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Abstract. Let G be a finitely generated group which is hyperbolic relative to a finite
family fH1; . . . ;Hng of subgroups. We prove that G is uniformly embeddable in a Hilbert
space if and only if each subgroup Hi is uniformly embeddable in a Hilbert space.

1. Introduction

Gromov introduced the notion of uniform embeddability (in Hilbert space), and sug-
gested it should be relevant to the Novikov Conjecture [8], [7]. Subsequently Yu proved the
Coarse Baum-Connes Conjecture for bounded geometry discrete metric spaces that are uni-
formly embeddable; applying a descent principle the Novikov Conjecture followed for
groups that, when equipped with a word length metric, are uniformly embeddable [19]. (A
condition on finiteness of the classifying space was later removed [17].)

The notion of C �-exactness of discrete groups was introduced by Kirchberg. It has
been extensively studied as a functional analytic property of groups, and developed by
many authors. In particular, Ozawa gave a characterization of C �-exact groups, from
which it directly follows that a C �-exact group is uniformly embeddable [13] (see [9] for
the link to uniform embeddability). There is at present no known example of a group that
is uniformly embeddable but not C �-exact. Analogous statements for metric spaces involve
Property A of Yu [19], which is equivalent to C �-exactness for discrete groups.

The classes of metric spaces (and groups) that are uniformly embeddable, or have
Property A (are C �-exact) are the subject of intense study. In this note we introduce a ‘glu-
ing’ technique for proving uniform embeddability: starting from the assumption that a
space is covered in an appropriate way by uniformly embeddable sets we conclude that
the space itself is uniformly embeddable. Thus, the individual uniform embeddings of the
pieces are ‘glued’ to give a uniform embedding of the whole. A parallel technique is intro-
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duced for spaces with Property A; it applies to C �-exact groups. The most primitive gluing
result is summarized in the following theorem (compare Theorem 3.2):

Theorem. Let X be a metric space. Assume that for all l > 0 there exists a partition

of unity ðjiÞi A I on X such that

(i) the associated F : X ! l1ðIÞ (defined by FðxÞðiÞ ¼ jiðxÞ) is l-Lipschitz, and

(ii) the subspaces
�
suppðjiÞ

�
i A I

are ‘equi’ uniformly embeddable.

Then X is uniformly embeddable.

Our gluing technique is inspired by the work of Bell and Dranishnikov on spaces of
finite asymptotic dimension [3], [15], and by the work of Bell on Property A [2]. Our results
di¤er from these works in several ways: first, we treat uniformly embeddable spaces, and
allow spaces of unbounded geometry; second, we significantly relax the condition on the
‘parameter space’. With these refinements, the gluing technique is extremely versatile—it
allows us to give a conceptual treatment of all known permanence properties of the classes
of uniformly embeddable spaces and C �-exact groups (see, for example, [5], [6], [11]).

In this note we develop the basics of our gluing technique and present the above men-
tioned applications. We also describe an additional application of gluing, proving the fol-
lowing new permanence property of the class of uniformly embeddable groups:

Theorem. Let G be a finitely generated group which is hyperbolic relative to a finite

family fH1; . . . ;Hng of subgroups. Then G is uniformly embeddable if and only if each sub-

group Hi is uniformly embeddable.

A parallel statement concerning C �-exactness was recently obtained by Ozawa [14].
Our methods allow us to recover this result; indeed, the C �-exactness result may be ex-
tracted from the combined work of Bell [2] and Osin [12]. Our approach to relative hyper-
bolicity, which is based on the work of Osin, is quite di¤erent from that taken by Ozawa
however, who, given amenable Hi-spaces explicitly constructs an amenable G-space.

These results should be compared to a recent result of Osin [12]: in the situation de-
scribed in the theorem, G has finite asymptotic dimension if and only if the Hi have finite
asymptotic dimension.

2. Preliminaries

Let X and Y be metric spaces, with metrics dX and dY , respectively. A function
F : X ! Y is a uniform embedding if there exist non-decreasing functions rG : Rþ ! Rþ
such that lim

t!y
rGðtÞ ¼ y and such that

r�
�
dX ðx; x 0Þ

�
e dY

�
FðxÞ;Fðx 0Þ

�
e rþ

�
dX ðx; x 0Þ

�
; for all x; x 0 A X :ð1Þ

The space X is (Hilbert space) uniformly embeddable if there exists a uniform embedding F

of X into a (real) Hilbert space H.
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Proposition 2.1. Let X be a metric space. Then X is uniformly embeddable if and only

if for every R > 0 and e > 0 there exists a Hilbert space valued map x : X ! H, ðxxÞx AX ,
such that kxxk ¼ 1, for all x A X and such that

(i) dðx; x 0ÞeR ) kxx � xx 0ke e,

(ii) lim
S!y

supfjhxx; xx 0ij : dðx; x 0ÞfS; x; x 0 A Xg ¼ 0. r

Definition 2.2. A family of metric spaces ðXi; diÞ is called equi-uniformly embed-
dable if there is a family of Hilbert space valued maps Fi : Xi ! Hi and non-decreasing
functions rG : Rþ ! Rþ with lim

t!y
rGðtÞ ¼ y such that

r�
�
diðx; yÞ

�
e kFiðxÞ � FiðyÞke rþ

�
diðx; yÞ

�
; for all i and all x; y A Xi:ð2Þ

The proof of Proposition 2.1 given in [5] for arbitrary metric spaces also shows the
following characterization of equi-uniform embeddability for families of metric spaces.

Proposition 2.3. A family ðXiÞi A I of metric spaces is equi-uniformly embeddable if and

only if for every R > 0 and e > 0 there exists a family ðxiÞi A I of Hilbert space valued maps

xi : Xi ! H, such that kxiðxÞk ¼ 1, for all x A Xi, and such that

(i) Ei A I Ex,x 0 A Xi dðx; x 0ÞeR ) kxiðxÞ � xiðx 0Þke e,

(ii) lim
S!y

sup
i A I

supfjhxiðxÞ; xiðx 0Þij : dðx; x 0ÞfS; x; x 0 A Xig ¼ 0. r

Remark 2.4. Let X be a metric space which is uniformly embeddable. Then any
family ðXiÞi A I of subspaces of X is equi-uniformly embeddable.

Property A is a condition on metric spaces introduced by Yu [19]. We do not recall
the definition of Property A here; rather, we work with the following characterization of
Property A obtained by Tu [18].

Proposition 2.5 ([18]). A discrete metric space X with bounded geometry has Property

A if and only if for every R > 0 and e > 0 there exist a function x : X ! l1ðXÞ and a number

S > 0 such that for all x; x 0 A X we have kxxk ¼ 1, and

(i) dðx; x 0ÞeR ) kxx � xx 0ke e,

(ii) supp xxHBðx;SÞ.

(Moreover one can arrange that x is nonnegative.)

Equivalently, for every R > 0 and e > 0 there exists an S > 0 and a Hilbert space

valued function x : X ! H such that for all x; x 0 A X we have kxxk ¼ 1, (i) as above and

(iii) bS > 0 such that dðx; x 0ÞfS ) hxx; xx 0i ¼ 0. r
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Remark 2.6. The existence of x satisfying the conditions (i), (ii) (respectively (iii)) of
Proposition 2.5 is a consequence of Property A for arbitrary metric spaces as shown in [18].
The bounded geometry condition is needed only for the reverse implication.

Let X be a set. A partition of unity on X is a family of maps ðjiÞi A I , with
ji : X ! ½0; 1�, and such that

P
i A I

jiðxÞ ¼ 1 for all x A X . If x A X we do not require that

the set fi A I : jiðxÞ3 0g be finite, although that will be the case in most of our examples.
We say that ðjiÞi A I is subordinated to a cover U ¼ ðUiÞi A I of X if each ji vanishes outside
Ui. Sometimes a partition of unity subordinated to a cover U will be denoted by ðjUÞU AU.

Definition 2.7. A metric space X is exact if for all R > 0 and e > 0 there is a parti-
tion of unity ðjiÞi A I on X subordinated to a cover U ¼ ðUiÞi A I and such that

(i) Ex; y A X with dðx; yÞeR,
P
i A I

jjiðxÞ � jiðyÞje e,

(ii) the cover U ¼ ðUiÞi A I is uniformly bounded, i.e. sup
i A I

diamðUiÞ < y.

Definition 2.8. A family of metric spaces ðXiÞi A I is equi-exact if for all R > 0 and

e > 0 and for every i A I there is a partition of unity ðc j
i Þj A Ji on Xi subordinated to a cover

Ui ¼ ðU j
i Þj A Ji of Xi and such that

(i) Ei A I , Ex; y A Xi with dðx; yÞeR,
P
j A Ji

jc j
i ðxÞ � c

j
i ðyÞje e,

(ii) the family ðU j
i Þi A I ; j A Ji is uniformly bounded, i.e. sup

i A I ; j A Ji

diamðU j
i Þ < y.

Remark 2.9. Let X be an exact metric space. Then any family ðXiÞi A I of subspaces
of X is equi-exact.

Proposition 2.10. Let X be a metric space.

(a) If X has Property A then X is exact.

(b) If X is discrete and has bounded geometry then X is exact if and only if it has Prop-

erty A.

(c) If X is exact then X is uniformly embeddable.

Proof. For (a), assume that X has Property A. Let R > 0 and e > 0 be given.
Obtain x : X ! l1ðXÞ (which we assume to be non-negative) and S > 0 as in Proposition
2.5. Define ðjzÞz AX by jzðxÞ ¼ xxðzÞ. If Uz ¼ fx A X : jzðxÞ > 0g then Uz HBðz;SÞ since
supp xxHBðx;SÞ. It is clear that

P
z AX

jzðxÞ ¼ kxxk ¼ 1 and

P
z AX

jjzðxÞ � jzðyÞj ¼ kxx � xyke e

if dðx; yÞeR.
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For (b), assume that X is exact. It su‰ces to find a Hilbert space valued function on
X satisfying the conditions from the second part of Proposition 2.5. Let R > 0 and e > 0 be
given. Let ðjiÞi A I be as in Definition 2.7. Define x : X ! l2ðIÞ by xxðiÞ ¼ jiðxÞ

1=2. Then
kxxk2 ¼

P
i A I

jiðxÞ ¼ 1. Using the inequality ja1=2 � b1=2j2 e ja� bj we see that

kxx � xyk2 ¼
P
i A I

jjiðxÞ
1=2 � jiðyÞ

1=2j2 e
P
i A I

jjiðxÞ � jiðyÞje e

if dðx; yÞeR. Finally we note that

hxx; xyi ¼
P
i A I

jiðxÞ
1=2jiðyÞ

1=2 ¼ 0

whenever dðx; yÞ > sup
i A I

diamðUiÞ.

The proof of (c) is similar to that of (b), but one applies Proposition 2.1. r

Remark 2.11. If f : X ! Y is a uniform embedding of metric spaces and Y is exact
then X is exact. Therefore exactness of a metric space is a coarse invariant. This remark is
generalized in Corollary 3.3.

3. Gluing spaces using partitions of unity

Let X be a metric space and let U ¼ ðUiÞi A I be a cover of X . Denote by UR the cover
obtained by enlarging the sets in U by taking their R-closed neighborhoods:

UR ¼ fUiðRÞ : i A Ig; UiðRÞ ¼ fx A X : dðx;UiÞeRg:

One verifies immediately that if the family U (with the metric structure induced from X ) is
equi-uniformly embeddable (or equi-exact) then so is UR.

Theorem 3.1. Let X be a metric space. Suppose that for all R > 0 and e > 0 there is a

partition of unity ðjiÞi A I on X such that

(i) Ex; y A X with dðx; yÞeR,
P
i A I

jjiðxÞ � jiðyÞje e, and

(ii) ðjiÞi A I is subordinated to an equi-exact cover ðUiÞi A I of X .

Then X is exact.

Proof. Let R > 0 and � > 0 be given. We construct a partition of unity as required
by Definition 2.7. By assumption there is a cover U ¼ ðUiÞi A I of X which is equi-exact and
there is a partition of unity ðjiÞi A I subordinated to U such that Ex; y A X with dðx; yÞeR,

P
i A I

jjiðxÞ � jiðyÞje e=2:

Since U is equi-exact so is UR ¼ fUiðRÞ : i A Ig. Therefore for each Ui A U there is a cover
Vi ¼ ðV j

i Þj A Ji of UiðRÞ such that the cover fV j
i : i A I ; j A Jig of X is uniformly bounded.
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Moreover for each Ui A U there is a partition of unity ðc j
i Þ on UiðRÞ subordinated to Vi

such that Ex; y A UiðRÞ with dðx; yÞeR,

P
j A Ji

jc j
i ðxÞ � c

j
i ðyÞje e=2:

It is useful to extend c
j
i to X by setting it equal to zero outside UiðRÞ. Define yi; j ¼ jic

j
i .

Then ðyi; jÞ is a partition of unity on X subordinated to a uniformly bounded cover. More-
over, P

i; j

jyi; jðxÞ � yi; jðyÞje
P
i

jiðxÞ
P
j

jc j
i ðxÞ � c

j
i ðyÞj þ

P
i

jjiðxÞ � jiðyÞj
P
j

c
j
i ðyÞ:

Assume now that dðx; yÞeR. If jiðxÞ3 0 then x A Ui hence y A UiðRÞ as dðx; yÞeR.
Therefore P

i

jiðxÞ
P
j

jc j
i ðxÞ � c

j
i ðyÞje e=2:

Since
P
j

c
j
i ðyÞ equals 1 for y A UiðRÞ and 0 for y B UiðRÞ,

P
i

jjiðxÞ � jiðyÞj
P
j

c
j
i ðyÞe

P
i

jjiðxÞ � jiðyÞje e=2:

Combining the above estimates we obtain that

P
i; j

jyi; jðxÞ � yi; jðyÞje e

whenever x; y A X and dðx; yÞeR. r

Theorem 3.2. Let X be a metric space. Suppose that for all R > 0 and e > 0 there is a

partition of unity ðjiÞi A I on X such that

(i) Ex; y A X with dðx; yÞeR,
P
i A I

jjiðxÞ � jiðyÞje e,

(ii) ðjiÞi A I is subordinated to an equi-uniformly embeddable cover ðUiÞi A I of X .

Then X is uniformly embeddable.

Proof. Let R > 0 and � > 0 be given. We construct a Hilbert space valued func-
tion h on X satisfying the conditions in Proposition 2.1. By assumption there is a cover
U ¼ ðUiÞi A I of X which is equi-uniformly embeddable and there is a partition of unity
ðjiÞi A I subordinated to U such that Ex; y A X with dðx; yÞeR,

P
i A I

jjiðxÞ � jiðyÞje e2=4:

Since U is equi-uniformly embeddable so is UR ¼ fUiðRÞ : i A Ig where as above
UiðRÞ ¼ fx A X : dðx;UiÞeRg. Therefore there exist Hilbert space valued maps
xi : UiðRÞ ! Hi, with kxiðxÞk ¼ 1 for all x A UiðRÞ and such that

(iv) supfkxiðxÞ � xiðyÞk : dðx; yÞeR; x; y A UiðRÞge e=2 for all i A I ,

(v) lim
S!y

sup
i A I

supfjhxiðxÞ; xiðyÞij : dðx; yÞfS; x; y A UiðRÞg ¼ 0.
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We extend each xi to X by setting xiðxÞ ¼ 0 for x A XnUiðRÞ. Define h : X ! H ¼
L
i A I

Hi,
hðxÞ ¼

�
hiðxÞ

�
i A I

by

hiðxÞ ¼ jiðxÞ
1=2xiðxÞ:ð3Þ

One verifies that khðxÞk ¼ 1, Ex A X . Let x; y A X with dðx; yÞeR. Consider
aðx; yÞ; bðx; yÞ A H with components

aiðx; yÞ ¼ jiðxÞ
1=2�xiðxÞ � xiðyÞ

�
;

biðx; yÞ ¼
�
jiðxÞ

1=2 � jiðyÞ
1=2�xiðyÞ:

Note that aðx; yÞ and bðx; yÞ are well-defined because of the following norm estimates.

kaðx; yÞk2 ¼
P
i A I

jiðxÞkxiðxÞ � xiðyÞk2;

where the summation is done for those i with x A Ui. If dðx; yÞeR and x A Ui then
y A UiðRÞ, so that using (iv) we obtain kaðx; yÞke e=2. Since ja1=2 � b1=2j2 e ja� bj we
have

kbðx; yÞk2 ¼
P
i A I

���jiðxÞ1=2 � jiðyÞ
1=2�xiðyÞ��2

e
P
i A I

jjiðxÞ
1=2 � jiðyÞ

1=2j2

e
P
i A I

jjiðxÞ � jiðyÞje e2=4;

hence kbðx; yÞke e=2. Therefore

khðxÞ � hðyÞk ¼ kaðx; yÞ þ bðx; yÞke kaðx; yÞk þ kbðx; yÞke e

whenever dðx; yÞeR. In order to prove the support condition (ii) of Proposition 2.1 we
use that ji vanishes outside Ui and the Cauchy-Schwarz inequality. Thus for any x; y A X

with dðx; yÞfS we have:

jhhðxÞ; hðyÞije
P
i A I

jiðxÞ
1=2jiðyÞ

1=2jhxiðxÞ; xiðyÞij

e sup
i A I

supfjhxiðx 0Þ; xiðy 0Þij : dðx 0; y 0ÞfS; x 0; y 0 A Uig:

In view of (v), this concludes the proof. r

Corollary 3.3. Let p : X ! Y be a map of metric spaces with the property that

ER > 0 bS > 0 such that d
�
pðxÞ; pðx 0Þ

�
eS whenever dðx; x 0ÞeR. Suppose that Y is

exact. If for each uniformly bounded cover ðUiÞi A I of Y , the family
�
p�1ðUiÞ

�
i A I

of subspaces

of X is equi-uniformly embeddable (respectively, equi-exact), then X is (respectively, exact).

Proof. Let R > 0 and e > 0 be given and let S > 0 be as in the statement. Since Y is
exact, we find a uniformly bounded cover ðUiÞi A I of Y , together with a partition of unity
ðjiÞi A I as in Definition 2.7 with S playing the role of R. Then ðji � pÞi A I is a partition of
unity on X subordinated to

�
p�1ðUiÞ

�
i A I

and satisfying the assumptions of Theorem 3.2
(respectively, 3.1). r
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An action of a group G (as always, countable and discrete) on a metric space Y by
isometries is cobounded if there exists a bounded subset BHY such that G � B ¼ Y . Tran-
sitive actions and, more generally, actions with finitely many orbits are cobounded.

Corollary 3.4. Let p : X ! Y be a Lipschitz map of metric spaces. Assume that a

group G acts by isometries on both X and Y , that the action on Y is cobounded and that p

is G-equivariant. Assume Y is exact. If there exists y0 A Y such that for every n A N the in-

verse image p�1
�
Bðy0; nÞ

�
is uniformly embeddable (respectively, exact) then X is uniformly

embeddable (respectively, exact).

Proof. This follows immediately from Corollary 3.3. Let ðUiÞi A I be a uniformly
bounded cover of Y and let y0 A Y be as in the statement. Let BHY be a bounded set
such that every orbit of the G-action on Y intersects B; since B is bounded and the cover
ðUiÞi A I is uniformly bounded

n ¼ sup
i A I

diamðUiÞ þ sup
z AB

dðy0; zÞ < y:

We claim that for all i A I there exists si A G such that siUi HBðy0; nÞ; indeed, if si A G is
such that siUi intersects B we have, for all y A Ui,

dðsi y; y0Þe dðsi y; zÞ þ dðz; y0Þ ¼ dðy; s�1
i zÞ þ dðz; y0Þe n;

where z A siUi XB and we use the fact that G acts isometrically. Finally, since
si p

�1ðUiÞ ¼ p�1ðsiUiÞH p�1
�
Bðy0; nÞ

�
, we see that the family

�
p�1ðUiÞ

�
i A I

is isometric to

a family of subspaces of p�1
�
Bðy0; nÞ

�
. Since the latter space is uniformly embeddable

(exact), we conclude that the family
�
p�1ðUiÞ

�
i A I

is equi-uniformly embeddable (equi-
exact). r

4. Partitions of unity coming from the combinatorics of asymptotic dimension

Let U be a cover of X . A Lebesgue number for U is a number L > 0 with the property
that any subset BHX of diameter less than L is contained in some U A U. A cover U of X
has multiplicity at most k if any x A X belongs to at most k members of U. One way to
construct partitions of unity with Lipschitz properties is given by the following proposition.

Proposition 4.1. Let U be a cover of a metric space X with multiplicity at most k þ 1,
ðkf 0Þ and Lebesgue number L > 0. For U A U define

jUðxÞ ¼
dðx;XnUÞP

V AU
dðx;XnVÞ :

Then ðjUÞU AU is a partition of unity on X subordinated to the cover U. Moreover each jU
satisfies

jjUðxÞ � jUðyÞje
2k þ 3

L
dðx; yÞ; Ex; y A X ;ð4Þ

8 Dadarlat and Guentner, Uniform embeddability of relatively hyperbolic groups



and the family ðjUÞU AU satisfies

P
U AU

jjUðxÞ � jUðyÞje
ð2k þ 2Þð2k þ 3Þ

L
dðx; yÞ; Ex; y A X :ð5Þ

Proof. This is folklore. See Bell’s paper for a proof of (4). Note that (5) follows from
(4) since any point in X belongs to at most k þ 1 distinct elements of the cover U. r

A metric space X has asymptotic dimensione k if for every R > 0 there exists a uni-
formly bounded cover U of X such that every ball of radius R in X meets at most k þ 1
elements of U.

In the context of non-uniformly bounded covers we require several closely related
properties. Let V be a family of nonempty subsets of the metric space X . The multiplicity

of V is the maximum number of elements of V that contain a common point of X ; the
R-multiplicity of V is the maximum number of elements of V that meet a common ball
of radius R in X . If dðU ;VÞ > L for all U ;V A V with U 3V then V is L-separated

ðL > 0Þ. Note that if V consists of just one set then V is L-separated (vacuously) for every
L > 0. A cover U of X is ðk;LÞ-separated (kf 0 and L > 0) if there is a partition of U into
k þ 1 families

U ¼ U0 W � � �WUk

such that each family Ui is L-separated. In particular U has multiplicity at most k þ 1.

We make two observations, which we will apply to covers that are not necessarily
uniformly bounded. First, a ðk; 2RÞ-separated cover has R-multiplicitye k þ 1. Second, if
U is a cover of X with L-multiplicitye k þ 1 then L is a Lebesgue number for the cover UL

obtained by enlarging the sets in U by taking their L-neighborhoods;

UL ¼ fUðLÞ : U A Ug; UðLÞ ¼ fx A X : dðx;UÞeLg:

Further, in this case, the cover UL has multiplicitye k þ 1.

We summarize the previous discussion in the following form.

Lemma 4.2. A ðk; 2LÞ-separated cover of a metric space has L-multiplicitye k þ 1.
If a cover U of a metric space has L-multiplicitye k þ 1 then the enlarged cover UL has

multiplicitye k þ 1 and Lebesgue number L. r

The following result was proven by Higson and Roe in the case of discrete bounded
geometry metric spaces [10], Lemma 4.3; in our more general setting it follows immediately
from Proposition 4.1 and Definition 2.7.

Proposition 4.3. A metric space of finite asymptotic dimension is exact. r

We now prove a natural generalization of this result, where uniform boundedness of
the cover is replaced by the appropriate uniform versions of uniform embeddability and
Property A, defined earlier. We also provide the proper setting to generalize the ‘union the-
orems’ of Bell and Dranishnikov [2], [3].
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Theorem 4.4. Let X be a metric space. Assume that for every d > 0 there is a ðk;LÞ-
separated cover U of X with k2 þ 1eLd and such that the family U is equi-uniformly

embeddable (where each U A U is given the induced metric from X ). Then X is uniformly

embeddable. If instead we assume that the family U is equi-exact then X is exact.

Proof. The statement concerning uniform embeddability follows from Lemma 4.2,
Proposition 4.1 and Theorem 3.2; for exactness use Theorem 3.1 instead of 3.2.

More precisely, given R > 0 and e > 0 we fix a number d, 0 < d < 1=20R. Then

k2 þ 1f 2ð2k þ 2Þð2k þ 3ÞRd;

for all integers kf 0. By assumption there is a ðk; 2LÞ-separated cover U of X such that
U is equi-uniformly embeddable and k2 þ 1e 2Lde. By Lemma 4.2 the cover UL has
multiplicitye k þ 1 and Lebesgue number L. Proposition 4.1 provides a partition of unity
subordinated to UL with the following property: for all x; y A X , if dðx; yÞeR then

P
UðLÞ AUL

jjUðLÞðxÞ � jUðLÞðyÞje
ð2k þ 2Þð2k þ 3ÞR

L
e

k2 þ 1

2Ld
e e:

Since the cover U is equi-uniformly embeddable so is the cover UL. We conclude the proof
by applying Theorem 3.2. r

Corollary 4.5. If a metric space X is a union of finitely many uniformly embeddable

subspaces then X is uniformly embeddable. A similar result is true for exact spaces.

Proof. By assumption there is a finite cover U of X with each U A U uniformly em-
beddable. Let d be given. Let k þ 1 denote the cardinality of U and choose L such that
k2 þ 1eLd. Then U is a ðk;LÞ-separated cover of X and U is equi-uniformly embeddable.
The result follows now from Theorem 4.4. r

Corollary 4.6. If a metric space X is the union of an equi-uniformly embeddable fam-

ily of subspaces U with the property that for every L > 0 there is a uniformly embeddable

subspace Y HX such that the family fUnY : U A Ug is L-separated then X is uniformly em-

beddable. A similar result is true for exact spaces.

Proof. Given d > 0 we fix Lf 2=d. Let U and Y (depending on L) be as in the state-
ment. We apply Theorem 4.4 using the ð1;LÞ-separated cover of X given by the families of
sets U0 WU1, where U0 ¼ fYg and U1 ¼ fUnY : U A Ug. r

Corollary 4.7. Let p : X ! Y be a Lipschitz map of metric spaces. Assume that a

group G acts by isometries on both X and Y , that the action on Y is cobounded and that p

is G-equivariant. Assume Y has finite asymptotic dimension. If there exists y0 A Y such that

for every n A N the inverse image p�1
�
Bðy0; nÞ

�
is uniformly embeddable, then X is uniformly

embeddable.

Proof. This follows from Proposition 4.3 in conjunction with Corollary 3.4. r

Remark 4.8. In the previous corollary, if we assume instead that p�1
�
BY ðy0; nÞ

�
is

exact then we conclude that X is exact. The result so obtained is closely related to a result
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of Bell concerning Property A for groups acting on spaces of finite asymptotic dimension
(compare [2], Theorem 1).

5. Extensions and free products

This section and the next are concerned with countable discrete groups. In earlier
work we proved that the class of uniformly embeddable groups is closed under the forma-
tion of free products (both with and without amalgam) and certain extensions [5], [4]. In
this section we briefly indicate how these permanence results follow quite easily from the
general gluing technique presented above. This approach to permanence results originated
with the work of Bell and Dranishnikov [2], [3]. See also Roe [15].

A countable discrete group admits a proper length function; further, any two (left
invariant) metrics associated to proper length functions are coarsely equivalent. Since uni-
form embeddability and C �-exactness (Property A) are coarse invariants we are free to
equip our groups with conveniently chosen metrics from this class. For generalities, defini-
tions, and a fuller discussion of these points see [5].

Theorem 5.1. Let G be an extension with kernel H and quotient G, and assume that

G is C �-exact. If H is C �-exact then G is C �-exact; if H is uniformly embeddable then G is

uniformly embeddable.

The result concerning uniform embeddability is [5], Theorem 4.1. Our original proof
was inspired by the proof of Anantharaman-Delaroche and Renault that the class of count-
able exact groups is closed under extensions [1], a result due to Kirchberg and Wassermann
[11]. The present method provides a di¤erent and geometric (as opposed to functional ana-
lytic) proof of this result, which for this reason is included in our statement.

Outline of Proof (compare [15]). Equip the groups H, G and G with proper length
functions and (left invariant) metrics as in [5], Section 4. Precisely, fix a proper length func-
tion lG on G and define

lHðsÞ ¼ lGðsÞ; for all s A H;

lGðxÞ ¼ minflGðgÞ : g A G and _gg ¼ xg; for all x A G;

where g 7! _gg denotes the map G ! G. With respect to the associated metrics H ,! G is an
isometry and G ! G is contractive. Observe that G acts transitively by isometries on G.
Further, by assumption G is C �-exact, hence exact in the sense of Definition 2.7. Therefore,
to apply Corollary 3.4 it su‰ces to show that for every n A N the set

BðnÞ ¼ fh A G : lGð _hhÞe ngHG

is uniformly embeddable (respectively, exact) when equipped with the metric inherited from
G. But, the isometry H ,! BðnÞ is n-dense in the sense that for every h A BðnÞ there exists
s A H such that dGðh; sÞe n; indeed, it su‰ces to put s ¼ hg�1 where g achieves the mini-
mum in the definition of lGð _hhÞ. It follows that H ,! BðnÞ is a coarse equivalence, indeed a
quasi-isometry. r

11Dadarlat and Guentner, Uniform embeddability of relatively hyperbolic groups



Remark 5.2. If H and G are finitely generated we could, as an alternative, use met-
rics associated to finite, symmetric generating sets chosen as follows: a fixed generating set
for H is extended to one for G, the image of which is a generating set for G. Having done so
G ! G is contractive and, although not necessarily an isometry, H ,! G is a contractive
uniform embedding. Again, H ,! BðnÞ is a coarse equivalence.

Theorem 5.3. Let A and B be countable discrete groups and let C be a common

subgroup. If both A and B are uniformly embeddable, then the amalgamated free product

G ¼ A �C B is uniformly embeddable.

The analogous statement for C �-exactness is due to Dykema [6]; alternate proofs
were subsequently given by Tu [18] and Bell [2] (see also [3]). Whereas our original proof
of Theorem 5.3 (see [5], Theorem 5.1) was motivated by Tu’s proof our current proof fol-
lows the general scheme of Bell. Whereas our original proof was rather technical some as-
pects of it were quite intuitive and have been incorporated into the present exposition. We
recall briefly the relevant ideas; see [5], Section 5 and Appendix, for details.

Let T be the Bass-Serre tree of G [16]; the vertex and edge sets of T are given by

V ¼ G=AWG=B;

E ¼ G=C;

and the endpoint maps are the quotient maps G=C ! G=A and G=C ! G=B. Observe that
the vertices and edges are themselves subsets of G and that the vertex v is an endpoint of
the edge e if and only if eH v. The action of G on T has two orbits on vertices (and one on
edges).

Fix an integer-valued proper length function and associated left invariant metric on
G. Let X be the associated tree of metric spaces; X ¼ fXv;Xeg is the family of metric spaces
indexed by the vertices and edges of T given by

Xv ¼ vHG; Xe ¼ eHG;

each metrized as a subspace of G; if the vertex v is an endpoint of the edge e the structure
map Xe ! Xv is the (isometric) inclusion eH v. Let X be the total space of X. Precisely, X
is the disjoint union of the vertex spaces equipped with an appropriate metric; if, for nota-
tional convenience, we denote x A Xv HX by xv the metric is the largest satisfying

dðxv; ywÞe
dGðx; yÞ; if v ¼ w; so that x ¼ xv; y ¼ yv A Xv;

1; if v3w but x ¼ y A G

�

(the pair ðxv; xwÞ for v3w is an adjacency). An action of G on X by isometries is defined
by g � xv ¼ ðgxÞg�v. The map p : X ! T defined by pðxvÞ ¼ v is equivariant; according to
the formula for the metric on X in [5], Proposition 5.5, it is contractive. According to the
same formula, the inclusions Xv ! X are isometric, so that each Xv, with the metric from
X , is isometric to one of the subgroups A or B, with the metric from G. In particular, the Xv

are equi-uniformly embeddable.
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Outline of Proof. As in [5] it su‰ces to show that the space X is uniformly embed-
dable. It is well-known that the tree T , hence also its vertex set, has finite asymptotic di-
mension; for a proof see [15]. In light of the observations above and Corollary 4.7 it su‰ces
to show, fixing a vertex v0 A T , that for all n A N the set

BðnÞ ¼
S
fXv : dTðv0; vÞe ngHX ;

where dTðv0; vÞ denotes the distance in the Bass-Serre tree, is uniformly embeddable when
equipped with the metric inherited from X . We proceed by induction on n. Certainly
Bð0Þ ¼ Xv0

is uniformly embeddable. For the induction step assume that Bðn� 1Þ is uni-
formly embeddable. We apply the infinite union theorem (Corollary 4.6) to the decomposi-
tion of BðnÞ as a disjoint union

BðnÞ ¼ Bðn� 1ÞW
S

dT ðv0; vÞ¼n

Xv

of equi-uniformly embeddable subsets. Let L > 0. For every v such that dTðv0; vÞ ¼ n let
Yv HXv be the set of points at a distance not greater than L=2 from Bðn� 1Þ and let

Y ¼ Bðn� 1ÞW
S

dT ðv0; vÞ¼n

Yv:

By the manner in which Y is defined, the isometric inclusion Bðn� 1Þ ,! Y is L=2-dense,
so that Y is coarsely equivalent, indeed quasi-isometric to Bðn� 1Þ. Thus Y is uniformly
embeddable. Further, the family fXvnY : dTðv0; vÞ ¼ ng is L-separated. Indeed, if v3w are
each a distance n from v0 in T , xv A XvnY and yw A XwnY then dðxv; ywÞfL, again by the
formula for the metric on X in [5], Proposition 5.5. r

6. Relatively hyperbolic groups

Let G be a finitely generated group which is hyperbolic relative to a finite family
fH1; . . . ;Hng of subgroups. We prove that G is uniformly embeddable if and only if each
subgroup Hi is uniformly embeddable. There are two analogous results in the literature:
Osin proved an analogous statement for finite asymptotic dimension [12] and Ozawa
proved an analogous statement for exactness [14]. We rely heavily on Osin’s method
(Ozawa’s method is completely di¤erent), and are indebted to Ozawa for alerting us to
Osin’s paper.

If A is a symmetric set of generators of G, we denote by dA the corresponding
left-invariant metric on G. If B is another such set with AHB the identity map
p : ðG; dAÞ ! ðG; dBÞ is equivariant and dB

�
pðxÞ; pðyÞ

�
e dAðx; yÞ. Let S be a a finite sym-

metric set generating G. Let

H ¼
S
k

ðHkneÞ:

Let dS and dSWH be the left invariant metrics on G induced by S and SWH, respectively.
For nf 1, let

BðnÞ ¼ fg A G : dSWHðg; eÞe ng:
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We always view BðnÞ as a subspace of G equipped with the metric dS. The following useful
recursive decomposition of BðnÞ is contained in the proof of [12], Lemma 12:

Bð1Þ ¼ SW

�S
k

Hk

�
;ð6Þ

BðnÞ ¼
�S

k

Bðn� 1ÞHk

�
W

� S
x AS

Bðn� 1Þx
�
;ð7Þ

Bðn� 1ÞHk ¼
F

g ARðn�1Þ
gHk;ð8Þ

where the final equality represents a partition of Bðn� 1ÞHk into disjoint cosets according
to a fixed set of coset representatives, Rðn� 1ÞHBðn� 1Þ.

Proposition 6.1 (Osin). For every L > 0 there exists kðLÞ > 0 such that if

Y ¼
�
x A G : dS

�
x;Bðn� 1Þ

�
e kðLÞ

�
then for each k

Bðn� 1ÞHk HY W

� S
g ARðn�1Þ

gHknY
�

ð9Þ

and the subspaces gHknY , g A Rðn� 1Þ of ðG; dSÞ are L-separated.

Proof. The statement is implicit in the proof of [12], Lemma 12. r

Proposition 6.2. If each Hk is uniformly embeddable so is BðnÞ. A similar statement is

true for exactness.

Proof. The proof is by induction. For the basis, observe that Bð1Þ is uniformly em-
beddable by (6) and the finite union theorem (Corollary 4.5). For the induction step, as-
sume that Bðn� 1Þ is uniformly embeddable. Using again the finite union theorem and
(7) we are reduced to verifying that each Bðn� 1ÞHk is uniformly embeddable. This follows
from the infinite union theorem (Corollary 4.6) and Proposition 6.1.

The proof for exactness is analogous (compare [2]). r

Osin also proves the following result [12] (although not explicitly stated, the result is
the content of Lemmas 17, 18 and 19):

Proposition 6.3 (Osin). The metric space ðG; dSWHÞ has finite asymptotic dimension.

r

Theorem 6.4. Let G be a finitely generated group which is hyperbolic relative to a fi-

nite family fH1; . . . ;Hng of subgroups. Then G is uniformly embeddable in a Hilbert space if

and only if each subgroup Hi is uniformly embeddable in a Hilbert space.

Proof. If G is uniformly embeddable, then so are its subgroups, the Hk. For the con-
verse we apply Corollary 4.7 to the isometric actions of G on the metric spaces X ¼ ðG; dSÞ,
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Y ¼ ðG; dSWHÞ, where p is the identity map and y0 ¼ e. Then BðnÞ ¼ p�1
�
BY ðe; nÞ

�
which

is uniformly embeddable by Proposition 6.2. r

It is clear that the analogous result for C �-exact groups, due to Ozawa [14], can be
recovered arguing as above.
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