Inductive Limits of C(X)-Modules and Continuous Fields of AF-Algebras

MARIUS DĂDĂRLAT AND CORNEL PASNICU

INCREST, Department of Mathematics, Bd. Pacii 220, Bucharest 79622, Romania

Communicated by the Editors

Received December 22, 1986

Let X be a compact connected space and $(A_i)_{i=1}^{\infty}$ a sequence of finite-dimensional C^* -algebras. Each inductive limit $L = \lim_{i \to \infty} C(X) \otimes A_i$, with C(X)-linear connecting *-homomorphisms, is *-isomorphic as C(X)-module to the C*-algebra defined by a certain continuous field \mathscr{E}_L of AF-algebras. We classify the C*-algebras L for which \mathscr{E}_L has simple fibres. In the general case the classification is given in the category of the C*-algebras which are C(X)-modules. \bigcirc 1989 Academic Press, Inc.

INTRODUCTION

In [5] E. G. Effros posed the problem of studying inductive limits of C^* -algebras of the form $C(X) \otimes A$, with A finite-dimensional, as a generalization of the AF-algebras.

Let X be a connected compact space. In this paper we give some classification results concerning inductive limits $\lim_{i \to \infty} C(X) \otimes A_i$, with A_i finite-dimensional, where the bonding homomorphisms are unital, injective, and C(X)-linear. The problem here is to measure and to store the possible twistings over X of the embeddings of A_i into A_{i+1} . The C(X)-linear *-homomorphisms $C(X) \otimes A_i \rightarrow C(X) \otimes A_{i+1}$ correspond to homomorphisms $A_i \rightarrow C(X) \otimes A_{i+1}$ which are classified, modulo inner equivalence, by matrices of complex vector bundles over X (see Corollary 2.2). Each inductive limit $L = \lim_{X \to \infty} C(X) \otimes A_i$, with C(X)-linear connecting *-homomorphisms, is isomorphic to the C^* -algebra defined by a continuous field \mathcal{E}_{I} of AF-algebras canonically associated with L (see Proposition 3.1). This field is not always trivial as it is shown in Proposition 5.1. Moreover, we are able to classify the inductive limits L in the case when the fibres of \mathscr{E}_L are simple, using the semigroup of the homotopy classes of projections in $\bigcup_{n=1}^{\infty} M_n \otimes L$ (see Theorem 4.4). If the canonical map $Vect(X) \rightarrow K^{0}(X)$ is injective (in particular, this occurs provided that X is a connected finite CW-complex of dimension ≤ 3) this

result may be given using the pointed ordered group $(K_0(L), K_0(L)_+, [1_L])$ (see Theorem 4.6). Also we classify the C*-algebras L as C(X)-modules (see Theorems 4.3 and 4.5).

1. PRELIMINARIES

If A, B are unital C*-algebras we shall denote by Hom(A, B) the space of all unital *-homomorphisms from A to B endowed with the topology of pointwise convergence. Two homomorphisms Φ_1 , $\Phi_2 \in \text{Hom}(A, B)$ are said to be inner equivalent if there is a unitary $u \in B$ such that $\Phi_2 = u\Phi_1 u^*$. Let Hom(A, B)/~ be the set of classes of inner equivalent homomorphisms from A to B. If A and B are C(X)-modules, we shall denote by Hom_{C(X)}(A, B) the subspace of Hom(A, B) consisting of all C(X)-linear homomorphisms.

We shall use Vect(X) to denote the set of isomorphism classes of complex vector bundles on X, and $Vect_k(X)$ to denote the subset of Vect(X)given by bundles of dimension k. Vect(X) is a semiring under the operations \oplus and \otimes . In $Vect_k(X)$ we have one naturally distinguished element [k]—the class of the trivial bundle of dimension k.

As usual we denote by G(n, k) the Grassmann manifold of all subspaces of \mathbb{C}^n of dimension k and by U(n) the Lie group of all unitaries of M_n . Any continuous map $F: X \to G(n, k)$ defines a vector bundle $E_F = \{(x, F(x)\eta):$ $x \in X, \eta \in \mathbb{C}^n\} \subset X \times \mathbb{C}^n$. Let $H^1(X, U(k)_c)$ denote the cohomology set associated with the sheaf of germs of continuous functions $X \to U(k)$. We have a bijection $\operatorname{Vect}_k(X) \to H^1(X, U(k)_c)$ which takes classes of vector bundles to classes of cocycles [8].

We describe below the cocycle of E_F . The fibration

$$U(k) \times U(n-k) \rightarrow U(n) \rightarrow G(n,k)$$

induces the exact sequence of pointed cohomology sets

$$C(X, U(n)) \longrightarrow C(X, G(n, k)) \xrightarrow{\delta} H^{1}(X, U(k)_{c}) \times H^{1}(X, U(n-k)_{c})$$
$$\longrightarrow H^{1}(X, U(n)_{c})$$

(for details see [2]). Denote $\delta(F) = (\delta_1(F), \delta_2(F))$.

1.1. LEMMA. The vector bundle E_F is given by the cocycle $\delta_1(F)$.

Proof. Choose an open covering (U_i) of X and continuous maps $u_i: U_i \to U(n)$ such that

$$F(x) = u_i(x) \begin{bmatrix} 1_k & 0\\ 0 & 0 \end{bmatrix} u_i(x)^* \quad \text{on } U_i.$$

Then

$$u_i(x)^* u_j(x) = \begin{bmatrix} u_{ij}(x) & 0 \\ 0 & u'_{ij}(x) \end{bmatrix} \quad \text{on } U_i \cap U_j$$

and $\delta(F) = ((U_i, u_{ij}), (U_i, u'_{ij}))$, by definition. Consider the local trivializations for E_F

$$U_i \times \mathbf{C}^k \xrightarrow{\phi_i} E_F|_{U_i} = \left\{ \left(x, u_i(x) \begin{bmatrix} 1_k & 0 \\ 0 & 0 \end{bmatrix} u_i(x)^* \eta \right) : x \in U_i, \eta \in \mathbf{C}^n \right\}$$

given by $\phi_i(x, \xi) = (x, u_i(x) \begin{bmatrix} \xi \\ 0 \end{bmatrix}), x \in U_i, \xi \in \mathbb{C}^k$.

The cocycle (U_i, b_{ij}) of E_F can be computed using the local trivializations

$$b_{ij}(x)\xi = (\phi_i^{-1})_x (\phi_j)_x \xi = (\phi_i^{-1})_x u_j(x) \begin{bmatrix} \xi \\ 0 \end{bmatrix}$$

= $(\phi_i^{-1})_x u_i(x) u_i(x)^* u_j(x) \begin{bmatrix} \xi \\ 0 \end{bmatrix}$
= $(\phi_i^{-1})_x u_i(x) \begin{bmatrix} u_{ij}(x) & 0 \\ 0 & u'_{ij}(x) \end{bmatrix} \begin{bmatrix} \xi \\ 0 \end{bmatrix}$
= $(\phi_i^{-1})_x u_i(x) \begin{bmatrix} u_{ij}(x)\xi \\ 0 \end{bmatrix} = u_{ij}(x)\xi, \quad x \in U_i \cap U_j, \xi \in \mathbb{C}^k.$

1.2. COROLLARY. Let $F: X \to G(n, q)$ be a continuous map and define a continuous map $\tilde{F}: X \to G(nk + p, qk)$

$$\widetilde{F}(x) = v_i(x) \begin{bmatrix} F(x) \otimes 1_k & 0 \\ 0 & 0_p \end{bmatrix} v_i(x)^*, \qquad x \in U_i,$$

where (U_i) is an open covering of X and $v_i: U_i \rightarrow U(nk + p)$ are continuous maps satisfying

$$v_i(x)^* v_j(x) = \begin{bmatrix} 1_n \otimes a_{ij}(x) & 0\\ 0 & a'_{ij}(x) \end{bmatrix}, \qquad x \in U_i \cap U_j$$

for some continuous maps $a_{ij}: U_i \cap U_j \to U(k)$ and $a'_{ij}: U_i \cap U_j \to U(p)$. Let *H* be the vector bundle corresponding to the cocycle (U_i, a_{ij}) . Then $E_{\overline{F}}$ is isomorphic to $E_F \otimes H$.

Proof. We may assume that $F(x) = u_i(x) \begin{bmatrix} 1_0 & 0 \\ 0 & 0 \end{bmatrix} u_i(x)^*$ on U_i , where $u_i: U_i \to U(n)$ are continuous and

$$u_i(x)^* u_j(x) = \begin{bmatrix} u_{ij}(x) & 0 \\ 0 & u'_{ij}(x) \end{bmatrix} \quad \text{on} \quad U_i \cap U_j.$$

We get the following formula for \tilde{F} on U_i :

$$\widetilde{F}(x) = v_i(x) \begin{bmatrix} u_i(x) \otimes 1_k & 0 \\ 0 & 1_p \end{bmatrix} \begin{bmatrix} 1_q & 0 \\ 0 & 0 \end{bmatrix} \otimes 1_k & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_i(x)^* \otimes 1_k & 0 \\ 0 & 1_p \end{bmatrix} v_i(x)^*$$

so that we can compute $\delta(\tilde{F})$. Indeed, for $x \in U_i \cap U_j$ we have

$$\begin{bmatrix} u_i(x)^* \otimes 1_k & 0 \\ 0 & 1_p \end{bmatrix} v_i(x)^* v_j(x) \begin{bmatrix} u_j(x) \otimes 1_k & 0 \\ 0 & 1_p \end{bmatrix}$$
$$= \begin{bmatrix} u_i(x)^* \otimes 1_k & 0 \\ 0 & 1_p \end{bmatrix} \begin{bmatrix} 1_n \otimes a_{ij}(x) & 0 \\ 0 & a'_{ij}(x) \end{bmatrix} \begin{bmatrix} u_j(x) \otimes 1_k & 0 \\ 0 & 1_p \end{bmatrix}$$
$$= \begin{bmatrix} u_{ij}(x) \otimes a_{ij}(x) & 0 & 0 \\ 0 & u'_{ij}(x) \otimes a_{ij}(x) & 0 \\ 0 & 0 & a'_{ij}(x) \end{bmatrix}.$$

Hence $E_{\tilde{F}}$ is given by the cocycle $(U_i, u_{ij} \otimes a_{ij})$.

2. Homomorphisms of C(X)-Modules

In this section we classify the homomorphisms in $\operatorname{Hom}_{C(X)}(C(X) \otimes A, C(X) \otimes B)$ within inner equivalence, where $A = M_{n_1} \oplus \cdots \oplus M_{n_r}, B = M_{m_1} \oplus \cdots \oplus M_{m_s}$, and X is compact and connected.

Any homomorphism $\Phi \in \text{Hom}_{C(X)}(C(X) \otimes A, C(X) \otimes B)$ is uniquely determined by its restriction to A. This allows us to identify $\text{Hom}_{C(X)}(C(X) \otimes A, C(X) \otimes B)$ with $\text{Hom}(A, C(X) \otimes B)$ as topological spaces, identification which preserves the inner equivalence classes. By Proposition 1 in [3] it follows that there is a bijection

$$\delta: \operatorname{Hom}_{C(X)} (C(X) \otimes A, C(X) \otimes B) / \sim$$

$$\rightarrow \{ \mathbf{E} = (E_{pq}) \in M_{s \times r} (\operatorname{Vect}(X)) : E[\mathbf{n}] = [\mathbf{m}] \},$$
(1)

where $[n] := ([n_1], ..., [n_r]), [m] := ([m_1], ..., [m_s])$. Explicitly, E[n] = [m] means

$$(E_{p1}\otimes [n_1])\oplus \cdots \oplus (E_{pr}\otimes [n_r]) = [m_p], \quad p=1, 2, ..., s$$

The description of δ can be obtained using the local structure of homomorphisms $A \to C(X) \otimes B$ given in [10] or by Proposition 1 in [3]. For simplicity, suppose that $B = M_m$. Thus, for a homomorphism

 $\Phi \in \text{Hom}(A, C(X) \otimes B)$ there are an open covering (U_i) of X, continuous maps $v_i: U_i \to U(m)$, and positive integers $k_{11}, ..., k_{1r}$ such that

$$\Phi(a)(x) = v_i(x)(a_1 \otimes 1_{k_{11}} \oplus \cdots \oplus a_r \otimes 1_{k_{1r}}) v_i(x)^*, \qquad (2)$$

where $x \in U_i$, $a = a_1 \oplus \cdots \oplus a_r \in A$ and

$$v_{i}(x)^{*} v_{j}(x) = \begin{bmatrix} 1_{n_{1}} \otimes a_{ij}^{1}(x) & 0 \\ & \ddots & \\ 0 & & 1_{n_{r}} \otimes a_{ij}^{r}(x) \end{bmatrix} \quad \text{on} \quad U_{i} \cap U_{j}.$$

If $\delta(\Phi) = (E_{1q})$ then each vector bundle E_{1q} is given by the cocycle (U_i, a_{ij}^q) . Note that rank $E_{1q} = k_{1q}$.

If C is a unital C*-algebra we shall denote by D(C) the set of homotopy classes of selfadjoint projections in $\bigcup_{n=1}^{\infty} M_n \otimes C$. Recall that D(C) is a semigroup under the operation induced by the direct sum of projections and $D(\cdot)$ is a covariant functor.

Let $C = C(X) \otimes A$. It is known that there is an isomorphism of semigroups $D(C(X) \otimes A) \to \operatorname{Vect}(X)^r$ which maps the class of a projection $F \in C(X) \otimes A \otimes M_n$, having the decomposition

$$F = F_1 \oplus \cdots \oplus F_r \in \bigoplus_{k=1}^r C(X) \otimes M_{n_k} \otimes M_n$$

to $(E_{F_1}, ..., E_{F_r}) \in \operatorname{Vect}(X)^r$. Any homomorphism $\Phi \in \operatorname{Hom}_{C(X)}(C(X) \otimes A)$, induces a map $\Phi_*: D(C(X) \otimes A) \to D(C(X) \otimes B)$ $C(X)\otimes B$ or equivalently a map Φ_* : Vect $(X)^r \to$ Vect $(X)^s$. Vect $(X)^r$ is a free module over the unital semiring Vect(X). Let $e_1, ..., e_r$ be its canonical basis, $e_i = (0, ..., [1], ..., 0)$ with [1] on the *i*th position. We denote by $\operatorname{Hom}_{\operatorname{Vect}(X)}(\operatorname{Vect}(X)^r, \operatorname{Vect}(X)^s)$ the set of all homomorphisms of $\operatorname{Vect}(X)$ - $\operatorname{Vect}(V)^r \to \operatorname{Vect}(X)^s$. As usual any element modules of $\operatorname{Hom}_{\operatorname{Vect}(X)}(\operatorname{Vect}(X)^r, \operatorname{Vect}(X)^s)$ is given by a unique matrix in $M_{s \times r}(\operatorname{Vect}(X))$ with respect to the canonical bases.

2.1. PROPOSITION. The map Φ_* is Vect(X)-linear and its matrix is equal to $\delta(\Phi) = (E_{pa})$.

Proof. We may assume that $B = M_m$. Using (2) and the canonical bijection $\operatorname{Hom}(A, C(X) \otimes B) \to \operatorname{Hom}_{C(X)}(C(X) \otimes A, C(X) \otimes B)$ we get the following description for Φ :

$$\Phi(G)(x) = v_i(x)(G_1(x) \otimes 1_{k_{11}} \oplus \cdots \oplus G_r(x) \otimes 1_{k_{1r}}) v_i(x)^*,$$

 $x \in U_i$, $G = \bigoplus_{i=1}^r G_i \in \bigoplus_{i=1}^r C(X) \otimes M_{n_i}$, where $k_{11}, ..., k_{1r}$ are positive

integers $(n_1k_{11} + \cdots + n_rk_{1r} = m)$, (U_i) is an open covering of X, and $v_i: U_i \to U(m)$ are continuous maps satisfying

$$v_i(x)^* v_j(x) = \begin{bmatrix} 1_{n_1} \otimes a_{ij}^1(x) & 0 \\ & \ddots & \\ 0 & & 1_{n_r} \otimes a_{ij}^r(x) \end{bmatrix}, \quad \text{on} \quad x \in U_i \cap U_j.$$

Let $\Phi_n: C(X) \otimes A \otimes M_n \to C(X) \otimes M_m \otimes M_n$, $\Phi_n := \Phi \otimes id_{M_n}$, $n \ge 1$. Since Φ_* is a homomorphism of semigroups it is enough to describe the homotopy class of $\Phi_n(F)$ for a projection $F \in C(X) \otimes M_{n_1} \otimes M_n \subset C(X) \otimes A \otimes M_n$. One can easily obtain the following formula:

$$\Phi_n(F)(x) = v_i(x) \otimes \mathbb{1}_n \begin{bmatrix} F(x) \otimes \mathbb{1}_{k_{11}} & 0\\ 0 & 0_p \end{bmatrix} v_i(x)^* \otimes \mathbb{1}_n, \qquad x \in U_i,$$

where $p = mn - k_{11}n_1n$. Since

$$(v_i(x)\otimes 1_n)^* (v_j(x)\otimes 1_n) = \begin{bmatrix} 1_{nn_1}\otimes a_{ij}^1(x) & 0\\ 0 & a_{ij}'(x) \end{bmatrix}, \qquad x \in U_i \cap U_j,$$

where $a'_{ij}(x) := \bigoplus_{q=2}^{r} 1_{nn_q} \otimes a^q_{ij}(x)$, it follows by Corollary 1.2 that $\Phi_n(F)$ gives a vector bundle isomorphic to $E_F \otimes E_{11}$, where E_{11} is the vector bundle corresponding to the cocycle (U_i, a^1_{ij}) .

2.2. COROLLARY. The map $\Phi \rightarrow \Phi_*$ induces a bijection

$$\operatorname{Hom}_{C(X)} (C(X) \otimes A, C(X) \otimes B) / \sim \\ \rightarrow \{ E \in \operatorname{Hom}_{\operatorname{Vect}(X)} (\operatorname{Vect}(X)', \operatorname{Vect}(X)^{s}) : E[\mathbf{n}] = [\mathbf{m}] \}.$$

Proof. Use (1) and Proposition 2.1.

Let $K_0(C(X) \otimes A)$ be the Grothendieck group for the abelian semigroup $D(C(X) \otimes A)$. Let $K_0(C(X) \otimes A)_+$ be the image of $D(C(X) \otimes A)$ in $K_0(C(X) \otimes A)$. $(K_0(C(X) \otimes A), K_0(C(X) \otimes A)_+)$ is an ordered group. The isomorphism $D(C(X) \otimes A) \rightarrow \operatorname{Vect}(X)^r$ induces an isomorphism of ordered groups $(K_0(C(X) \otimes A), K_0(C(X) \otimes A)_+) \rightarrow (K^0(X)^r, K^0(X)^r_+)$, where $K^0(X)_+$ is the image of $\operatorname{Vect}(X)$ in $K^0(X)$. Recall that $K^0(X)$ has a natural structure of ring. In $K_0(C(X) \otimes A)$ we distinguish the class of the unity $[1_{C(X) \otimes A}] = [\mathbf{n}]$. We shall denote by $\operatorname{Hom}_{K^0(X)}((K^0(X)^r, K^0(X)^r_+, [\mathbf{n}]), (K^0(X)^s, K^0(X)^s_+, [\mathbf{m}]))$ the set of all pointed ordered group homomorphisms which are $K^0(X)$ -linear.

108

2.3. COROLLARY. Assume that the canonical map $\operatorname{Vect}(X) \to K^0(X)$ is injective. Then the map $\Phi \to K_0(\Phi)$ induces a bijection

$$\operatorname{Hom}_{C(X)} (C(X) \otimes A, C(X) \otimes B) / \sim$$

$$\to \operatorname{Hom}_{K^{0}(X)} ((K^{0}(X)^{r}, K^{0}(X)^{r}_{+}, [\mathbf{n}]), (K^{0}(X)^{s}, K^{0}(X)^{s}_{+}, [\mathbf{m}])).$$

3. CONTINUOUS FIELDS OF AF-ALGEBRAS

Let X be a compact space and let $(A_i)_{i=1}^{\infty}$ be a sequence of finite-dimensional C*-algebras. We consider a system

$$\cdots \to C(X) \otimes A_i \xrightarrow{\varphi_i} C(X) \otimes A_{i+1} \longrightarrow \cdots,$$
(3)

where each *-homomorphism Φ_i is unital, injective, and C(X)-linear. We show that the corresponding C^* -inductive limit $L = \lim_{i \to \infty} (C(X) \otimes A_i, \Phi_i)$ is *-isomorphic, by a C(X)-module isomorphism, to the C^* -algebra of the sections of some continuous field of AF-algebras (see [4]).

Since we can canonically identify $\operatorname{Hom}(A_i, C(X) \otimes A_{i+1})$ with $C(X, \operatorname{Hom}(A_i, A_{i+1}))$, each Φ_i defines a continuous map $X \ni x \to \Phi_i(x) \in \operatorname{Hom}(A_i, A_{i+1})$. Note that each $\Phi_i(x)$ is injective.

For any $x \in X$ define the *AF*-algebra $A(x) = \lim_{X \in X} (A_i, \Phi_i(x))$. We want to define a continuous field of *AF*-algebras $\mathscr{E}_L = ((A(x))_{x \in X}, \Gamma)$. Let L_0 be the algebraic inductive limit of the system (3). Then define $\eta: L_0 \to \prod_{x \in X} A(x)$ by $\eta([F])(x) = [F(x)], \in X, F \in L_0$. ([a] denotes the image of a in the corresponding inductive limit.)

Define Γ to be the closure of $\eta(L_0) \subset \prod_{x \in X} A(x)$ with respect to the norm $||a|| = \sup_{x \in X} ||a(x)||$. It is easily seen that \mathscr{E}_L is a continuous field of *AF*-algebras. Moreover, η extends to a C(X)-linear *-isomorphism from *L* onto Γ . Thus, we have the following:

3.1. **PROPOSITION.** The inductive limit L is *-isomorphic to Γ by a C(X)-module isomorphism.

3.2. Remark. If each A_i is a factor or if the space X is connected, then $A(x) \cong A(y)$, $x, y \in X$. If X is locally contractible, then the field \mathscr{E}_L is locally trivial.

3.3. PROPOSITION. Let L, L' be inductive limits of the above type such that the fibres A(x), A'(x) ($x \in X$) of \mathscr{E}_L , $\mathscr{E}_{L'}$ are simple. Then, for any *-isomorphism $\Phi: L \to L'$ there is a homeomorphism $\phi: X \to X$ such that

$$\Phi(f \cdot a) = f \circ \phi \cdot \Phi(a), \qquad f \in C(X), \ a \in L.$$

Proof. Let $\eta: L \to \Gamma$ and $\eta': L' \to \Gamma'$ be the *-isomorphisms constructed in the proof of Proposition 3.1. Let ψ be the *-isomorphism which makes the diagram

commutative. Since η and η' are C(X)-linear, it is enough to prove that $\psi(fa) = f \circ \phi \cdot \psi(a), f \in C(X), a \in \Gamma$.

Since each A(x) is simple, the maximal ideals of Γ are of the form $I_x := \{a \in \Gamma : a(x) = 0\}, x \in X$. Since ψ is an isomorphism, it induces a homeomorphism $\phi: X \to X$ such that $\psi(I_x) = I'_{\phi^{-1}(x)} := \{a' \in \Gamma' : a'(\phi^{-1}(x)) = 0\}$. For $f \in C(X)$ and $a \in \Gamma$ we have $(f - f(x))a \in I_x$ hence $\psi((f - f(x))a)(\phi^{-1}(x)) = 0$, that is, $\psi(fa)(\phi^{-1}(x)) = f(x) \psi(a)(\phi^{-1}(x))$. The proof is complete.

3.4. Remark. Assume that all the AF-algebras A(x) and A'(x) are simple. Using Proposition 3.1 and a similar argument with that given in the proof of Proposition 3.3 one can see that $L \cong L'$ if and only if the field \mathscr{E}_L is isomorphic to the pullback $\phi^* \mathscr{E}_{L'}$ for some homeomorphism $\phi: X \to X$.

4. CLASSIFICATION RESULTS

Let X be a compact connected space. In this section we shall consider inductive limits $L = \lim_{i \to \infty} (C(X) \otimes A_i, \Phi_i)$, where $(A_i)_{i=1}^{\infty}$ is a sequence of finite-dimensional C*-algebras and each $\Phi_i \in \operatorname{Hom}_{C(X)} (C(X) \otimes A_i,$ $C(X) \otimes A_{i+1})$ is injective. Note that L inherits a natural structure of C(X)-module. Consider D(L), the semigroup of homotopy classes of selfadjoint projections in $\bigcup_{n=1}^{\infty} M_n \otimes L$ (see Section 2). Since D(L) = $\lim_{n \to \infty} D(C(X) \otimes A_i)$, D(L) inherits a natural structure of module over the semiring Vect(X). Our classification of the inductive limits L will be given in terms of D(L) and $K_0(L)$. Consider two inductive limits $L = \lim_{n \to \infty} (C(X) \otimes A_i, \Phi_i)$ and $L' = \lim_{n \to \infty} (C(X) \otimes A'_i, \Phi'_i)$ of the above type. Set $L_i := C(X) \otimes A_i$ and $L'_i := C(X) \otimes A'_i$.

4.1. LEMMA. Let $\Phi: L \to L'$ be a *-isomorphism such that $\Phi(fa) = f \circ \phi \cdot \Phi(a), f \in C(X), a \in L$, for some homeomorphism $\phi: X \to X$. Then there is a commutative diagram of *-homomorphisms

such that $\alpha_i(f) = f \circ \phi$ and $\beta_i(f) = f \circ \phi^{-1}$, $f \in C(X)$. The converse is also true.

Proof. We prove only the nontrivial implication. Using Glimm's Lemma [7, Lemma 1.8] as in the proof of Lemma 2.6 in [1], we can get suitable unitaries $u_i \in L'$, $v_i \in L$ such that the homomorphisms $\alpha_i = u_i \Phi u_i^*$ and $\beta_i = v_i \Phi^{-1} v_i^*$ have the desired properties.

Let S be a unital semiring. Consider two inductive limits $T = \underline{\lim} (S^{r_i}, \theta_i)$ and $T' = \underline{\lim} (S^{r'_i}, \theta'_i)$, where θ_i and θ'_i are homomorphisms (not necessarily injective) of S-modules. Note that T and T' inherit a natural structure of S-modules. Set $S_i = S^{r_i}$ and $S'_i = S^{r'_i}$. We shall distinguish an element s_i (resp. s'_i) in S_i (resp. S'_i) such that $\theta_i(s_i) = s_{i+1}$ (resp. $\theta'_i(s'_i) = s'_{i+1}$). Then T and T' will be pointed in the obvious way, by $t = [s_i]$ and $t' = [s'_i]$. Let $J: S \to S$ be an isomorphism of semirings.

4.2. LEMMA. Let $\Lambda: (T, t) \to (T', t')$ be an isomorphism of pointed semigroups such that $\Lambda(sa) = J(s) \Lambda(a)$, $s \in S$, $a \in T$. Then there is a commutative diagram of homomorphisms of pointed semigroups

$$(S_{i(1)}, s_{i(1)}) \longrightarrow (S_{i(2)}, s_{i(2)}) \longrightarrow (S_{i(3)}, s_{i(3)}) \longrightarrow \cdots$$

$$(S_{i(1)}, s_{i(1)}) \longrightarrow (S_{i(2)}, s_{i(2)}) \longrightarrow \cdots$$

such that $\gamma_k(sa) = J(s) \gamma_k(a)$, $\delta_k(sb) = J^{-1}(s) \delta_k(b)$, $s \in S$, $a \in S_{i(k)}$, $b \in S'_{j(k)}$. The converse is also true.

Proof. The proof uses the fact that S_k and S'_k are finitely generated as S-modules.

4.3. THEOREM. Let $L = \underline{\lim} (C(X) \otimes A_i, \phi_i), L' = \underline{\lim} (C(X) \otimes A'_i, \Phi'_i).$ Then L and L' are *-isomorphic by a C(X)-linear isomorphism if and only if D(L) and D(L') are isomorphic as semigroups, by a Vect(X)-linear isomorphism which takes the class of 1_L to the class of $1_{L'}$.

Proof. The proof uses Corollary 2.2, Lemma 4.1 (with $\phi = id_X$), and Lemma 4.2 (with S = Vect(X) and $J = id_S$).

4.4. THEOREM. Assume that the fibres of the continuous fields \mathscr{E}_L and \mathscr{E}_L .

(see Section 3) are simple. Then L and L' are *-isomorphic if and only if there is an isomorphism of semigroups $\Lambda: D(L) \to D(L')$ which takes the class of 1_L to the class of $1_{L'}$, and such that

$$\Lambda(sa) = J(s) \Lambda(a), \quad s \in \operatorname{Vect}(X), \ a \in D(L),$$

where $J: Vect(X) \rightarrow Vect(X)$ is an isomorphism of semirings induced by some homeomorphism $X \rightarrow X$.

Proof. The proof uses Corollary 2.2, Proposition 3.3, Lemma 4.1, Lemma 4.2, and the following remarks:

(a) Let A, B be finite dimensional C*-algebras and let $\Phi \in \text{Hom}(C(X) \otimes A, C(X) \otimes B)$ be a *-homomorphism satisfying $\Phi(fa) = f \circ \phi \cdot \Phi(a), f \in C(X), a \in C(X) \otimes A$. Then we have a factorization $\Phi = \Phi_1 \phi^*$

$$C(X) \otimes A \xrightarrow{\phi^*} C(X) \otimes A \xrightarrow{\varphi_1} C(X) \otimes B,$$

where $\phi^*(F) = F \circ \phi$ and Φ_1 is a C(X)-linear *-homomorphism.

(b) If $\gamma: \operatorname{Vect}(X)^r \to \operatorname{Vect}(X)^r$ is a semigroup homomorphism satisfying $\gamma(sa) = J(s) \gamma(a), s \in \operatorname{Vect}(X), a \in \operatorname{Vect}(X)^r$, then we have the factorization $\gamma = \alpha J^{(r)}$

$$\operatorname{Vect}(X)^r \xrightarrow{J^{(r)}} \operatorname{Vect}(X)^r \xrightarrow{\alpha} \operatorname{Vect}(X)^t$$

where $J^{(r)}(s_1, ..., s_r) = (J(s_1), ..., J(s_r))$ and α is Vect(X)-linear.

We denote by $K_0(L)_+$ the image of D(L) into $K_0(L)$. Since $K_0(L) = \lim_{t \to \infty} K_0(L_i)$ and $K_0(L)_+ = \lim_{t \to \infty} K_0(L_i)_+$ it follows that $K_0(L)$ inherits a natural structure of $K^0(X)$ -module and the triplet $(K_0(L), K_0(L)_+, [1_L])$ is a pointed ordered group. When the canonical map $Vect(X) \to K^0(X)$ is injective the above two Theorems can be formulated in terms of K_0 -groups in the following way: (compare with [6])

4.5. THEOREM. L and L' are *-isomorphic by a C(X)-linear isomorphism if and only if $(K_0(L), K_0(L)_+, [1_L])$ and $(K_0(L'), K_0(L')_+, [1_{L'}])$ are isomorphic as pointed ordered groups by a $K^0(X)$ -linear isomorphism.

4.6. THEOREM. Assume that the fibres of the continuous fields \mathscr{E}_L and $\mathscr{E}_{L'}$ are simple. Then L and L' are *-isomorphic if and only if there is an isomorphism of pointed ordered groups

$$\Lambda: (K_0(L), K_0(L)_+, [1_L]) \to (K_0(L'), K_0(L')_+, [1_{L'}])$$

such that $\Lambda(sa) = J(s) \Lambda(a)$, $s \in K^{0}(X)$, $a \in K_{0}(L)$, where $J: K^{0}(X) \to K^{0}(X)$ is a ring isomorphism induced by some homeomorphism $X \to X$.

5. Applications

Assume that X is a finite connected CW-complex of dimension ≤ 3 . Then there is an isomorphism of rings $\chi: K^0(X) \to (\mathbb{Z} \times H^2(X, \mathbb{Z}), +, \cdot)$ given by $\chi[E] = (\operatorname{rank}(E), c_1(E)), E \in \operatorname{Vect}(X)$, where $c_1(E)$ is the first Chern class of E. The ring structure on $\mathbb{Z} \times H^2(X, \mathbb{Z})$ is given by

$$(k, \alpha) + (l, \beta) = (k + l, \alpha + \beta)$$
$$(k, \alpha) \cdot (l, \beta) = (kl, l\alpha + k\beta),$$

where $\alpha, \beta \in H^2(X, \mathbb{Z}), k, l \in \mathbb{Z}$. Also, in this case the map $Vect(X) \to K^0(X)$ is injective. These facts follow from the properties of stability of vector bundles (see [9]). When $X = S^2$ we obtain that

$$K^{0}(S^{2}) = \{s + tx : s, t \in \mathbb{Z}, x^{2} = 0\} = \mathbb{Z}[x]/(x^{2})$$

and

$$K^{0}(S^{2})_{+} = \{s + tx : (s, t) \in \mathbb{N}^{*} \times \mathbb{Z} \cup \{(0, 0)\}\}$$

Let $3 < p_1 < p_2 < \cdots$ be a sequence of prime integers, $a = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix}$, $\mathbf{n}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and define

$$\mathbf{n}_i = \begin{bmatrix} n_i' \\ n_i'' \end{bmatrix}$$

by $\mathbf{n}_{i+1} = a_i \mathbf{n}_i$, where $a_i = p_i a$, $i \ge 1$. Let $A_i = M_{n_i} \oplus M_{n_i}$ and consider a simple AF-algebra A given by the Bratteli system

$$A_1 \xrightarrow{a_1} A_2 \xrightarrow{a_2} A_3 \xrightarrow{a_3} \cdots$$

We shall consider a C^* -algebra $L = \underline{\lim} (C(S^2) \otimes A_i, \Phi_i)$ whose pointed ordered K_0 -group is given by the inductive limit corresponding to the following system of $K^0(S^2)$ -linear homomorphisms:

$$K^{0}(S^{2})^{2} \xrightarrow{a_{1}+b_{x}} K^{0}(S^{2})^{2} \xrightarrow{a_{2}+b_{x}} K^{0}(S^{2})^{2} \xrightarrow{a_{3}+b_{x}} \cdots,$$

where $b = \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix}$. Note that Φ_i is such that $K_0(\Phi_i) = a_i + bx$ and Φ_i is injective.

The following proposition shows that the C^* -algebras studied in this paper do not reduce to the C^* -algebras given by trivial fields of AF-algebras.

5.1. PROPOSITION. The inductive limit $L = \underline{\lim} (C(S^2) \otimes A_i, \Phi_i)$ is not *-isomorphic to any C*-algebra of the form $C(S^2) \otimes B$, with B an AF-algebra. **Proof.** By reasons concerning the primitive spectrum of L, it is enough to show that L is not *-isomorphic to $C(S^2) \otimes A$. To get a contradiction assume that $K_0(L)$ is isomorphic to $K_0(C(S^2) \otimes A)$ as in Theorem 4.6. Since any homeomorphism $\phi: S^2 \to S^2$ has the degree ± 1 , it follows, with the notation of Theorem 4.6, that $J = K^0(\phi): K^0(S^2) \to K^0(S^2)$ is given by $J(s + tx) = s \pm tx$. We shall consider only the case J(s + tx) = s - tx. The case J = id is simpler. By Theorem 4.6 and Lemma 4.2 we must have a commutative diagram of the form (we have deleted the spaces $K^0(S^2)^2$)

where $\gamma_1 = (c+dx)J^{(2)}$, $\delta_1 = (e+fx)J^{(2)}$, $\gamma_2 = (c'+d'x)J^{(2)}$, $\delta_2 = (e'+f'x)J^{(2)}$, and $J^{(2)} = \begin{bmatrix} j & 0 \\ 0 & j \end{bmatrix}$.

The following computations use the identities ab = ba = -b and $J^{(2)}(g+hx)J^{(2)} = g-hx$, $g, h \in M_2(\mathbb{Z})$. The commutativity of the above diagram implies

$$ec = a_1 \cdots a_k \cdots a_n \tag{4}$$

$$fc - ed = b(a_2 a_3 \cdots a_n + a_1 a_3 \cdots a_n + \dots + a_1 a_2 \cdots a_{n-1})$$
(5)

$$c'e = a_{k+1} \cdots a_n \cdots a_m \tag{6}$$

$$d'e - c'f = 0 \tag{7}$$

$$e'c'ec = a_1 \cdots a_k \cdots a_n \cdots a_m \cdots a_r. \tag{8}$$

From (4), (5), (6), and (7) we get

$$d'a_{1}\cdots a_{n}-a_{k+1}\cdots a_{n}\cdots a_{m}d$$

= c'(p_{2}p_{3}\cdots p_{n}+\cdots+p_{1}p_{2}\cdots p_{n-1})(-1)^{n-1}b

so that we infer that $\begin{bmatrix} p_n & 0\\ p_n \end{bmatrix}$ divides c'b in $M_2(\mathbb{Z})$. It follows that p_n divides $\det(c')$. We obtain from (4) that p_n^2 divides $\det(ec)$ hence p_n^3 divides $\det(e'c'ec)$ which contradicts (8) since $\det(a) = -3$.

In contrast with the above Proposition we have the following:

5.2. PROPOSITION. Let X be a connected finite CW-complex of dimension ≤ 3 and let A be a UHF-algebra, $A = \lim_{i \to \infty} A_i$, where each A_i is a finite discrete factor. Then $L = \lim_{i \to \infty} (C(X) \otimes A_i, \Phi_i)$ is *-isomorphic by a C(X)-linear isomorphism to $C(X) \otimes A$, for any choice of $\Phi_i \in \operatorname{Hom}_{C(X)} (C(X) \otimes A_i, C(X) \otimes A_{i+1})$.

Proof. By hypothesis we have $Vect(X) \cong \mathbb{N}^* \times H^2(X, \mathbb{Z}) \cup \{0\} = \{s + \eta x \colon s \in \mathbb{N}^*, \ \eta \in H^2(X, \mathbb{Z}), \ x^2 = 0\} \cup \{0\}.$ Hence

$$\operatorname{Hom}_{C(X)} (C(X) \otimes A_i, C(X) \otimes A_{i+1}) / \sim$$

$$\simeq \{ E \in \operatorname{Vect}(X) : E \otimes [n_i] = [n_{i+1}] \}$$

$$\simeq \{ s_i + \eta x : \eta \in H^2(X, \mathbb{Z}), n_i \eta = 0, x^2 = 0 \},$$

where $A_i = M_{n_i}$ and $s_i = n_{i+1}/n_i$ (see Corollary 2.2). Consider an arbitrary inductive limit $L' = \lim_{i \to \infty} (C(X) \otimes A_i, \Phi'_i)$ of the same type as L. We shall apply Theorem 4.3 to show that $L \cong L'$ as C(X)-modules. To prove that $(D(L), [1_L]) \cong (D(L'), [1_{L'}])$ as pointed Vect(X)-modules we shall use Lemma 4.2; i.e., we shall construct a commutative diagram of the type

where $D_i = D'_i = (\mathbf{N}^* \times H^2(X, \mathbf{Z}) \cup \{0\}, n_i), \quad (\Phi_i)_* = s_i + \eta_i x, \quad (\Phi'_i)_* = s_i + \eta'_i x, \quad \gamma_1 = s_1 \cdots s_k + \xi_1 x, \quad \delta_1 = s_{k+1} \cdots s_m + \xi_2 x, \quad \gamma_2 = s_{m+1} \cdots s_q + \xi_3 x,$ etc. Let $T_i := \{\eta \in H^2(X, \mathbf{Z}): n_i \eta = 0\}$. The torsion part of $H^2(X, \mathbf{Z})$ is finite. Hence the sequence $T_1 \subset T_2 \subset \cdots$ stops. Since $\eta_i \in T_i$ we may assume that $\eta_i \in T_1, i \ge 1$. After dropping finitely many terms in the sequence s_1, s_2, s_3, \ldots we may also assume that any class $\hat{s}_i \in \mathbf{Z}/n_1 \mathbf{Z}$ occurs infinitely many times. With these assumptions, the sequence $(\xi_i)_{i=1}^{\infty}, \xi_1 = 0$, is constructed inductively, using the following remark: given u < v and $\xi \in T_1$ there are w > v and $\xi' \in T_1$ such that if $\gamma = s_u \cdots s_v + \xi x$ and $\delta = s_{v+1} \cdots s_w + \xi' x$, the diagram

commutes, i.e.,

$$\prod_{i=u}^{w} (s_i + \eta_i x) = (s_{v+1} \cdots s_w + \xi' x)(s_u \cdots s_v + \xi x).$$

To prove this we choose w large enough such that

 $(s_u \cdots s_v)^{\wedge}$ divides $(s_{v+1} \cdots s_w)^{\wedge}$ in $\mathbb{Z}/n_1\mathbb{Z}$.

Note added in proof. After this paper was circulated as a preprint, INCREST 1986, we made the following remarks:

(a) The conclusion of Theorem 4.5 remains also true if instead of the injectivity of the canonical map $Vect(X) \to K^0(X)$ we assume that X is a finite CW-complex and that the K_0 -groups of the AF-fibres of the continuous fields \mathscr{E}_L and \mathscr{E}_L are with large denominators, in the sense of V. Nistor: On the homotopy group of the automorphisms group of AF-C*-algebras (to appear in J. Operator Theory).

(b) Since the simple AF-algebras have the K_0 -groups with large denominators, the conclusion of Theorem 4.6 also holds if instead of the injectivity of the canonical map $\operatorname{Vect}(X) \to K^0(X)$ we assume that X is a finite CW-complex.

In addition to the previous arguments, the proofs of these statements use the stability properties of vector bundles over finite CW-complexes [9].

References

- 1. O. BRATTELI, Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234.
- M. DADARLAT, On homomorphisms of certain C*-algebras, INCREST preprint, No. 11/1986.
- 3. M. DĂDĂRLAT AND V. DEACONU, On some homomorphisms $\Phi : C(X) \otimes F_1 \to C(Y) \otimes F_2$, INCREST preprint, No. 33/1986.
- 4. J. DIXMIER, "Les C*-algebras et leurs représentations," Gauthier-Villars, Paris, 1964.
- 5. E. G. EFFROS, On the structure of C*-algebras: Some old and some new problems, *in* "Operator Algebras and Applications," pp. 19–34, Proc. Symp. Pure Math., Part I, Amer. Math. Soc., Providence, RI, 1982.
- 6. G. A. ELLIOTT, On the classification of inductive limits of sequences of semi-simple finite dimensional algebras, J. Algebra 38 (1976), 29-44.
- 7. J. GLIMM, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340.
- F. HIRZEBRUCH, "Topological Methods in Algebraic Geometry," 3rd ed., Springer-Verlag, Berlin/Heidelberg/New York, 1966.
- 9. D. HUSEMOLLER, "Fibre Bundles," 2nd ed., Springer-Verlag, Berlin/Heidelberg/New York, 1976.
- 10. C. PASNICU, On inductive limits of certain C*-algebras of the form $C(X) \otimes F$, INCREST preprint, No. 51/1986, Trans. Amer. Math. Soc., to appear.
- 11. J. L. TAYLOR, Banach algebras and topology, in "Algebras in Analysis," pp. 118-186, Academic Press, Orlando, FL, 1975.
- 12. K. THOMSEN, Inductive limits of homogeneous C*-algebras, preprint, Aarhus Universitet, 1986.