J)  ~ ' . .  

The boundary map is natural with respect to morphisms of short exact 
sequences. 

The axioms for cohomology are quite similar [11]. 

THEOREM 14. Let 

O ~ J ~ A ~ B ~ O  
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be an exact sequence of separable C*-algebras. Then for any separable C*-algebra 
C there are long exact sequences of Abelian groups 

• . .  -~ { { c ,  , } } q - 1  ~ { { c ,  : } } q  

-+ { { c ,  J}}q+l  --~ . - .  

• . .  - + { { J ,  c } } q _ l  i*> {{B,  C}}q 

{{B,  c}}~+1 ~ . . .  

i ,  {{C, A}}q P*~ {{C, B}}q 

P*; {{A, C}}q -+ {{J, C}}q 

The connecting maps are given by appropriate compositions with ('Tt), the 
asymptotic homomorphism associated with the given short exact sequence. 

Proof The statement follows from Theorems 7, 9 and 13. [] 

COROLLARY 15. 
(a) For any separable C*-algebra A, the functors {{A, - } ) ,  form a homology 

theory. 
(b) For any separable C*-algebra B, the functors {{ - ,  B} } . form a cohomology 

theory. 

The restrictions of these theories to compact pointed ANR spaces coincide with 
stable homotopy theory and, respectively, stable cohomotopy theory. That is, 

{{C, Co(X)}}q = 7rq(x) and {{C0(X), C}}_q = Try(X). 

This will be proved in Section 5 (see Corollary 17). Thus we are dealing with 
nontrivial nonperiodic theories. If B ~ B ®/~ then, according to [2], the suspension 
map 

[[SA, SB]]---+ [[S2A, S2B]] 

is an isomorphism. Thus {{A, B}} is isomorphic to the E-theory group E(A, B) 
for any stable C*-algebra B. 

6. Commutative C*-Algebras 

In this section we consider asymptotic homomorphisms between commutative C*- 
algebras. However the first result addresses a slightly more general case in view of 
future applications to subhomogeneous C*-algebras. 

PROPOSITION 16. Suppose that A is a separable nuclear C*-algebra such that 
Horn(A, Mn ) is ANR. Then the canonical map 

c: [a, Co(Y) @ Ms] --+ [[a, Co(V) @ Mn]] 

is an isomorphism for any locally compact metrizable space Y. 
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Proof. For C*-algebras A, B we let CP(A, B) denote the space of all linear, 
contractive, completely positive maps from A to B, endowed with the point-norm 
topology. 

In the first part of the proof we show that c is onto. More precisely we prove 
that any asymptotic homomorphism (~t): A ~ Co(Y) ® Ms is equivalent to a 
• -homomorphism. Since A is nuclear we may assume that (~t) is given by some 
linear, contractive, completely positive map qa: A --. Cb(T, Co(Y) ® Mn ). Define 
f : T  × Y --+ CP(A, M,~) by f( t ,  y)(a) = ~(a)(t)(y). Note that CP(A, Ms) 
is a convex weak *-compact subset of (A*) s2, where A* denotes the dual Banach 
space ofA. Hom(A, Mn) is a closed subset of CP(A, Ms). Since Horn(A, Ms) is 
ANR, there is a continuous retraction r of some neighborhood U of Horn(A, M,~) 
onto Horn(A, M,~). The next step of the proof is based on the following claim. 

CLAIM. For any open neighborhood V of Horn(A, Mn ) in CP(A, Ms) there is 
to such that f( t ,  y) E V for all t >>. to and y E Y. 

Proof of the Claim. To get a contradiction assume that there is a sequence 
(ti, Yi) with ti ~ oc such that f( t i ,  Yi) is not in V for all i. Since the complement 
of V in CP(A, Ms)  is compact by passing to a subsequence of (Yi) we may assume 
that f(ti ,  Yi) is convergent to h E CP(A, Ms)\Hom(A, Mn). However, since 
is an asymptotic homomorphism, it follows that h must be a ,-homomorphism. [] 

According to the Claim there is to E T such that f( t ,  y) E U for all t/> to and 
y E Y. Let g: T × Y ~ Hom(A, Ms)be defined by g(t, y) = r(f( t ,  y))for all t/> 
to and y E Y. The map g defines a ,-homomorphism ¢ E Horn(A, Cb(T, Co(Y) ® 
Ms)) given by ~(a)(t)(y) = g(t, y)(a). We show that qo is equivalent to ¢. That 
is qo(a) - ¢(a)  E Co(T, Co(Y) ® Ms), or equivalently 

lim sup IIf(t, y)(a) - g(t, y)(a)l I = 0, 
t-+c~ yEY 

for all a E A. Since A is separable, the topology of CP(A, Ms) is metrizable. If 
(ak) is a dense sequence in the unit ball of A then 

(2<9 

= 2-kll (ak)-  (ak)ll 
k = l  

is a metric on CP(A, Mn). By using this metric all we have to show is that 

lim sup d(f(t ,  y), rf( t ,  y ) )= O. 
t-~oo yEY 

Find a sequence (Ui) of neighborhoods of Horn(A, Mn) contained in U such that 
d(a, ra) <~ 1/i for all a E Ui. According to the above Claim, there is a sequence 
(ti) converging to infinity such that f( t ,  y) E Ui for all t >1 ti and y E ]I. By the 
choice of Ui it follows that d(f(t,  y), rf( t ,  y)) <~ 1/i for all t /> ti and y E Y. 
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Thus lim~__,~supyeyd(f(t, y), r f ( t ,  y)) = 0, and this is easily seen to imply that 
qo(a) - ¢(a)  E C0(T, Co(Y) ® M,~) for all a E A. 

So far we have shown that any asymptotic homomorphism (cpt): A --+ Co(Y) ® 
M,~ is equivalent to (~bt): A --+ Co(Y) ® M,,, where each Ct is a ,-homomorphism. 
To complete the proof of the surjectivity of c note that (Ht): A --+ Co(Y) ® 
M=[0, 1], H,(a)(s) = ~ ( 1 - s ) + t s ( a )  is a homotopy from (~bt) to ~'1. 

Next we show the injectivity of c. Suppose that % ~ E Horn(A, B) are homo- 
topic as asymptotic homomorphisms. Thus, there is an asymptotic homomorphism 
(~t): A -+ Co(Y) ® M,~[0, 1] joining ¢2 with ~b. It follows from the first part of the 
proof that ( ~ )  is equivalent to some asymptotic homomorphism (~t)  such that 
each individual map ~t  is a .-homomorphism. Since the construction of (~,)  is 
based on some retract r onto Horn(A, M~) it follows that ( ~ )  has the same ends 
as (~t).  We conclude that for some big enough t, 8 -+ ~t( .)(s)  is a homotopy of 
• -homomorphisms from ~ to ~b. This shows that the map c is injective. [] 

COROLLARY 17. Let X,  Y, be locally compact metrizable spaces. Suppose that 
X is AN1L Then the natural map 

[Co(X), Co(Y)]-+ [[Co(X), Co(Y)]] 

is a bijection. 

The assumption that X is ANR is essential. This follows from Corollary 19 
below. 

Suppose that X and Y are compact metrizable spaces. The proof of Proposi- 
tion 16 provides a good description of asymptotic homomorphisms (~t): C (X) --+ 
C(Y)  in terms of continuous maps between topological spaces. Up to an equiva- 
lence (~t) corresponds to a unitat positive linear map ~: C ( X )  --+ Cb(T, C(Y) )  
such that ~o(ab) - ~(a)~(b) E Co(T, C(Y) )  for all a, b in C(X) .  This defines 
a continuous map f: T × Y --+ C(X)*,  given by f ( t ,  y)(a) = ~t(a)(y) for all 
a E C(X) .  Here C(X)* is endowed with the weak*-topology. Let M ( X )  denote 
the closed convex subset of C(X)* consisting of positive measures of total mass 
one. X is embedded in M (X) as the set of extreme points. Each x E X corresponds 
to a Dirac measure (Sx. According to the Claim in the proof of Proposition 16, for 
any neighborhood V of X in M ( X )  there is some to >/1 such that f ( t ,  y) E V for 
all t >/to and y E I"-. Conversely given any continuous map f: T × Y --+ M ( X )  
having this property, the formula ~t(a)(y) = f ( t ,  y)(a) defines an asymptotic 
homomorphism ( ~ ) :  C ( X )  --+ C(Y) .  To prove this one has only to check the 
asymptotic multiplicativity of (~t). This goes as follows. Fix a, b E C(X) .  For 
each positive integer n let 

V,~ = (#  E M(X) :  I#(ab) - #(a)#(b)l < I /n}  
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Vn is an open neighborhood of X in M(X) .  By hypothesis there is some tn >>. 1 
such that f ( t ,  y) E Vn whenever t/> t~ and y E Y. This clearly implies that 

lim sup tlf(t, y ) (ab) -  f ( t ,  y)(a)f( t ,  y)(b)l I = 0 
t-+o~ y E Y  

o r  

lim Ilcyt(ab) - ¢yt(a)~yt(b)H = O. 
t--+oo 

The above description gives a clear picture of asymptotic homomorphisms 
between spaces. A ,-homomorphism from C(X )  to C(Y)  corresponds to a con- 
tinuous map from Y to X. An asymptotic homomorphisrn corresponds to a family 
of continuous maps (ft) from Y to the space of probability measures on X,  such 
that the image of fi  approaches X in the weak*-topology as t goes to infinity. 

Let Mo(X) be the convex closure of X in M(X) .  By Krein-Milman theorem 
Mo(X) is dense in M ( X ) .  Thus one can perturb the maps (f t )  to take values in 
Mo(X). f i X  is ANR then one can retract some neighborhood of X in M ( X )  onto 
X in order to get an equivalent family of maps with values in X.  This cannot be 
done for general compact metrisable spaces. The following discussion is relevant 
into this respect. 

Let W denote the Warshaw circle. W can be described as the following closure 
of the sin(1/x) curve: 

and let A be the left vertical side. Note that the quotient space W/A is homeo- 
molOhic to a standard circle S 1. There is a retraction r: W -+ A given by the 
orthogonal projection onto A. It follows that there is a split extension 

0 -+ Co(Sl\pt)  ~ Co(W\pt)  --+ Co(A\pt) --+ O. 

PROPOSITION 18. Suppose that 

O__+ j i-~ A P-L B - + O  

is a split extension of separable C*-algebras and B is contractable. Then there is 
an asymptotic homomowhism (oPt): A --+ J such that [[i o qot]] = [[idA]]. 

Proof By [3] for any split extension: 

O ~  J J~ A P B--+O 
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the mapping cone C ,  is isomorphic to J in "4. By combining this excision result 
with Proposition 6, for any C*-algebra C we get the following exact sequence of 
pointed sets: 

0 ~ [[C, J]] i% [[C, A]] P*> [[C, B]]. 

Since B is contractable it follows that i.: [[C, J]] -+ [[C, A]] is onto for all 
separable C*-algebras C. Finally with C = A we find [[~2t]] E [[A, J]] such that 
i.[[Vo~]] : idA. [] 

COROLLARY 19. The Warshaw circle is isomorphic to the standard circle in the 
category "4. 

Proof Using Proposition 18 we find ~t : Co(W\pt) --+ Co(Sl\pt) such that 
[[i o ~t]] = [[idco(W\pt)]]. In particular ~ induces an isomorphism on K-theory. 
By Corollary 17 ~Yt o i is homotopic to a , -homomorphism. This is necessarily 
induced by a degree one map S 1 ~ S 1 and therefore is homotopic to idc0(sl\p 0. 

It follows that Co(W\pt)  is isomorphic to Co(Sl\pt) in ,4. This remains true after 
we add units. [] 

Although W and S 1 have similar global properties they are not homotopy 
equivalent. However according to Corollary 19 they are homotopy equivalent 
through asymptotic homomorphisms. In particular this implies that Corollary 17 
does not hold for X = W, so that it is essential to assume that X is ANR. Another 
consequence of Corollary 19 is the existence of an asymptotic homomorphism 
C(W)  --+ C(S  i) inducing an isomorphism on Cech cohomology. There are no 
• -homomorphisms C(W)  --+ C ( S  1) having this property. 

Spaces like the Warshaw circle indicate that ordinary homotopy is not well 
suited for the study of singular spaces. For this reason Borsuk developed the 
shape theory as a substitute for the homotopy theory of singular spaces [8]. The 
Warshaw circle is shape equivalent to the standard circle. Corollary 19 suggests 
possible connections between shape theory and the homotopy theory based on 
asymptotic homomorphisms. Also the description of asymptotic homomorphisms 
between commutative C*-algebras after Corollary 17 reveals similarities of .,4 
with the approaching homotopy category of [18]. We clarify these matters in a 
forthcoming paper [16] where the category "4 is identified with a strong shape 
theory for separable C*-algebras that refines the shape theories of [5] and [19]. It 
turns out that for compact metrisable spaces C( X)  is isomorphic to C(Y)  in .,4 if 
and only if X is shape equivalent to Y. Moreover this statement generalizes to a 
noncommutative setting [16]. 
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