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Abstract. An invariant based on orderedK-theory with coefficients inZ ⊕⊕
n>1 Z/n and an

infinite number of natural transformations has proved to be necessary and sufficient to classify a
large class of nonsimpleC∗-algebras. In this paper, we expose and explain the relations between
the order structure and the ideals of theC∗-algebras in question.

As an application, we give a new complete invariant for a large class of approximately subhomo-
geneousC∗-algebras. The invariant is based on orderedK-theory with coefficients inZ⊕Q⊕Q/Z.
This invariant is more compact (hence, easier to compute) than the invariant mentioned above, and
its use requires computation of only four natural transformations.

Mathematics Subject Classifications (1991):46L35, 46L80, 19K14.

Key words: Torsion coefficients,C∗-algebras, ideals, approximately subhomogeneous, real rank
zero, classification.

0. Introduction

The problem of classifying approximately homogeneousC∗-algebras of real rank
zero with slow dimension growth by algebraic invariants was settled in 1994 by the
first author and Guihua Gong [6]. The complete invariantK (−)has three components:

− The orderedK-groupsK0(−)⊕K1(−) (introduced in [9] and [13]).
− The orderedK-groups with coefficientsK0(−;Z ⊕ Z/n) ⊕ K1(−;Z ⊕ Z/n)

(introduced in [7]).
− The natural transformations between these groups (studied in an abstract setting

in [21], integrated along with the order structure in [11], [8] and [6]).

The main result of [6] states that two real rank zero approximately subhomo-
geneousC∗-algebrasA andB (of a certain subhomogeneity type) withslow dimen-
sion growthare isomorphic whenK (A) andK (B) are isomorphic in a fashion pre-
serving all positive cones and all the natural transformations.

The existence of a classification result based onK (−) indirectly implies thatK (A)
can be thought of as an algebraic model of the asymptotic homotopy type or shape
theory type of theC∗-algebraA. It is also clear from comparing classification results
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based onK (−) to others based onK0(A)⊕K1(A), that the advantage of the larger
invariant is that it offers a better homological description of how the various ideals
of A are glued together. To make this more precise, consider a∗-homomorphism
ϕ:A → B. If ϕ maps some idealI of A into some idealJ of B, the morphism
K (ϕ) will map the image ofK (I ) in K (A) into the image ofK (J ) in K (B). For
A,B, C∗-algebras of real rank zero and stable rank one, the above property has an
algebraic counterpart which can be formulated for any morphism8: K (A)→ K (B).
A morphism satisfying that property is said to beideal-preserving, a notion studied
– in embryonic form – in [15].

In this paper, we give a complete description of the interrelations between positive
and ideal-preserving maps. Such results give a direct, and more precise, explanation
of the relevance of the order structure when studying nonsimpleC∗-algebras, and
have important consequences for certain types of reduction results found in [12].

As another application, we consider the question of compressing the coefficients
in the invariants – without losing the information they hold concerning the ideal
structure of theC∗-algebra. A proof that certain compressions of coefficients preserve
the ideal-preserving maps combines with the results mentioned above to give new
and more economical classification theorems.

Such reductions are of great practical importance because of the fact that while
the invariantK (−) is continuousand, hence, in theory computable for manyC∗-
algebras on inductive limit form, an isomorphism must intertwine an infinite family
of group homomorphisms, making it somewhat difficult to work with. Furthermore,
there is often quite a bit of redundancy in the invariant.

Put more precisely, our main result states that whenA andB are bothASH
C∗-algebras of real rank zero having slow dimension growth, and if theirK-theory
satisfies

Tor(Ki(A),Ki+1(B)) = 0, i ∈ {0, 1},

then there is a complete invariant based on orderedK-theory with coefficients in
Z ⊕ Q ⊕ Q /Z. It was pointed out by Claude Schochet that the above condition on
the vanishing of Tor is the same as the one under which the natural mapK∗(A) ⊗
K∗(B)→ K∗(A⊗B) is an isomorphism, see [20]. Besides eliminating redundancy in
the coefficients, the main virtue of this invariant is that it is only necessary to check that
a given isomorphism intertwinesfournatural transformations. Apart from the obvious
practical importance of such an invariant, there are also theoretical implications of
its existence.

Hoping to capture basic structural understanding which may be relevant to other
applications, we proceed with our investigation as long as possible in an abstract,
algebraic setting. This applies in particular to our discussion of ideal-preserving maps
and compression. On the other hand, we only obtain equivalence between positivity
and the ideal-preserving property in the case of approximately subhomogeneous
C∗-algebras.
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1. Algebraic Preliminaries

We recall a few facts about the functor Tor from, e.g., [19, Chapter 8]. For an Abelian
groupH , we let torH denote the torsion subgroup ofH andH [n] the subgroup of
H consisting of elementsx such thatnx = 0. First, we note that

Tor(G,H) ∼= Tor(H,G),
Tor(H,Z/n) ∼= H [n],
Tor(H,Q /Z) ∼= torH.

These isomorphisms are natural. Also, since Tor(−,G) is the right derived functor
for −⊗G, and Tor2 vanishes, for any short exact sequence of groups

0−→ H1 −→ H2 −→ H3 −→ 0,

we get a long exact sequence

0−−−−→Tor(H1,G) −→ Tor(H2,G) −→ Tor(H3,G) −→
−−−−→H1⊗G−−−−→H2⊗G−−−−→H3⊗G−−−−→ 0

The ensuing two lemmas rephrase known facts to fit our exposition in the follow-
ing.

LEMMA 1.1. LetG andH be Abelian groups. ThenTor(H,G) = 0 if and only if
wheneverg andh are torsion elements ofG andH , respectively, we have

(order(g), order(h)) = 1.

Proof. By [14, 62.F], we have

Tor(H,G) =
⊕

p prime

Tor(Hp,Gp),

with Hp,Gp denoting thep-components ofH,G. Hence, Tor(H,G) 6= 0 if and
only if there is a primep with Tor(Hp,Gp) 6= 0. The condition on the orders is
equivalent to saying that one of thep-groups always vanishes, so we must see that
for p-groupsA,B

Tor(A,B) = 0 ⇐⇒ A = 0 orB = 0.

For this, note that ifA 6= 0, there is a short-exact sequence

0−→ Z/p −→ A −→ A/(x) −→ 0,

wherex is some element of orderp. Applying Tor(−, B), we get an embedding of
B[p] into Tor(A,B).
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LEMMA 1.2. Let k ∈ N be given. If a torsion groupG has nok-torsion,G is
k-divisible.

Proof. Fix x ∈ G and letm denote the order ofx. We have(m, k) = 1, for if
(m, k) > 1,(m/(m, k))x is a nonzero element annihilated byk. We can finda, b ∈ Z

with am+ bk = 1 and, hence,

x = (am+ bk)x = a(mx)+ k(bx) = k(bx).

2. Torsion CoefficientK-Theory

When an integern is given, we can define the functorsKi(−;Z/n) fromC∗-algebras
to Abelian groups in several equivalent ways, cf. [21]. For eachn andm, there are
also natural maps

ρin:Ki(A)→ Ki(A;Z/n),
βin:Ki(A;Z/n)→ Ki+1(A),

κim,n:Ki(A;Z/n)→ Ki(A;Z/m),
and we have

PROPOSITION 2.1 ([21]).The six term sequences

(i)

K0(A)
×n−−−−→ K0(A)

ρ0
n−−−−→ K0(A;Z/n)

β1
n

x y β0
n

K1(A;Z/n) ←−−−−
ρ1
n

K1(A) ←−−−−×n
K1(A)

(ii)

K0(A;Z/m)
κ0
n,m,m−−−−→ K0(A;Z/nm)

κ0
n,nm−−−−→ K0(A;Z/n)

β1
m,n

x y β0
m,n

K1(A;Z/n) ←−−−−
κ1
n,nm

K1(A;Z/nm) ←−−−−
κ1
nm,m

K1(A;Z/m)

are exact. Hereβim,n = ρi+1
m βin.

LEMMA 2.2 ([21], cf. also [2]).

(i) κim,nρ
i
n =

m

(n,m)
ρim,

(ii) βimκ
i
m,n =

n

(n,m)
βin,

(iii) κik,mκ
i
m,n =

m(k, n)

(k,m)(m, n)
κik,n.
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We shall use the symbol ‘•’ to refer to the sum of the even and the odd part of
a Z/2-graded group, as inK• = K0 ⊕ K1. Applying this convention toK-groups
with coefficients inZ ⊕ Z/n we get

K•(A;Z ⊕ Z/n)

= K0(A;Z ⊕ Z/n)⊕K1(A;Z ⊕ Z/n)

= K0(A)⊕K0(A;Z/n)⊕K1(A)⊕K1(A;Z ⊕ Z/n).

The latter decomposition actually gives a(Z/2)2-grading onK•(A;Z ⊕ Z/n).
In [7] an order structure on these doubly graded groups was introduced by the
definition

K•(A;Z ⊕ Z/n)++

= hom(I∼n , A⊗ C(S1)⊗ K ) ⊂ KK(I∼n , A⊗ C(S1)),

where hom denotes the set ofKK classes having a representative which is a
∗-homomorphism. This order structure was also used in [11]. Another order structure
was considered in [8] and [6], namely

K•(A;Z ⊕ Z/n)+ = K0(A⊗ C(Wn)⊗ C(S1))+,

whereWn is then-Moore space. It was shown in [6] that these order structures have
similar properties for the class ofASH algebras of real rank zero, and either one
may be used in classifying suchC∗-algebras. We shall work with the latter, but our
results hold true with only minor modifications for the former.

Let1 denote the ordered set(N , < ), wherex < y iff x dividesy. Note that1
is directed, so that we may construct inductive limits over1. We will denote these
by lim−→1

(Gp, fq,p), wherefq,p:Gp → Gq are the bonding maps. When a cofinal

subset1′ of 1, is given, we may restrict attention to this, as

lim−→1
Gn ∼= lim−→1′

Gn.

We define graded group homomorphisms

κnm,m:K•(A;Z ⊕ Z/m)→ K•(A;Z ⊕ Z/nm)

by

κi,even
nm,m = χmn,n, κi,odd

nm,m = κinm,m,
whereχmn,n is just multiplication bym between the relevant copies ofKi(A). The
mapsκ are positive, so we may define

DEFINITION 2.3.

K•(A;Q ⊕ Q /Z) = lim−→1
(
K•(A;Z ⊕ Z/n), κnm,n

)
,

K•(A;Q ⊕ Q /Z)+ = lim−→1
(
K•(A;Z ⊕ Z/n)+, κnm,n

)
.
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This way we obtain doubly graded ordered groups. We shall denote the odd parts by
Ki(A;Q /Z). The even parts are naturally isomorphic toKi(A)⊗ Q since

lim−→1
(G, χmn,n) ∼= lim−→1

(G⊗ Z, id ⊗ χmn,n)
∼= G⊗

(
lim−→1

(Z, χmn,n)

)
∼= G⊗ Q

naturally. We shall invoke this isomorphism tacitly in the following.
Because of Lemma 2.2(i) and (ii), we also get maps

ρi∞:Ki(A)⊗ Q → Ki(A;Q /Z),
βi∞:Ki(A;Q /Z)→ Ki+1(A),

defined by taking inductive limits.
In what follows, we shall mainly be preoccupied with the interrelations between

theK-groups with coefficients inQ /Z andZ/n, respectively. In charting the interplay,
two maps play a role similar to the one played by the reduction and Bockstein maps
in the interplay betweenK-theory with coefficients inZ andZ/n, namely

µin = lim−→1
κimn,n, νin = ρi+1

n

(
lim−→1

βimn

)
= ρi+1

n βi∞.

They are clearly natural as they are composites and limits of natural maps.

LEMMA 2.4.

(i) µinρ
i
n = ρi∞

(
id ⊗ 1

n

)
,

(ii) βi∞µ
i
n = βin,

(iii) µimκ
i
m,n =

n

(m, n)
µin.

Proof. To prove (i), we consider the diagram

Ki(A;Z/n)
κimn,n−−−−→Ki(A;Z/mn)−−−−→· · ·−−−−→Ki(A;Q /Z)x ρin

x ρimn

x ρi∞
Ki(A)−−−−−−−−−−→×m

Ki(A)−−−−−−−→· · ·−−−−→Ki(A)⊗ Q

The composed map on the top line isµin, and one can see that under our identifi-
cations, the composed map on the lower line is exactly id⊗ 1/n.
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The remaining claims are proved by similar reasoning on the diagrams

Ki+1(A) ========= Ki+1(A) ========= · · · ========= Ki+1(A)x βin

x βimn

x βi∞
Ki(A;Z/n)−−−−→

κimn,n

Ki(A;Z/mn)−−−−→· · ·−−−−→Ki(A;Q /Z)

and

Ki(A;Z/m)
κimn,m−−−−→Ki(A;Z/mn)−−−−→· · ·−−−−→Ki(A;Q /Z)x κim,n

x × n
(n,m)

x × n
(n,m)

Ki(A;Z/n)−−−−→
κimn,n

Ki(A;Z/mn)−−−−→· · ·−−−−→Ki(A;Q /Z)

There is an alternate way, very much in the spirit of [21], of definingK-theory with
coefficients inQ andQ /Z. LetU be the UHF algebra withK0(U) = Q . LetV be the
mapping cone of the unital∗-homomorphismC → U . Then one has isomorphisms
K∗(A;Q ) ∼= K∗(A ⊗ U) andK∗(A;Q /Z) ∼= K∗(A ⊗ V ). Using these alternate
definitions, it is not hard to derive Proposition 2.5 below from general results in [21].
However, we believe that working with Definition 2.3 makes it easier to compute the
order structure in concrete cases and going back and forth between these invariants
andK (−).

PROPOSITION 2.5.The six term sequences

(i)

K0(A)
−⊗1−−−−→K0(A)⊗ Q

ρ0∞−−−−→K0(A;Q /Z)
β1∞

x y β0∞
K1(A;Q /Z)←−−−−

ρ1∞
K1(A)⊗ Q←−−−−

−⊗1
K1(A)

(ii)

K0(A;Z/n)
µ0
n−−−−→K0(A;Q /Z)

×n−−−−→K0(A;Q /Z)
ν1
n

x y ν0
n

K1(A;Q /Z)←−−−−×n
K1(A;Q /Z)←−−−−

µ1
n

K1(A;Z/n)
are exact.
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Proof. The first diagram is exact by passing to inductive limits over1 with the
commutative diagram

Ki(A)
×n−−−−→Ki(A)

ρin−−−−→Ki(A;Z/n)
βin−−−−→Ki+1(A)

||||||
y ×m y κnm,n

||||||
Ki(A)−−−−→×nm

Ki(A)−−−−→
ρinm

Ki(A;Z/nm)−−−−→
βinm

Ki+1(A)

and applying the natural isomorphisms mentioned above. It is straightforward to
check that the induced map fromKi(A) to Ki(A) ⊗ Q becomes exactly tensoring
by the unit ofQ .

For exactness of the second diagram, note that

Ki(A;Z/n)
κimn,n−−−−→Ki(A;Z/mn)

κim,mn−−−−→Ki(A;Z/m)
ρi+1
n βim−−−−→Ki+1(A;Z/n)

||||||
y κi

kmn,mn

y κi
km,m

||||||
Ki(A;Z/n)−−−−→

κi
kmn,n

Ki(A;Z/kmn)−−−−→
κi
km,kmn

Ki(A;Z/km)−−−−→
ρi+1
n βi

km

Ki+1(A;Z/n)

is commutative, as is seen directly from Lemma 2.2(ii) and (iii). For commutativity
of the second square, one must also verify that

kmn(mn, km)

(mn, kmn)(kmn, km)
= (n, k) = m(mn, km)

(m,mn)(m, km)
.

Passing to inductive limits vertically, we get a six term exact diagram as stated. To
determine the endomorphisms ofKi(A;Q /Z) in this, one notes that

κmn,mκm,mn = m(mn,mn)

(m,mn)2
= n

for everym. The other maps are clearly the ones stated.

We end this section with a crucial technical lemma.

LEMMA 2.6. Fix a primep. If Ki(A)[p] = 0, we have for anyr ∈ N :

(i) βi+1
pr = 0,

(ii) ρi+1
pr is surjective,

(iii) νi+1
pr = 0,

(iv) µipr is injective.
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Proof. The exact sequences in the following diagram are derived from Proposition
2.1(i) using the Tor-sequence. The outermost maps in

0−−−−→Ki+1(A)⊗ Q /Z−−−−→Ki+1(A;Q /Z)−−−−→ tor(Ki(A))−−−−→ 0y pr
y pr

y pr

0−−−−→Ki+1(A)⊗ Q /Z−−−−→Ki+1(A;Q /Z)−−−−→ tor(Ki(A))−−−−→ 0

are both onto, for the leftmost group is divisible, and the rightmost ispr -divisible by
Lemma 1.2. By the five-lemma, the center map is onto. Applying exactness of the
diagram in Proposition 2.5(ii), the two last claims follow from this.

It is obvious that multiplying withpk is an injective map inKi(A). Applying
exactness of the diagram in Proposition 2.1(i), the two first claims follow directly.

Remark 2.7.There are at least two different reasons why it is desirable to work
withK-theory withQ /Z-coefficients instead of the family ofK-groups with allZ/n-
coefficients. One is that it is easier to compute forC∗-algebras on inductive limit
form – indeed, a straightforward diagonality argument (see [10, 3.2.7]) shows that

Ki(lim−→(Aj , fj );Q /Z) = lim−→(Ki(Aj ;Z/j !), κ(j+1)!,j ! ◦Ki(fj ;Z/j !)).

Another reason is the theoretical importance of having only to argue on a finite
number of groups. We shall see an example of this in Section 7 below.

3. Reduction of Torsion CoefficientK-Theory

We denote byK (A) the direct sum of allK-groups with coefficients inZ or Z/n.
The symbol3 refers to the collection of all the natural isomorphismsρ, β, κ between
those groups, and by Hom3(K (A),K (B)) we denote the set of families of group
homomorphisms(ϕi, ψin) with

ϕi :Ki(A)→ Ki(B), ψin:Ki(A;Z/n)→ Ki(B;Z/n),
which are intertwined by the homomorphisms in3. The symbolsK ′(−),3′ refer to
the subcollection for whichn is a prime power.

We denote byK∞(A) the direct sum of the groupsKi(A),Ki(A;Q /Z), by3∞
the collection{ρi∞, βi∞}, and by Hom3∞(K∞(A),K∞(B)) the group of 4-tuples
(ϕi, ψi) with

ϕi :Ki(A)→ Ki(B), ψi :Ki(A;Q /Z)→ Ki(B;Q /Z)
intertwined by the homomorphisms in3∞.

We shall consider two maps

R: Hom3(K (A),K (B))→ Hom3′(K
′(A),K ′(B)),

N : Hom3(K (A),K (B))→ Hom3∞(K∞(A),K∞(B)).
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The mapR, considered also in [8], is just the restriction map, and Proposition 3.2
is proved there forC∗-algebrasA in the bootstrap class of Rosenberg and Schochet.
Lemma 3.1 and Proposition 3.2 are proved using various properties of the Bockstein
operations established in [21].

LEMMA 3.1. Let m, n be relatively prime integers. For anyC∗-algebra A,
Ki(A;Z/n) ⊕ Ki(A;Z/m) is naturally isomorphic toKi(A;Z/mn). An isomor-
phism is given by the map

(x, y) 7→ κimn,n(x)+ κimn,m(y).
Proof. It is easily derived from Lemma 2.2(iii) that

κim,mnκ
i
mn,m = n,

κin,mnκ
i
mn,n = m,

κim,mnκ
i
mn,n = 0,

κin,mnκ
i
mn,m = 0,

κimn,nκ
i
n,mn + κimn,mκim,mn = m+ n.

The lemma follows by noting that ifm andn are relatively prime, then so arem+ n
andmn.

PROPOSITION 3.2.For anyC∗-algebrasA andB, R is a group isomorphism.
Proof. The proof is based on the previous lemma. For if(m, n) = 1, thenϕin and

ϕimwill determineϕimn uniquely byϕimnκ
i
mn,n = κimn,nϕin andϕimnκ

i
mn,m = κimn,mϕim.

The map N is defined as follows. Let(ϕi, ψin) denote an element in
Hom3(K (A),K (B)). By coherence withκim,n, we can define maps lim−→1

ψin and
set

N(ϕi, ψin) =
(
ϕi, lim−→1

ψin

)
.

ClearlyN maps into the set of complex homomorphisms by coherence withρin and
βin.

Observation 3.3.We haveR(K (f )) = K ′(f ) andNK (f ) = K∞(f ) for any
∗-homomorphismf :A→ B.

SinceR is invertible, we may setN ′ = N ◦ R−1. We shall show thatN ′ (and
henceN ) is invertible provided that

Tor(Ki(A),Ki+1(B)) = 0, i ∈ {0, 1} (1)

holds. This will enable us, in essence, to extract information aboutK-theory with
coefficients inZ/n fromK-theory with coefficients inQ /Z.
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We shall prove this by defining a map

E: Hom3∞(K∞(A),K∞(B))→ Hom3′(K
′(A),K ′(B)),

and show that it is an inverse toN ′ by establishing commutativity of the triangle

We then proceed to prove that under extra conditions on theC∗-algebras in ques-
tion, each of these maps are order-preserving. For all of this, as we shall see below,
we need (1) in an essential way.

PROPOSITION 3.4. Let an element(ϕi, ψi) ∈ Hom3∞(K∞(A),K∞(B)) be
given, and fix a primep. If the pair ofC∗-algebrasA,B satisfies(1), there exist
unique group homomorphismsηipr :Ki(A;Z/pr)→ Ki(B;Z/pr) satisfying

ηipr ρ
i = ρiϕi, (2)

µiηipr = ψi µi. (3)

The maps will also satisfy

βiηipr = ϕi+1βi. (4)

Proof.Fix i ∈ {0, 1}. As a consequence of Lemma 1.1, (1) implies

Ki+1(A)[p] = 0 or Ki(B)[p] = 0.

We shall use this to defineηipr . In caseKi+1(A)[p] = 0, we note thatρiA is onto by
Lemma 2.6 and then set

ηipr (ρ
i
Ax) = ρiBϕix.

This is defined becauseϕi annihilates the kernel ofρiA. Clearly (2) is satisfied by this
definition, and (3) is a consequence of Lemma 2.4(i). Finally, (4) follows from the
fact thatβiB = 0 by Lemma 2.6 again.

If Ki+1(A)[p] 6= 0, we haveKi(B)[p] = 0. By Lemma 2.6,µiB is injective, and
we setηipr = (µiB)−1ψiµiA. Since imµi = Ki(−;Q /Z)[pr ], ψi must send imµiA
to imµiB , so the map is defined, and clearly satisfies (3). We get (2) by Lemma 2.4(i)
and (4) by Lemma 2.4(ii).

Uniqueness also follows from Lemma 2.6, forηipr is uniquely determined by (2)

if ρiA is surjective, or by (3) ifµiB is injective. As we have seen above, at least one
of these properties will always hold.

We established the following result, a consequence of Lemma 2.6, in the proof
above. In our further work, we may bypass Lemma 2.6 and refer to this directly.
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Observation 3.5. Suppose that the pairA,B satisfies (1). For eachi and
every prime powerpr , either ρiA:Ki(A) → Ki(A;Z/pr) is surjective orµiB :
Ki(B;Z/pr)→ Ki(B;Q /Z) is injective.

DEFINITION 3.6. WhenA,B is a pair ofC∗-algebras satisfying (1), we define

E: Hom3∞(K∞(A),K∞(B))→ Hom3′(K
′(A),K ′(B))

by E: (ϕi, ψi) 7→ (ϕi, ψipr ), whereψipr = ηipr , the unique maps given in Proposi-
tion 3.4.

We claim thatE maps into Hom3′ . Clearly, coherence withρ andβ follows from
(2) and (4). We get coherence withκ from combining (2) with Lemma 2.2(i) and (3)
with Lemma 2.4(iii) to get that

κips,pr η
i
pr ρ

i
pr = ps−s∧rρipsϕi = ηips κips,pr ρipr ,

µiκips,pr η
i
pr = pr−s∧rψiµipr = µiηips κips,pr ,

wherer∧s = min{r, s}. By Observation 3.5, eitherρiA is surjective orµiB is injective,
proving the claim.

PROPOSITION 3.7.WhenA,B is a pair ofC∗-algebras satisfying(1),

(i) R = EN,
(ii) E andN are group isomorphisms.

Proof.Let (ϕi, ψin) in Hom3 be given. Since(lim−→1
ψin)µ

i
pr = µiprψipr for every

p and everyr,ψipr equalsηipr by the uniqueness established in Proposition 3.4. This
shows thatR = EN .

Arguing again via uniqueness in Proposition 3.4, it is clear thatE is a group
homomorphism. As a consequence of Lemma 3.2,E is surjective. And ifE(ϕi, ψi) =
(0, 0, 0, 0), thenϕi = 0 andψi

∣∣
imµi = 0 by definition ofE and (3). By definition,

Ki(A;Q /Z) is generated by the images of theµi and soE is injective. Consequently,
N is a bijection also.

4. Ideal-Preserving Maps

WhenI is an ideal of someC∗-algebraA, we denote byιA,I anyK-theory map
induced by the inclusion mapjA,I : I → A. We then define

Ki(A‖I ) Ki(A‖I ;Z/n) Ki(A‖I ;Q /Z)
as the image ofιA,I in the relevantK-group. We say that an element
of Hom3(K (A),K (B)), Hom3′(K ′(A),K ′(B)) or Hom3∞(K∞(A),K∞(B)) is
ideal-preservingwhenϕ0K0(A‖I ) ⊂ K0(B‖J ) implies that every other element
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of the collection of group homomorphisms sendsKi(A‖I ) (resp.Ki(A‖I ;Z/n) or
Ki(A‖I ;Q /Z)) toKi(B‖J ) (resp.Ki(B‖J ;Z/n) orKi(B‖J ;Q /Z)). The follow-
ing lemma (cf. [22] and [16]) shows that the homomorphims induced on the above
groups by any∗-homomorphism betweenC∗-algebras of real rank zero and stable
rank one are ideal-preserving.

LEMMA 4.1. Let f :A → B be a∗-homomorphism betweenC∗-algebras of real
rank zero and stable rank one. Suppose that

K0(f )(K0(A‖I )) ⊂ K0(B‖J )
for idealsI, J . Thenf (I ⊗ K ) ⊂ J ⊗ K .

Proof. We may assume thatA,B, I andJ are all stable. SinceI is generated by
projections ([5]), it suffices to show thatf (p) ∈ J for any projectionp ∈ I . By
assumption, there is a projectionq ∈ J such that [f (p)] = [q] ∈ K0(B), and since
B has cancellation of projections by [1] there is a partial isometryv ∈ B such that
v∗v = f (p) andvv∗ = q. Therefore,f (p) must be inJ .

Due to its topological flavor, the ideal-preserving property behaves very well with
our reduction mapsR andE. We shall explore this in the following two lemmas.

LEMMA 4.2. For anyC∗-algebrasA,B,8 ∈ Hom3(K (A),K (B)) preserves ide-
als if and only ifR(8) ∈ Hom3′(K ′(A),K ′(B)) does.

Proof. If 8 ∈ Hom3(K (A),K (B)) preserves ideals then it is obvious that
R(8) ∈ Hom3′(K ′(A),K ′(B)) preserves ideals. LetI ⊂ A, J ⊂ B be ideals such
thatϕ(K0(A‖I )) ⊂ K0(B‖J ). For a positive integern, we formulate the following
condition

ϕn(Ki(A‖I ;Z/n)) ⊂ Ki(B‖J ;Z/n). (5)

To prove that ifR(8) preserves ideals then8 preserves ideals, it is enough to show
that if m, n are relatively prime integers satisfying (5), thenmn also satisfies (5).
Note that the condition (5) is equivalent to the existence of a set-theoretical map
ϕ̂n:Ki(I,Z/n)→ Ki(J,Z/n) such thatϕnιA,I = ιB,J ϕ̂n. Letϕmn be defined as in
Proposition 3.2. Every square in the diagram
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commutes. This follows by definition of the big square, and by naturality to
the left and right. We obtainϕmnιA,I κmn,n = ιB,J κmn,nϕ̂n and a similar equa-
tion with the roles ofm and n interchanged. Adding the two equations we get
ϕmnιA,I (κmn,n(x) + κmn,m(y)) = ιB,J (κmn,nϕ̂n(x) + κmn,mϕ̂m(y)) for any x ∈
Ki(I ;Z/n) andy ∈ Ki(I ;Z/m). Since(m, n) = 1, the images ofκmn,n andκmn,m
will generateKi(I ;Z/mn) according to Lemma 3.1, and the above equations show
thatmn satisfies (5).

We say that an idealI in aC∗-algebraA isK-pure if Ki(I) is a pure subgroup
of Ki(A), i = 0, 1 or, equivalently, if both sequences

0→ Ki(I)→ Ki(A)→ Ki(A/I)→ 0

are pure exact. Using Proposition 2.1(i) and the Tor-sequence we see that for any
n > 2 the sequences

0→ Ki(I ;Z/n)→ Ki(A;Z/n)→ Ki(A/I ;Z/n)→ 0

are exact. The same conclusion remains true ifZ/n is replaced byQ /Z. This is
seen by passing to inductive limits in the above sequences. Examples ofC∗-algebras
whose every ideal isK-pure are given below in Proposition 4.4.

LEMMA 4.3. Suppose thatA,B is a pair ofC∗-algebras satisfying(1)and with the
property that all ideals areK-pure. Then an element8 ofHom3∞(K∞(A),K∞(B))
preserves ideals if and only ifE(8) ∈ Hom3′(K ′(A),K ′(B)) does.

Proof. It is clear that ifE(8) preserves ideals, so does8 = N ′(E(8)).
In the other direction, let (ϕi, ψi) be an ideal-preserving element of
Hom3∞(K∞(A),K∞(B)). Let ideals I of A and J of B be given with
ϕ0(K0(A‖I )) ⊂ K0(B‖J ). By assumption,ϕ1(K1(A‖I )) ⊂ K1(B‖J ) and
ψi+1(Ki+1(A‖I ;Q /Z)) ⊂ Ki+1(B‖J ;Q /Z), so by the observations above,
(ϕi, ψi) induces an element(ϕ̂i , ψ̂ i) in Hom3∞(K∞(I ),K∞(J )).

By the properties of Tor(−,−) combined with the asserted exactness properties,
Tor(K•(I ),K•+1(J )) embeds into Tor(K•(I ),K•+1(B)), which again embeds into
Tor(K•(A),K•+1(B)). Consequently, the pairI, J also satisfies (1), and applying
Proposition 3.4 twice, we induce mapsηipr andη̂ipr .

Every small square in the diagram
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commutes. This follows by definition in the center, by naturality to the left and right,
and by (2) in the top and bottom. Replacing (2) by (3), we get commutativity of the
small squares of

by similar reasoning. We cannot conclude directly from this that the large squares
are commutative, but only that

ηiιA,I ρ̂
i = ιB,J η̂i ρ̂i ,

µiηiιA,I = µiιB,J η̂i .
However, we also know that the pairI, B satisfies (1), so by Observation 3.5, either
ρ̂i = ρiI is surjective orµi = µiB is injective. We conclude thatηiιA,I = ιB,J η̂

i ,
and hence thatηipr (K0(I ;Z/pr)) ⊂ K0(J ;Z/pr).

It is a consequence of the following proposition that every ideal in anASH algebra
(cf. [6]) of real rank zero isK-pure. In fact, we prove that theK-theory withany
coefficients of the extension given by an idealI in such anA is apureexact sequence.
Our argument is very similar to one in [4], where such a result was proven forAH

algebras.

PROPOSITION 4.4.Suppose an extension

0→ I → A→ A/I → 0

is given. IfA isASH of real rank zero, we have

(i) I andA/I areASH of real rank zero.
(ii) The sequences

0→ Ki(I)→ Ki(A)→ Ki(A/I)→ 0
are pure exact.

(iii) For anyp > 2 the sequences
0→ K•(I ;Z/p)→ K•(A;Z/p)→ K•(A/I ;Z/p)→ 0

are pure exact.
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Proof. Write A = lim−→(An, νn) and letν∞,n:An → A denote the canonical

map. SinceA has real rank zero, it follows from [5] thatI andA/I have real rank
zero. Moreover, there is an increasing sequence of projections(fn) in I , forming
an approximate unit ofI . By induction, we construct a sequence of projections
en ∈ An such thatν∞,n(en) = fn andνn(en) < en+1. Actually, in order to do this
construction we need to pass to a subsequence of(An). Suppose thate1, . . . , en
were constructed. Using a standard approximation argument, we findk > n and a
projectiong ∈ Ak such thatν∞,k(g) = fn+1−fn andg is orthogonal toνn(en). Then
we seten+1 = g+ νn(en). This completes the construction of the sequence(en). Let
In denote the closed two-sided ideal ofAn generated byen. Thenνn(In) ⊂ In+1 since
νn(en) < en+1 andI = lim−→(In, νn) sinceν∞(en) = fn and(fn) is an approximate

unit of I . It then clear that the given extension ofC∗-algebras is the inductive limit
of the sequence of extensions

0→ In→ An→ An/In→ 0, (6)

the bonding morphisms being induced by(νn). Since the building blocks ofAn have
connected spectrum andIn is an ideal generated by projections, it is easily seen that
In is a direct summand ofAn, henceAn/In is also a direct summand ofA. It follows
thatI andA/I areASH algebras, completing the proof of (i).

To prove (ii), we only need to notice that by the continuity ofK-theory, the
short sequence of groups from the statement is pure exact since it is the inductive
limit of a sequence of short exact split sequences. To prove (iii), we take the tensor
product of (6) byB = C0(Wp) or bySB and use a similar argument for the functor
K0(−,Z/p) ∼= K0(−⊗ B).

The last part of the proposition could also be proved using the continuity of
KK(I∼p ,−).

Remark 4.5. The above argument gives an alternate proof to the injectivity of
K(ιA,I ). Let B be aC∗-algebra in the class of Rosenberg–Schochet such that
K0(B) = G andK1(B) = 0. Arguing as above, we can prove (iii) withG replacing
Q /Z.

5. Order and Ideals

For simplicity, in most of this section we restrict our considerations to stably unital
C∗-algebras with cancellation of projections. IfA is such an algebra, then there is a
well defined mapx0 7→ I (x0) fromK0(A)

+ to the ideals ofA. Specifically, ife is a
projection inA ⊗ K with x = [e] ∈ K0(A), thenI (x0) ⊗ K is the ideal ofA ⊗ K

generated bye. In this case, the ideal-based order introduced in [6] can be described as
follows. We will write a general element inK•(A;Z⊕Z/n) in the formx = (x0, y)

with x0 ∈ K0(A). Then by definition,K•(A;Z⊕Z/n)+ consists of all those elements
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(x0, y)with the property thatx0 ∈ K0(A)
+ and(x0, y) ∈ K•(A‖I (x0);Z⊕Z/n). We

defineK•(A,Q ⊕Q /Z)+ as the inductive limit ofK•(A;Z⊕Z/n)+ (cf. Definition
2.3). ThenK∞(A)+ denotes the subsemigroup ofK∞(A) generated byK•(A)+ and
K•(A,Q⊕Q /Z)+. It is not hard to see thatx ∈ K∞(A)+ iff x0 i.e. itsK0 component
is positive andx ∈ K∞(A‖I (x0)). The following notation will be used:

x � 0 ⇔ x ∈ K•(A;Z ⊕ Z/n)+,
x � 0 ⇔ x ∈ K∞(A)+,
x > 0 ⇔ x ∈ K•(A;Z ⊕ Z/n)+ (see Section 2),

x > 0 ⇔ x ∈ K∞(A)+ (see Section 2).

If a morphism8 preserves these orders, we will write8 � 0, resp.8 > 0.
It was shown in [6] thatK•(A;Z ⊕ Z/n)+ ⊂ K•(A;Z ⊕ Z/n)+. The next two

chapters will be devoted to further comparative studies of these order structures, or
more precisely of the conditions

(i) 8 > 0
(ii) 8 � 0

for maps defined on theK-groups ofC∗-algebras of varying generality. In this anal-
ysis, the condition

(iii) 8 is ideal-preserving

plays an interpolating role. The relations are summarized below.

Relation Conditions onC∗-algebras Ref.

(i)H⇒ (ii) Stably unital, cancellation of projections 5.3

(ii)⇐⇒ (iii) Real rank zero, stable rank one [6, 4.12]

(i)⇐H (ii) ASH , slow dimension growth, real rank zero 6.5

These results establish a bridge between the natural (K0-type) order structure
K∞(−)+ and the less natural order structureK∞(−)+, which is important for our
reduction purposes and also appears in [12].

LEMMA 5.1. LetA be aC∗-algebra and lete, f be projections inA⊗K . Suppose
that the ideal generated bye containsf . Then there is an integerk > 1 such that
[f ] < k[e] in K0(A).

Proof. See the proof of [1, 6.3.5].

PROPOSITION 5.2. Let A be a stably unitalC∗-algebra with cancellation of
projections. Suppose thatx0 ∈ K0(A)

+. Then(x0, y) ∈ K•(A;Z ⊕ Z/n)+ iff
(kx0, y) ∈ K•(A;Z ⊕ Z/n)+ for somek > 0.
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Proof. Suppose that(x0, y) � 0. Let e ∈ A⊗ K be a projection withx0 = [e].
Let I be the ideal ofA⊗ K generated bye. It follows from the very definition of�
that there is(0, w) ∈ K•(I ;Z ⊕ Z/n) such thatιA,I (w) = y. We will find k > 1
such that(k[e], w) ∈ K•(I ;Z⊕Z/n)+. I is stably unital since by Brown’s Theorem
([3]) I is stably isomorphic to the unitalC∗-algebrae(A ⊗ K )e. By [6, 4.8], there
is a projectionf ∈ I ⊗ K such that([f ], w) ∈ K•(I ;Z ⊕ Z/n)+. By Lemma 5.1,
there isk > 1 such that [f ] < k[e] in K0(I ), hence(k[e], w) ∈ K•(I ;Z ⊕ Z/n)+.
It follows that(kx0, y) = ιA,I (k[e], w) > 0.

In the other direction, suppose thatx0 > 0 and(kx0, y) > 0. Let e andI be as
in the first part of the proof. We want to show thaty is in the image ofιA,I . Let
f ∈ A ⊗ K be a projection such that [f ] = kx0 and letJ be the ideal ofA ⊗ K

generated byf . SinceA has cancellation of projections and(kx0, y) > 0, we must
have(kx0, y) � 0 by [6, 4.7]. Therefore, there is(0, z) ∈ K•(J ;Z ⊕ Z/n) such
thatιA,J (z) = y. To conclude the proof, we must show thatI = J . The projections
e⊗ 1k andf have the sameK-theory class. SinceA has cancellation of projections,
the two projections must generate the same ideal ofA ⊗ K . As bothe ande ⊗ 1k
generate the idealI , we find thatI = J .

COROLLARY 5.3. LetA,B beC∗-algebras of real rank zero and stable rank one.
If 8 is an element ofHom3(K (A),K (B)), then8 > 0 implies8 � 0.

Proof. Suppose8 > 0 and letx ∈ K•(A;Z⊕Z/n)+ be given. By the proposition
above, there exists ak such that(kx0, y) ∈ K•(A;Z ⊕ Z/n)+, so by assumption,
8(kx0, y) = (k80(x0),8(y)) > 0. Applying Proposition 5.2 again, we get that
8(x) � 0.

It was proven in [6] that if bothA andB have real rank zero and stable rank one,
then8 � 0 if and only if8 is ideal-preserving and its restriction to theK0 groups is
positive. Thus, if8 > 0, then8 is ideal-preserving. A similar reasoning combined
with an inductive limit argument proves the following.

LEMMA 5.4. Suppose thatA,B areC∗-algebras of real rank zero and stable rank
one. If8 ∈ Hom3∞(K∞(A),K∞(B)), then8 � 0 iff 8 is ideal-preserving andϕ0

is positive. If8 > 0, then8 � 0.

6. Order and Ideals for ASH Algebras

As in [6], we define the function rank:K0(A)→ Z for certainA. WhenA = C(Z),
Z some compact connected Hausdorff space, rank is induced by any evaluation map
C(Z)→ C via the canonical isomorphismK0(C) = Z. WhenA = I∼n ⊗C(Z), rank
is induced by any evaluation mapI∼n ⊗C(Z)→ I∼n via the canonical isomorphism
K0(I

∼
n ) = Z.
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LEMMA 6.1. LetA be aC∗-algebra of the formI∼n ⊗C(X)withn > 2 orC(Y )⊗
C(X), whereX andY are finite connected CW complexes with

dim(X) < 3, dim(Y ) < 2.

If x ∈ K0(A) has rank at least two, thenx > 0.
Proof. In the caseA = C(X)⊗C(Y ) ∼= C(X×Y ) the implication rank(x) > 2

⇒ x > 0 is an easy consequence of the stability properties of vector bundles. For if
x = [p] − [q] with rank(p) − rank(q) > 2, we may conclude by [17] thatq < p,
whencex is positive. Let us deal with the caseA = I∼n ⊗ B, whereB = C(X). Let
δ: I∼n → C ⊕C be the restriction map at the endpoints of the spectrum onI∼n . After
tensoring withB the exact sequence

0−→ SMn
i−→ I∼n

δ−→ C ⊕ C −→ 0

induces aK-theory exact sequence

K0(SMn ⊗ B) i∗−→ K0(I
∼
n ⊗ B)

δ∗−→ K0(B)⊕K0(B)
λ−→ K0(B),

where the connecting mapλ is given byλ(y0, y1) = n(y0 − y1) for yi ∈ K0(B)

since the sequence is a mapping torus sequence, cf. [1, 19.4].
Let x ∈ K0(I

∼
n ⊗ B) and assume that rank(x) = r > 2. Thenδ∗(x) = (y0, y1)

with rank(yi) = r. SinceB = C(X)with dim(X) ≤ 3, there are rank one projections
gi ∈ B ⊗ K such thatyi = [gi ] + (r − 1)[1] for i = 0, 1 according to [18, 8.1.2].
Moreover, sincen(y0 − y1) = λδ∗(x) = 0, we getn[g0] = n[g1] by [18, 8.1.5].
Consequently, there is a homotopy of projectionsG: [0, 1]→ Mn(B ⊗K ) such that
G(i) = gi ⊗ 1n. We can regardG as a rank one projection inI∼n ⊗B ⊗K , and then
if we let z = [G] + (r − 1)[1], δ∗(z) = (y0, y1), hencex − z ∈ kerδ∗ = imi∗. Let
w ∈ K0(SMn ⊗ B) be such thati∗(w) = x − z.

Via the isomorphismK0(SMn ⊗ B) ∼= K0(B), w corresponds to an element
[p] − s[1] where we may think ofp as a projection-valued mapp: SX → Mrn, of
rank s, whereSX denotes the unreduced topological suspension ofX. We may, of
course, assume thats > 2. By [18, 8.1.2], we can write [p] = [p′]+ (s−2)[1] with
p′ of rank 2. By [17], we may assume that in factp′ maps into the 4× 4-matrices,
and we may also assume thatp′(pt) = Diag(1, 1, 0, 0). Letting

p̃ = Diag(

n−2︷ ︸︸ ︷
1, . . . ,1, p′,

n−2︷ ︸︸ ︷
0, . . . ,0),

we get a projection inM2((SMn ⊗ B)∼) with p̃(pt) = Diag(1n, 0n), and we may
writew = [p̃] − n[1]. Thus,i(p̃) will be a rank one element and

x = z+ i∗(w) = [G] + (r − 1)[1] + [i(p̃)] − [1]

= [G] + [i(p̃)] + (r − 2)[1] > 0.
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LEMMA 6.2. Let A be an ASH algebra of real rank zero and slow dimension
growth. Letx ∈ K•(A;Z ⊕ Z/n)+. Suppose that there isz0 ∈ K0(A)

+ such that
2z0 < x0 < mz0 for some integerm > 0. Thenx > 0.

Proof. Let such elementsz0 andx be given. By the continuity ofK•(A;Z⊕Z/n)+
(which follows from the continuity ofK•(A;Z ⊕ Z/n)+ and Proposition 5.2), we
may assume that insteadz0 andx are elements ofK-groups overAn, whereAn is a
finite direct sum of matrix algebras over algebras inSH(2), cf. [6]. By stability of
K-theory, we may assume that every summand is eitherI∼k ,C(Wk) orC(S1). LetC
be such a summand, and denote byy the correspondingK-element. Denoting byw0
the corresponding component ofz0 we have 2w0 < y0 < mw0. Whenw0 = 0, we
must havey0 = 0 sinceC is stably finite, and we get thaty = 0 using the fact that
y � 0 and the definition of�. Whenw0 6= 0, ranky0 > 2, and Lemma 6.1 applies
with X = S1×Wk.

There is a version of Lemma 6.2 for the dimension-drop-based order, with 2
replaced by a suitable number depending only onn.

LEMMA 6.3. LetA be a stably unitalC∗-algebra, and letx = (x0, y) ∈ K•(A;Z⊕
Z/n). Suppose that there are integersm > 1 andk and there isz0 ∈ K0(A)

+, such
thatx0 = mz0 andy = kρ(z0). Thenx ∈ K•(A;Z ⊕ Z/n)+.

Proof. Lete be a projection in the matrices overA, sayMr(A) such that [e] = x0
in K0(A). Define a *-homomorphismη: C → Mr(A) by η(1) = e, We may assume
that 0< k < n. Then the mapη∗:K0(C;Z⊕Z/n)→ K0(A;Z⊕Z/n) takes(m, k)
to x. But (m, k) > 0 as it corresponds to a vector bundle overWn of rankm > 1.
This shows thatx > 0 sinceη∗ is positive.

An elementx ∈ K•(A;Z ⊕ Z/n) is calledfinite dimensionalif x is a sum
of elementsxi such that eachxi satisfies the hypotheses of Lemma 6.3. A finite-
dimensional element is, hence, always positive. It is easily seen that ifC is a finite-
dimensionalC∗-algebra and ifψ :C → A is a∗-homomorphism, then all the ele-
ments ofψ∗(K0(C;Z ⊕ Z/n)+) ⊂ K•(A;Z ⊕ Z/n) are finite dimensional. The
converse is true as seen in the proof of Lemma 6.3.

LEMMA 6.4. LetAbe an ASH algebra of real rank zero and slow dimension growth.
For x ∈ K•(A;Z⊕Z/n)+ andk > 0, there arex′, x′′ ∈ K•(A;Z⊕Z/n)+ such that
x = x′ + x′′, x′′ is finite dimensional andkz0 < x′0 < mz0 for somez0 ∈ K0(A)

+
and a positive integerm.

Proof. According to [6, 7.4], we may (re)writeA as an inductive limit of a system
(Br, ξr) of finite direct sums of matrix algebras over building blocks such that each
partial morphism ofξr is either strictly(k+2)-large or has finite-dimensional image.
Given a positivex, we may assume that it is an element ofK•(Br ;Z⊕Z/n)+. Break
x up into summandsxi , and breakyi = (ξr)∗xi up into summandsyij which we shall
deal with separately. In the case wherexi = 0 or the corresponding partial morphism
of ξr has finite-dimensional image, we note thatyij is a finite-dimensional element.
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We setx′′ij = yij in this case. In the case where the corresponding partial morphism
of ξr is strictly (k + 2)-large, we have that rank(yij − k[1]) > 2 (where 1 denotes
a rank one projection), whenceyij > k[1] by Lemma 6.1 (withX = {pt}). We set
x′ij = yij , zij = [1] in this case. We may also choosem such thatm[1] > (x′ij )0 for
all i, j . Definex′, x′′ by adding up the summands found above.

PROPOSITION 6.5.LetA,B be ASH algebras of real rank zero and slow dimension
growth. If8 ∈ Hom3(K (A),K (B)), then8 > 0 iff 8 � 0.

Proof. One direction follows from Corollary 5.3 sinceA andB have stable rank
one by [1, 6.5.2]. For the other direction, assume that8 � 0. Let x ∈ K•(A;Z ⊕
Z/n)+ be given and decomposex = x′ + x′′ as in Lemma 6.4 withk = 2. Then
8(x) = 8(x′) + 8(x′′), where8(x′′) > 0 by Lemma 6.3. Sincex′ � 0, we
have8(x′) � 0 by assumption. Moreover, 280(z0) < 8(x′)0 = 8(x′0) < m8(z0),
hence8(x′) > 0 by Lemma 6.2.

PROPOSITION 6.6. Let a pair of ASH algebras A,B of real rank zero
and slow dimension growth, satisfying(1), be given. Then8 is an ele-
ment of Hom3∞(K∞(A),K∞(B))+ if and only if E(8) is an element of
Hom3′(K ′(A),K ′(B))+.

Proof. Let (ϕi, ψi) be a positive element of Hom3∞(K∞(A),K∞(B)). By
Lemma 5.4,(ϕi, ψi) preserves ideals, whence so doesE(ϕi, ψi) by Lemma 4.3.
E(ϕi, ψi) is then positive by Proposition 6.5.

COROLLARY 6.7. Let a pair of ASH algebras A,B of real rank zero
and slow dimension growth, satisfying(1), be given. If8 is an element of
Hom3∞(K∞(A),K∞(B)), then8 > 0 if and only if8 � 0.

Proof. Let (ϕi, ψi) be an ideal-preserving in Hom3∞(K∞(A),K∞(B)). By
Lemma 4.3,E(ϕi, ψi) is ideal-preserving, hence positive by Proposition 6.5. Then
so isNR−1E(ϕi, ψi) = (ϕi, ψi).

The corollary above remains true even ifA andB do not satisfy (1). This can be
proven along the lines of the proof of Proposition 6.5.

COROLLARY 6.8. WhenA,B is a pair ofASH algebras of real rank zero and
slow dimension growth, satisfying(1),N is an order-preserving isomorphism.

Proof. We saw in Proposition 3.7 thatN is an isomorphism of groups, and it is
positive by definition. SinceR is an order isomorphism by Proposition 3.2, so is
N−1 = R−1E by the proposition above.

7. Classification Results

THEOREM 7.1. The invariantK∞(−) is complete for the class of real rank zero
ASH algebras with slow dimension growth and satisfying(1). Furthermore, the∗-
isomorphism may be chosen realizing any given order isomorphism at the level of
K∞(−).
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Proof. Let A andB beC∗-algebras in this class and let an order isomorphism
8: K∞(A) → K∞(B) be given. By Corollary 6.8,N−1(8) is an order isomor-
phism also, and by [6, 9.1], there is a∗-isomorphismϕ with K (ϕ) = N−1(8).
Consequently,8 = NK (ϕ) = K∞(ϕ).

In the case of real rank zeroAD algebras, we always have torK0(−) = 0, and it
was proved in [10] that an invariant consisting of

K 0
∞(−): K0(−)⊗ Q

ρ0∞−→ K0(−;Q /Z)
β0∞−→ K1(−)

equipped with order onK•(−) andK0(−;Q ⊕ Q /Z) was complete in this case. In
fact, the reduction results for local spectra in [6] show that everyASH algebra with
torK0(−) = 0, slow dimension growth and real rank zero is in factAD. This we
may now bypass and prove directly:

COROLLARY 7.2. The invariantK 0∞(−) is complete for the class of real rank zero
ASH algebras with slow dimension growth andtorK0(−) = 0. Furthermore, the∗-
isomorphism may be chosen realizing any given order isomorphism of the invariant.

Proof. Condition (1) is clearly satisfied. The mapρ1∞ vanishes and the mapβ1∞
is injective. Thus, any morphism8′ of the above invariant corresponds to a unique
morphism8 of K∞(−). The naturality ofβ1∞ shows that if8′ is ideal-preserving
then8 is ideal-preserving. So the part of the order structure living onK1(−;Q /Z)
is irrelevant.

Assume now thatA is a simple and unitalAD algebra. As in [7], combining the
result above with semiprojectivity of the building blocks of theAD algebras yields
a short exact sequence

1−→ Inn(A) −→ Aut(A) −→ Aut(K 0
∞(A))

1,+ −→ 1.

It is easy to compute Aut(K 0∞(A))1,+ directly; every such automorphism consists
of three automorphismsϕ0, ϕ1, ψ0 whereϕ0 is an element of Aut(K0(A))

1,+, ϕ1 ∈
K1(A) andψ0 ∈ K0(A;Q /Z). By simplicity ofA combined with Proposition 6.5,
the triple is positive exactly whenϕ0 is positive. Furthermore, since the unspliced
sequence

0−→ K0(A)⊗ Q /Z
ρ̃−→ K0(A;Q /Z) β̃−→ tor(K1(A)) −→ 0

splits – the leftmost group being divisible – any pair of automorphisms(ϕ0, ϕ1) can
be augmented to a coherent triple by any mapψ of the form

ψ =
[
ϕ0⊗ id ∗

0 tor(ϕ1)

]
.

Hence, Aut(K 0∞)1,+ is precisely

Hom(tor(K1(A)),K0(A)⊗ Q /Z) o [Aut(K0(A))
1,+ × Aut(K1(A))].
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Remark 7.3.Comparing this result to [8, 3.4 ff], one sees that

ext(K1(A),K0(A)) ∼= Hom(tor(K1(A)),K0(A)⊗ Q /Z)

for A a simple unitalAD algebra of real rank zero. This is a purely algebraic
phenomenon, as we are grateful to C. U. Jensen for showing us. In fact, when
Tor(G1,G0) = 0, there is an isomorphism

ext(G1,G0) ∼= Hom(tor(G1),G0⊗ Q /Z).

Remark 7.4.Fix a primep, and letA = Ip, B = C0(Wp). Direct calculation
shows that

K0(A) = 0, K1(A) = Z/p, K0(A;Z/p) = K1(A;Z/p) = Z/p,

K0(A;Q /Z) = Z/p, K1(A;Q /Z) = 0,

K0(B) = Z/p, K1(B) = 0, K0(B;Z/p) = K1(B;Z/p) = Z/p,

K0(B;Q /Z) = 0, K1(B;Q /Z) = Z/p,

whence Hom(K∞(A),K∞(B)) = 0, while Hom3(K (A),K (B)) 6= 0. Consequent-
ly, N is not injective, and no mapE with the propertyR = EN can exist.

Using this example, one can produce a pairC,D ofASH algebras with real rank
zero and slow dimension growth withK∞(C) ∼= K∞(D), yetK (C) 6∼= K (D).
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