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Let A be a separable exact quasidiagonal C*-algebra. Suppose that 7n: 4 - L(H)
is a faithful representation whose image does not contain nonzero compact
operators. Then there exists a sequence ¢,: 4 - L(H) of completely positive con-
tractions such that ||n(a) — ¢,(a)| — 0 for all ae 4, and the C*-algebra generated
by ¢,(A4) is finite dimensional for each n. As an application it is shown that if the
C*-algebra generated by a quasidiagonal operator 7 is exact and does not contain
any nontrivial compact operator, then 7 is norm-limit of block-diagonal operators
D=D,®D,® --- with sup; rank(D;) < 0. © 1999 Academic Press

1. INTRODUCTION

Let n: A > L(H) be a representation of a separable exact C*-algebra.
Then 7 is nuclear [Ki,], hence it is a point-norm limit of completely
positive contractions ¢,: 4 - L(H) such that ¢,(A4) are finite dimensional
subspaces of L(H). In general one cannot arrange that the C*-algebra
generated by ¢,(A) is finite dimensional for that would imply that 7(A4) is
a quasidiagonal set of operators. In this note we show that if 4 is exact and
n(A) N K(H)= {0}, then the quasidiagonality of n(A) is the only obstruc-
tion to such an approximation.

In this introductory part, we give some background and discuss some
motivation. An open question will be formulated at the end of the paper.

Let H be an infinite dimensional complex separable Hilbert space.
We denote by L(H) the linear bounded operators on H and by K(H) the
compact operators. If E is a subset of L(H) we denote by C*{E} the
C*-subalgebra of L(H) generated by E. The quasidiagonal operators were
introduced in [H]. A set of operators B < L(H) is quasidiagonal if there is
an increasing sequence (p,) of finite dimensional selfadjoint projections
converging to one, such that |bp,— p,b| — 0 for all be B. A separable
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C*-algebra 4 is quasidiagonal if there is a faithful representation 7: A — L(H)
such that z(A4) < L(H) is a quasidiagonal set of operators. By Voiculescu’s
Theorem [ Vo, ], if a separable C*-algebra A4 is quasidiagonal, then n(A4) is
a quasidiagonal set of operators for any faithful, essential representation of
A. By an essential representation we mean a representation whose image
does not contain nonzero compact operators.

It is easy to see that an operator is quasidiagonal if and only if it is
norm-limit of block-diagonal operators [H]. An operator Te L(H) is
called block-diagonal if T=T,®7T,® --- for some decomposition
H=H, ®H,® --- with all H, finite dimensional. If in addition one could
arrange that sup{dim(H;):i=1,2,..} =k <oo, we write that T e BD(k)
and say that T is block-diagonal with blocks of bounded dimension ( < k).
Answering a question of Herrero, Szarek [Sz] has shown that the union
of BD(k) with k >1 is not dense in the set of block-diagonal operators (or
equivalently, in the set of quasidiagonal operators). Two other proofs of
this result were given in [ Vo,, Vos]. Voiculescu makes the remark that T
is approximable in norm by operators in the union of BD(k) if and only
if 7' is the norm-limit of a sequence of operators (7,,) such that C*{T,} is
finite dimensional for all n. That implies that the inclusion C*{T} = L(H)
must be a nuclear map [ Vo, ]. Therefore, the existence of non-approximable
block-diagonal operators is reduced, essentially, to the existence of separable
quasidiagonal C*-algebras that are not nuclearly embeddable. Voiculescu
[ Vos] uses discrete residually finite dimensional groups with the property
T of Kazhdan, such as SL5(Z), to exhibit concrete example of such algebras
and hence of block-diagonal operators which are not approximable by
operators in the union of BD(k). Subsequently Wassermann [ Wa, ] shows
that nuclearly embeddable C*-algebras are exact and shows that the
C*(F,) ® M,(C) has a generator which can be represented as a block-
diagonal operator without the approximability property discussed above.

As opposed to these examples, we show that the left regular representa-
tion of finitely generated, discrete, amenable, residually finite groups can be
approximated in the point-norm topology by representations with finite
dimensional image (see Corollary 4).

Davidson, Herrero, and Salinas [ DHS] have shown that in fact the
union of BD(k) is nowhere dense in the set of block-diagonal operators. In
view of the results of [ Vo,] they ask whether T e |J, BD(k) provided that
T is a quasidiagonal operator with C*{T} nuclear. We offer a positive
answer to this question under the additional assumption that the C*{T}
does not contain any nonzero compact operators (see Corollary 8). The
study of nuclear quasidiagonal C*-algebras goes back to Salinas [Sa].
A new approach to this class is developed by Blackadar and Kirchberg
[BK,, BK,].
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For C*-algebras 4, B we let CP(A, B) denote the set of all linear
completely positive contractions from 4 to B. Such a map will be called a
CP-contraction. A C*-algebra A is called nuclearly embeddable if there is a
nuclear *-monomorphism : 4 — B for some C*-algebra B. If 4 is separable,
B can be chosen to be separable. As an easy application of Arveson’s extension
theorem one checks that any CP-contraction from a nuclearly embeddable
C*-algebra to L(H) is nuclear. Any nuclearly embeddable C*-algebra is
exact by a result of Wassermann [ Wa, ]. Conversely, any exact C*-algebra
is nuclearly embeddable as proved by Kirchberg [ Ki, ]. In particular exact-
ness passes to subalgebras.

Much more is true. Quotients of a separable exact C*-algebras are exact.
In fact the class of separable exact C*-algebras coincides with the class of
separable subnuclear C*-algebras [ Ki,]. A rather selfcontained proof that
any separable exact C*-algebra is embeddable as a C*-subalgebra of the
Cuntz algebra 0, is given in [ KiPh]. We refer the reader to [ Pa, Wa,, Ki,]
for basic facts on complete positivity, nuclearity and exactness.

Let us emphasize, that in this paper we only need to use the equivalence
between nuclear embeddability and exactness. A concise proof of this
equivalence is presented in Chapter 7 of [ Wa,].

2. RESULTS

Let H be an infinite dimensional separable Hilbert space and let (H,,) be
an increasing chain of finite dimensional linear subspaces of H whose union
is dense in H. If B is a C*-algebra, let Hy denote the Hilbert B-module
H® B. As in [Ka], L(H) is regarded as the subalgebra of scalar operators
in L(Hpg).

TaeorREM 1 [Kal]. Let A be a separable C*-algebra and let p: A — L(H)
< L(Hpg) be a faithful representation such that p(A)nK(H)={0}. Let
@: A — B be a nuclear CP-contraction. Then there is a sequence (£,) in Hpg
such that

(i) lim, o [@(a) = <&, pla) &> | =0 for all ae A.
If A, B are unital, p(1)=1 and @(1)=1, then we may arrange that

(i) <&, ¢, =1 and ¢, € Hy,) ® B for all n, where (j(n)) is some
increasing sequence.

Proof. Part (i) is a consequence of [ Ka, Theorem 4]. For part (ii),
assuming that (&,) is as in (i), we see that <&, £,> — 15 since both ¢ and
p are unital. Next, since the union of H, ® B is dense in Hy we find 4, €
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H;,y ® B with |, —h, || — 0, hence <{h,, h,»> — 1. Then for n large 7, :=
h,Chy, b,y =% is a well defined vector in Hj,, ® B with {7, 7,> =1, and
€, —n, |l = 0. Together with (i) this gives

lim lp(a) = <n,, pla) 1,211 =0

forallae 4. |

A C*-algebra A is called residually finite dimensional (abbreviated RFD)
if for any nonzero element a € 4, there is a finite dimensional representation
7 of A such that n(a)+#0. The following proposition is a key tool for our
approach.

ProposITION 2. Let A be a separable RFD C*-algebra and let ¢p: A — B
be a nuclear x-homomorphism to a unital C*-algebra B. Then there is a sequence
T, A—> M, (B) of CP-contractions and there is a sequence ,: A —
M., ,,(B) of x-homomorphisms with finite dimensional image such that

lim [|diag(¢(a), 7,(a)) —p,(a)] =0
for all ae A. The x-homomorphisms u, are of the form u,(a)=u,(p,(a)
® 1) uy where p,: A— M,,,(C) are x -representations and u, € M ,,(B)
are unitaries. If A is unital and (1 ) =1, then we may arrange that t,, and
U, are unital.

Proof. After replacing ¢ by its unital extension @: 4 — B (which is also
a nuclear CP-contraction by [ ChE]), we may assume that A4 is unital and
p(l)=1. Let =n,: 4— L(K,) be a separating sequence of unital finite
dimensional #-representations such that each 7, repeats infinitely many
times in the sequence. Let H,=K, ® --- ®K,. Let (£,) be given by
Theorem 1(ii), applied for ¢ and p= @ >, =,. Define p,: A —> L(H,,) by
Pr=T1 @ -+ @7y, If k(n) denotes the dimension of Hj,,, then H,,, ® B
~ B*" and L(H,,, ® B) = M,(B). The isometry V, €L(B, H, ® B),
V,.(b)=¢,b corresponds to a partial isometry v, € M;,(B) with initial
support e, =v,fv, =15 ® e;; and final support f, = v, v¥. Identifying B with
the (1, 1)-corner of M, (B), we have from Theorem 1(i), [@(a) — v,k p,(a) v, |l
— 0, for all ae A4. 1t is clear that p(a) f,=p,.(a) f, and as in [ Ar, p.348],
one checks that |v,¢(a)—p,(a)v,|| >0 for ae 4. This follows from the
identity

(Unga(a) _pn(a) Un)* (Un(p(a) _pn(a) vn)
=(vy pala*a)v,— p(a*a))

+(p(a*) — vy py(a*) v,) pla) + p(a*)(p(a) — v, pla) v,).
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Moreover, using

[pn(a)9 Unl):,k] = (pn(a) Uy — Un(ﬂ(d)) U:Lk + Un(Un(ﬂ((l*) _pn(a*) Un)*

we see that |[ p,(a), f,]1] — 0 for all ae€ A. Set r(n)=2k(n) and let u, be a
unitary element of M,,,(B) defined by

Un l_fn
u, =
" \l—e, vF )

where 1 denotes the unit of B, Define the maps 4, 7, and ¢, by

(a):u*<pn(a) 0 >u
Hn n 0 pn(a) ns

)=z (1S P 0 p,,(()a)>u”’
o (a)=u? (fnpn(oa) I g) ", = <v:}‘pn(()a) Un 8)

Then

lpn(a) +7,(a) = p(a)| < (1= 1) pul@) ful + 1 fupal@)(1 = 1) =0
since ||[ p(a), f,1] — 0. Since ¢,(a) — ¢(a), we obtain that

lo(a) +7,(a) —pa(a)| -0

as n— oo, for all ae 4. Note that ¢(l,)=13&e¢e;;=¢, and 7,(1,)=
(5% 9), hence we may identify ¢ + 7, with diag(¢, t,). Finally note that
i, has the desired form and that both u, and 7, are unital whenever ¢ is
unital. ||

ProrosiTION 3. Let A be a separable C*-algebra and let n: A — L(H) be
a faithful essential representation. Then A is nuclearly embeddable (exact)
and RFD if and only if there exists a sequence p,: A — L(H) of representa-
tions with finite dimensional image such that ||n(a)— p,(a)| — 0 for all ae A.

Proof. (<) = is faithful and nuclear since it is approximable by
representations with finite dimensional image. This shows that A is
nuclearly embeddable. 4 is RFD since (p,,) is a separating family, and each
p, 1s an (infinite) multiple of some finite dimensional representation.

(=) We may assume that 7 is nondegenerate. By Voiculescu’s
Theorem [V,], any two faithful, essential, nondegenerate representations
of A are approximately unitarily equivalent. Therefore it suffices to prove
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that there exists some faithful essential representation n’ that has the stated
approximation property. We consider first the case when A is unital and =
is unit-preserving. Since 4 is nuclearly embeddable, there is a nuclear unital
x-monomorphism 1: A - B to some separable unital C*-algebra B. Let
Fc A be fixed. Following [ Ar], for two maps ¢,: 4 — L(H;), i=1,2 and
0>0 we will write @, ~;5 ¢, if there is a unitary v: H, - H; such that

lo1(a) —vps(a) v¥| <o

for all aeF. This is a symmetric relation and ¢, ~5 @, together with
@5 ~, @3 implies that ¢; ~;, @5. Suppose now that F'< 4 is finite and fix
&¢>0. To prove the proposition it is enough to find a unital representation
p': A— L(H') with finite dimensional image and a faithful essential repre-
sentation n': A —» L(H) such that 7’ ~,, p'.

By Proposition 2, applied for ¢ =1, there is a unital CP-contraction
. A—> M, _,(B), ne N, and there exist a unital representation p: 4 - M,(C)
and a unitary u € U,(B) such that

Idiag(1(a), (a)) —u(p(a) ® 1) u*|| <e (1)

for all ae F. Let m: B— L(H) be a unital, faithful, essential representation.
If r is a positive integer, let 7, =id, @ = : M (B) > M, (L(H)). Let I denote
the identity operator on H. Using (1) we have

Idiag(mi(a), 7, _yt(a)) —m,(u)(p(a) @ 1) m,(u)*|
= |7, (diag(i(a), ©(a)) —u(p(a) @ 1 5) u*)| <& (2)
for all ae F. Letting n' =n1, A=mx,,_,7, and p' = p ® I, we have from (2)
p~. T DA (3)
Since #’ is unital faithful and essential, by Voiculescu’s Theorem, we have
T@®n ~, 7, (4)
T@®p ~, 7. (5)
Combining (3), (4), and (5)
P~ DA~ W DT DA~ T Dp ~, 7.

It follows that 7’ ~,4, p". This concludes the proof in the unital case, since
p and hence p’ = p ® I has finite dimensional image. Now assume that 4 is
non-unital. Let 4 be the unitization of 4 and let #: A — L(H) be the unital
extension of 7. Since 7 is faithful and essential, so is 7 (as A is nonunital.)
Thus the proof of the non-unital case reduces to the unital case. ||
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If A is RFD, then any of its representations can be approximated by
finite dimensional representations in a weaker topology, related to Fell’s
topology (see [ ExL]).

Recall that a discrete group G is called residually finite if, for any finitely
many distinct elements g,, g,, ..., g, € G, there is a morphism 8: G —» H to
a finite group H such that 6(g,), 8(g,), ..., 8(g,) are distinct. A finitely
generated group is residually finite if and only if it has a separating family
of finite dimensional representations ([ Wa,, p. 25]).

COROLLARY 4. Let G be a discrete, countable, amenable, residually finite
group. If 4: G— L(/*(G)) is the left regular representation of G, then there
is a sequence of representations p,: G— L({/*(G)) with finite dimensional
image such that || A(g) — p.(g)|l = 0 for all g e G. Conversely, if G is discrete,
finitely generated, and A is approximable by representations with finite
dimensional image, then G is residually finite and amenable.

Proof. We may assume that G is infinite. In that case C*(G)n
K(/*(G))=1{0}; (we are indebted to Pierre de la Harpe for showing us a
one-line proof of this, based on an argument in [dH]). If G is residually
finite, then the natural map C*(G)— C*(G) factors through the direct sum
of a family of finite dimensional representations of C*(G). The proof of this
fact is similar to the proof of Proposition 3.3 in [ Wa,]. Thus, if in addition
G is amenable, then C*(G)= C*(G) is nuclear and RFD. Therefore the
first part of the statement follows from Proposition 3.

Suppose now that 1 is approximable by (p,) as above. Then C}*(G) is
quasidiagonal, hence G is amenable by [ Ro]. It is also clear that (p,,) is
a separating family, and each p,, is an infinite multiple of some finite dimen-
sional representation. ||

LEMMA 5. Let B be a separable C*-algebra and let A be a subalgebra of
B such that AB=B. Let n: A— L(H) be a faithful, essential representation.
Then there exists a sequence w,: B— L(H) of faithful, essential representa-
tions such that |n(a) —z,(a)| — 0 for all ae A.

Proof. Without any loss of generality we may assume that 7 is non-
degenerate. Let p: B— L(K) be a nondegenerate, faithful, essential representa-
tion. Let p, denote the restriction of p to A. Then p 4 is nondegenerate,
as AB=B.

By Voiculescu’s Theorem there is a sequence of unitaries u,: K— H such
that

|m(a) —u,p 4(a) u; || -0
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for all ae A. Define =n,: B— L(H) by =,(b)=u,p(b) u}. Then it is clear
that the sequence (x,) satisfies the conclusion of the lemma. |

THEOREM 6. Let A be a separable exact quasidiagonal C*-algebra. Let
n: A — L(H) be a faithful representation such that n(A) n K(H) = {0}. Then
there exists a sequence @,: A — L(H) of completely positive contractions such
that C*{¢,(A)} is finite dimensional for all n>1 and lim,,_, , |7(a) — @,(a)|
=0 for all ae A.

Proof. Let A< L(E) be a realization of 4 as a concrete algebra of
operators on a separable Hilbert space E, such that 4 N K(E)= {0}, and
AE=E, hence A(A+ K(E))=A+ K(E). Note that 4+ K(E) is exact by
virtue of being a (semi)split extension of the compacts by the exact algebra
A [Ki,]. Indeed if

0-J->C—->B—-0

is a semisplit exact sequence of C*-algebras with J and B exact, then it is
easy to check that by taking minimal tensor product with any C*-algebra
D, one obtains an exact sequence

0-J®D—->CR®D—->BRD-D0.

By the 3 x 3-Lemma and the definition of exactness, this shows that C is
exact.

Fix {ay, .., a,,} =4 and ¢>0. We will find a CP-contraction ¢: 4 - L(H)
such that ||7(a;) — ¢(a,)|| <4e, 1 <i<m, with C*{p(A)} finite dimensional.
Since A = L(E) is quasidiagonal, reasoning as in the proof of [ Ar, Theorem 2],
we find operators x; € L(E), 1<i<m, which are simultaneously block-
diagonal with respect to a decomposition E=E, @ E, ® --- with all E;
finite dimensional and such that

lla;,—x; | <e and a,—x;€eK(E), I<i<m.

If D= C*{xy, .., x,,}, then D<= A + K(E) hence D is exact. Moreover, since
Dc L(E,))®L(E,)® ---, we see that D is RFD being a subalgebra of an
RFD algebra.

By Lemma 5, there is a faithful essential representation o: 4 + K(E) —
L(H) such that ||n(a;) —o(a;)|| <&, 1 <i<m. Note that the restriction of ¢
to D is a faithful essential representation. By Proposition 3, there is a
representation p: D — L(H) with finite dimensional image and such that
lo(x;)—p(x;)|| <& for 1 <i<m. Let ¢p: A+ K(E) — p(D) be a completely
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positive contractive extension of p given by Arveson’s Extension Theorem
[Pa]. We have

Im(a;) — p(a)| < lln(a;) —ala))| + [[o(a;) —a(x)| + [lo(x;) — p(x,)|

+llo(x,) —ola))ll <4e

for 1 <i<m. We conclude by noting that the C*-algebra generated by
@(A) is contained in p(D) hence it is finite dimensional. ||

COROLLARY 7. Let A be a separable, simple, exact, quasidiagonal
C*-algebra. Then any representation of A is a point-norm limit of CP-contrac-
tions ¢, such that C*{¢,(A)} is finite dimensional for all n>1.

Proof. Let m: A— L(H) be a representation of 4. We may assume that
n#0, hence n is faithful as 4 is simple. Since n(A4) N K(H) is a two-sided
closed ideal of (A ), we must have either 7(A4) N K(H) = {0}, in which case
n(A4) is quasidiagonal so that the result follows from Theorem 6, or n(A4) =
n(A) N K(H) < K(H), in which case we can take ¢,(a)=p,n(a) p,, a€ A,
where (p,) is a sequence of finite dimensional selfadjoint projections
converging strongly to 7. |

COROLLARY 8. Let TelL(H) be a quasidiagonal operator such that
C*{T} nK(H)={0}. Then C*{T} is nuclearly embeddable (exact), if and
only if for any ¢ >0, there is k€ N and there exists an operator S e BD(k)
(i.e., S is block-diagonal with all blocks of dimension <k) such that
| T—S| <e.

Proof. (=) This implication follows from Theorem 6, by elementary
facts from the representation theory of finite dimensional C*-algebras.

(<) This is proved in [ Vo,, Proposition 1.2].

We end this note with the following open question.

QUESTION. Let A be a separable exact C*-algebra. Suppose that
n: A— L(H) is a representation such that n(A) is a quasidiagonal set of
operators. Does there exist a sequence @, A— L(H) of completely positive
contractions such that ||n(a) —¢,(a)| — 0 for all ae A and C*{¢,(A)} is
finite dimensional for all n>1?

Note that, by Theorem 6, the above question has a positive answer if one
further assumes that 7(4) N K(H)={0}.
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