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RESIDUALLY FINITE DIMENSIONAL C*-ALGEBRAS AND
SUBQUOTIENTS OF THE CAR ALGEBRA

Marius Dadarlat

Abstract. It is proved that the cone of a separable nuclearly embeddable resid-
ually finite-dimensional C*-algebra embeds in the CAR algebra (the UHF algebra
of type 2∞). As a corollary we obtain a short new proof of Kirchberg’s theorem
asserting that a separable unital C*-algebra A is nuclearly embeddable if and only
there is a semisplit extension 0 → J → E → A → 0 with E a unital C*-subalgebra
of the CAR algebra and the ideal J an AF-algebra. The new proof does not rely
on the lifting theorem of Effros and Haagerup.

1. Introduction

Throughout the paper we let B denote the CAR algebra, B ∼= ⊗∞
i=1 M2(C).

A C*-algebra A is called nuclearly embeddable if there is a nuclear faithful rep-
resentation σ : A → L(H), [Vo2]. S. Wassermann [W2] has shown that any
nuclearly embeddable C*-algebra is exact. By a remarkable theorem of Kirch-
berg, the converse is also true: any exact C*-algebra is nuclearly embeddable
[Ki2]. Having reduced the study of exact C*-algebras to that of nuclearly em-
beddable C*-algebras, Kirchberg proves the following.

Theorem 1.1. (Kirchberg [Ki2]) Let A be a separable unital C*-algebra. The
following conditions are equivalent: (i) A is nuclearly embeddable. (ii) There is
a semisplit essential extension of C*-algebras 0 → J → E → A → 0 such that E
is a unital C*-subalgebra of the CAR algebra B and J is an AF-algebra stably
isomorphic to B. (iii) There is an extension of C*-algebras 0 → J → E → A →
0 such that E is a unital C*-subalgebra of the CAR algebra B.

The equivalence between (i) and (iii) proves that nuclear embeddability (hence
exactness) passes to quotients. On the other hand, using the equivalence between
(i) and (ii), and his Weyl-von Neumann-Voiculescu type theorem, Kirchberg
proved that any separable unital nuclearly embeddable C*-algebra embeds as
a unital C*-subalgebra of the Cuntz algebra O2 [Ki4]. See also [KPh] for a
different proof. Using ideas from [Ki1, Ki2], S. Wassermann [W2] gave a proof
of Theorem 1.1 which is shorter and somewhat simpler than the original proof
of [Ki2] as it avoids the use of Kirchberg’s theory of normalizers of operator
subsystems of C∗-algebras. Both proofs use techniques of operator spaces and
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they rely on the lifting results of Effros and Haagerup [EK] for establishing the
equivalence of (i) and (ii).

A separable C*-algebra A is called residually finite-dimensional (abbrevi-
ated RFD) if it has a separating sequence of finite dimensional representations.
Equivalently A embeds in a C*-algebra of the form

∏∞
n=1 Mk(n), where Mk

stands for Mk(C). In this paper we prove that the cone CF = C0(0, 1] ⊗ F of
any separable residually finite-dimensional nuclearly embeddable C*-algebra F
embeds in the CAR algebra (Theorem 2.6). Let A be a separable unital nuclearly
embeddable C*-algebra. Using the quasidiagonality of CA proved by Voiculescu
[Vo3], we observe that there is a semisplit extension 0 → I → C̃F → A → 0 with
F a separable RFD nuclearly embeddable C*-algebra (Lemma 3.1). Combining
Theorem 2.6 and Lemma 3.1, we obtain a short proof of the equivalence of (i)
and (ii). The implication (iii) ⇒ (ii) follows from [EK, Proposition 5.3 and Theo-
rem 3.4], while (ii) ⇒ (iii) is obvious. Since a subalgebra of a nuclear C*-algebra
is nuclearly embeddable, the non nuclearly embeddable RFD algebras (such as
the full C*-algebra of the free group on two generators) are not AF-embeddable.
Thus one cannot infer AF-embeddability from just the mere abundance of finite
dimensional representations. In a forthcoming paper [D4], we give more general
results on the UHF-embeddability of a nuclearly embeddable RFD algebra. Thus
we prove that if A is a separable nuclearly embeddable RFD algebra such that
either the rational K-homology group K0(A) ⊗ Q = KK(A, C) ⊗ Q is finitely
generated (as a Q-module) or A satisfies the universal coefficient theorem of [RS]
(UCT) for the Kasparov groups, then A embeds in a UHF algebra. Since the
proofs of those results rely on certain techniques of KK-theory [Ka, Sk, DE],
we have chosen to present here a self-contained elementary proof of the UHF-
embeddability of CA. Previous results on the AF-embeddability of nuclear RFD
C*-algebras have appeared in [D2], for A homotopically dominated by an AF
algebra, and [L], for A satisfying the UCT.

2. Embedding RFD algebras in the CAR algebra

Proposition 2.1. Let A, B be unital C*-algebras and let ϕ0, ϕ1 : A → B be
two unital ∗-homomorphisms which are homotopic. Then for any F ⊂ A a finite
subset and any ε > 0 there exist n ∈ N, a unital ∗-homomorphism η : A →
Mn−1(B) and a unitary u ∈ Un(B) such that

‖u(ϕ0(a) ⊕ η(a))u∗ − ϕ1(a) ⊕ η(a)‖ < ε, a ∈ F .(1)

Proof. By assumption there is a family of unital ∗-homomorphisms (ϕt) : A → B
such that ϕ0, ϕ1 are equal to the given ones and for each a ∈ A, the map
t �→ ϕt(a) is norm-continuous on [0, 1]. By uniform continuity we find an integer
n such that

‖ϕi+1/n(a) − ϕi/n(a)‖ < ε, 0 ≤ i ≤ n − 1, a ∈ F .(2)
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Define η = ϕ1/n ⊕ ϕ2/n ⊕ · · · ⊕ ϕn−1/n. Using (2)

‖ϕ0(a) ⊕ η(a) − η(a) ⊕ ϕ1(a)‖ ≤ sup
0≤i≤n−1

‖ϕi+1/n(a) − ϕi/n(a)‖ < ε, a ∈ F .

(3)

If u ∈ Mn(C1B) is the cyclic shift of order n, then u(η(a)⊕ ϕ1(a))u∗ = ϕ1(a)⊕
η(a). From this and (3) we obtain (1).

The following proposition is an easy consequence of [DE, Theorem 3.8]. We
give here an alternative proof which does not use KK-theory. Let L(H) denote
the linear operators acting on a Hilbert space H and let K(H) denote the compact
operators. We have L(Ck) = K(Ck) ∼= Mk.

Proposition 2.2. Let A be a unital separable C*-algebra and let ϕ, ψ : A → Mm

be two unital ∗-homomorphisms which are homotopic. Let F ⊂ A be a finite
subset and let ε > 0. Then for any faithful unital representation σ : A → L(H)
with σ(A)∩K(H) = {0}, there is a unitary v ∈ C1Cm⊕H +K(Cm ⊕H) such that

‖v(ϕ(a) ⊕ σ(a))v∗ − ψ(a) ⊕ σ(a))‖ < ε, a ∈ F .(4)

Proof. By Proposition 2.1, there is a unital finite-dimensional representation
η : A → Mr and a unitary u ∈ Mm+r satisfying

‖u(ϕ(a) ⊕ η(a))u∗ − ψ(a) ⊕ η(a)‖ < ε/3, a ∈ F .(5)

Let z be the unitary z = u ⊕ 1H ∈ C1Cm+r⊕H + K(Cm+r ⊕H). It follows from
(5) that

‖z(ϕ(a) ⊕ η(a) ⊕ σ(a))z∗ − ψ(a) ⊕ η(a) ⊕ σ(a)‖ < ε/3, a ∈ F .(6)

By Voiculescu’s Theorem [Vo1] there is a unitary w : H → Cr ⊕H such that

‖wσ(a)w∗ − η(a) ⊕ σ(a)‖ < ε/3, a ∈ F .(7)

If we set v = (1Cm ⊕ w∗)z(1Cm ⊕ w) ∈ C1Cm⊕H + K(Cm ⊕H), then (4) follows
from (6) and (7). Indeed

‖v(ϕ(a) ⊕ σ(a))v∗ − ψ(a) ⊕ σ(a)‖ = ‖z(ϕ(a) ⊕ wσ(a)w∗)z∗

− ψ(a) ⊕ wσ(a)w∗)‖
≤ 2‖wσ(a)w∗ − η(a) ⊕ σ(a)‖
+ ‖z(ϕ(a) ⊕ η(a) ⊕ σ(a))z∗

− ψ(a) ⊕ η(a) ⊕ σ(a)‖
< 2ε/3 + ε/3 = ε.

Proposition 2.3 ([D3]). Let A be a unital separable RFD C*-algebra. Then
A is nuclearly embeddable if and only if for any unital faithful representation
σ : A → L(H) with σ(A) ∩ K(H) = {0}, there exists a sequence of unital rep-
resentations ρn : A → L(H) whose images are contained in finite dimensional
C*-subalgebras of L(H) and such that for all a ∈ A, limn→∞ ‖σ(a) − ρn(a)‖ = 0
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Proof. This was proved in [D3]. A different proof is given the Appendix.

Definition 2.4. Let A be a unital RFD C*-algebra. Let F ⊂ A be a finite subset
and let ε > 0. A unital representation π : A → Mk is called (F , ε)-admissible if
there is a unital faithful representation σ : A → L(H) with σ(A) ∩K(H) = {0},
(H = Ck ⊕ Ck ⊕ · · · ) such that if π∞ = π ⊕ π ⊕ · · · , then

‖σ(a) − π∞(a)‖ < ε a ∈ F .(8)

Note that if π is (F , ε)-admissible, then so is π ⊕ γ for any unital finite
dimensional representation γ. Moreover ‖π(a)‖ ≥ ‖a‖ − ε for a ∈ F . If A is
separable nuclearly embeddable and RFD, then Proposition 2.3 guaranties the
existence of (F , ε)-admissible representations for any finite set F ⊂ A and any
ε > 0. The following proposition is crucial for our embedding result. If n is a
positive integer and π is a representation, then nπ will denote the representation
π ⊕ · · · ⊕ π (n-times).

Proposition 2.5. Let A be a separable unital nuclearly embeddable RFD C*-
algebra. Let F ⊂ A be a finite subset and let ε > 0. Then for any (F , ε)-
admissible representation π : A → Mk and any two homotopic unital representa-
tions ϕ, ψ : A → Mm, there exist a positive integer N and a unitary u ∈ Mm+Nk

such that

‖u(ϕ(a) ⊕ Nπ(a))u∗ − ψ(a) ⊕ Nπ(a)‖ < 3ε, a ∈ F .

Proof. By definition, π satisfies (8) for some unital faithful representation σ :
A → L(H) with σ(A) ∩ K(H) = {0}. By applying Proposition 2.2 to ϕ and ψ
we find a unitary v ∈ C1Cm⊕H + K(Cm ⊕H) such that

‖v(ϕ(a) ⊕ σ(a))v∗ − ψ(a) ⊕ σ(a)‖ < ε, a ∈ F .(9)

From (8) and (9) we then obtain

‖v(ϕ(a) ⊕ π∞(a))v∗ − ψ(a) ⊕ π∞(a)‖ < 3ε, a ∈ F .(10)

Let Hn = Cm ⊕ Ck ⊕ · · · ⊕ Ck ⊂ Cm ⊕ H (n copies of Ck) and let en denote
the orthogonal projection of Cm ⊕H onto Hn. After a small perturbation of v
we may assume that v ∈ C1Cm⊕H + K(HN ) for some large N . It is then clear
that eN commutes with v and with the images of ϕ ⊕ π∞ and ψ ⊕ π∞. Then
eN (ϕ⊕π∞)eN = ϕ⊕Nπ, eN (ψ⊕π∞)eN = ψ⊕Nπ and u = eNveN is a unitary
in L(HN ) ∼= Mm+Nk. We finish the proof by compressing by eN in (10).

For a C*-algebra A we denote by CA the cone of A (CA = C0[0, 1)⊗A) and
by SA the suspension of A (SA = C0(0, 1) ⊗ A). Let Ã denote the C*-algebra
obtained by adding a unit to A.

Theorem 2.6. Let A be a separable nuclearly embeddable RFD C*-algebra.
Then CA and SA are embeddable in the CAR algebra B.
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Proof. We have that SA ⊂ CA ⊂ C̃A so that it suffices to show that D =
C̃A embeds unitally in B. A key property of D is that any two unital ∗-
homomorphisms D → Mk are homotopic. Let (Fn) be a sequence of increasing
finite subsets of D whose union is dense in D and let εn = 2−n. We will con-
struct inductively a sequence (r(n)) of powers of two and a sequence (γn) of
representations γn : D → Mk(n), where k(1) = r(1), k(n) = k(n − 1)r(n) for
n ≥ 2, such that

(i) γn is (Fn, εn)-admissible (in particular ‖γn(a)‖ ≥ ‖a‖ − εn for a ∈ Fn).
(ii) ‖γn(a) − r(n)γn−1(a)‖ < 3εn−1, for a ∈ Fn−1.

Let γ1 : D → Mk(1) be an (F1, ε1)-admissible representation. Such represen-
tations exist by Proposition 2.3 since D is nuclearly embeddable and RFD. By
adding one-dimensional representations to γ1 we may arrange that k(1) is a
power of two. Suppose now that γ1, . . . , γn and r(1), . . . , r(n) were constructed.
Let π : D → Mk be an (Fn+1, εn+1)-admissible representation. By adding one-
dimensional representations to π we can assume that k = sk(n) for some integer
s. Then π(1) = sγn(1) hence π and sγn are homotopic. Since γn is (Fn, εn)-
admissible, by Proposition 2.5 there is N and a unitary u ∈ Mk+Nk(n) such that
‖u(π(a)⊕Nγn(a))u∗− sγn(a)⊕Nγn(a)‖ < 3εn for a ∈ Fn. By increasing N we
may arrange that N+s is a power of two. We conclude the construction by defin-
ing r(n + 1) = N + s and γn+1(a) = u(π(a) ⊕ Nγn(a))u∗. Let ιn : Mk(n) ↪→ B
be the canonical inclusion. Having the sequence γn available, we construct a
unital embedding γ : D → lim−→Mk(n)

∼= B by defining γ(a), a ∈ ∪nFn, to be

the limit of the Cauchy sequence (ιnγn(a)) and then extend to D by continuity.
Note that ‖γ(a)‖ = ‖a‖ since ‖γn(a)‖ ≥ ‖a‖ − εn for a ∈ Fn.

3. Subquotients of the CAR algebra

Lemma 3.1. Let A be a separable unital nuclearly embeddable C*-algebra. Then
there exists a semisplit essential extension 0 → I → C̃F → A → 0 with F a
unital separable nuclearly embeddable RFD C*-algebra.

Proof. Since C̃A is homotopic to C, any unital representation σ : D → L(H)
of D = C̃A is homotopic to a representation with image contained in C1H.
By [Vo3, Proposition 3] (its proof rather than its statement), there is a uni-
tal ∗-monomorphism j : D → ∏∞

n=1 Mk(n)/
∑∞

n=1 Mk(n) which admits a unital
completely positive lifting η : D → ∏

Mk(n). Consider the diagram

0 −−−−→ ∑
Mk(n) −−−−→ ∏

Mk(n)
π−−−−→ ∏

Mk(n)/
∑

Mk(n) −−−−→ 0∥∥∥ Φ

�
�j

0 −−−−→ ∑
Mk(n) −−−−→ F

π′
−−−−→ D −−−−→ 0

where the extension at the bottom is the pull-back of the extension at the top.
We are going to show that the unital ∗-monomorphism Φ is nuclear, hence F is
a nuclearly embeddable C*-algebra. Since D is nuclearly embeddable, the map
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η is nuclear by [D1, Proposition 3.3]. Note that η induces a unital completely
positive map η′ : D → F such that π′η′ = idD and Φη′ = η. Let en be the
unit of Mk(1) ⊕ · · · ⊕ Mk(n). Then (en) is an approximate unit of projections of∑

Mk(n) which is central in
∏

Mk(n) hence it is central in F . For any z ∈ F ,
z = enzen + (1 − en)z(1 − en) and

lim
n→∞ ‖z − enzen − (1 − en)η′(π′(z))(1 − en)‖ =

lim
n→∞ ‖(1 − en)(z − η′(π′(z)))(1 − en)‖ = 0

as z − η′(π′(z)) ∈ ∑
Mk(n). Since Φη′ = η, we obtain

lim
n→∞ ‖Φ(z) − enΦ(z)en − (1 − en)η(π′(z))(1 − en)‖ = 0.

This proves that Φ is nuclear since the maps η and enΦ(−)en are nuclear. Note
that F is RFD as it embeds in

∏
Mk(n).

To finish the proof we need the following observation. Suppose that G is a
unital C*-algebra. Then C̃G ∼= {f ∈ C([0, 1], G) : f(1) ∈ C1G}. Let λ be a state
of G. The surjection πG : C̃G → G, πG(f) = f(0) admits a unital completely
positive right inverse given by ηG(a)(t) = tλ(a)1G + (1 − t)a, (a ∈ G, t ∈ [0, 1]).
It follows that ηF ◦ η′ ◦ ηA is a unital completely positive right inverse for the
composition

C̃F
πF−→ F

π′
−→ C̃A

πA−→ A

Moreover it is clear that C̃F is nuclearly embeddable and RFD since F is so.
Finally we set I = ker(πA ◦π′ ◦πF ) and notice that I is an essential ideal of C̃F
as it contains SF .

4. Proof of Theorem 1.1

(i) ⇒ (ii) Let 0 → I → C̃F
ν−→ A → 0 be the extension given Lemma

3.1 and let η be a unital completely positive right inverse of ν. By Theorem
2.6 C̃F embeds unitally in B . Let J = IBI be the hereditary C*-subalgebra
of B generated by I. Then J is a two-sided closed ideal of the C*-algebra
E = C̃F +J and it is easy to check that we still have a semisplit essential unital
extension 0 → J → E

π−→ A → 0. Indeed, the composition of C̃F ↪→ E with
η defines a unital completely positive right inverse of π. To check that J is
essential in E, let x ∈ C̃F , y ∈ J be such that (x + y)J = 0. Let (hn) be an
approximate unit of I. Then hn(x + y)hn = 0 hence y = − limn→∞ hnxhn ∈ I.
Now (x + y)I = 0 implies x + y = 0 since I is essential in C̃F . Since J is a
hereditary C*-subalgebra of B and B is simple, J is stably isomorphic to B by
Brown’s theorem [Br]. The rest of the proof is taken from [W3]. We include it
for the sake of completeness. (ii) ⇒ (i) Let η : A → E be a unital completely
positive right inverse of π : E → A. Since πη = idA, η is a unital complete
isometry hence it is a complete order embedding. This means that its inverse
η−1 : η(A) → A is unital and completely positive. Let σ : A → L(H) be a
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unital faithful representation. By Arveson’s extension theorem ση−1 extends to
a unital completely positive map θ : B → L(H). Then σ = θη is nuclear since
it factorises through the nuclear algebra B (ii) ⇒ (iii) is obvious. (iii) ⇒ (ii) If
E embeds in B, then so does C̃E since C0[0, 1) ⊂ B and B ⊗ B ∼= B. After
replacing the map E → A by the composition C̃E → E → A whose kernel is
an essential ideal of C̃E, we may assume that the given extension is essential.
Arguing as in the last part of (i) ⇒ (ii), we may arrange that J is an essential
AF-ideal. Since B has property (C) of Archbold and Batty and E ⊂ B, E has
property (C) [AB]. One concludes the proof by applying the lifting results of
Effros and Haagerup. Indeed, by [EK, Proposition 5.3 (3) and Theorem 3.4] any
extension 0 → J → E → A → 0 is semisplit if E has property (C) and J is an
AF-ideal.

Applications

Following Kirchberg, let us review the main applications of Theorem 1.1.

1. Any separable unital nuclearly embeddable C*-algebra embeds as a unital C*-
subalgebra of the Cuntz algebra O2. We use the implication (i) ⇒ (ii) of Theorem
1.1 so that we do not rely on [EK]. Let 0 → J → E → A → 0 be a semisplit
essential extension given by Theorem 1.1. Since B embeds unitally in O2 [Cu1,
1.5], after replacing J by the hereditary C*-subalgebra J ′ of O2 generated by
J and replacing E by E′ = E + J ′ we obtain a semisplit essential extension
0 → J ′ → E′ → A → 0 where J ′ is stably isomorphic to O2 by [Br]. In particular
J ′ is non-unital and hence stable by [Zh, Theorem 1.2] so that J ′ ∼= O2 ⊗K(H).
By the Weyl-von Neumann-Voiculescu type theorem of Kirchberg [Ki4], the
extension 0 → J ′ → E′ → A → 0 is unitally absorbing. Since Ext−1(A,O2) = 0,
(as idO2 ⊕ idO2 is homotopic to idO2 by [Cu2] and Ext−1(A,−) is homotopy
invariant by [Ka]) we conclude that the extension 0 → J ′ → E′ → A → 0 splits.
Therefore there is a unital ∗-monomorphism γ : A → E′ ⊂ O2.

2. Any quotient of a unital separable nuclearly embeddable C*-algebra A is nu-
clearly embeddable. This is an obvious consequence of the equivalence between
(i) and (iii), whose proof relies essentially on [EK].

5. Appendix

Here we prove a generalization of Proposition 2.3 which clarifies the role of
nuclear embeddability in our context. Let A be a C*-algebra, let F ⊂ A be
a finite subset and let ε > 0. If ϕ : A → L(Hϕ) and ψ : A → L(Hψ) are
two maps, we write ϕ ≺

F,ε
ψ if there is an isometry v : Hϕ → Hψ such that

‖ϕ(a) − v∗ψ(a)v‖ < ε for all a ∈ F . If v can be chosen to be a unitary, then we
write ϕ ∼

F,ε
ψ. We write ϕ ≺ ψ ( ϕ ∼ ψ ) if ϕ ≺

F,ε
ψ (respectively ϕ ∼

F,ε
ψ ) for all

F and ε. Note that ϕ ∼
F,ε

ψ ⇔ ψ ∼
F,ε

ϕ and if ϕ ∼
F,ε1

ψ, ψ ∼
F,ε2

γ, then ϕ ∼
F,ε1+ε2

γ.

We let ϕ∞ denote the infinite direct sum ϕ ⊕ ϕ ⊕ · · · .
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Lemma 5.1. Let A be a unital C*-algebra, let F ⊂ A be a finite subset and let
ε > 0. There exist G ⊂ A a finite subset and δ > 0 such that if ϕ : A → L(Hϕ),
ψ : A → L(Hψ) are selfadjoint contractions with ‖ϕ(a∗a) − ϕ(a∗)ϕ(a)‖ < δ,
‖ψ(a∗a) − ψ(a∗)ψ(a)‖ < δ, a ∈ G, then we have the following. (i) If ϕ∞ ≺

G,δ
ψ,

then ϕ ⊕ ψ ∼
F,ε

ψ. (ii) If ϕ∞ ≺
G,δ

ψ and if ψ∞ ≺
G,δ

ϕ, then ϕ ∼
F,ε

ψ.

Proof. This goes along the lines of the proof of Voiculescu’s theorem [Vo1], [Ar].
It suffices to prove only part (i), since (i) ⇒ (ii). Let G = {ab : a, b ∈ F ∪F∗} ∪
F ∪F∗ and let δ > 0 be small enough so that 2δ + 8δ1/2(2M + 3)1/2 < ε, where
M = max{‖a‖ : a ∈ F}. Define φ = ϕ∞ . By assumption there is an isometry
v : Hφ → Hψ such that

‖φ(x) − v∗ψ(x)v‖ < δ, x ∈ G.(11)

From (11) and the identity

(vφ(a) − ψ(a)v)∗(vφ(a) − ψ(a)v) = φ(a∗)(φ(a) − v∗ψ(a)v) + (φ(a∗)
− v∗ψ(a∗)v)φ(a) + v∗(ψ(a∗)ψ(a)
− ψ(a∗a))v + (v∗ψ(a∗a)v
− φ(a∗a)) + (φ(a∗a) − φ(a∗)φ(a))

we obtain

‖vφ(a) − ψ(a)v‖ < δ1/2(2M + 3)1/2, a ∈ F ∪ F∗.(12)

If p = vv∗, then since φ is selfadjoint

[ψ(a), p ] = (ψ(a)v − vφ(a))v∗ + v(vφ(a∗) − ψ(a∗)v)∗.(13)

From (12) and (13) we obtain ‖ψ(a)p−pψ(a)‖ < 2δ1/2(2M +3)1/2 for all a ∈ F ,
hence

‖ψ(a) − pψ(a)p − (1 − p)ψ(a)(1 − p)‖ < δ1 = 4δ1/2(2M + 3)1/2, a ∈ F .(14)

Regarding v as a unitary from Hφ to pHψ, we obtain from (11)

φ ∼
G,δ

pψp.(15)

Combining (14) with (15) and setting λ(a) = (1 − p)ψ(a)(1 − p) we have
φ ⊕ λ ∼

G,δ
pψp ⊕ (1 − p)ψ(1 − p) ∼

F,δ1
ψ, hence

ϕ∞ ⊕ λ = φ ⊕ λ ∼
F,ε/2

ψ

since F ⊂ G and δ + δ1 = δ + 4δ1/2(2M + 3)1/2 < ε/2 by our choice of δ.
Therefore

ψ ∼
F,ε/2

ϕ∞ ⊕ λ ∼ ϕ ⊕ ϕ∞ ⊕ λ ∼
F,ε/2

ϕ ⊕ ψ,

hence ψ ∼
F,ε

ϕ ⊕ ψ.
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6. Proof of Proposition 2.3

The result is a consequence of the following.

Proposition 6.1. Let A be a unital separable nuclearly embeddable C*-algebra
and let (χn) be a sequence of unital representations separating the elements of
A. Then for any F ⊂ A a finite subset and any ε > 0 there is a representation
π of A of the form π = χi1 ⊕ χi2 ⊕ · · · ⊕ χim

such that if σ : A → L(H) is any
unital faithful representation with σ(A) ∩ K(H) = {0}, then σ ∼

F,ε
π∞.

Proof. By Voiculescu’s theorem [Vo1] it suffices to prove the statement for a
fixed representation σ. With F and ε as above let G ⊂ A and δ > 0 be given by
Lemma 5.1. In the first part of the proof we find π of the desired form such that
σ ≺

G,δ
π∞. Since A is nuclearly embeddable, the representation σ is nuclear. Thus

we find unital completely positive maps α : A → L(Ck) and β : L(Ck) → L(H)
such that

‖σ(a) − βα(a)‖ < δ/2, a ∈ G.(16)

We may assume that each representation in the sequence (χn) repeats itself
infinitely many times. Thus χ = χ1 ⊕χ2 ⊕ . . . is a unital faithful representation
of A of infinite multiplicity. If πα is the Stinespring dilation of α, then we have
α ≺ πα ≺ πα ⊕ χ. Therefore α ≺ χ since πα ⊕ χ ∼ χ by Voiculescu’s theorem.
By a standard perturbation argument we obtain α ≺

G,δ/2
χ1 ⊕ · · · ⊕ χn for some

large enough n. Thus if we set π = χ1 ⊕ · · · ⊕ χn, then there is an isometry
w : Ck → Hπ with

‖α(a) − w∗π(a)w‖ < δ/2, a ∈ G.(17)

By Stinespring’s theorem, the unital completely positive map x �→ β(w∗xw) can
be dilated to a unital representation ρ : L(Hπ) → L(Hρ). Thus we find an
isometry v : H → Hρ with

β(w∗xw) = v∗ρ(x)v, x ∈ L(Hπ).(18)

From (16), (17) and (18) we obtain

‖σ(a) − v∗ρ(π(a))v‖ = ‖σ(a) − β(w∗π(a)w)‖
≤ ‖σ(a) − βα(a)‖ + ‖βα(a) − β(w∗π(a)w)‖ < δ/2 + δ/2 = δ, a ∈ G.

A
σ ��

π

��

α
������������ L(H)

L(Ck)

β
�����������

L(Hπ)
w∗(−)w

�����������

ρ
�� L(Hρ)

v∗(−)v

��
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This gives σ ≺
G,δ

ρπ. It is clear from the representation theory of L(Hπ) that

ρπ ∼ π∞. Therefore σ ≺
G,δ

π∞ hence σ∞ ≺
G,δ

π∞ as (π∞)∞ ∼ π∞. By Voiculescu’s

theorem, we have σ ⊕ π∞ ∼ σ hence (π∞)∞ ≺ σ. By Lemma 5.1(ii) it follows
that σ ∼

F,ε
π∞.
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