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Abstract. An invariant based on ordereki-theory with coefficients iz @ €9,_, Z/n and an
infinite number of natural transformations has proved to be necessary and sufficient to classify a
large class of nonsimpl€*-algebras. In this paper, we expose and explain the relations between
the order structure and the ideals of thi&algebras in question.

As an application, we give a new complete invariant for a large class of approximately subhomo-
geneoug *-algebras. The invariant is based on ordeketheory with coefficients iZ & Q& Q/Z.
This invariant is more compact (hence, easier to compute) than the invariant mentioned above, and
its use requires computation of only four natural transformations.

Mathematics Subject Classifications (199146L35, 46L80, 19K14.

Key words: Torsion coefficientsC*-algebras, ideals, approximately subhomogeneous, real rank
zero, classification.

0. Introduction

The problem of classifying approximately homogene@tsalgebras of real rank
zero with slow dimension growth by algebraic invariants was settled in 1994 by the
firstauthor and Guihua Gong [6]. The complete invariatt-) has three components:

— The ordered -groupsKo(—) @ K1(—) (introduced in [9] and [13]).

— The orderedk -groups with coefficient&o(—; Z ® Z/n) ® K1(—; Z & Z/n)
(introduced in [7]).

— The natural transformations between these groups (studied in an abstract setting
in [21], integrated along with the order structure in [11], [8] and [6]).

The main result of [6] states that two real rank zero approximately subhomo-
geneoug”*-algebrasA and B (of a certain subhomogeneity type) wilow dimen-
sion growthare isomorphic wheK (A) andK (B) are isomorphic in a fashion pre-
serving all positive cones and all the natural transformations.

The existence of a classification result baseld ¢r) indirectly implies thak (A)
can be thought of as an algebraic model of the asymptotic homotopy type or shape
theory type of theC*-algebraA. It is also clear from comparing classification results
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based orK (—) to others based okip(A) @ K1(A), that the advantage of the larger
invariant is that it offers a better homological description of how the various ideals
of A are glued together. To make this more precise, consideh@momorphism

9. A — B.If ¢ maps some ideal of A into some ideal/ of B, the morphism

K (¢) will map the image oK (1) in K(A) into the image oK (J) in K(B). For

A, B, C*-algebras of real rank zero and stable rank one, the above property has an
algebraic counterpart which can be formulated for any morpkisg(A) — K (B).

A morphism satisfying that property is said toideal-preservinga notion studied

— in embryonic form —in [15].

In this paper, we give a complete description of the interrelations between positive
and ideal-preserving maps. Such results give a direct, and more precise, explanation
of the relevance of the order structure when studying nonsigiplalgebras, and
have important consequences for certain types of reduction results found in [12].

As another application, we consider the question of compressing the coefficients
in the invariants — without losing the information they hold concerning the ideal
structure of th&*-algebra. A proof that certain compressions of coefficients preserve
the ideal-preserving maps combines with the results mentioned above to give new
and more economical classification theorems.

Such reductions are of great practical importance because of the fact that while
the invariantK (—) is continuousand, hence, in theory computable for magiy-
algebras on inductive limit form, an isomorphism must intertwine an infinite family
of group homomorphisms, making it somewhat difficult to work with. Furthermore,
there is often quite a bit of redundancy in the invariant.

Put more precisely, our main result states that wheand B are bothASH
C*-algebras of real rank zero having slow dimension growth, and if &ieineory
satisfies

Tor(Ki(A), Ki+1(B)) =0, i €{0,1},

then there is a complete invariant based on orddéfettheory with coefficients in

7 @& Q & Q/Z. It was pointed out by Claude Schochet that the above condition on
the vanishing of Tor is the same as the one under which the naturakKmap ®
K.(B) - K.(A®B)isanisomorphism, see [20]. Besides eliminating redundancy in
the coefficients, the main virtue of this invariantis thatitis only necessary to check that
agivenisomorphism intertwinésur natural transformations. Apart from the obvious
practical importance of such an invariant, there are also theoretical implications of
its existence.

Hoping to capture basic structural understanding which may be relevant to other
applications, we proceed with our investigation as long as possible in an abstract,
algebraic setting. This applies in particular to our discussion of ideal-preserving maps
and compression. On the other hand, we only obtain equivalence between positivity
and the ideal-preserving property in the case of approximately subhomogeneous
C*-algebras.
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1. Algebraic Preliminaries

We recall a few facts about the functor Tor from, e.qg., [19, Chapter 8]. For an Abelian
group H, we let torH denote the torsion subgroup &f and H[r] the subgroup of
H consisting of elements such thatux = 0. First, we note that

Tor(G, H) = Tor(H, G),
Tor(H,Z/n) = Hl[n],
Tor(H,Q/Z) = torH.

These isomorphisms are natural. Also, since(F9I1G) is the right derived functor
for — ® G, and Top vanishes, for any short exact sequence of groups

0— Hi — H) — H3 — 0,

we get a long exact sequence

0——— Tor(Hy1, G) — Tor(H», G) — Tor(H3, G) —>

— H®G—— H) G— H3® G——0

The ensuing two lemmas rephrase known facts to fit our exposition in the follow-
ing.

LEMMA 1.1. Let G and H be Abelian groups. Thefor(H, G) = 0if and only if
wheneveg and# are torsion elements @f and H, respectively, we have

(orden(g), orderh)) = 1.
Proof. By [14, 62.F], we have

Tor(H,G) = @ Tor(H,.G)).

p prime

with H,, G, denoting thep-components of/, G. Hence, To(H, G) # 0 if and
only if there is a primep with Tor(H,, G,) # 0. The condition on the orders is
equivalent to saying that one of thegroups always vanishes, so we must see that
for p-groupsA, B

Tor(A,B)=0 << A=00rB=0.
For this, note that iA # 0, there is a short-exact sequence
0—Z/p—A— A/(x) — 0,

wherex is some element of order. Applying Tor(—, B), we get an embedding of
B[p] into Tor(A, B).
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LEMMA 1.2. Letk € N be given. If a torsion groug; has nok-torsion, G is
k-divisible.

Proof Fix x € G and letm denote the order of. We have(m, k) = 1, for if
(m,k) > 1,(m/(m, k))x is anonzero element annihilatedhyVe can findi, b € Z
with am + bk = 1 and, hence,

x = (am + bk)x = a(mx) + k(bx) = k(bx).

2. Torsion CoefficientK-Theory

When aninteget is given, we can define the functaks(—; Z/n) from C*-algebras
to Abelian groups in several equivalent ways, cf. [21]. For eacimdm, there are
also natural maps

Pl Ki(A) — Ki(A; Z/n),
B Ki(A; Z/n) — Kiy1(A),
ki Ki(A; Z/n) — Ki(A; Z/m),
and we have
PROPOSITION 2.1 ([21]).The six term sequences
0
n Pn
Ko(A) ——— Ko(A) ——— Ko(A: Z/n)
. 1 0
0 al [
K1(A; Z/n) X K1(A) «—— Ki1(A)
pn Xn

Kr(t)m,m Kr?,nm
Ko(A; Z/m) —— Ko(A; Z/nm) ——— Ko(A: Z/n)

(ii) ﬂr}mT l Brvn
K1(A; Z/n) <1— K1(A; Z/nm) <l— K1(A; Z/m)

Kn,nm Knm,m
i pitlgi
are exact. Hereg,, , = p,.""B;,.

LEMMA 2.2 ([21], cf. also [2]).

NP M
(I) Km,}’l'ol’l - (n’ m) pm’
N A i
(”) IBme,n - (n,m) an’
m(k,n)

(|||) Kllc,mK}{n,n = mk’k’n.
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We shall use the symboé* to refer to the sum of the even and the odd part of
aZ/2-graded group, as iR, = Ko ® K1. Applying this convention t& -groups
with coefficients inZ & Z/n we get

Ko(A; Z@® Z/n)
=Ko(A;Z®7Z/n) ® K1(A; Z& Z/n)
= Ko(A) ® Ko(A; Z/n) ® K1(A) ® K1(A; Z @ Z/n).
The latter decomposition actually gives(d/2)2-grading onK.(A; Z & Z/n).
In [7] an order structure on these doubly graded groups was introduced by the
definition
Ko(A;Z®Z/n)tT
=hom(I,A® C(SH ®K) c KK, A® C(SY)),
where hom denotes the set &K classes having a representative which is a

x-homomorphism. This order structure was also used in[11]. Another order structure
was considered in [8] and [6], namely

Ko(A;ZDZ/n)T = Ko(A® C(W,) ® C(SH)T,

whereW,, is then-Moore space. It was shown in [6] that these order structures have
similar properties for the class ofSH algebras of real rank zero, and either one
may be used in classifying sucti--algebras. We shall work with the latter, but our
results hold true with only minor modifications for the former.

Let A denote the ordered s@f, < ), wherex < y iff x dividesy. Note thatA
is directed, so that we may construct inductive limits oxeMe will denote these
by Ii_r)nA(Gp, fq.p)» Wherefy ,: G, — G, are the bonding maps. When a cofinal

subsetA’ of A, is given, we may restrict attention to this, as
Ii_m)AGn = Ii_m)A/Gn.
We define graded group homomorphisms
Knmm: Ke(A; Z B Z/m) — K¢(A; Z & Z/nm)
by

i,even__ i,odd _ i
Knm,m = Xmn,n, Knm,m - Knm,m’

where x,,., » IS just multiplication bym between the relevant copies &f(A). The
mapsk are positive, so we may define

DEFINITION 2.3.
Ke(A; Q@ Q/Z) = Ii_m)A (K.(A; Z&® Z/n), Knm,n) >
Ko(4;Q@Q/2)" =lim (Ko(A;Z@&Z/m)", kum.n)
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This way we obtain doubly graded ordered groups. We shall denote the odd parts by
K;(A; Q/Z). The even parts are naturally isomorphicdgA) ® Q since

lim (G, an,n) = lim GR7Z, id® an,n)
—A —A
=G6Q (“m (z, an,n)) =GRQ
—A

naturally. We shall invoke this isomorphism tacitly in the following.
Because of Lemma 2.2(i) and (ii), we also get maps

pho Ki(A) ® Q — Ki(A; Q/2),
Boo: Ki(A; Q/Z) — Kit1(A),
defined by taking inductive limits.
In what follows, we shall mainly be preoccupied with the interrelations between
theK -groups with coefficients iQ/Z andZ/n, respectively. In charting the interplay,

two maps play a role similar to the one played by the reduction and Bockstein maps
in the interplay betweeR -theory with coefficients ifZ andZ/n, namely

i _ | i i _ i+l i _ Sit+lpi
Hp = IImAKmn,n’ Vn = Pn <||_rn)Aﬁmn> = Pn ﬁoo

—

They are clearly natural as they are composites and limits of natural maps.
LEMMA 2.4.
N e 1
(I) MpPy = Poxo id ® ; )
(i) Botty = By

n

(m,n)

i

(i) k. = T

Proof. To prove (i), we consider the diagram

i

Ki(A: Z/n) —" s Ki(A; Z/mn) . Ki(A: Q/2)
T ol T Phun T ks
Ki(A) ——— Ki(A) .. Ki(A)®Q

xXm

The composed map on the top lingds, and one can see that under our identifi-
cations, the composed map on the lower line is exactty iy n.
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The remaining claims are proved by similar reasoning on the diagrams

Ki+1(A) =——— K;+1(A4) Kit1(A)
I T i T i
Ki(A; Z/n) —> Ki(A; Z/mn) Ki(A; Q/Z)
and
Ki(A: Z/m) —="s Ki(A: Z/mn) .. Ki(A; Q/Z)
T | xats [ <@
Ki(A; Z/n) ——> Ki(A: Z/mn) Ki(A; Q/2)

Kmn.n

There is an alternate way, very much in the spirit of [21], of defifiirgheory with
coefficients inQ andQ/Z. Let U be the UHF algebra witlko(U) = Q. LetV be the
mapping cone of the unitathomomorphisnC — U. Then one has isomorphisms
K.(A;Q) = K.(A®U) andK.(4; Q/Z) = K.(A ® V). Using these alternate
definitions, it is not hard to derive Proposition 2.5 below from general results in [21].
However, we believe that working with Definition 2.3 makes it easier to compute the
order structure in concrete cases and going back and forth between these invariants
andK (-).

PROPOSITION 2.5The six term sequences

. 0
Ko(A) —25s Ko(A) ® Q —=— Ko(A: Q/2)

0) ﬁéoT lﬁgo
K1(A;Q/7Z) A K1(A)®Q ? K1(A)
Poo -

0
Ko(A; Z/n) ——s Ko(A; Q/Z) — s Ko(A: Q/2Z)
(i ] I
K1(4; Q/2) «—— K1(4; Q/2) «——— Ka(A; Z/n)

Hn
are exact.
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Proof. The first diagram is exact by passing to inductive limits akewith the
commutative diagram

i

Xn p;iz /3}1
Ki(A) —— Ki(A) —— Ki(A; Z/n) —> Ki11(A)

H l xXm J/ Knm,n “

Ki(A) —— Ki(A) —— K;(A; Z/nm) —> K;1(A)
xnm p}l'lm ﬁllﬂﬂ
and applying the natural isomorphisms mentioned above. It is straightforward to
check that the induced map frok (A) to K;(A) ® Q becomes exactly tensoring

by the unit ofQ.
For exactness of the second diagram, note that

Krinn,n Krin,mn p£1+1/3£n
Ki(A; Z/n) — Ki(A; Z/mn) —— K;(A; Z/m) —> K;1(A; Z/n)

i i
“ l Kkmn,mn l Kkm,m ”

Ki(A;Z/n) S K;(A; Z/kmn) - Ki(A; Z/km) - Kiy1(A; Z/n)

i i i+1pi
Kkmn,n Kkm,kmn Pn ﬂkm

is commutative, as is seen directly from Lemma 2.2(ii) and (iii). For commutativity
of the second square, one must also verify that

kmn(mn, km) — k) = m(mn, km)

(mn, kmn)(kmn, km) "~ (m,mn)(m, km)’

Passing to inductive limits vertically, we get a six term exact diagram as stated. To
determine the endomorphismsKf(A; Q/Z) in this, one notes that

m(mn, mn)
KmnmKmmn — — 5 —
(m, mn)?

for everym. The other maps are clearly the ones stated.

We end this section with a crucial technical lemma.

LEMMA 2.6. Fix a primep. If K;(A)[p] = 0, we have for any € N:

(i) Bt =0,
(i) phis surjective,
(iii) vt =0,

(iv) u is injective.
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Proof. The exactsequences inthe following diagram are derived from Proposition
2.1(i) using the Tor-sequence. The outermost maps in

0—— Ki1(4) ® Q/Z —— Ki+1(A; Q/Z) —— tor(K;(A)) —— 0

L L L
0—— Ki41(A) ® Q/Z — Ki11(A; Q/Z) — tor(K;(4)) —— 0

are both onto, for the leftmost group is divisible, and the rightmaogt.divisible by
Lemma 1.2. By the five-lemma, the center map is onto. Applying exactness of the
diagram in Proposition 2.5(ii), the two last claims follow from this.

It is obvious that multiplying withp* is an injective map irk; (A). Applying
exactness of the diagram in Proposition 2.1(i), the two first claims follow directly.

Remark 2.7.There are at least two different reasons why it is desirable to work
with K -theory withQ/Z-coefficients instead of the family & -groups with allZ./n-
coefficients. One is that it is easier to compute @6ralgebras on inductive limit
form —indeed, a straightforward diagonality argument (see [10, 3.2.7]) shows that

Ki(lim(A;, £7): Q/Z) = im(Ki(Aj; Z/ ], kv ji o Ki(fjs Z/ D).

Another reason is the theoretical importance of having only to argue on a finite
number of groups. We shall see an example of this in Section 7 below.

3. Reduction of Torsion CoefficientK-Theory

We denote b (A) the direct sum of alK -groups with coefficients i or Z/n.
The symbolA refers to the collection of all the naturalisomorphisms, « between
those groups, andA by.Homﬁ(A), K (B)) we denote the set of families of group
homomorphismsy', ¥,,) with

¢'1Ki(A) — Ki(B), ¥, Ki(A;Z/n) — Ki(B;Z/n),
which are intertwined by the homomorphismsAnThe symbold'(—), A’ refer to
the subcollection for which is a prime power.

We denote b)KOO(A) the direct sum of the grougs; (A), K;(A; Q/Z), by A
the coAIIection{péO, BL.}, and by Hom (K (A), Kso(B)) the group of 4-tuples
(¢, ¥') with

¢ Ki(A) —> Ki(B),  ¥":Ki(A;Q/Z) - Ki(B;Q/Z)
intertwined by the homomorphisms ..

We shall consider two maps

R:Homy (K(A), K(B)) — Homy/(K'(A), K'(B)),
N:Homy (K(A), K(B)) — Homy (Koo (A), Koo (B)).
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The mapR, considered also in [8], is just the restriction map, and Proposition 3.2
is proved there fo€C*-algebrasA in the bootstrap class of Rosenberg and Schochet.
Lemma 3.1 and Proposition 3.2 are proved using various properties of the Bockstein
operations established in [21].

LEMMA 3.1. Let m, n be relatively prime integers. For ang*-algebra A,
K;(A;Z/n) ® K;(A; Z/m) is naturally isomorphic toK; (A; Z/mn). An isomor-
phism is given by the map

(X, 9) B K () + Ky ).

Proof. Itis easily derived from Lemma 2.2(iii) that

i i

K mnKmn,m = 1
P =m

n.mn  -mn,n ’
kb k! =0,

m,mn"*mn,n

i i _
Kn,mnKmn,m - O’

i i i

i —
Kmn,n®n,mn + Kmn,m&m,mn = M +n.

The lemma follows by noting that i andn are relatively prime, then so arve+ n
andmn.

PROPOSITION 3.2.For any C*-algebrasA and B, R is a group isomorphism.
Proof. The proofis based on the previous lemma. Femifn) = 1, theng; and

i H H i H i i i i i i i i
¢;, willdetermineyp;,, uniquely by(pmnlcmn’n = Kpn.nPn and<pmn/cmn,m = Kpun.mPrm-

The map N is defined as follows. Let(¢', ¥) denote an element in
Homp (K(A), K(B)). By coherence with!, ., we can define maps_l)iglp,’l and

m,n?
set
N ¥, = (soi, ”_fT]Ai//Z) :
Clearly N maps into the set of complex homomorphisms by coherencepfyigmd
B-

Observation 3.3.We haveR(K(f)) = K'(f) and NK(f) = Ky (f) for any
x-homomorphismf: A — B.

SinceR is invertible, we may seN’ = N o R~1. We shall show thaiv’ (and
henceN) is invertible provided that

Tor(K;(A), Ki+1(B)) =0, i €{0,1} 1)

holds. This will enable us, in essence, to extract information akGtheory with
coefficients inZ/n from K -theory with coefficients i)/ Z.
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We shall prove this by defining a map
E:Homy (Koo (A), Koo(B)) — Homy/ (K'(A), K'(B)),

and show that it is an inverse 1¢' by establishing commutativity of the triangle

Homa (K(A), K(B)) —&— Homy (K'(4),K'(B))

% ///f//”

HOIIlAOO (KOO(A), Koo(B))

We then proceed to prove that under extra conditions og'thalgebras in ques-
tion, each of these maps are order-preserving. For all of this, as we shall see below,
we need (1) in an essential way.

PROPOSITION 3.4. Let an elementiy’, ) € Homy_ (Koo(A), Kso(B)) be
given, and fix a primep. If the pair of C*-algebrasA, B satisfies(1), there exist
unique group homomorphism§r: Ki(A;Z/p") — K;(B;Z/p") satisfying

ot = p'¢l, (2)

winhe = 'l 3)
The maps will also satisfy

By = o' 4)

Proof.Fix i € {0, 1}. As a consequence of Lemma 1.1, (1) implies
Kiy1(A)[p] =0 or K;(B)[p] =0.

We shall use this to defing,,. In casek; ;1(4)[p] = 0, we note thap’, is onto by
Lemma 2.6 and then set

Myr (P4X) = pp@'x.

This is defined becausgg annihilates the kernel m“/;. Clearly (2) is satisfied by this
definition, and (3) is a consequence of Lemma 2.4(i). Finally, (4) follows from the
fact thatg}, = 0 by Lemma 2.6 again.

If Ki+1(A)[p] # 0, we haveK;(B)[p] = 0. By Lemma 2.6;4g is injective, and
we setn;, = () "Lyiul,. Since imu! = K;(—; Q/Z)[p"], ¥' must send im,
to im;ﬁé, so the map is defined, and clearly satisfies (3). We get (2) by Lemma 2.4(i)
and (4) by Lemma 2.4(ii). .

Uniqueness also follows from Lemma 2.6, fq; is uniquely determined by (2)
if pi‘ is surjective, or by (3) ifufé is injective. As we have seen above, at least one
of these properties will always hold.

We established the following result, a consequence of Lemma 2.6, in the proof
above. In our further work, we may bypass Lemma 2.6 and refer to this directly.
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Observation 3.5. Suppose that the paid, B satisfies (1). For each and
every prime powerp”, either p): K;(A) — K;(A;Z/p") is surjective orpuly:
K;(B;Z/p") — K;(B; Q/Z) is injective.

DEFINITION 3.6. WhenA, B is a pair ofC*-algebras satisfying (1), we define
E:Homy, (Koo(A), Ko (B)) — Homy/(K'(A), K'(B))

by E: (¢', ¥') = (¢', ¥},), wherey, = 1!, the unique maps given in Proposi-
tion 3.4.

We claim thatE maps into Hom.. Clearly, coherence with andg follows from
(2) and (4). We get coherence wittfrom combining (2) with Lemma 2.2(i) and (3)
with Lemma 2.4(iii) to get that

i i S—sAF i i i i i
Kps, prprPpr = P Pps® = NpsKps prPprs

i1 i r—sAr
12 Kps’prnpr =p

i i i
Vil = W N psKps s

wherer As = min{r, s}. By Observation 3.5, either, is surjective op.'y is injective,
proving the claim.

PROPOSITION 3.7.WhenA, B is a pair of C*-algebras satisfyingl),

(i) R=EN,
(i) E and N are group isomorphisms.

Proof. Let (¢, ¥) in Hom, be given. SianIi_m)Aw,i)M;, = ,L;, w;',r for every

p and every, ¥/, equalsy}, by the uniqueness established in Proposition 3.4. This
shows thaiR = EN.

Arguing again via uniqueness in Proposition 3.4, it is clear thas a group
homomorphism. As a consequence of LemmaBig surjective. AndifE (¢’ , ¥') =
(0,0,0,0), theng’ = 0 andy’ | ,i = O by definition ofE and (3). By definition,
K;(A; Q/Z) is generated by the images of theand soF is injective. Consequently,

N is a bijection also.

4. ldeal-Preserving Maps

When [ is an ideal of som& *-algebraA, we denote by, ; any K-theory map
induced by the inclusion majy ;: I — A. We then define

Ki(AlD)  Ki(Alll:Z/n)  Ki(A|1;Q/Z)

as the image ofis; in the relevant K-group. We say that an element
of Homy (K (A), K(B)), Homy/(K'(A), K'(B)) or Homy (Koo (A), Koo(B)) is
ideal-preservingwhen pgKo(A|lI) C Ko(B|J) implies that every other element
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of the collection of group homomorphisms serdsA| 1) (resp.K;(A||I; Z/n) or
K;(A|I;Q/Z)) to K;(B|J) (resp.K;(B||J; Z/n) or K;(B||J; Q/Z)). The follow-

ing lemma (cf. [22] and [16]) shows that the homomorphims induced on the above
groups by any-homomorphism betwee@i*-algebras of real rank zero and stable
rank one are ideal-preserving.

LEMMA 4.1. Let f: A — B be ax-homomorphism betweetr-algebras of real
rank zero and stable rank one. Suppose that

Ko(f)(Ko(AllI)) C Ko(B||J)

forideals’, J. Thenf(I  K) Cc J ® K.

Proof. We may assume that, B, I andJ are all stable. Sincé is generated by
projections ([5]), it suffices to show thgt(p) € J for any projectionp € I. By
assumption, there is a projectigne J such that f (p)] = [¢] € Ko(B), and since
B has cancellation of projections by [1] there is a partial isometey B such that
v¥v = f(p) andvv* = ¢. Therefore,f(p) must be inJ.

Due to its topological flavor, the ideal-preserving property behaves very well with
our reduction map® and E. We shall explore this in the following two lemmas.

LEMMA 4.2. ForanyC*-algebrasA, B, ® € Homp (K(A), K(B)) preserves ide-
als if and only ifR(®) € Hom,/(K’(A), K'(B)) does.

Proof. If ® € Homp (K(A), K(B)) preserves ideals then it is obvious that
R(®) € Hom,/(K’(A), K'(B)) preserves ideals. LdtC A, J C B be ideals such
thatp(Ko(A|l1)) € Ko(B|J). For a positive integet, we formulate the following
condition

on(Ki(All1; Z/n)) C Ki(B||J; Z/n). ®)

To prove that ifR (®) preserves ideals thebh preserves ideals, it is enough to show
that if m, n are relatively prime integers satisfying (5), themn also satisfies (5).
Note that the condition (5) is equivalent to the existence of a set-theoretical map
on-Ki(1,Z/n) — K;(J,Z/n) suchthap,ta ;1 = tp j¢n. Letp,, be defined as in
Proposition 3.2. Every square in the diagram

Ki;(A;Z/n) on Ki(B;Z/n)
LA T tB,J
Ki(I;Z/n) - 2% > Ki(J;Z/n)
Kmn,n Kﬂmn,nl lﬂmn,n Kmn,n
K;(I;Z/mn) K;(J;Z/mn)
LA T LB,J
K;(A;Z/mn) K;(B;Z/mn)

Pmn
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commutes. This follows by definition of the big square, and by naturality to
the left and right. We obtai@,,ta rkmn.n = tB.7kmn.n$n @and a similar equa-
tion with the roles ofm andn interchanged. Adding the two equations we get
(panA,l(Kmn,n(x) + Kmn,m(y)) = [B,J(Kmn,ngbn(x) + Kmn,m@m()’)) for anyx e
Ki(I;Z/n) andy € K;(I; Z/m). Since(m, n) = 1, the images ok, and«,, m

will generatek; (I; Z/mn) according to Lemma 3.1, and the above equations show
thatmn satisfies (5).

We say that an idedl in a C*-algebraA is K-pureif K;(I) is a pure subgroup
of K;(A), i = 0, 1 or, equivalently, if both sequences

0— K;(I) > K;(A) - K;i(A/I) - 0

are pure exact. Using Proposition 2.1(i) and the Tor-sequence we see that for any
n = 2 the sequences

0— Ki(I;Z/n) - Ki(A;Z/n) - K;(A/I;Z/n) — 0O

are exact. The same conclusion remains trué/it is replaced byQ/Z. This is
seen by passing to inductive limits in the above sequences. Examlésadgebras
whose every ideal iX -pure are given below in Proposition 4.4.

LEMMA 4.3. Suppose thad, B is a pair ofC*-algebras satisfyingl) and with the
property that all ideals are& -pure. Then an elemedtofHomy (Ko (A), Koo (B))
preserves ideals if and only H(®) € Hom,/(K'(A), K’(B)) does.

Proof. It is clear that if E(®) preserves ideals, so dods = N'(E(®)).

In the other direction, let(¢’, ) be an ideal-preserving element of
Homy  (Kso(A), Ko(B)). Let ideals of A and J of B be given with
¢°(Ko(AlD)) C Ko(B|lJ). By assumptiong(K1(A[l1)) C Ki(B|J) and
¢i+1(Ki+1(A||I;Q/Z)) C K;+1(B|J;Q/Z), so by the observations above,
(¢!, ¥') induces an elemerip’, ¥/') in Homa_ (Koo (1), Koo (J)).

By the properties of Tar-, —) combined with the asserted exactness properties,
Tor(Ke(I), Ke+1(J)) embeds into TaiK. (1), K.+1(B)), Which again embeds into
Tor(Ke(A), Ke+1(B)). Consequently, the palr, J also satisfies (1), and applying
Proposition 3.4 twice, we induce mapls andij:,.

Every small square in the diagram

Ki(I;Z/;i<— SRR —7@7;2/17’)
P Pt

LA,I LA,Il lLB,J LB,J

K(AZfp)———--——=—————~ > Ki(B;Z/p")
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commutes. This follows by definition in the center, by naturality to the left and right,
and by (2) in the top and bottom. Replacing (2) by (3), we get commutativity of the
small squares of

KlZfp) = === - == == e - K3 Z/p)

u\; 5

K(I;Q/Z) - o Ki(J;Q/Z)

LA,I LA,Il lLB.J tB,J

Ki(4,Q/Z) — Ki(B; Q/Z)

by similar reasoning. We cannot conclude directly from this that the large squares
are commutative, but only that

n'earp = an'p',
wn'tar=puip gn'.

However, we also know that the pdir B satisfies (1), so by Observation 3.5, either
p' = pj is surjective o' = 'y is injective. We conclude that'ta,; = tp 7',
and hence thaﬁi,r(Ko(I; Z/p")) C Ko(J;Z/p").

Itis a consequence of the following proposition that every ideal in&H algebra
(cf. [6]) of real rank zero iK-pure. In fact, we prove that th&-theory withany
coefficients of the extension given by an idé#ah such am is apureexact sequence.
Our argument is very similar to one in [4], where such a result was proveafbr
algebras.

PROPOSITION 4.4.Suppose an extension
O>I—->A—A/I >0

is given. IfA is AS H of real rank zero, we have

(i) TandA/I are ASH of real rank zero.
(ii) The sequences
0— K;(I) > Ki(A) - K;(A/I) - 0
are pure exact.
(i) Foranyp = 2the sequences
0— Ko(I;Z/p) = Ke(A;Z/p) - Ke(A/I;Z/p) — O
are pure exact.
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Proof. Write A = Ii_m)(An, v,) and letvs 4,2 A, — A denote the canonical

map. SinceA has real rank zero, it follows from [5] thdtand A/I have real rank
zero. Moreover, there is an increasing sequence of projectignsn I, forming
an approximate unit of. By induction, we construct a sequence of projections
en € A, such thabv ,(e,) = fn andv,(e,) < e,+1. Actually, in order to do this
construction we need to pass to a subsequendelpf. Suppose thaty, ..., e,
were constructed. Using a standard approximation argument, we finag and a
projectiong € Ay suchthave x(g) = fu+1— fn andg is orthogonal ta, (e,). Then
we sete,+1 = g + v, (en). This completes the construction of the sequeiagke Let
I, denote the closed two-sided idealh)f generated by,,. Thenv, (I,,) C I,,+1Since
vp(en) < ey andl = Ii_m)(In, vp) SinCcevso(e,) = f, and(f,) is an approximate
unit of 7. It then clear that the given extension©f-algebras is the inductive limit
of the sequence of extensions

0—>1,— A, —> A,/I, — 0O, (6)

the bonding morphisms being induced(y). Since the building blocks of,, have
connected spectrum ariglis an ideal generated by projections, it is easily seen that
I, isadirect summand AA,,, henceA, /I, is also a direct summand d@f. It follows
that/ andA/I areASH algebras, completing the proof of (i).

To prove (ii), we only need to notice that by the continuity Kftheory, the
short sequence of groups from the statement is pure exact since it is the inductive
limit of a sequence of short exact split sequences. To prove (iii), we take the tensor
product of (6) byB = Co(W),) or by SB and use a similar argument for the functor
Ko(—,Z/p) = Ko(— ® B).

The last part of the proposition could also be proved using the continuity of
KK (I ;, -).

Remark 4.5. The above argument gives an alternate proof to the injectivity of
K(ta.1). Let B be aC*-algebra in the class of Rosenberg—Schochet such that
Ko(B) = G andK1(B) = 0. Arguing as above, we can prove (iii) with replacing
Q/Z.

5. Order and Ideals

For simplicity, in most of this section we restrict our considerations to stably unital
C*-algebras with cancellation of projections Afis such an algebra, then there is a
well defined mapg +— I (xg) from Ko(A)™ to the ideals ofA. Specifically, ife is a
projection inA ® K with x = [e¢] € Ko(A), thenI (xg) ® K is the ideal ofA ® K
generated by. Inthis case, the ideal-based order introduced in [6] can be described as
follows. We will write a general element ik, (A; Z @ Z/n) in the formx = (xg, y)

with xg € Ko(A). Then by definitionK.(A; Z®Z/n) consists of all those elements
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(xo, y) With the property thatg € Ko(A)* and(xo, y) € Ko(A|l1 (x0); ZDZ/n). We
defineK,(A, Q ® Q/Z), as the inductive limit oK, (A; Z & Z/n) (cf. Definition
2.3). TherK o, (A)+ denotes the subsemigroupkof, (A) generated bk ,(A), and
K.(A, Q®Q/Z),. Itisnothard to see thate K (A) iff xgi.e. itsKgcomponent
is positive andr € K (A|| 1 (xp)). The following notation will be used:

x>0 & xe KA, ZDZ/n)s,

x>0% x eKo(A)s,

x=0& xeKJA;ZDZ/n)" (see Section 2)
x =0 & x e Kg(A)T (see Section 2)

If a morphism® preserves these orders, we will write> 0, resp.® = 0.

It was shown in [6] thatK,(A; Z @ Z/n)" C Ke(A; Z @ Z/n).. The next two
chapters will be devoted to further comparative studies of these order structures, or
more precisely of the conditions

i®=0

(i) =0

for maps defined on th& -groups ofC*-algebras of varying generality. In this anal-
ysis, the condition

(iii) @ is ideal-preserving

plays an interpolating role. The relations are summarized below.

Relation Conditions o *-algebras Ref.

(i) = (ii) Stably unital, cancellation of projections 5.3

(i) < (iii) Real rank zero, stable rank one [6,4.12]
(1) <= (ii) ASH, slow dimension growth, real rank zero 6.5

These results establish a bridge between the natéigtype) order structure
K~ (—)T and the less natural order structite,(—), which is important for our
reduction purposes and also appears in [12].

LEMMA5.1. LetA be aC*-algebraand let, f be projections i ® K. Suppose
that the ideal generated by contains f. Then there is an integdr = 1 such that
[T =< kle] in Ko(A).

Proof. See the proof of [1, 6.3.5].

PROPOSITION 5.2. Let A be a stably unitalC*-algebra with cancellation of
projections. Suppose thaty € Ko(A)™. Then(xg, y) € Ko(A;Z @ Z/n), iff
(kxo, y) € Ko(A; Z ® Z/n)™ for somek = 0.



298 MARIUS DADARLAT AND S@REN EILERS

Proof. Suppose thatxg, y) > 0. Lete € A ® K be a projection withyg = [e].
Let I be the ideal ofA ® K generated by. It follows from the very definition o
that there iS0, w) € Ko(I;Z & Z/n) such that4 ;(w) = y. We will find k = 1
such thatk[e], w) € K.(I; Z®7Z/n)™". I is stably unital since by Brown’s Theorem
([3]) I is stably isomorphic to the unitdl*-algebrae(A ® K)e. By [6, 4.8], there
is a projectionf € I ® K such that[f], w) € Ko(I; Z ® Z/n)". By Lemma 5.1,
there isk = 1 such that f] < k[e]in Ko(I), hencek[e], w) € Ko(I; Z ® Z/n)™.

It follows that (kxg, y) = ta.1(k[e], w) = O.

In the other direction, suppose that = 0 and(kxg, y) = 0. Lete andI be as
in the first part of the proof. We want to show thais in the image of4 ;. Let
f € A ® K be a projection such thayf] = kxg and letJ be the ideal ofA ® K
generated by. SinceA has cancellation of projections afdxg, y) = 0, we must
have (kxg, y) > 0 by [6, 4.7]. Therefore, there i®, z) € Ko(J;Z ® Z/n) such
thatia,7(z) = y. To conclude the proof, we must show tliat J. The projections
e ® 1; and f have the sam& -theory class. Sinca has cancellation of projections,
the two projections must generate the same ided &f K. As bothe ande ® 1;
generate the ided|, we find thatl = J.

COROLLARY 5.3. Let A, B beC*-algebras of real rank zero and stable rank one.
If @ is an element dflomy (K(A), K(B)), then® = 0implies® > 0.

Proof. Suppos® = Oandletx € K,(A; ZHZ/n) be given. By the proposition
above, there exists/asuch that(kxg, y) € K.(A; Z ® Z/n)™, so by assumption,
D (kxg, y) = (kPo(xg), ®(y)) = 0. Applying Proposition 5.2 again, we get that
d(x) = 0.

It was proven in [6] that if bottA and B have real rank zero and stable rank one,
thend® > 0 if and only if ® is ideal-preserving and its restriction to tkig groups is
positive. Thus, ifd = 0, then® is ideal-preserving. A similar reasoning combined
with an inductive limit argument proves the following.

LEMMA 5.4. Suppose that, B are C*-algebras of real rank zero and stable rank
one. If® € Homy (K (A), Ko (B)), thend > 0iff ® is ideal-preserving ang?
is positive. If® = 0, then® > 0.

6. Order and Ideals for ASH Algebras

As in [6], we define the function raniko(A) — Z for certainA. WhenA = C(Z),

Z some compact connected Hausdorff space, rank is induced by any evaluation map
C(Z) — Cviathe canonical isomorphisiig(C) = Z.WhenA =1 ® C(Z), rank

is induced by any evaluation mé) ® C(Z) — 1, via the canonical isomorphism
Ko(,) =Z.
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LEMMA 6.1. LetA be aC*-algebra of the forni ; ® C(X) withn = 20r C(Y) ®
C(X), whereX andY are finite connected CW complexes with

dim(X) = 3, dim) < 2.

If x € Kg(A) has rank at least two, then = 0.

Proof. Inthecasel = C(X)® C(Y) = C(X x Y) the implication rankx) = 2
= x = 0is an easy consequence of the stability properties of vector bundles. For if
x = [p] — [¢q] with rank(p) — rank(g) = 2, we may conclude by [17] that < p,
whencex is positive. Let us deal with the cage=1,” ® B, whereB = C(X). Let
8.1, — C o C be the restriction map at the endpoints of the spectruiiyarifter
tensoring withB the exact sequence

0— SMn—i>]I;—8>(CEB(C—>O
induces aK -theory exact sequence

Ko(SM, ® B) - Ko(I} ® B) —> Ko(B) @ Ko(B) —> Ko(B),

where the connecting mapis given by (yg, y1) = n(yo — y1) for y; € Ko(B)
since the sequence is a mapping torus sequence, cf. [1, 19.4].

Letx € Ko(I,, ® B) and assume that ragk) = r = 2. Thend..(x) = (yo, y1)
withrank(y;) = r. SinceB = C(X) withdim(X) < 3, there are rank one projections
gi € B® K suchthaty, = [g;] + (r — D[1] for i = 0, 1 according to [18, 8.1.2].
Moreover, sincer(yp — y1) = Ad.«(x) = 0, we getn[go] = n[g1] by [18, 8.1.5].
Consequently, there is a homotopy of projectich$0, 1] — M, (B ® K) such that
G(i) = g ® 1,. We can regardr as a rank one projection I, ® B ® K, and then
ifweletz =[G] + (r — D[1], 6+(z) = (yo, y1), hencex — z € keré§, = imi,. Let
w € Ko(SM,, ® B) be such that,(w) = x — z.

Via the isomorphismKo(SM, ® B) = Ko(B), w corresponds to an element
[p] — s[1] where we may think op as a projection-valued mgp SX — M,,, of
ranks, whereSX denotes the unreduced topological suspensioki.diVe may, of
course, assume that= 2. By [18, 8.1.2], we can write/]] = [p’] + (s — 2)[1] with
p’ of rank 2. By [17], we may assume that in fa¢tmaps into the 4« 4-matrices,
and we may also assume that pr) = Diag(1, 1, 0, 0). Letting

n—2 n—2

- ) —— /r—/\q
p=Diag,...,1,p,0,...,0),

we get a projection idM2((SM, ® B)™) with p(pt) = Diag(1,, 0,), and we may
write w = [p] — r[1]. Thus,i(p) will be a rank one element and

x = z+ixy(w) =[G] + (r — D[] + [i(p)] — [1]
= [G]1+[i(p)]+(—2[1] =0.
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LEMMA 6.2. Let A be an ASH algebra of real rank zero and slow dimension
growth. Letx € K,(A;Z ® Z/n). Suppose that there iy € Ko(A)* such that
2z0 < xo < mzg for some integem = 0. Thenx = 0.

Proof. Letsuch elementg andx be given. By the continuity o, (A; ZHZ/n)+
(which follows from the continuity oK ,(A; Z @ Z/n)™ and Proposition 5.2), we
may assume that insteaglandx are elements ok -groups overd,,, whereA, is a
finite direct sum of matrix algebras over algebras i (2), cf. [6]. By stability of
K -theory, we may assume that every summand is eitfieC (Wy) or c(Sh. Letc
be such a summand, and denote/lilie corresponding -element. Denoting byg
the corresponding componentzfwe have 2g < yp < mwg. Whenwg = 0, we
must haveyg = 0 sinceC is stably finite, and we get that= 0 using the fact that
y > 0 and the definition of. Whenwg # 0, rankyg = 2, and Lemma 6.1 applies
with X = S x wy.

There is a version of Lemma 6.2 for the dimension-drop-based order, with 2
replaced by a suitable number depending only:on

LEMMA 6.3. LetA be astably unitaC*-algebra, and lek = (xg, y) € Ko(A; ZD
7Z/n). Suppose that there are integetis= 1 andk and there is;g € Ko(A)™, such
thatxg = mzg andy = kp(zg). Thenx € Ko(A; Z® Z/n)™.

Proof. Lete be a projection in the matrices ovérsayM, (A) such that¢] = xg
in Ko(A). Define a *~homomorphism: C — M, (A) by n(1) = ¢, We may assume
that0< k < n. Thenthe map,: Ko(C; Z®Z/n) — Ko(A; ZSZ/n) takes(m, k)
to x. But (m, k) = 0 as it corresponds to a vector bundle oWér of rankm = 1.
This shows that = 0 sincer, is positive.

An elementx € K.(A;Z @ Z/n) is calledfinite dimensionalf x is a sum
of elementsy; such that each; satisfies the hypotheses of Lemma 6.3. A finite-
dimensional element is, hence, always positive. It is easily seen thdsif finite-
dimensionalC*-algebra and ify: C — A is ax-homomorphism, then all the ele-
ments of . (Ko(C; Z ® Z/n)") C Ko(A;Z @ Z/n) are finite dimensional. The
converse is true as seen in the proof of Lemma 6.3.

LEMMA 6.4. LetA be an ASH algebra of real rank zero and slow dimension growth.
Forx € Ko(A; Z®Z/n)T andk = 0,there arex’, x” € K.(A; Z®Z/n)™ such that

x = x" +x", x" is finite dimensional anélzo < x{; < mzg for somezg € Ko(A)™

and a positive integer.

Proof. Accordingto [6, 7.4], we may (re)writé as an inductive limit of a system
(By, &) of finite direct sums of matrix algebras over building blocks such that each
partial morphism o€, is either strictly(k 4 2)-large or has finite-dimensional image.
Given a positiver, we may assume that itis an elemenkgf(B,; Z® Z/n)". Break
x up into summands;, and brealy; = (£,).x; up into summands;; which we shall
deal with separately. In the case where= 0 or the corresponding partial morphism
of & has finite-dimensional image, we note thatis a finite-dimensional element.
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We setx;} = y;; in this case. In the case where the corresponding partial morphism
of & is strictly (k + 2)-large, we have that rarik;; — k[1]) = 2 (where 1 denotes

a rank one projection), whengg; = k[1] by Lemma 6.1 (withX = {pt}). We set

xlfj = yij» zij = [1] inthis case. We may also choogesuch thain[1] = (xi/j)o for

all i, j. Definex’, x” by adding up the summands found above.

PROPOSITION 6.5.LetA, B be ASH algebras of real rank zero and slow dimension
growth. If ® € Homy (K (A), K(B)), then® = 0iff ® > 0.

Proof. One direction follows from Corollary 5.3 singeand B have stable rank
one by [1, 6.5.2]. For the other direction, assume that 0. Letx € K (A;Z &
Z/n)T be given and decompose= x’ + x” as in Lemma 6.4 wittk = 2. Then
®(x) = d(x') + ©(x”), whered(x”) = 0 by Lemma 6.3. Sinca’ > 0, we
have® (x’) > 0 by assumption. Moreoverdi(zo) < ®(x")o = ®(xp) < mP(zo),
henced (x’) = 0 by Lemma 6.2.

PROPOSITION 6.6. Let a pair of ASH algebras A, B of real rank zero
and slow dimension growth, satisfyinfl), be given. Then® is an ele-
ment of Homp_ (Kso(A), Keo(B))™ if and only if E(®) is an element of
Hom,/ (K'(4),K/(B) ™.

Proof. Let (¢', ¥') be a positive element of Hom, (Koo(A), Ko (B)). By
Lemma 5.4,(¢', ¥') preserves ideals, whence so dd&g’, v') by Lemma 4.3.
E(¢', ¥') is then positive by Proposition 6.5.

COROLLARY 6.7. Let a pair of ASH algebras A, B of real rank zero
and slow dimension growth, satisfying), be given. If® is an element of
Homy (Koo (A), Kso(B)), thend = Oif and only ifd > 0.

Proof. Let (¢, ¥') be an ideal-preserving in Hom, (Ko (A), Kso(B)). By
Lemma 4.3E(¢’, ¥') is ideal-preserving, hence positive by Proposition 6.5. Then
SOISNRTIE(', y') = (¢', ¥).

The corollary above remains true evemifind B do not satisfy (1). This can be
proven along the lines of the proof of Proposition 6.5.

COROLLARY 6.8. WhenA, B is a pair of ASH algebras of real rank zero and
slow dimension growth, satisfyirfd), NV is an order-preserving isomorphism.

Proof. We saw in Proposition 3.7 that is an isomorphism of groups, and it is
positive by definition. SinceR is an order isomorphism by Proposition 3.2, so is
N~1 = R~1E by the proposition above.

7. Classification Results

THEOREM 7.1. The invariantk o (—) is complete for the class of real rank zero
ASH algebras with slow dimension growth and satisfy{&yy Furthermore, thex-
isomorphism may be chosen realizing any given order isomorphism at the level of

Koo (—).
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Proof. Let A and B be C*-algebras in this class and let an order isomorphism
®: Koo (A) — Koo(B) be given. By Corollary 6.8N ~1(®) is an order isomor-
phism also, and by [6, 9.1], there isxaisomorphismg with K(¢) = N~1(®).
Consequentlyp = NK (¢) = Koo ().

In the case of real rank zewD algebras, we always have #§(—) = 0, and it
was proved in [10] that an invariant consisting of

0 . %, B,
K (=) Ko(—) ® Q — Ko(—; Q/Z) — K1(—)

equipped with order oK ,(—) andKo(—; Q & Q/Z) was complete in this case. In
fact, the reduction results for local spectra in [6] show that evefy algebra with
torKo(—) = 0, slow dimension growth and real rank zero is in fadd. This we
may now bypass and prove directly:

COROLLARY 7.2. The invarianﬂ(‘o)o(—) is complete for the class of real rank zero

AS H algebras with slow dimension growth atat Ko(—) = 0. Furthermore, thex-

isomorphism may be chosen realizing any given order isomorphism of the invariant.
Proof. Condition (1) is clearly satisfied. The ma@o vanishes and the mzﬁjo

is injective. Thus, any morphis’ of the above invariant corresponds to a unique

morphism® of K, (—). The naturality ofﬁc}o shows that if®’ is ideal-preserving

then® is ideal-preserving. So the part of the order structure livingkeg—; Q/7Z)

is irrelevant.

Assume now tha# is a simple and unitali D algebra. As in [7], combining the
result above with semiprojectivity of the building blocks of th® algebras yields
a short exact sequence

1 — nn(A) — Aut(A) — Aut(K2 (At — 1.

It is easy to compute Al(ll(go(A))lﬂL directly; every such automorphism consists
of three automorphismg?, ¢, ¥% whereg? is an element of AuKg(A) 1+, ¢t €
K1(A) andy® € Ko(A; Q/Z). By simplicity of A combined with Proposition 6.5,
the triple is positive exactly whep? is positive. Furthermore, since the unspliced
sequence

0 — Ko(A) ® Q/Z 25 Ko(A: Q/Z) > tor(K1(4)) —> 0

splits — the leftmost group being divisible — any pair of automorphigmfise?l) can
be augmented to a coherent triple by any ngapf the form

v = Pxid *
- 0 tor(pl) |
Hence, Autk 2)1+ is precisely

Hom(tor(K1(A)), Ko(A) ® Q/Z) x [Au'[(Ko(A))l’Jr x Aut(K1(A))].
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Remark 7.3.Comparing this result to [8, 3.4 ff], one sees that
ext(K1(A), Ko(A)) = Hom(tor(K1(A)), Ko(A) ® Q/Z)

for A a simple unitalAD algebra of real rank zero. This is a purely algebraic
phenomenon, as we are grateful to C. U. Jensen for showing us. In fact, when
Tor(G1, Go) = 0, there is an isomorphism

ext(G1, Go) = Hom(tor(G1), Go ® Q/Z).

Remark 7.4.Fix a primep, and letA = 1, B = Co(W,,). Direct calculation
shows that

Ko(A) =0, Ki1(A)=7Z/p, Ko(A;Z/p) = K1(A;Z/p)=1Z/p,
Ko(A;Q/Z) =Z/p, K1(A;Q/Z) =0,
Ko(B) =Z/p, Ki1(B)=0, Ko(B;Z/p)=Ki(B;Z/p)=1]p,

Ko(B;Q/Z) =0, Ki(B;Q/Z) =1Z]/p,

whence Hon(K o (4), K (B)) = 0, while Homy (K (A), K(B)) # 0. Consequent-
ly, N is not injective, and no map with the propertyR = EN can exist.

Using this example, one can produce a [ggiD of AS H algebras with real rank
zero and slow dimension growth wi,, (C) = K (D), yetK (C) Z K (D).
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