ON AF EMBEDDABILITY OF CONTINUOUS FIELDS

MARIUS DADARLAT

ABSTRACT. Let *A* be a separable and exact C*-algebra which is a continuous field of C*algebras over a connected, locally connected, compact metrizable space. If at least one of the fibers of *A* is AF embeddable then so is *A*. As an application we show that if *G* is a central extension of an amenable and residually finite discrete group by \mathbb{Z}^n , then the C*algebra of *G* is AF embeddable.

RÉSUMÉ. Soit A une C*-algèbre séparable et exacte qui est un champ continu de C*algèbres sur un espace connexe, localement connexe, compact et metrizable. Si au moins l'une des fibres de A est embeddable dans une AF algèbre est donc la C*-algèbre A. Comme application, nous montrons que si G est une extension centrale d'un groupe discret amenable et résiduellement fini par le groupe \mathbb{Z}^n , alors la C*-algèbre de G est embeddable dans une AF algèbre.

1. INTRODUCTION

Ozawa has shown that the cone over any separable exact C*-algebra embeds in an AF algebra [8], (see also [10] for a different proof). He then applied a technique of Spielberg [11] to prove that AF embeddability of exact separable C*-algebra is a homotopy invariant. In this note we show that the same techniques combined with a result of Blanchard [1] yield AF-embeddings for certain continuous fields.

Theorem 1.1. Let A be a separable exact C*-algebra. Suppose that A is a continuous field of C*algebras over a connected, locally connected, compact metrizable space. If the fiber A(x) of A is AF embeddable for some $x \in X$, then A is AF embeddable.

This allows us to derive the following embedding theorem for group C*-algebras. The question of whether the C*-algebra of a discrete amenable group is embeddable in an AF algebra is widely open even for elementary amenable groups.

Theorem 1.2. Let $1 \to \mathbb{Z}^n \to G \to H \to 1$ be a central extension of second countable locally compact amenable groups. If $C^*(H)$ is AF embeddable, then so is $C^*(G)$.

Proof. By [9, Thm. 1.2], (see also [3, Lemma 6.3]), $C^*(G)$ is a nuclear continuous field of C*-algebras over the spectrum \mathbb{T}^n of $C^*(\mathbb{Z}^n)$. Moreover, the fiber over the trivial character of \mathbb{Z}^n is isomorphic to $C^*(H)$, which is AF embeddable by hypothesis. The conclusion follows now from Theorem 1.1.

Corollary 1.3. Let $1 \to \mathbb{Z}^n \to G \to H \to 1$ be a central extension of countable discrete groups. *If H* is amenable and residually finite, then $C^*(G)$ is AF embeddable.

²⁰⁰⁰ Mathematics Subject Classification. 46L05.

Key words and phrases. Continuous fields of C*-algebras, AF algebras, amenable groups.

The author was partially supported by NSF grant #DMS-0801173.

MARIUS DADARLAT

and

Proof. $C^*(H)$ is AF embeddable by [2, Cor. 4.6]. The result follows from Theorem 1.2.

Let us note that the group *G* in Corollary 1.3 is not in general residually finite. Indeed, Groves exhibits in [4] examples of finitely generated, non residually finite groups *G* which contain \mathbb{Z} as a central subgroup and such that G/\mathbb{Z} is metabelian and hence residually finite by a classical result of P. Hall [5].

2. Extensions of C^* -algebras

The following result is implicitly contained in Spielberg's paper [11].

Proposition 2.1. Let $0 \to I \to A \to B \to 0$ be an essential semisplit extension of separable C^* -algebras whose class vanishes in $\operatorname{Ext}^{-1}(B, I) \cong \operatorname{KK}_1(B, I)$. Suppose that both I and B are AF embeddable. Then A is AF embeddable.

Proof. For the convenience of the reader we spell out the whole argument. By assumption there is an injective *-homomorphism $\varphi : I \to J$ where J is an AF algebra. After replacing J by the hereditary C*-subalgebra of J generated by $\varphi(I)$ we may assume that φ is approximately unital and so it extends to an injective *-homomorphism $\tilde{\varphi} : M(I) \to M(J)$ between the corresponding multiplier algebras. Since I is essential in A we have that $A \subset M(I)$ and we can identify A with its image $\tilde{\varphi}(A) \subset M(J)$. Therefore since $A \cap J = I$ we obtain just like in [11, 1.11] a commutative diagram with exact rows and injective vertical maps:

The extension $0 \to J \to A + J \to B \to 0$ is obviously semisplit and essential (since $A + J \subset M(J)$) and moreover its class in $\operatorname{Ext}^{-1}(B, J)$ vanishes since it corresponds to the image of zero under the group morphism $\varphi_* : \operatorname{Ext}^{-1}(B, I) \to \operatorname{Ext}^{-1}(B, J)$. We take the tensor product of the extension by the C*-algebra \mathcal{K} of all compact operators on a separable Hilbert space \mathcal{H} . Thus we have reduced the proof to the case of an extension $0 \to I \to A \to B \to 0$ as in the statement of the theorem with the additional property that $I \cong I \otimes \mathcal{K}$ is an AF algebra. Let us denote by $\sigma : B \to M(I)$ the Busby map corresponding to this extension. If $a \mapsto \dot{a}$ denotes the quotient map $M(I) \to M(I)/I$, then we can identify A with

$$E(\sigma) = \{ a \in M(I) : \dot{a} \in \sigma(B) \}.$$

By the assumption on *B* there is an injective *-homomorphism $\lambda : B \to D$ where *D* is a separable AF algebra. Fix an injective representation $\gamma : D \to M(\mathcal{K}) \subset M(I \otimes \mathcal{K}) \cong M(I)$ of infinite multiplicity. Let us set $\psi = \gamma \circ \lambda : B \to M(I)$ and observe that there is an embedding $E(\sigma) \hookrightarrow E(\sigma \oplus \dot{\psi})$ given by $a \mapsto a \oplus \psi(\dot{a})$. By Kasparov's absorption theorem, [7], $E(\sigma \oplus \dot{\psi})$ in isomorphic $E(\dot{\psi})$. On the other hand $E(\dot{\psi}) \subset E(\dot{\gamma})$ and $E(\dot{\gamma})$ is an AF algebra since it is a split extension of AF algebras:

$$0 \to I \to E(\dot{\gamma}) \to D \to 0.$$

2

Lemma 2.2. If X is a connected, locally connected, compact metrizable space, then for any point $x \in X$, $C_0(X \setminus \{x\})$ is embeddable in $C_0[0, 1) \otimes \mathcal{O}_2$.

Proof. By the Hahn-Mazurkiewicz theorem [6, Thm. 3-30], there is a continuous surjection $h : [0,1] \to X$ and hence an injective *-homomorphism $C(X) \to C[0,1]$. If $t \in [0,1]$ is such that h(t) = x then

$$C_0(X \setminus \{x\}) \hookrightarrow C_0[0,t) \oplus C_0(t,1].$$

The latter C*-algebra embeds in $C_0[0,1) \otimes \mathcal{O}_2 \otimes M_2(\mathbb{C}) \cong C_0[0,1) \otimes \mathcal{O}_2.$

Proof of Theorem 1.1. By the main result of [1], there is a C(X)-linear injective *-homomorphism $A \hookrightarrow C(X) \otimes \mathcal{O}_2$. Therefore A embeds in the C*-algebra

$$E = \{ f \in C(X) \otimes \mathcal{O}_2 : f(x) \in A(x) \}.$$

The evaluation map at *x* gives a split extension

$$0 \to C_0(X \setminus \{x\}) \otimes \mathcal{O}_2 \to E \to A(x) \to 0.$$

We have that A(x) is AF embeddable by hypothesis and that $C_0(X \setminus \{x\}) \otimes \mathcal{O}_2$ is embeddable in $C_0[0,1) \otimes \mathcal{O}_2$ by Lemma 2.2. By the main result of [8], $C_0[0,1) \otimes \mathcal{O}_2$ is AF embeddable. We conclude that E and hence A is AF embeddable by applying Proposition 2.1.

References

- É. Blanchard. Subtriviality of continuous fields of nuclear C*-algebras, J. Reine Angew. Math. 489 (1997), 133– 149.
- M. Dadarlat. On the topology of the Kasparov groups and its applications, J. Funct. Anal. 228 (2) (2005), 394–418.
- [3] S. Echterhoff and D. P. Williams. Crossed products by $C_0(X)$ -actions, J. Funct. Anal. 158 (1) (1998), 113–151.
- [4] J. R. J. Groves, Some examples of finiteness conditions in centre-by-metabelian groups, J. Austral. Math. Soc. Ser. A 38 (1985), no. 2, 171–174.
- [5] P. Hall On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595–622.
- [6] J. G. Hocking and G.I S. Young, *Topology*, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961.
- [7] G. G. Kasparov. Hilbert C*-modules: Theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), 133–150.

[8] N. Ozawa. Homotopy invariance of AF-embeddability, Geom. Funct. Anal. 13 (1) (2003), 216–223.

- [9] J. A. Packer and I. Raeburn. On the structure of twisted group C*-algebras, Trans. Amer. Math. Soc. 334 (2) (1992), 685–718.
- [10] M. Rørdam. *A purely infinite AH-algebra and an application to AF-embeddability,* Israel J. Math. **141** (2004), 61–82.
- [11] J. S. Spielberg. Embedding C^* -algebra extensions into AF algebras, J. Funct. Anal. 81 (2) (1988), 325–344.

Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN, 47907-2067, USA

E-mail address: mdd@math.purdue.edu