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In this paper we deal with C*-algebras of real rank zero that can be represented
as inductive limits A = lim−→(An, νn+1,n) of direct sums of homogeneous C*-algebras

of the form An = ⊕s(n)i=1 Pn,iM[n,i](C(Xn,i))Pn,i, where Xn,i are finite CW complexes
and Pn,i are selfadjoint projections. Following [3] we called these C*-algebras ap-
proximately homogeneous.

Our main result asserts that any approximately homogeneous C*-algebra of real
rank zero with supn,i(dim(Xn,i)) <∞ or with slow dimension growth is isomorphic
to an inductive limit of direct sums of homogeneous C*-algebras whose spectra
have dimension at most three (see Theorem 3.2). By a remarkable recent result of
Elliott and Gong, [31], the simple C*-algebras in the latter class are classified up to
isomorphism by the ordered, scaled K-theory group K∗ = K0⊕K1. Combining the
two results one obtains a classification of all simple approximately homogeneous
C*-algebras of real rank zero with slow dimension growth (see Theorem 3.4). The
conditions on the growth of the dimensions of the local spectra Xn,i seem to be
necessary in order to avoid pathologies originating in nonstable homotopy theory.
The special case of Theorem 3.4 when K0(Xn,i) are torsion free was proved in [21].
The case when K∗(Xn,i) are torsion free is due to Gong [G].

Theorem 3.4 can be regarded as a dynamic hypostasis of Bott periodicity. This
can be better understood if we compare Theorem 3.4 with a result from [19] assert-
ing that the asymptotic homotopy type of C0(X)⊗K is determined by the K-theory
group K∗(X). Here X is a compact connected metrisable space with base point
and K denotes the compact operators. In particular C0(S1) ⊗ K is asymptoti-
cally homotopy equivalent (but not homotopy equivalent, [24]) to C0(S3)⊗K [15].
It should become now visible that the cited result is essentially a reformulation
of the Bott periodicity theorem. Its proof is based on the theory of asymptotic
morphisms of Connes and Higson [15] and involves a suspension theorem of [22].
In the proof of Theorem 3.2 we use the above version of Bott periodicity to re-
place the spaces Xn,i by lower dimensional spaces with the same K-theory groups.
Due to dynamical properties of the real rank zero C*-algebras one can do these
changes without changing the isomorphism class of the inductive limit C*-algebra.
The present paper should be regarded as a continuation of [21]. In particular the
key Lemma 1.7 which relates homotopy of approximate morphisms to approximate
unitary equivalence of morphisms was proved in [21].
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One may conjecture as in [31] that any separable nuclear, simple C*-algebras of
real rank zero and stable rankone is isomorphic to an approximately homogeneous
C*-algebra. Positive evidence for this conjecture is offered by results in [2], [36],
[44], [30], [7], [8], [9]. However if one drops the simplicity condition, then the
corresponding conjecture is known to be false [11].

The problem of finding suitable invariants for the study of approximately homo-
geneous C*-algebras was possed by Effros [27]. This problem is now incorporated
in the program, formulated by Elliott, and whose ambitious goal is a classification
theory of nuclear C*-algebras. The results that are available so far suggest that the
nuclear C*-algebras of real rank zero display rigidity properties that give hopes for
quite general classification results (see [6], [12], [28], [43], [29], [37], [32], [33], [34],
[31], [11], [G], [45], [40]).

The author thanks the referee for a number of useful comments and suggestions.

1. Preliminaries

Let A, B, C, D be C*-algebras. Let ϕ : A → B, ψ : A → C and γ : B → D be
∗-homomorphisms. We denote by ϕ⊕ψ : A→ B⊕C (or sometimes by diag(ϕ,ψ))
the ∗-homomorphism a 7→ ϕ(a) ⊕ ψ(a) and by ψ ⊕ γ : A ⊕ B → C ⊕ D the ∗-
homomorphism a⊕ b 7→ ψ(a)⊕ γ(b). We denote by [A,B] the homotopy classes of
∗-homomorphisms from A to B. The homotopy classes of unital ∗-homomorphisms
are denoted by [A,B]1. Let Mk denote the C*-algebra of k by k complex matrices
with unit denoted by 1k. The identity map of Mk is denoted by idk. If X is
a compact Hausdorff space we denote by C(X) the complex valued continuous
functions on X and by Mk(C(X)) the k by k matrices over C(X). In this paper we
reserve the term homogeneous for C*-algebras of the form QMN (C(X))Q where X
is a finite connected CW complex and Q is a selfadjoint projection in MN (C(X)). In
classical terminology these correspond to homogeneous C*-algebras with spectrum
X and trivial Dixmier-Douady class. Let B =

⊕
j Bj and A =

⊕
iAi be finite

direct sums of homogeneous C*-algebras where Bj = PjMk(j)(C(Yj))Pj and Ai =
QiMn(i)(C(Xi))Qi. A ∗-homomorphism ψ : B → A is said to be m-large if for all

i, j the partial ∗-homomorphisms ψi,j satisfy the following two conditions.
a) ψi,j = 0 or rank(ψi,j(Pj)) ≥ mrank(Pj)
b) rank(Qi)−

∑
j rank(ψi,j(Pj)) is either zero or ≥ m.

Let A = lim−→(An, νn+1,n) be an approximately homogeneous C*-algebra. Here

An = ⊕knj=1Pn,jM[n,j](C(Xn,j))Pn,j , where Xn,j are finite connected CW complexes
and Pn,j are selfadjoint projections. We say that A has slow dimension growth if
for any n

lim
r→∞

max
1≤i≤kr

dim(Xr,i)

min{rank(νi,jr,n(Pn,j)) : νi,jr,n 6= 0, 1 ≤ j ≤ kn}
= 0

For simple C*-algebras this condition was introduced in [5]. For nonsimple C*-
algebras a condition of this type was first considered in [51]. If A is simple, infinite
dimensional, and the sequence dim(Spectrum(An)) is bounded, then A has slow
dimension growth. It is not hard to see that if A has slow dimension growth then for
any n, s,m ≥ 1, s > n, there is r > s such that νir,n =

⊕
j ν

i,j
r,n is mdim(Xr,i)-large

for all i with 1 ≤ i ≤ kr.
The homotopy classes of m-large ∗-homomorphisms can be computed in terms

of K-theory and connective KK-theory whenever m is big enough. Actually for the
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purposes of this paper it is enough to have a classification of ∗-homomorphisms up
to the equivalence relation generated by homotopy and unitary equivalence. We
now describe this classification in several steps. Let X, Y be finite connected CW
complexes. The computation of homotopy classes of unital ∗-homomorphisms from
C(Y ) to Mn(C(X)) is done in terms of connective KK-theory [24]. The connective
KK-theory group kk(X,Y ) is defined as a direct limit

kk(X,Y ) = lim−→[C(Y ),Mn(C(X))]1,

where the connecting maps are given by taking direct sum with an evaluation
map (see [24]). The kk-groups have good excision properties in both variables.
The composition and the tensor product of ∗-homomorphisms induce a rich mul-
tiplicative structure on kk(X,Y ). The excision properties and the multiplicative
structure make this group computable in many instances. For concrete computa-
tions this algebraic apparatus is complemented by a stability result asserting that if
dim (X) < 2[n/3], n ≥ 3, then kk(X,Y ) is isomorphic to [C(Y ),Mn(C(X))]1 (see
Corollary 6.4.4 in [24]) . Here [x] denotes the integer part of x.

The next step is to deal with unital ∗-homomorphisms from C(X) toQMN (C(X))Q.
Since any such ∗-homomorphism can be regarded as a ∗-homomorphism intoMN (C(X)),
one can obtain the homotopy classification of these ∗-homomorphisms from The-
orem 4.2.11 in [24]. A more direct approach is taken in [34]. Using elementary
obstruction theory they show that the isomorphism

kk(X,Y ) ∼= [C(Y ), QMN (C(X))Q]1,

rank(Q) > 3dim(X) + 3, can be easily derived from the stability result in [24].
Actually a refinement of their arguments shows that it suffices to assume that
rank(Q) > 2dim(X) + 1. Under this assumption it follows that any unital ∗-
homomorphism ψ : C(Y ) → QMN (C(X))Q is homotopic to a direct sum ψ′ ⊕
ψ′′ where ψ′ : C(Y ) → Q′MN (C(X))Q′, Q′ is a trivial subprojection of Q and
ψ′′ : C(Y ) → (Q − Q′)MN (C(X))(Q − Q′) is a ∗-homomorphism which factors
through C (see Theorem 4.2.11 in [24] or [34] for a more direct proof). By a trivial
(sub)projection we mean a projection corresponding to a trivial vector bundle. Next
we deal with ∗-homomorphisms

ϕ,ψ : ⊕sj=1Mk(j)(C(Yj))→ QMN (C(X))Q.

As a preliminary step we consider the case when the spaces Yj are reducing to
points. Suppose that m > dim(X). Then it is known that the unitary equivalence
classes of m-large ∗-homomorphisms

ϕ′′, ψ′′ : ⊕sj=1Mk(j) → QMN (C(X))Q

are classified by K-theory. In particular ϕ′′ is unitarily equivalent to ψ′′ if and only
if they induce the same map on K-theory. The analogue of the Bratteli diagram
is now a matrix of vector bundles over X (see [16], [26], [24], [31]). An easy
consequence of this fact is the following Lemma.
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Lemma 1.1. Let µ, η : B = ⊕sj=1Mk(j) → A = QMN (C(X))Q be two ∗-homomorphisms.
Suppose that µ is m-large, m > dim(X) and rank(µ(1k(j))) − rank(η(1k(j))) >
k(j)dim(X) for all j. Then there is a ∗-homomorphism η′ : B → A and a uni-
tary u ∈ U(A), such that the image of η′ is orthogonal to the range of η and
µ = u(η ⊕ η′)u∗.

Let ψ : B = ⊕sj=1Mk(j)(C(Yj)) → A = QMN (C(X))Q be an m-large ∗-
homomorphism. If m > 4dim(X), then the following homotopy decomposition is
available. The ∗-homomorphism ψ is homotopic to a direct sum ψ′ ⊕ ψ′′ between
a ∗-homomorphism ψ′ and a ∗-homomorphism ψ′′ that factors through a finite di-
mensional C*-algebra. There is a trivial subprojection Q′ of Q such that ψ′ is of
the form

ψ′ : ⊕sj=1Mk(j)(C(Yj))→ ⊕sj=1Mk(j)m(j)(C(X)) ⊂MN ′(C(X)) ∼= Q′MN (C(X))Q′

ψ′ = ψ0
1 ⊗ idk(1) ⊕ · · · ⊕ ψ0

s ⊗ idk(s), N ′ =
s∑
j=1

k(j)m(j)

where ψ0
j : C(Yj)→Mm(j)(C(X)) are unital ∗-homomorphisms with ψ0

j (C0(Yj)) ⊂
Mm(j)(C0(X)) and

ψ′′ : ⊕sj=1Mk(j)(C(Yj))→ (Q−Q′)MN (C(X))(Q−Q′)

has finite dimensional image (see section 4 in [24] or [31]).
The classification within homotopy and unitary equivalence of the m-large ∗-

homomorphisms is particularly nice for big values of m. Let ψ,ϕ : B → A be two
m-large ∗-homomorphisms. Suppose that m > 4 dim(X). Let r(B) =

⊕
jMk(j).

Then there is a unitary u ∈ A such that uψu∗ is homotopic to ϕ if and only if
K0(ψ|r(B)) = K0(ϕ|r(B)) and [ψ0

j ] = [ϕ0
j ] ∈ kk(X,Yj). In this classification, the

invariants associated with a ∗-homomorphism are a matrix of vector bundles and a
matrix of kk-elements. More generally, the ∗-homomorphisms

ψ :

s⊕
j=1

PjMk(j)(C(Yj))Pj → QMN (C(X))Q

are classified in a similar manner by dilating ψ to a ∗-homomorphism

ψ̂ : ⊕sj=1Mk(j)(C(Yj))→ Q1MN (C(X))Q1.

With the aid of Lemma 2.13 in [31] one shows that the correspondence ψ → ψ̂
preserves the equivalence relation generated by homotopy and unitary equivalence.
Thus ψ is homotopic to a ∗-homomorphism unitarily equivalent to ϕ if and only if

ψ̂ is homotopic to a ∗- homomorphism unitarily equivalent to ϕ̂.
In particular, up to unitary equivalence and homotopy, anym-large ∗-homomorphism

ϕ : QMN (C(X))Q→ PMS(C(Y ))P , m > 4dim(Y ), can be obtained as the restric-
tion of ϕ0⊗ idN to QMN (C(X))Q, for some unital ∗-homomorphism ϕ0 : C(X)→
RMS(C(Y ))R. The invariants associated with ϕ are the kk-class of ϕ0 denoted by
α ∈ kk(Y,X) and the K-theory class of R denoted by
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[R] = (k, z) ∈ Z⊕K̃0(Y ). Here k corresponds to the rank of R and z is the reduced
K-theory class of R. It is convenient to write these invariants in a matricial form

[ϕ] =

(
α z
0 k

)
for the composition of morphisms will correspond to formal multiplication of ma-
trices. This formal multiplication makes sense since a kk-element induces a map
on the reduced K-theory groups [24].

Let A = QMN (C(X))Q, A′ = Q′MN (C(X))Q′ be homogeneous C*-algebras. A
∗-monomorphism γ : A→ A′ is called a simple embedding if the kk-theory class of
γ is equal to the class of the idC(X). The following lemma is a consequence of the
above discussion.

Lemma 1.2. Let X, Y be finite connected CW complexes. Let A = QMN (C(X))Q,
A′ = Q′MN (C(X))Q′ and B = PMS(C(Y ))P be homogeneous C*-algebras. Let
q = rank(Q), q′ = rank(Q′) and p = rank(P ). Suppose that γ : A→ A′ is a unital
simple embedding. Let ν : A→ B be a unital ∗-homomorphism. Let λ : A→Mq be
an evaluation map. Suppose that q′ > 4dim(X)q and p > 5dim(Y )q′. Then there
exists a unital ∗-homomorphism σ : A′⊕Mq → B such that σ (γ ⊕ λ) is homotopic
to ν.

Proof. (Sketch) The invariants associated with ν, γ, λ are of the form

[ν] =

(
α z
0 k

)
, [γ] =

(
1 w
0 s

)
, [λ] =

(
0 0
0 1

)
Using the hypotheses we see that s > 4dim(X). Also we can find integers t1, t2
such that k = t1s + t2 and t1 > 4dim(Y ), t2 > dim(Y ). Let σ1 : A′ → B and
σ2 : Mq → B be ∗-homomorphisms with orthogonal ranges and with invariants

[σ1] =

(
α 0
0 t1

)
, [σ2] =

(
0 z − α(w)
0 t2

)
Define σ = σ1 ⊕ σ2 : A⊕Mq → B. Then σ(γ ⊕ λ) and ν have the same invariants.
Hence they coincide modulo homotopy and unitary equivalence. �

Definition 1.3. Let X be a compact connected space and let Q be a projection of
rank n in MN (C(X)). The weak variation of a finite set F ⊂ QMN (C(X))Q is
defined by

w(F ) = sup
π,σ

inf
u∈U(n)

max
a∈F
‖uπ(a)u∗ − σ(a)‖

where π, σ run though the set of irreducible representations of QMN (C(X))Q into
Mn.

The definition extends to finite subsets F ⊂
⊕

iQiMN(i)(C(Xi))Qi. Thus w(F )
is taken to be the maximum of the weak variations in each direct sumand. It
is not hard to see that if ψ is a ∗-homomorphism of homogeneous C*-algebras,
then w(ψ(F )) ≤ w(F ). The above definition is inspired by Definition 1.4.11 in
[31]. Following [31] we say that F is weakly approximately constant to within ε if
w(F ) < ε. We need the following easy Lemma which is implicit in [31].
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Lemma 1.4. Let X be a compact metric space. Let A = QMN (C(X))Q be
a homogeneous C*-algebra. Let F ⊂ A be a finite set and let ε > 0. Then
there exist k ∈ N and a unital ∗-homomorphism µ : A → Mk(A) of the form
µ(a) = diag(a(x1), . . . , a(xk)), with x1, . . . , xk ∈ X such that the weak variation of
{(a, µ(a)) : a ∈ F} is less than ε.

Definition 1.5. A C*-algebra A is said to have property (H), if for any finite
subset F ⊂ A and any ε > 0, there exist r ∈ N, a ∗-homomorphism τ : A →
Mr−1(A) and a ∗-homomorphism µ : A → Mr(A) with finite dimensional image
such that

‖a⊕ τ(a)− µ(a)‖ < ε

for all a ∈ F .

It is clear that any finite dimensional C*-algebra has property (H). Theorem 1.2
in [21] shows that if X is a finite CW complex, then C(X) has property (H). This
result is implicit in [31] and is based on techniques developed in [37] and [33]. It
is not hard to see that the class of nuclear C*-algebras with property (H) is closed
under direct sums and tensor products.

Lemma 1.6. Let X be a finite connected CW-complex and let A = QMN (C(X))Q
be a homogeneous C*-algebra. Then A has property (H).

Proof. Let D = MN (C(X)) and fix ε > 0, F ⊂ A finite. Since D has property (H),
there exist r ∈ N, a ∗-homomorphism τ : D → Mr−1(D) and a ∗-homomorphism
µ : D →Mr(D) with finite dimensional image such that ‖a⊕ τ(a)− µ(a)‖ < ε for
all a ∈ F . Using stability properties of vector bundles we can find integers k,K
and partial isometries v ∈Mk(D) and V ∈MK(D) such that v∗v = 1N −Q, vv∗ ≤
0N ⊕Q⊗ 1k−1 and V ∗V = 1N ⊗ 1r−1, V V

∗ ≤ Q⊗ 1K . Then w = (v+Q)⊕ V is a
partial isometry and waw∗ = a for all a ∈ A. Moreover VMr−1(D)V ∗ ⊂ MK(A),
and wMr(D)w∗ ⊂ Mk+K(A). Define τ0 : A → Mk+K(A) by τ0(a) = V τ(a)V ∗.
Define µ0 : A→Mk+K(A) by µ0(a) = wµ(a)w∗. Then ‖a⊕ τ0(a)− µ0(a)‖ < ε for
all a ∈ F . �

Let A, B be C*-algebras. We denote by Map(A,B) the set of all linear, contrac-
tive, completely positive maps from A to B. Let F ⊂ A be a finite set and let δ > 0.
We say that a map ϕ ∈Map(A,B) is δ-multiplicative on F if ‖ϕ(ab)−ϕ(a)ϕ(b)‖ < δ
for all a, b ∈ F .

Lemma 1.7. Let A be a C*-algebra with property (H). Let ε > 0 and let F1 ⊂ A
be a finite set. There are δH > 0 and a finite set F ⊂ A such that if B is any
unital C*-algebra and Φ ∈ Map(A,B[0, 1]) is δH-multiplicative on F , then there
exist k ∈ N, a ∗-homomorphism η : A→Mk(B) with finite dimensional image, and
a unitary u ∈ Uk+1(B) such that

‖u(Φ(0)(a)⊕ η(a))u∗ − Φ(1)(a)⊕ η(a)‖ < ε

for all a ∈ F1.

Proof. This is a straightforward consequence of Lemma 1.4 in [21]. It is clear that
we may arrange that all the elements of F have norm at most one.

The next two elementary results were inspired by [31].
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Lemma 1.8. Let B =
⊕s

j=1 PjMk(j)(C(Yj))Pj where Yj are finite connected CW

complexes and Pj are projections with rank(Pj) = m(j). Fix a point yj in each
space Yj. Let ξ0 : B → r(B) ∼= ⊕jMm(j) be the evaluation map at (y1, . . . , ys). Let
A be a C*-algebra and suppose that η : B → A is a ∗-homomorphism with finite
dimensional image. Let ε > 0 and let F ⊂ B be a finite set. Then there is a ∗-
homomorphism η0 : B → A which factors through ξ0 and ‖η(b)−η0(b)‖ < ε+w(F )
for all b ∈ B.

Proof. It suffices to give the proof in the case when s = 1 and η 6= 0. Note that
in this case ξ0(b) = b(y1) for all b ∈ B. Since η has finite dimensional image, its
kernel has finite codimension in B. Hence η factors through a finite direct sum of
evaluation maps. It follows that there are points y1, . . . , yn with yi ∈ Y1, and ∗-
homomorphisms ξ = ⊕

i
ξi : B →

⊕
i

Mm(1), ξ
i(b) = b(yi) and ν :

⊕
i

Mm(1) → A such

that η = ξν. Define ξ̂0 : B →
⊕
i

Mm(1) by ξ̂0 = ⊕
i
ξ0. Using the definition of the

weak variation we find a unitary u in
⊕
i

Mm(1) such that ‖ξ(b)−uξ̂0(b)u∗‖ < ε+w(F )

for all b ∈ F . Let η0 = ν(u)νξ̂0ν(u)∗. Then ‖η(b)−η0(b)‖ < ε+w(F ) and η0 factors

through ξ0 since ξ̂0 factors through ξ0. �

Corollary 1.9. Let X, Y1, . . . Ys be finite connected CW complexes.
Let B =

⊕s
j=1 PjMk(j)(C(Yj))Pj, A = QMN (C(X))Q be homogeneous C*-algebras.

Let ϕ,ψ ∈Map(B,A), ε > 0 and let F ⊂ B be a finite set. Suppose that there are
k ∈ N, a ∗-homomorphism η : B → Mk(A) with finite dimensional image and a
unitary u ∈ Uk+1(A) such that

‖u(ϕ(b)⊕ η(b))u∗ − ψ(b)⊕ η(b)‖ < ε

for all b ∈ F . There is an integer m such that if µ : B → MR(A) is any m-large
∗-homomorphism with finite dimensional image and µ(Pj) 6= 0 for j = 1, . . . , s,
then there is a unitary v ∈ UR+1(A) such that

‖v(ϕ(b)⊕ µ(b))v∗ − ψ(b)⊕ µ(b)‖ < ε+ 4w(F )

for all b ∈ F .

Proof. (Sketch) With the aid of Lemma 1.8, one replaces η and µ by ∗-homomorphisms
that factors through r(B). Then one uses Lemma 1.1 to absorb η as a direct sum-
mand in µ up to a unitary equivalence.

2. Approximate factorizations of morphisms

The purpose of this section is to establish Lemma 2.4 which can be regarded
as an approximate factorization result for morphisms of homogeneous C*-algebras.
First we use connective kk-theory and E-theory to produce factorizations of mor-
phisms at the level of homotopy. Then we use Lemma 1.7 to pass from homotopy
factorizations to approximate factorizations.

The notion of asymptotic morphism due to Connes and Higson led to a geometric
realization of E-theory [15], [14]. Let A, B be separable C*-algebras. Roughly
speaking, an asymptotic morphism from A to B is a continuous family of maps
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ϕt : A → B, t ∈ T = [1,∞), which satisfies asymptotically the axioms for ∗-
homomorphisms. A homotopy of asymptotic morphisms ϕt, ψt : A→ B is given by

an asymptotic morphism Φt : A→ B[0, 1] such that Φ
(0)
t = ϕt and Φ

(1)
t = ψt. Here

B[0, 1] denotes the C*-algebra of continuous functions from the unit interval to B.
The homotopy classes of asymptotic morphisms from A to B are denoted by [[A,B]]
and the class of ϕt by [[ϕt]]. Two asymptotic morphisms ϕt, ψt are said equivalent
if ϕt(a) − ψt(a) → 0, as t → ∞ for all a ∈ A. Equivalent asymptotic morphisms
are homotopic. In this paper we deal exclusively with asymptotic morphisms from
nuclear C*-algebras. It was observed in [16] that if A is nuclear then any asymptotic
morphism from A to B is equivalent to a completely positive linear contractive
asymptotic morphism . That is an asymptotic morphism with each individual map
ϕt being a completely positive linear contraction. This is a consequence of the
Choi-Effros theorem [13], and it holds for homotopies of asymptotic morphisms as
well. Henceforth, throughout the paper, by an asymptotic morphism we will mean a
completely positive linear contractive asymptotic morphism unless stated otherwise.
Let M∞ denote the dense ∗-subalgebra of the compact operators K obtained as
the union of the C*-algebras Mn. Using approximate units it is not hard to see
that any asymptotic morphism from A to B ⊗ K is equivalent to an asymptotic
morphism ϕt : A → B ⊗M∞ for which there is a function α : T → N such that
ϕt(A) ⊂ B⊗Mα(t). The map α is called a dominating function for ϕt. This applies
also to homotopies and yields a bijection

[[A,B ⊗M∞]]→ [[A,B ⊗K]].

We consider here only asymptotic morphisms that are dominated by functions α as
above. Recall that if A is nuclear, then the Kasparov group KK(A,B) is isomorphic
to [[SA, SB ⊗K]] (see [15]).

Let X be a finite connected CW complex with base point x0. We let C0(X)
denote the C*-algebra of continuous functions on X vanishing at the base point
x0. Then by a suspension theorem of [22], [[C0(X), B ⊗M∞]] ∼= KK(C0(X), B).
Let ϕt : C0(X)→ B ⊗M∞ be an asymptotic morphism and let α be a dominating
function for ϕt. For each t ∈ T we let ϕαt : C(X) → B ⊗Mα(t) denote the unital
extension of ϕt : C0(X) → B ⊗ Mα(t) with ϕαt (1) = 1B ⊗ 1α(t). Note that if

α(t) ≤ β(t) then ϕαt = 1B ⊗ 1α(t) ϕ
β
t 1B ⊗ 1α(t).

Lemma 2.1. Let X, Y = Y0, Y1, . . . Ys be finite connected CW complexes. Let B1 =
⊕sj=1Mk(j)(C(Yj)), A1 = MN (C(X)) and let ψ1 : B1 → A1 be a ∗-homomorphism
which is homotopic to a direct sum between an m-large ∗-homomorphism, m >
4dim(X), and a ∗-homomorphism with finite dimensional image. Suppose that
dim(Yj) ≤ 3 and H3(Yj) is finite for j = 0, . . . , s. Suppose that K∗(X) ∼= K∗(Y ).
Let G ⊂ B1, F ⊂ A1 be finite sets. Then for any δH > 0 there exists a diagram

A1
γ−−−−→ A′1

ψ1

x xψ2

B1 −−−−→
ξ

B2

where
A′1 = ML(C(X)), B2 = MS(C(Y ));
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ξ is a ∗-homomorphism, ψ2 is a unital ∗-homomorphism, and γ is a unital simple
embedding;
ϕ ∈Map(A1, B2) is δH-multiplicative on F ;
Moreover there exist homotopies Φ ∈Map(B1, B2[0, 1]) and Ψ ∈Map(A1, A

′
1[0, 1])

such that Φ is δH-multiplicative on G, Ψ is δH-multiplicative on F and
Φ(1) = ξ, Φ(0) = ϕψ1, Ψ(0) = ψ2ϕ, Ψ(1) = γ.

Proof. The proof is divided into several steps
a) We may assume that ψ1(1k(j)) 6= 0 for all j. By the results cited in section 1,

ψ1 is homotopic to a direct sum of ∗-homomorphisms ψ′ ⊕ ψ′′ where

ψ′ : ⊕sj=1Mk(j)(C(Yj))→ ⊕sj=1Mk(j)m(j)(C(X)) ⊂MN ′(C(X))

ψ′ = ψ0
1 ⊗ idk(1) ⊕ · · · ⊕ ψ0

s ⊗ idk(s), N ′ =
s∑
j=1

k(j)m(j),

ψ0
j : C(Yj) → Mm(j)(C(X)) are unital ∗-homomorphisms with ψ0

j (C0(Yj)) ⊂
Mm(j)(C0(X)) and

ψ′′ : ⊕sj=1Mk(j)(C(Yj))→MN ′′(C(X))

is a ∗-homomorphism with finite dimensional image , N = N ′ + N ′′. Note that in
certain cases one may have ψ′ = 0 and N ′ = 0.

b) Since X and Y are connected and K∗(X) ∼= K∗(Y ) there is an asymptotic
morphism ϕt : C0(X) → C0(Y ) ⊗M∞ inducing a KK-equivalence (see [47], [15]
and [22]). By Theorem 3.3 of [31], since H3(Yj) is finite and dim (Yj) ≤ 3, there is
a ∗-homomorphism ξj such that the diagram

C0(Yj)
ψ0
j−−−−→ Mm(j)(C0(X))yϕt⊗idm(j)

Mm(j)(C0(Y )⊗M∞)

is commutative at the level of KK-theory. By Theorem 4.1 in [22] there is a homo-
topy of asymptotic morphisms

Φj,t : C0(Yj)→Mm(j)(C0(Y )[0, 1]⊗M∞)

with Φ
(0)
j,t = (ϕt ⊗ idm(j))ψ

0
j and Φ

(1)
j,t = ξj . We may assume that the homotopy is

dominated by a function α : T → N.
c) Let ϕt be as above. By a similar argument one obtains a diagram

C0(X)
γ0−−−−→ C0(X)⊗M` ⊗M∞

ϕt

y
C0(Y )⊗M∞

where γ0(a) = a ⊗ e, e is a minimal projection, and ψ : C(Y ) → C(X) ⊗M` is a
∗-homomorphism with ψ(C0(Y )) ⊂ C0(X)⊗M`, which induces an inverse of [[ϕt]]
in KK-theory. Hence there is a homotopy of asymptotic morphisms

Ψt : C0(X)→ C0(X)[0, 1]⊗M` ⊗M∞
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with Ψ
(0)
t = (ψ ⊗ id∞)ϕt and Ψ

(1)
t = γ0.

d) We may assume the maps γ0, ξj , ϕt, Φt and Ψt are dominated by the same
function α. For each t ∈ T we consider the following unital extensions of those
maps:

ϕαt : C(X)→ C(Y )⊗Mα(t)

ξαj : C(Yj)→Mm(j)(C(Y )⊗Mα(t))

Φαj,t : C(Yj)→Mm(j)(C(Y )[0, 1]⊗Mα(t))

Ψα
t : C(X)→ C(X)[0, 1]⊗M` ⊗Mα(t)

γα0 : C(X)→ C(X)⊗M` ⊗Mα(t).

Set

Φ′,αt
def
= ⊕jΦαj,t ⊗ idk(j) : ⊕sj=1Mk(j)(C(Yj))→MN ′(C(Y )[0, 1]⊗Mα(t))

and note that Φ′,αt is a homotopy from (ϕαt ⊗ idN ′)ψ′ to ξ′,α
def
= ⊕j(ξαj ⊗ idk(j)).

Similarly, Ψα
t is a homotopy from (ψ ⊗ idα(t))ϕαt to γα0 .

e) Since ψ′′(B1) is finite dimensional and ϕt is an asymptotic morphism , for
each t ∈ T , there is a ∗-homomorphism with finite dimensional image ξ′′,αt : B1 →
MN ′′(C(Y ) ⊗Mα(t)) such that limt→∞ ‖(ϕαt ⊗ idN ′′)ψ′′(b) − ξ

′′,α
t (b)‖ = 0 for all

b ∈ B1. The map ξ′′,αt is obtained by perturbing the restriction of ϕαt ⊗ idN ′′ to
ψ′′(B1), to a ∗-homomorphism with finite dimensional image. The various maps
we are dealing with are pictured in the diagram

B1
ψ′⊕ψ′′−−−−→ MN ′(C(X))⊕ ψ′′(B1) −−−−→ MN (C(X))yϕαt ⊗idN′⊕ϕαt ⊗idN′′ yϕαt ⊗idN

MN ′(C(Y )⊗Mα(t))⊕MN ′′(C(Y )⊗Mα(t)) −−−−→ MN (C(Y )⊗Mα(t))

Define Φ
′′(s)
t = s(ϕαt ⊗ idN ′′)ψ′′+ (1− s)ξ′′,αt . Let χ : B1 → A1[0, 1] be a homotopy

from ψ1 to ψ′ ⊕ ψ′′. Let Φαt denote the juxtaposition of the homotopies (ϕαt ⊗
idN )χ(s) and Φ′,αt ⊕ Φ′′t . Then Φαt is a homotopy from (ϕαt ⊗ idN )ψ1 to ξαt =
ξ′,α ⊕ ξ′′,αt .

MN (C(X))
γα0 ⊗idN−−−−−→ MN (C(X)⊗M`α(t))

ψ1

x xψ⊗idα(t)⊗idN

B1 −−−−→
ξαt

MN (C(Y )⊗Mα(t))

Since the sets G and F are finite, by taking t large enough, we can arrange that
ϕαt ⊗ idN and Ψα

t ⊗ idN are δH -multiplicative on F and Φαt is δH -multiplicative on
G. �
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Lemma 2.2. Let X, Y = Y0, Y1, . . . Ys be finite connected CW complexes. Let B1 =
⊕sj=1Mk(j)(C(Yj)), A1 = MN (C(X)) and let ψ1 : B1 → A1 be a ∗-homomorphism
which is homotopic to a direct sum between an m-large ∗-homomorphism, m >
4dim(X), and a ∗-homomorphism with finite dimensional image. Suppose that
dim(Yj) ≤ 3 and H3(Yj) is finite for j = 0, . . . , s. Suppose that K∗(X) ∼= K∗(Y ).

Let G1 ⊂ B1, F1 ⊂ F̂ ⊂ A1 be finite sets . Then for any ε > 0 and any δ > 0 there
exists a diagram

A1
γ−−−−→ A′1

ψ1

x xψ2

B1 −−−−→
ξ

B2

where
A′1 = ML(C(X)), B2 = MS(C(Y ));
ξ, ψ2, γ are ∗-homomorphisms ,ψ2 is unital and γ is a simple unital embedding;

ϕ ∈Map(A1, B2) is δ-multiplicative on F̂ ;
‖ϕψ1(b)− ξ(b)‖ < ε+ 4w(G1) for all b ∈ G1.
‖ψ2ϕ(a)− γ(a)‖ < ε+ 4w(F1) for all a ∈ F1.

Proof. The C*-algebras A1 and B1 have property (H). We are going to apply
Lemma 1.7 for ε and F1 ⊂ A1, and for ε and G1 ⊂ B1. Let δH > 0, F ⊂ A1 and
G ⊂ B1 be as provided by Lemma 1.7. We may assume that ψ1(1k(j)) 6= 0 for all

j, ψ1(G) ⊂ F̂ ⊂ F and δH < δ. Now we apply Lemma 2.1 for δH , F , G. Let
B2, A

′
1, ϕ, ξ, ψ2, γ, Φ, Ψ be as in the conclusion of Lemma 2.1. By Lemma 1.7

there are k ∈ N, ∗-homomorphisms η1 : B1 → Mk(B2), η2 : A1 → Mk(A′1) both
with finite dimensional image and unitaries u ∈ Uk+1(B2), and v ∈ Uk+1(A′1) such
that

(1) ‖u(ξ(b)⊕ η1(b))u∗ − ϕψ1(b)⊕ η1(b)‖ < ε

(2) ‖v(ψ2ϕ(a)⊕ η2(a))v∗ − γ(a)⊕ η2(a)‖ < ε

for all b ∈ G1 and a ∈ F1. Let η : A1 → Mm(B2) be a unital ∗-homomorphism
that factors through MN . By taking m large enough, we can apply Corollary 1.9
for (1) with µ = ηψ1, and for (2) with µ = (ψ2 ⊗ idm)η. Hence we find unitaries
U ∈ Um+1(B2) and V ∈ Um+1(A′1) such that the diagram

A1
γ⊕(ψ2⊗idm)η−−−−−−−−−→ Mm+1(A′1)

ψ1

x xV (ψ2⊗idm+1)V
∗

B1 −−−−−−−−→
U(ξ⊕ηψ1)U∗

Mm+1(B2)

approximately commutes on G1,(resp. F1) to within ε+4w(G1) (resp. ε+4w(F1)).
The ∗-homomorphism γ ⊕ (ψ2 ⊗ idm)η is a simple embedding since γ is a simple
embedding and η has finite dimensional image. �

Next we obtain a version of Lemma 2.2 for homogeneous C*-algebras.
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Lemma 2.3. Let X, Y = Y0, Y1, . . . Ys be finite connected CW complexes. Let
B1 =

⊕s
j=1 PjMk(j)(C(Yj))Pj, A1 = QMN (C(X))Q and let ψ1 : B1 → A1 be

a ∗-homomorphism which is homotopic to a direct sum between an m-large ∗-
homomorphism, m > 4dim(X), and a ∗-homomorphism with finite dimensional
image. Suppose that dim(Yj) ≤ 3 and H3(Yj) is finite for j = 0, . . . , s. Suppose

that K∗(X) ∼= K∗(Y ). Let G1 ⊂ B1, F1 ⊂ F̂ ⊂ A1 be finite sets with all elements
of norm ≤ 1, w(G1) < 10−1, w(F1) < 10−1 . Then for any ε > 0 and any δ > 0
there exists a diagram

A1
γ−−−−→ A′1

ψ1

x xψ2

B1 −−−−→
ξ

B2

where
A′1 = Q1ML(C(X))Q1, B2 = PMS(C(Y ))P ;
ξ, ψ2, γ are ∗-homomorphisms with ψ2 unital, and γ a unital, simple embedding;

If ψ1 is unital, then one can arrange to have ξ unital too.

ϕ ∈Map(A1, B2) is δ-multiplicative on F̂ ;
‖ϕψ1(b)− ξ(b)‖ < ε+ 4w(G1) + 16w(G1)1/2 for all b ∈ G1

‖ψ2ϕ(a)− γ(a)‖ < ε+ 4w(F1) + 16w(F1)1/2 for all a ∈ F1.

Proof. We may assume that ψ1(Pj) 6= 0 for all j. By Lemma 2.13 in [31], ψ1 can
be dilated to a ∗-homomorphism ψ′1 : B′ → A′ where B′ = ⊕sj=1Mk(j)(C(Yj)) and
A′ = MN (C(X)). Hence there is a commutative diagram

A1
γ′−−−−→ A′

ψ1

x xψ′1
B1 −−−−→

ξ′
B′

where γ′ and ξ′ are simple embeddings. Moreover ψ′1 is homotopic to a direct
sum between an m-large ∗-homomorphism, m > 4dim(X), and a ∗-homomorphism
with finite dimensional image. We may assume that 1B1

∈ G1, 1A1
∈ F1 and

ψ1(G1) ⊂ F̂ . Set F ′ = γ′(F1), F̂ ′ = γ′(F̂ ) and G′ = ξ′(G1). Then w(F ′) ≤ w(F1)

and w(G′) ≤ w(G1). Applying Lemma 2.2 for ψ′1, F ′, F̂ ′, G′, ε < 10−3, δ < 10−3,
we complete the above diagram to an approximately commuting diagram

A1
γ′−−−−→ A′

γ−−−−→ A′1

ψ1

x ψ′1

x xψ2

B1 −−−−→
ξ′

B′ −−−−→
ξ

B2

where ξ, ψ2, ϕ, γ, A′1, B2 are as in the conclusion of Lemma 2.2. The result is
now obtained by a standard approximation argument. Let Q′ = γ′(1A1), P ′ =
ξ′(1B1

), hence ψ′1(P ′) ≤ Q′. The element ϕ(Q′) is selfadjoint, of norm ≤ 1 and
‖ϕ(Q′)2 − ϕ(Q′)‖ < δ < 1/4. By functional calculus we find a projection E ∈ B2
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such that ‖ϕ(Q′) − E‖ < 2δ. Since ϕ is δ-multiplicative on F̂ ′ one shows that

‖Eϕ(x)E −ϕ(x)‖ < 6δ for all x ∈ F̂ ′. Then a straightforward estimate shows that

EϕE is 7δ-multiplicative on F̂ ′. Define ϕ′ ∈ Map(A1, B2) by ϕ′(a) = Eϕγ′(a)E.
Then

‖ϕ′(ab)− ϕ′(a)ϕ′(b)‖ < 7δ

for all a, b ∈ F̂ . Next since ‖γ(Q′)−ψ2ϕ(Q′)‖ < ε+4w(F ′) we get ‖γ(Q′)−ψ2(E)‖ <
ε+ 2δ+ 4w(F ′) < 1. By functional calculus there is a unitary V ∈ U(A′1) such that
V ψ2(E)V ∗ = γ(Q′) and ‖V − 1A′1‖ < 4(ε+ 2δ + 4w(F ′))1/2. Next we are going to
perturb ξξ′ to a map with values in EB2E. Since ‖ξ(P ′)−ϕψ′1(P ′)‖ < ε+ 4w(G′),
if c = Eϕψ′1(P ′)E, then ‖ξ(P ′) − c‖ < 6δ + ε + 4w(G′). Recall that EϕE is

7δ-multiplicative on F̂ ′. Thus ‖c2 − c‖ < 7δ. It follows that there is a selfadjoint
projection e ≤ E such that ‖c−e‖ < 14δ. Therefore ‖ξ(P ′)−e‖ < 20δ+ε+4w(G′) <
1. By functional calculus there is a unitary U ∈ U(B2) with Uξ(P ′)U∗ = e and
‖U − 1B2‖ < 4(ε + 20δ + 4w(G′))1/2. Note that if ψ1 is unital then ψ′1(P ′) = Q′

hence we can take e = E. In this manner we obtain an approximately commuting
diagram

A1
γγ′−−−−→ γ(Q′)A′1γ(Q′)

ψ1

x xV ψ2V
∗

B1 −−−−−→
Uξξ′U∗

EB2E

Indeed, by standard estimates one shows ‖ϕ′ψ1(b)−Uξξ′(b)U∗‖ < 6δ+ε+4w(G1)+
8(ε+20δ+4w(G1))1/2 for all b ∈ G1, and ‖V ψ2ϕ

′(a)V ∗−γγ′(a)‖ < 6δ+ε+4w(F1)+
8(ε+2δ+4w(F1))1/2 for all a ∈ F1. The evaluations from the statement are obtained
by changing ε and δ appropriately. �

Lemma 2.4. Let X, Y = Y0, Y1, . . . Ys be finite connected CW complexes. Let
B1 =

⊕s
j=1 PjMk(j)(C(Yj))Pj, A1 = QMN (C(X))Q and let ψ1 : B1 → A1 be

a ∗-homomorphism which is homotopic to a direct sum between an m-large ∗-
homomorphism, m > 4dim(X), and a ∗-homomorphism with finite dimensional
image. Suppose that dim(Yj) ≤ 3 and H3(Yj) is finite for j = 0, . . . , s. Suppose

that K∗(X) ∼= K∗(Y ). Let G1 ⊂ B1, F1 ⊂ F̂ ⊂ A1 be finite sets with all the
elements of norm ≤ 1, such that w(G1) < 10−1 and w(F1) < 10−1 . Then for any
ε > 0, δ > 0 and w > 0 there exists a diagram

A1
γ−−−−→ A′1

ψ1

x xψ2

B1 −−−−→
ξ

B2

where
A′1 = Q1ML(C(X))Q1, B2 = PMS(C(Y ))P ⊕Mp(C);
ξ, ψ2, γ are ∗-homomorphisms , ψ2 is unital and γ is a unital simple embedding;

If ψ1 is unital then one can arrange to have ξ unital.

ϕ ∈Map(A1, B2) is δ-multiplicative on F̂ ;
‖ϕψ1(b)− ξ(b)‖ < ε+ 4w(G1) + 16w(G1)1/2 for all b ∈ G1

‖ψ2ϕ(a)− γ(a)‖ < 2ε+ 8w(F1) + 16w(F1)1/2 for all a ∈ F1.



14

In addition there is a finite set G2 ⊂ B2 with all elements of norm ≤ 1,
ξ(G1) ∪ ϕ(F1) ⊂ G2, ξ(B1) is contained in the C*-subalgebra of B2 generated by
G2, and w(G2) < w.

Proof. Let F1 ⊂ A1 and ε > 0 be as in the statement. With this data, let F ⊂
A1 and δH be as provided by Lemma 1.7. We may assume that δH < δ. By

applying Lemma 2.3 for G1, F1, F̂1 = F̂ ∪F , ε and δH , we obtain an approximately
commuting diagram

A1
γ−−−−→ A′1

ψ1

x xψ2

B1 −−−−→
ξ

B2

with properties as in the conclusion of Lemma 2.3. In particular ϕ is δH -multiplicative

on F̂1. Let G′1 ⊂ B1 be a finite set that contains G1 and generates B1. Set
H2 = ξ(G′1) ∪ ϕ(F1). Using Lemma 1.4, we find a simple unital embedding
ξ0 : B2 → MR(B2) such that w(ξ0(H2)) < w. Let n = rank(1B2) and let
λ : B2 → Mn be an evaluation morphism. Define ξ′ : B2 → MR(B2) ⊕Mn by
ξ′ = ξ0 ⊕ λ. Then w(ξ′(H2)) < w. Let γ′ : A′1 → ML(A′1) be a unital simple
embedding. By taking L large enough, we can apply Lemma 1.2 to obtain a unital
∗-homomorphism ψ : MR(B2)⊕Mn →ML(A′1) such that ψξ′ is homotopic to γ′ψ2.
Let χ(s) be the corresponding homotopy of ∗-homomorphisms. Set A′′1 = ML(A′1),
B′2 = MR(B2)⊕Mn, Φ(s) = χ(s)ϕ and form the following diagram.

A1
γ′γ−−−−→ A′′1

ψ1

x xψ
B1 −−−−→

ξ′ξ
B′2

The end points of Φ are ψξ′ϕ and γ′ψ2ϕ. By the previous application of Lemma
2.3 we have

‖Φ(1)(a)− γ′γ(a)‖ < ε+ 4w(F1) + 16w(F1)1/2

for all a ∈ F1. The maps ξ′ϕ and χ(s)ϕ are δH -multiplicative on F ⊂ F̂1. At
this point we invoke Lemma 1.7. Thus there exist k ∈ N, a ∗-homomorphism
η1 : A1 →Mk(A′′1) with finite dimensional image and a unitary u ∈ Uk+1(A′′1) such
that

‖u(ψξ′ϕ(a)⊕ η1(a))u∗ − γ′γ(a)⊕ η1(a)‖ < 2ε+ 4w(F1) + 16w(F1)1/2

for all a ∈ F1. Let η : A1 → Mm(B′2) be a unital ∗-homomorphism with finite
dimensional image. We take m big enough so that Corollary 1.9 applies for η1 and
µ = (ψ ⊗ idm)η. Hence there is a unitary U ∈ Um+1(A′′1) such that

‖U(ψξ′ϕ(a)⊕(ψ⊗idm)η(a))U∗−γ′γ(a)⊕(ψ⊗idm)η(a)‖ < 2ε+8w(F1)+16w(F1)1/2

for all a ∈ F1. We need the following notation. γ1 = γ′γ ⊕ (ψ ⊗ idm)η, σ =
U(ψ ⊗ idm+1)U∗, ϕ1 = ξ′ϕ⊕ η, ξ1 = ξ′ξ ⊕ ηψ1. With this notation the diagram

A1
γ1−−−−→ Mm+1(A′′1)

ψ1

x xσ
B1 −−−−→

ξ1
Mm+1(B′2)
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approximately commutes within the desired limits. More precisely

‖ϕ1ψ1(b)− ξ1(b)‖ < ε+ 4w(G1) + 16w(G1)1/2

‖σϕ1(a)− γ1(a)‖ < 2ε+ 8w(F1) + 16w(F1)1/2

for all b ∈ G1 and a ∈ F1. In addition ϕ1 is δ-multiplicative on F̂ since δH < δ.
Next we set

G2 = {ξ1(b) = ξ′ξ(b)⊕ ηψ1(b) : b ∈ G′1} ∪ {ϕ1(a) = ξ′ϕ(a)⊕ η(a) : a ∈ F1}.

It is clear thatG2 ⊂ ξ′(H2)⊕η(A1). Since w(ξ′(H2)) < w and η is a ∗-homomorphism
with finite dimensional image it follows that w(G2) ≤ w(ξ′(H2)) < w. Note that if
we start with a unital ψ1, then ξ1 can be chosen to be unital. Since γ, γ′ are simple
embeddings it follows that γ1 is a simple embedding. �

Remark 2.5 Consider the set up of Lemma 2.4. Let q = rank(1A1) and let
λ : A1 → Mq be an evaluation map. Then the diagram from the conclusion of
Lemma 2.4 can be modified as follows.

A1
γ⊕λ−−−−→ A′1 ⊕Mq

ψ1

x xψ2⊕idq

B1 −−−−→
ξ⊕λψ1

B2 ⊕Mq

Excepting for the form of B2 and A′1 the conclusion of Lemma 2.4 remains true for
the above diagram.

3. The main result

G. Elliott introduced a notion of approximate intertwining as a tool for pro-
ducing isomorphism results for inductive limit C*-algebras [29]. This notion is
especially effective for inductive systems of semiprojective C*-algebras (see [50],
[41]). When dealing with more general inductive systems we need the following
Proposition which involves approximate intertwinings consisting of approximate
morphisms rather than ∗-homomorphisms. Other generalisations along the same
lines are easily available. The idea of constructing ∗-homomorphisms as limits of
approximate morphisms goes back to [42].

Proposition 3.1. Consider a diagram

A1
ν2,1−−−−→ A2 −−−−→ . . . −−−−→ An

νn+1,n−−−−→ An+1 −−−−→ . . .

ψ1

x ψ2

x ψn

x xψn+1

B1 −−−−→
ξ2,1

B2 −−−−→ . . . −−−−→ Bn −−−−→
ξn+1,n

Bn+1 −−−−→ . . .

where An, Bn are C*-algebras, ξn+1,n , νn+1,n are ∗-homomorphisms , and ϕn, ψn
are linear, selfadjoint, contractive maps. Suppose that An, Bn are finitely generated
and let Fn ⊂ An, Gn ⊂ Bn be finite subsets with

νn+1,n(Fn) ∪ ψn+1(Gn+1) ⊂ Fn+1, ξn+1,n(Gn) ∪ ϕn(Fn) ⊂ Gn+1.
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Suppose that ξn+1,n(Bn) is contained in the C*-subalgebra of Bn+1 generated by
Gn+1 and νn+1,n(An) is contained in the C*-subalgebra of An+1 generated by Fn+1.

Suppose that there is a sequence εn of positive numbers with
∑∞
n=1 εn <∞, such

that ϕn is εn-multiplicative on Fn, ψn is εn-multiplicative on Gn, and

‖ψn+1ϕn(a)− νn+1,n(a)‖ < εn, ‖ϕnψn(b)− ξn+1,n(b)‖ < εn

for all a ∈ Fn and b ∈ Gn. Then A is isomorphic to B.

Proof. The proof is similar to the original argument in [29]. See also [50]. �

Theorem 3.2. Let A be a C*-algebra of real rank zero. Suppose that A is an

inductive limit A = lim−→(An, νn+1,n), An =
⊕kn

i=1 Pn,iM[n,i](C(Xn,i))Pn,i where
Xn,i are finite CW complexes. Suppose that either A has slow dimension growth
or d = supn,i(dim(Xn,i)) < ∞. Then A is isomorphic to a C*-algebra B =

lim−→(Bn, ξn+1,n), Bn =
⊕`n

i=1Qn,iM{n,i}(C(Yn,i))Qn,i where Yn,i are finite con-

nected CW complexes of dimension ≤ 3 with H3(Yn,i) finite.

Proof. We construct inductively a diagram

As(1)
νs(2),s(1)−−−−−→ As(2) −−−−→ . . . −−−−→ As(n)

νs(n+1),s(n)−−−−−−−→ As(n+1) −−−−→ . . .

ψ1

x ψ2

x ψn

x xψn+1

B1 −−−−→
ξ2,1

B2 −−−−→ . . . −−−−→ Bn −−−−→
ξn+1,n

Bn+1 −−−−→ . . .

whereBn are C*-algebras as in the statement of the Theorem, ψn are ∗-homomorphisms
and ϕn are linear selfadjoint contractive maps.

Moreover we construct finite sets Gn ⊂ Bn, Fn ⊂ As(n) with elements of norm
≤ 1, such that

νs(n+1),s(n)(Fn) ∪ ψn+1(Gn+1) ⊂ Fn+1,

ξn+1,n(Gn) ∪ ϕn(Fn) ⊂ Gn+1,

νs(n+1),s(n)(As(n)) is contained in the C*-subalgebra of As(n+1) generated by
Fn+1,

ξn+1,n(Bn) is contained in the C*-subalgebra of Bn+1 generated by Gn+1,

w(Fn) < 10−6n−6, w(Gn) < 10−6n−6,

ϕn is 2−n-multiplicative on Fn,

‖ϕnψn(b)− ξn+1,n(b)‖ < 2−n for all b ∈ Gn,

‖ψn+1ϕn(a)− νs(n+1),s(n)(a)‖ < 2−n for all a ∈ Fn.

Each C*-algebraAs is of the formAs =
⊕ks

j=1As,j withAs,j = Ps,jM[s,j](C(Xs,j))Ps,j .
We may assume that eachXs,j is connected. We also want each partial ∗-homomorphism
ψj.in : Bn,i → As(n),j to be homotopic to a direct sum between a (4dim(Xs(n),j)+1)-
large ∗-homomorphism, and a ∗-homomorphism with finite dimensional image. This
property will enable us to apply Lemma 2.4.

We start the inductive process with As(1) = {0} and B1 = {0}. Let us assume

that we have accomplished the construction up to the nth-stage. Let Fn,j = Fn ∩
As(n),j and let ψj : Bn → As(n),j be the corresponding partial ∗-homomorphisms

of ψn. Let ε = δ = w = 10−12n−12. Let Yj be a finite connected CW complex of
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dimension ≤ 3, such that H3(Yj) is finite and K∗(Yj) ∼= K∗(Xs(n),j). Applying

Lemma 2.4 for ψj , Gn, Fn,j , ε, δ, w we obtain a diagram

(∗)

As(n),j
γj−−−−→ A′s(n),j

ψj
x xψj2
Bn −−−−→

ξj
B(j)

where the spectrum of A′s(n),j is Xs(n),j and the spectrum of B(j) is Yj∪{pt}. Here

ψj2 is a unital ∗-homomorphism and γj is a unital simple embedding. By replacing

γj by γγj and ψj2 by γψj2 where γ : A′s(n),j → A′ is a large unital simple embedding,

we can assume that γj is (4 dim(Xs(n),j)+1)-large . If ψj is unital, then ξj is unital.
In addition

‖ϕjψj(b)− ξj(b)‖ < ε+ 4w(Gn) + 16w(Gn)1/2 < 10−3n

‖ψj2ϕj(a)− γj(a)‖ < 2ε+ 8w(Fn,j) + 16w(Fn,j)
1/2)1/2 < 10−3n

for all b ∈ Gn and a ∈ Fn,j . The map ϕj is 2−n−1-multiplicative on Fn,j . We also
obtain a finite set Gn+1,j ⊂ B(j) corresponding to the set G2 of Lemma 2.4.

First we deal with the case when d < ∞. Let us now fix the index j, 1 ≤ j ≤
ks(n). For r > s(n) and 1 ≤ ` ≤ kr, let E`,j = ν`,jr,s(n)(1As(n),j

), where ν`,jr,s(n) is

a partial ∗-homomorphism of νr,s(n). Since A has real rank zero, by Theorem 2.5
in [49] and Remark 1.4.6 in [31], as r increases, the spectral variation of νr,s(n)
becomes arbitrarily small. Let q denote the rank of the unit of As(n),j and let q′

denote the rank of the unit of A′s(n),j . By using Lemma 2.3 and Remark 2.5 in [31],

we can find r > s(n) and a partition of {1, . . . , kr} into two sets L1 and L2 with the
the following properties. If ` ∈ L1, then rank(E`,j) > 5dq′. If ` ∈ L2, then there
is a ∗-homomorphism with finite dimensional image µ`,j : As(n),j → E`,jAr,`E

`,j ,
such that

‖µ`,j(a)− ν`,jr,s(n)(a)‖ < ε

for all a ∈ Fn,j .
For ` ∈ L2 the diagram

(∗∗)

As(n),j
ν`,j
r,s(n)−−−−→ E`,jAr,`E

`,j

ψj
x x
Bn −−−−→

µ`,jψj
µ`,j(As(n),j)

approximately commutes to within ε on Fn,j , Gn. Let Gn+1,j,` = µ`,j(ψj(Gn) ∪
Fn,j). Then w(Gn+1,j,`) = 0.

For ` ∈ L1, we modify the diagram (∗) as indicated in Remark 2.5 and obtain a
diagram

As(n),j
γ`−−−−→ A(`)

ψj
x xψ`2
Bn −−−−→

ξ`
B(`)
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where B(`) = B(j)⊕Mq, A(`) = A′s(n),j ⊕Mq and γ` = γj ⊕ λ. The new diagram

inherits all the properties of diagram (∗). We also obtain a finite subsetG(`) ⊂ B(`),
with w(G(`)) < w, corresponding to the set G2 of Lemma 2.4. Recall that we have
arranged that q′ > 4dq and rank(E`,j) > 5dq′. This enables us to use Lemma
1.2 since γj is a unital simple embedding. Thus there is a unital ∗-homomorphism

σ` : A(`) → E`,jAr,`E
`,j such that σ`γ` is homotopic to ν`,jr,s(n). By Theorem 2.29

and Remark 2.30 in [31], after increasing r, and changing the notation appropriately,
we find a unitary u ∈ U(E`,jAr,`E

`,j) such that

‖uσ`γ`(a)u∗ − ν`,jr,s(n)(a)‖ ≤ 70w(Fn) < 70× 10−3n

for all a ∈ Fn,j . It follows that the diagram

(∗ ∗ ∗)

As(n),j
ν`,j
r,s(n)−−−−→ E`,jAr,`E

`,j

ψj
x xuσ`ψ`2u∗
Bn −−−−→

ξ`
B(`)

approximately commutes to within 70 × 10−3n + 10−3n < 2−n−1 on Fn,j and to
within 10−3n < 2−n−1 on Gn. Finally by assembling the diagrams (∗∗) and (∗ ∗ ∗)
we obtain a diagram

As(n)
νr,s(n)−−−−→ Ar

ψn

x xψn+1

Bn −−−−→
ξn+1,n

Bn+1

which approximately commutes to within the desired limits. The set Gn+1 is ob-
tained as the union of the sets G(`) and Gn+1,j,`. Let F ′n be a finite set of norm-one
generators of As(n) that contains Fn, and set Fn+1 = νr,s(n)(F

′
n)∪ψn+1(Gn+1). By

increasing r we can arrange to have w(Fn+1) < 10−6n−12 (see Theorem 1.4.14 in
[31]). Moreover ψn+1 will become homotopic to a direct sum between a (4d + 1)-
large ∗-homomorphism, and a ∗-homomorphism with finite dimensional image (see
Lemma 2.3 and Remark 2.5 in [31]). Finally we set s(n+ 1) = r.

The case when A has slow dimension growth is dealt with in a similar way.
Actually that case is even simpler since the set L2 is void and only diagrams of
type (∗ ∗ ∗) are involved. Lemma 2.3 of [31] is replaced by the condition of slow
dimension growth. One uses Theorem 2.29 and Remark 2.32 in [31].

If the inductive system for A has all the connecting maps unital, then the induc-
tive system for B has the same property. �

Remark 3.3.

Let A be a C*-algebra as in the statement of Theorem 3.2. Let S be a a set
consisting of points and finite connected CW complexes Y with dim(Y ) ≤ 3 such
that for any space Xn,i there is a space in S with the same K-theory. Then the C*-
algebra B from Theorem 3.2 can be chosen such that the spaces Yn,i are in S. For
instance if all Xn,i are torsion free, then we can take S to consists of points, wedges



19

of circles and two dimensional spheres. By Theorem 5.28 in [31], A is isomorphic
to a circle C*-algebra hence is classified by K-theory [29]. This gives a new proof
to a very recent result of Gong [35], see also [21]. This remark can be also used to
shorten the last part of the proof of Theorem 5.8 in [31].

Theorem 3.4. Let A, B be two simple C*-algebras of real rank zero. Suppose that

A and B are inductive limits A = lim−→An and B = lim−→Bn, An =
⊕kn

i=1 Qn,iM[n,i](C(Xn,i))Qn,i,

Bn =
⊕ln

i=1 Pn,iM{n,i}(C(Yn,i))Pn,i. Suppose that Xn,i, Yn,i are finite CW com-
plexes. Suppose that A and B have slow dimension growth. Then A is isomorphic
to B if and only if

(K∗(A),K∗(A)+,Σ∗(A)) ∼= (K∗(B),K∗(B)+,Σ∗(B)).

Proof. For spaces Xn,i, Yn,i of dimension at most three the result is given in Theo-
rem 5.8 of [31]. Theorem 3.4 follows by combining this special case with Theorem
3.2 from above. Recall that for simple C*-algebras the condition of slow dimension
growth is weaker than the condition supn(dim(Spectrum(An))) < ∞. The order
structure on K∗ was introduced in [24] and [29]. �
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