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CONSTRUCTIONS PRESERVING
HILBERT SPACE UNIFORM EMBEDDABILITY

OF DISCRETE GROUPS

MARIUS DADARLAT AND ERIK GUENTNER

Abstract. Uniform embeddability (in a Hilbert space), introduced by Gro-
mov, is a geometric property of metric spaces. As applied to countable discrete
groups, it has important consequences for the Novikov conjecture. Exactness,
introduced and studied extensively by Kirchberg and Wassermann, is a func-
tional analytic property of locally compact groups. Recently it has become
apparent that, as properties of countable discrete groups, uniform embeddabil-
ity and exactness are closely related. We further develop the parallel between
these classes by proving that the class of uniformly embeddable groups shares
a number of permanence properties with the class of exact groups. In particu-
lar, we prove that it is closed under direct and free products (with and without
amalgam), inductive limits and certain extensions.

1. Introduction

Gromov introduced the notion of uniform embeddability of metric spaces, and
suggested that finitely generated discrete groups that are uniformly embeddable in
a Hilbert space, when viewed as metric spaces, might satisfy the Novikov conjecture
[12], [10]. Yu proved that this is indeed the case [20], [18].

Kirchberg and Wassermann defined the notion of exactness of a locally compact
group in terms of the behavior of its reduced crossed product functor. Subsequently,
they developed the main properties of exact groups. In particular, they showed that
in the case of a countable discrete group, exactness can be reformulated entirely in
terms of the reduced C∗-algebra [14], that is, that exactness is a property of the
harmonic analysis of the left regular representation of such a group.

The starting point of this work is the startling fact that for countable discrete
groups, uniform embeddability (in a Hilbert space, a geometric property) and ex-
actness (an analytic property) are closely related. The first indications of the re-
lationship between uniform embeddability and exactness are found in the work of
Guentner and Kaminker [13]; these preliminary steps were quickly expanded by
Ozawa [16], Anantharaman-Delaroche [2], and others.

We are concerned with uniformly embeddable groups. Our main results are out-
lined in the following theorem (more precise statements follow in later sections),
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which summarizes the basic permanence properties of the class of uniformly embed-
dable groups. Observe that the properties described are all shared by the class of
countable discrete exact groups [15]. Indeed, in each case it is possible to give a uni-
fied account of the results for uniform embeddability and exactness; in some cases
our methods provide alternate proofs of the known results concerning exactness.

Theorem. The class of countable discrete groups that are uniformly embeddable in
a Hilbert space is closed under subgroups and products, direct limits, free products
with amalgam, and extensions by exact groups. �

The fact that subgroups and products of uniformly embeddable groups are again
uniformly embeddable is elementary and quite well known; they are included in the
statement for completeness.

The other properties are more difficult to establish. It is possible to construct
a uniform embedding of a free product (without amalgam) directly from uniform
embeddings of the factors [5]. On the other hand, the corresponding result for free
products with amalgam is considerably more difficult, in view of the fact that the
common subgroup of the amalgam can introduce considerable distortion into the
product. Our proof is based on a suitable adaptation of an argument given by Tu
in his work on Property A [19]; although we are not able to verify a number of
assertions concerning the metric defined in Section 9 in Tu’s paper, we are able to
adapt his arguments to the present context. The proof we give works equally well for
countable exact groups (see Proposition 6.8 and Theorem 6.9), and is unrelated to
Dykema’s original proof that the class of countable exact groups is closed under free
products with amalgam [9], [8]. Again, in the case without amalgam a considerably
simpler proof of this fact is now available [5].

The general problem of uniform embeddability of extensions is intriguing. Our
proof that the class of uniformly embeddable groups is closed under extensions by
exact groups is inspired by the argument of Anantharaman-Delaroche and Renault
showing that the class of countable exact groups is closed under extensions [3]. It is
unknown whether the class of uniformly embeddable groups is closed under general
extensions; even the case of a central extension of Z by a uniformly embeddable
group remains open. At present, the behavior with respect to extensions provides
the best possibility of distinguishing the classes of uniformly embeddable and exact
groups.

We draw two immediate corollaries. Since they are peripheral to our study we
will not establish notation or provide the relevant definitions; rather, we provide
references.

Corollary. The class of countable discrete groups that are uniformly embeddable
in a Hilbert space is closed under the formation of HNN extensions.

Proof. An HNN extension is built from free products with amalgam, direct limits,
and a semi-direct product by Z, which is exact [17], [4]. (See [6] for related results.)

�

Corollary. The fundamental group of a graph of countable discrete groups is uni-
formly embeddable in a Hilbert space if and only if each of the groups is uniformly
embeddable in a Hilbert space.
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Proof. Each constituent group is a subgroup of the fundamental group. Conversely,
the fundamental group of a graph of groups is built from free products with amal-
gam, HNN extensions and direct limits [17], [4]. (See [1] for related remarks.) �

2. Background

Let X and Y be metric spaces, with metrics dX and dY , respectively. A function
F : X → Y is a uniform embedding if there exist non-decreasing functions ρ± :
R+ → R+ such that lim t→∞ ρ±(t) =∞ and such that

(1) ρ−(dX(x, x′)) ≤ dY (F (x), F (x′)) ≤ ρ+(dX(x, x′)), for all x, x′ ∈ X .

The space X is uniformly embeddable if there exists a uniform embedding F of X
into a Hilbert space H. Uniform embeddability in a real Hilbert space is equivalent
to uniform embeddability in a complex Hilbert space; henceforth we shall deal only
with real Hilbert spaces. Obviously, if X is countable we may assume that the
Hilbert space is separable.

A metric space X is locally finite if for every x ∈ X and R > 0 the metric ball
with center x and radius R is finite. In this case the metric is called proper. A locally
finite metric space is discrete (as a topological space in the metric topology). In the
case of locally finite metric spaces there are a number of equivalent formulations
of uniform embeddability [7], [13]; to these we add the following simple extension,
which applies to any metric space and which will be our fundamental criterion for
uniform embeddability.

Proposition 2.1. Let X be a metric space. Then X is uniformly embeddable if
and only if for every R > 0 and ε > 0 there exists a Hilbert space valued map
ξ : X → H, (ξx)x∈X , such that ‖ξx‖ = 1 for all x ∈ X, and such that

(i) sup{‖ξx − ξx′‖ : d(x, x′) ≤ R, x, x′ ∈ X} ≤ ε,
(ii) limS→∞ sup{|〈ξx, ξx′〉| : d(x, x′) ≥ S, x, x′ ∈ X} = 0.

These conditions may be replaced by
(iii) sup{|1− 〈 ξx, ξx′ 〉| : d(x, x′) ≤ R, x, x′ ∈ X} ≤ ε,
(iv) limS→∞ inf{‖ξx − ξx′‖ : d(x, x′) ≥ S, x, x′ ∈ X} = 2,

respectively.

Remark. We refer to (i) and (iii) collectively as the convergence condition; similarly,
we refer to (ii) and (iv) collectively as the support condition.

Proof. The interchangeability of (i) ⇔ (iii) and (ii) ⇔ (iv) follows from the simple
observation that for unit vectors ξ, η ∈ H we have ‖ξ − η‖2 = 2− 2 〈ξ, η〉.

Assume that X is uniformly embeddable and let F : X → H be a uniform
embedding in a real Hilbert space H. Let

Exp(H) = R⊕H⊕ (H⊗H)⊕ (H⊗H⊗H)⊕ · · ·
and define Exp : H→ Exp(H) by

Exp(ζ) = 1⊕ ζ ⊕
(

1√
2!
ζ ⊗ ζ

)
⊕
(

1√
3!
ζ ⊗ ζ ⊗ ζ

)
⊕ · · · .

Note that 〈Exp(ζ),Exp(ζ′) 〉 = e〈 ζ,ζ
′ 〉, for all ζ, ζ′ ∈ H. For t > 0 define

ξx = e−t‖F (x)‖2 Exp(
√

2t F (x)).
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It is easily verified that 〈ξx, ξx′〉 = e−t‖F (x)−F (x′)‖2 . Consequently, for all x, x′ ∈ X
we have ‖ξx‖ = 1, and

(2) e−tρ+(d(x,x′))2
≤ 〈ξx, ξx′〉 ≤ e−tρ−(d(x,x′))2

.

Letting t = ε(1 + ρ+(R)2)−1, it is easy to verify the conditions (iii) and (ii) above.
Conversely, assume that X satisfies the conditions in the second part of the

statement. There exist a sequence of maps ηn : X → Hn and a sequence of
numbers S0 = 0 < S1 < S2 < . . . , increasing to infinity, such that for every n ≥ 1
and every x, x′ ∈ X ,

(i) ‖ηn(x)‖ = 1,
(ii) ‖ηn(x) − ηn(x′)‖ ≤ 1/n, provided d(x, x′) ≤ √n,
(iii) ‖ηn(x) − ηn(x′)‖ ≥ 1, provided d(x, x′) ≥ Sn.

Choose a base point x0 ∈ X and define F : X →
⊕∞

n=1Hn by

F (x) = 1
2 (η1(x)− η1(x0)⊕ η2(x)− η2(x0)⊕ · · · ) .

It is not hard to verify that F is well defined and

ρ−(d(x, x′)) ≤ ‖F (x)− F (x′)‖ ≤ d(x, x′) + 1, for all x, x′ ∈ X ,

where ρ− = 1
2

∑∞
n=1

√
n− 1χ[Sn−1,Sn), and the χ[Sn−1,Sn) are the characteristic

functions of the sets [Sn−1, Sn).
Indeed, let x, x′ ∈ X . If n is such that

√
n− 1 ≤ d(x, x′) <

√
n, we have

‖F (x)− F (x′)‖2 =
1
4

∑
i≤n−1

‖ηi(x) − ηi(x′)‖2 +
1
4

∑
i≥n
‖ηi(x) − ηi(x′)‖2

≤ (n− 1) +
1
4

∑
i≥n

1
i2
≤ d(x, x′)2 + 1.

Similarly, if n is such that Sn−1 ≤ d(x, x′) < Sn, we have

‖F (x)− F (x′)‖2 ≥ 1
4

∑
i≤n−1

‖ηi(x)− ηi(x′)‖2 ≥
n− 1

4
= ρ−(d(x, x′))2. �

Remark. Straightforward modifications of the above argument produce a uniform
embedding F satisfying the sharper estimate ‖F (x)− F (x′)‖ ≤ d(x, x′) + δ, for an
arbitrarily chosen δ > 0; simply replace the 1/n in (ii) by δ/2n.

Two metrics d and d′ on the set X are coarsely equivalent if for every R > 0 there
exists an S > 0 such that the d–metric ball with center x and radius R is contained
in the d′–metric ball with center x and radius S; and conversely. Equivalently,
two metrics on X are coarsely equivalent if the identity map X → X is a uniform
embedding.

Proposition 2.2. Let d and d′ be coarsely equivalent metrics on X. Then X is
uniformly embeddable with respect to d if and only if it is uniformly embeddable with
respect to d′.

Proof. If two maps are uniform embeddings, so is their composition. �
Remark. Below we require only the fact that if Y → H and X → Y are uniform
embeddings, then the composite X → H is a uniform embedding. In other words,
we do not need to know that X and Y are coarsely equivalent to conclude the
uniform embeddability of X from that of Y .
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Let Γ be a countable discrete group. A length function on Γ is a nonnegative,
real-valued function l satisfying, for all a and b in Γ,

(i) l(ab) ≤ l(a) + l(b),
(ii) l(a−1) = l(a),
(iii) l(a) = 0 if and only if a = 1.

A length function l is proper if for all C > 0 the subset l−1([0, C]) ⊂ Γ is finite. One
can construct an integer-valued proper length function on Γ as follows. Let S be
a symmetric set of generators of Γ. Let l0 : S → N be a proper function satisfying
(ii) and (iii) above. Then

l(a) = inf{l0(a1) + · · ·+ l0(an) : a = a1 · · ·an, ai ∈ S}

is a proper length function on Γ. Given a length function l, we define a metric d
by d(a, b) = l(a−1b). A metric constructed in this way from a length function is
left-invariant in the sense that d(ca, cb) = d(a, b), for all a, b and c ∈ Γ. Conversely,
every left-invariant metric arises in this way from a length function. A length func-
tion is proper if and only if the corresponding (left-invariant) metric has bounded
geometry. Recall that a metric space X has bounded geometry if for every R > 0,
there is a uniform bound on the number of elements in the balls of radius R in X .

We require the following well-known proposition (compare [19, Lemma 2.1]).

Proposition 2.3. Let Γ be a countable discrete group and let d and d′ be metrics
on Γ associated to proper length functions l and l′, respectively. Then d and d′ are
coarsely equivalent.

Proof. Since the metrics are left-invariant, it suffices to consider the containment,
as in the definition, of balls centered at the identity element. By symmetry it
suffices to show that for every R > 0 there exists an S > 0 such that, for all a ∈ Γ,
if l(a) < R, then l′(a) < S. But, since l is proper, this is obvious. �

As a consequence of the previous two propositions, uniform embeddability of a
countable discrete group Γ is independent of the particular proper length function
used to define its metric. Consequently, we systematically omit reference to a spe-
cific length function or metric in the statements of all results and say simply Γ is
uniformly embeddable to mean that Γ is uniformly embeddable in a Hilbert space
for some (equivalently all) left-invariant proper metric(s).

Finally, we draw two simple consequences. An action of a discrete group on a
locally finite metric space X is proper if for every bounded subset B ⊂ X the set
{ a ∈ Γ : a · B ∩B 6= ∅ } is finite. Equivalently, for every x ∈ X and R ≥ 0 the set
{ a ∈ Γ : a · x ∈ BR(x) } is finite. Observe that a free action of a discrete group on
a locally finite metric space is proper.

Corollary 2.4. Let Γ be a countable discrete group equipped with a left-invariant
proper metric. Let X be a locally finite metric space equipped with a free isometric
action of Γ. Then the inclusion Γ→ X as an orbit is a uniform embedding.

Proof. Let x0 ∈ X . Since the action of Γ on X is by isometries, l(a) = dX(a ·x0, x0)
defines a length function on Γ. Since the action is free and X is locally finite, l is
a proper length function. Let d be the left-invariant metric associated to l.

According to the previous proposition, the original metric on Γ is coarsely equiv-
alent to d, which is precisely what was to be proved. �
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Corollary 2.5. Let X and Γ be as in the statement of the previous corollary. If
X is uniformly embeddable, then so is Γ. �

Property A is a condition on metric spaces introduced by Yu [20]. We will work
with the following characterization of Property A.

Proposition 2.6 ([19]). A discrete metric space X with bounded geometry has
Property A if and only if for every R > 0 and ε > 0 there exist an S > 0 and
a Hilbert space valued function ξ : X → H such that for all x, x′ ∈ X we have
‖ξx‖ = 1, and

(i) d(x, x′) ≤ R⇒ ‖ξx − ξx′‖ ≤ ε,
(ii) d(x, x′) ≥ S ⇒ 〈 ξx, ξx′ 〉 = 0.

Equivalently, for every R > 0 and ε > 0 there exist an S > 0 and ξ : X → l2(X)
such that for all x, x′ ∈ X we have ‖ξx‖ = 1, (i) as above, and

(iii) supp ξx ⊂ BS(x). �
Remark. As in the case of uniform embeddability, we refer to (i) as the convergence
condition and to (ii) and (iii) collectively as the support condition.

It is clear from the proposition that Property A is invariant under coarse equiva-
lence. We refer the reader to [15] for an introduction to exact groups. Our interest
in Proposition 2.6 is motivated by the following result, inspired by [13].

Theorem 2.7 ([16], and also [2]). A countable discrete group Γ is exact if and only
if Γ has Property A with respect to some (every) left-invariant proper metric. �

In analogy with Corollary 2.5 we have the following result, in which we do not
assume that X itself has Property A.

Corollary 2.8. Let Γ be a countable discrete group. Assume that Γ acts freely
and isometrically on a locally finite metric space X satisfying the convergence and
support conditions of Proposition 2.6. Then Γ is exact.

Proof. Include Γ ⊂ X as an orbit. The convergence and support conditions of
Proposition 2.6 pass from X to the subspace Γ. Since Γ has bounded geometry,
Proposition 2.6 applies. �

3. Limits

We begin to establish the closure properties of the class of countable discrete
uniformly embeddable groups. In this section we treat direct limits, our main
result being the following proposition.

Proposition 3.1. Let Γ be the limit of a directed system of countable discrete
groups G1 → G2 → G3 → · · · in which the maps Gn → Gn+1 are injective. If each
of the groups Gn is uniformly embeddable, then so is Γ.

Proof. The proof is based on a method of extending Hilbert space valued functions
from a subgroup to an ambient group. Specifically, let ξ : G → H be a Hilbert
space valued function on a subgroup G of a countable discrete group Γ. Choose
and fix a family of coset representatives x ∈ X ⊂ Γ for Γ/G; having done so, we
can express each element a ∈ Γ uniquely as a product xa ga, where xa ∈ X and
ga ∈ G. The extension ξ̂ of ξ is defined by

ξ̂ : Γ→ H⊗ l2(Γ/G) ∼= H⊗ l2(X), ξ̂a = ξga ⊗ δaG ∼= ξga ⊗ δxa .
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Now let Γ be a direct limit as in the statement of the theorem. Equip Γ with
a proper length function lΓ and associated metric dΓ. Metrize each of the sub-
groups Gn as subspaces of Γ; the metric and length function on Gn are simply the
restriction of dΓ and lΓ. Observe that for a, b ∈ Γ we have

a−1b ∈ Gn ⇔ aGn = bGn ⇔ xa = xb ∈ Γ,

and that, in this case,

(3) dGn(ga, gb) = dΓ(ga, gb) = dΓ(xa ga, xb gb) = dΓ(a, b).

We show that Γ satisfies the convergence and support conditions of Proposi-
tion 2.1. Let ε > 0 and R > 0 be given. Obtain n such that if a ∈ Γ has lΓ(a) ≤ R,
then a ∈ Gn; this is possible because the length function lΓ on Γ is assumed to
be proper. According to the criterion for uniform embeddability, obtain a Hilbert
space valued function ξ : Gn → H such that for all g, h ∈ Gn we have ‖ξg‖ = 1 and

(i) if dGn(g, h) ≤ R, then ‖ξg − ξh‖ < ε;
(ii) ∀ε̂ > 0 ∃S > 0 such that if dGn(g, h) ≥ S, then |〈 ξg, ξh 〉| < ε̂.

Let ξ̂ be the extension of ξ to Γ defined above. Clearly, ‖ξ̂a‖ = 1 for all a ∈ Γ,
and it remains to verify the conditions of Proposition 2.1. Let a, b ∈ Γ. For the
convergence condition, assume that lΓ(a−1b) = dΓ(a, b) ≤ R. By our choice of n
we have a−1b ∈ Gn and, according to (3), dGn(ga, gb) = dΓ(a, b) ≤ R. Therefore,

‖ξ̂a − ξ̂b‖ = ‖ξga ⊗ δaGn − ξgb ⊗ δbGn‖ = ‖ξga − ξgb‖ < ε.

For the support condition let ε̂ > 0, obtain S as in (ii) above, and assume dΓ(a, b) ≥
S. According to

(4) 〈 ξ̂a, ξ̂b 〉 = 〈 ξga , ξgb 〉〈 δaGn , δbGn 〉 =

{
〈 ξga , ξgb 〉, if aGn = bGn,
0, otherwise,

we may assume a−1b ∈ Gn. But then, according to (3) again, dGn(ga, gb) = dΓ(a, b)
and |〈 ξ̂a, ξ̂b 〉| < ε̂. �

Remark. The previous argument is easily adjusted to yield a new proof of the fact
that a direct limit, as in the statement of the proposition, of exact groups is again
exact [15]. Indeed, under the assumption of exactness, employing Proposition 2.6
instead of Proposition 2.1, we replace (ii) by

∃S > 0 such that dGn(g, h) ≥ S ⇒ 〈 ξg, ξh 〉 = 0.

Using (4) and the surrounding discussion, we conclude that this property is shared
by ξ̂.

4. Extensions

Let 1 → H → Γ → G → 1 be an extension of countable discrete groups.
We study uniform embeddability of Γ under various hypotheses on H and G. Our
primary result, of which our other results are consequences, is the following theorem.

Theorem 4.1. Let Γ be an extension of H by G as above. If H is uniformly
embeddable and G is exact, then Γ is uniformly embeddable.

As corollaries we mention the following two results about semi-direct products.
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Corollary 4.2. Let G and H be countable discrete groups. Let α : G → Aut(H)
be an action of G on H. If both H and G are uniformly embeddable and α(G) ⊂
Aut(H) is exact, then the semi-direct product Γ = H oG is uniformly embeddable.

Proof. The semi-direct product Γ is the set of pairs (s, x) ∈ H × G, with product
(s, x)(t, y) = (sαx(t), xy). The assignment

(s, x) 7→ ((s, αx), x) : Γ→ (H o α(G)) ×G
defines an injective homomorphism.

By the theorem the semi-direct product H o α(G) is uniformly embeddable, as
is (H o α(G)) × G. In particular, Γ is a subgroup of the uniformly embeddable
group and is therefore uniformly embeddable. �

Corollary 4.3. Let Γ = Zn o G be a semi-direct product. If G is uniformly
embeddable, then Γ is uniformly embeddable.

Proof. Apply the previous corollary, using the fact that GLn(Z) is exact [15]. �

Remark. Central extensions are more difficult to analyze than semi-direct products.
Our theorem applies to central extensions in which the quotient is exact. Gersten
has shown that if a central extension of Z is described by a bounded cocycle, then
Γ is quasi-isometric to the product Z × G [11]. Consequently, if G is uniformly
embeddable, so is Γ. Beyond these two results, little is known.

As remarked earlier, the property of uniform embeddability of a countable dis-
crete group is independent of the proper length function. Consequently, we are free
to choose these for our groups G, H and Γ in a convenient manner, which we do
as follows. Let lΓ be a proper length function on Γ. Define length functions on H
and G according to

lH(s) = lΓ(s), for all s ∈ H,(5)
lG(x) = min{ lΓ(a) : a ∈ Γ and ȧ = x }, for all x ∈ G,(6)

where we have introduced the notation a 7→ ȧ for the quotient map Γ → G. It is
easily verified that the minimum in the definition of lG is attained, and that lG is
a proper length function on G; that lH is a proper length function is immediate.
Denote the associated left-invariant metrics by dΓ, dG and dH , respectively. Ob-
serve that the inclusion H ↪→ Γ is an isometry, and the quotient map Γ → G is
contractive. Finally, choose a set-theoretic section σ of the quotient map Γ → G
with the property that

lΓ(σ(x)) = lG(x), for all x ∈ G,(7)

and define η : Γ×G→ H by

(8) η(a, x) = σ(x)−1aσ(ȧ−1x), for all a ∈ Γ, x ∈ G.

Lemma 4.4. Let a, b ∈ Γ, x ∈ G. We have

dΓ(a, b) ≤ dG(x, ȧ) + dG(x, ḃ) + dH(η(a, x), η(b, x)),(9)

dH(η(a, x), η(b, x)) ≤ dG(x, ȧ) + dG(x, ḃ) + dΓ(a, b).(10)

Proof. Let a, b and x ∈ G be as in the statement. From the definition (8) of η we
obtain

η(a, x)−1η(b, x) = σ(ȧ−1x)−1 a−1b σ(ḃ−1x).
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The desired inequalities follow easily from this equality, together with (5), (7) and
the subadditivity of length functions. �

Proof of Theorem 4.1. We prove that Γ satisfies the conditions of Proposition 2.1.
Let ε > 0 and R > 0 be given. We show that there exists an f : Γ→ l2(G,H) such
that ‖f(a)‖ = 1 for all a ∈ Γ, and that f satisfies the convergence and support
properties:

(i) if dΓ(a, b) ≤ R, then |1− 〈 f(a), f(b) 〉| < ε;
(ii) ∀ε̂ > 0 ∃S > 0 such that if dΓ(a, b) ≥ S, then |〈 f(a), f(b) 〉| < ε̂.

Adapting an argument of Anantharaman-Delaroche and Renault [3], our strategy
is to use a g satisfying the conditions of Proposition 2.6 to average an h satisfying
those of Proposition 2.1 to produce f . Since G is exact, there exist, according to
Proposition 2.6, a g : G→ l2(G) and an SG > 0 such that ‖g(x)‖ = 1 for all x ∈ G
and such that

(ig) |1− 〈 g(x), g(y) 〉| < ε/2, provided dG(x, y) ≤ R;
(iig) supp g(x) ⊂ BSG(x), for all x ∈ G.

We shall without comment view g as a function on G × G whenever convenient.
Since H is uniformly embeddable, there exists, according to Proposition 2.1, an
h : H → H such that ‖h(s)‖ = 1 for all s ∈ H and such that

(ih) |1− 〈h(s), h(t) 〉| < ε/2, provided dH(s, t) ≤ 2SG +R;
(iih) ∀ε̂ > 0 ∃SH > 0 such that if dH(s, t) ≥ SH , then |〈h(s), h(t) 〉| < ε̂.

Having chosen g and h, define f : Γ→ l2(G,H) by

f(a)(x) = g(ȧ, x)h(η(a, x)), for all a ∈ Γ, x ∈ G.

Note that f(a) ∈ l2(G,H). It is elementary to verify that ‖f(a)‖ = 1, for all a ∈ Γ.
We verify the remaining properties.

For the convergence property, let a, b ∈ Γ with dΓ(a, b) ≤ R. Consider

(11) |1− 〈 f(a), f(b) 〉| ≤


∣∣∣∣∣∑
x∈G
{ 1− 〈h(η(a, x), h(η(b, x)) 〉 } g(ȧ, x)g(ḃ, x)

∣∣∣∣∣
+|1− 〈 g(ȧ), g(ḃ) 〉|.

Since the map Γ → G is contractive we have dG(ȧ, ḃ) ≤ R, so that by (ig) the
second term in (11) is bounded by ε/2. Observe that, according to (iig), the sum
in the first term is over x ∈ BSG(ȧ) ∩BSG(ḃ). Recalling that ‖g(ȧ)‖ = ‖g(ḃ)‖ = 1,
we therefore bound the first term by

sup{ |1− 〈h(η(a, x)), h(η(b, x)) 〉| : x ∈ BSG(ȧ) ∩BSG(ḃ)}.

From (10) we see that for x ∈ BSG(ȧ) ∩ BSG(ḃ) we have dH(η(a, x), η(b, x)) ≤
2SG +R, so that by (ih) this supremum, and consequently the first term in (11), is
bounded by ε/2.
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For the support property, let ε̂ > 0 be given and obtain SH as in (iih). Let a,
b ∈ Γ be such that dΓ(a, b) ≥ 2SG + SH . Then,

|〈 f(a), f(b) 〉| =

∣∣∣∣∣∑
x∈G

g(ȧ, x)g(ḃ, x) 〈h(η(a, x), h(η(b, x)) 〉
∣∣∣∣∣

≤
∑
x

|g(ȧ, x)g(ḃ, x)| |〈h(η(a, x), h(η(b, x)) 〉|

≤ sup{ |〈h(η(a, x)), h(η(b, x)) 〉| : x ∈ BSG(ȧ) ∩BSG(ḃ) },

where again we use the fact that ‖g(ȧ)‖ = ‖g(ḃ)‖ = 1 to obtain the second inequal-
ity, and note that by (iig) the sums are in fact over x ∈ BSG(ȧ)∩BSG(ḃ). From (9) we
see that for such x we have dH(η(a, x), η(b, x)) ≥ dΓ(a, b)−dG(x, ȧ)−dG(x, ḃ) ≥ SH ,
so that by (iih) the supremum is indeed bounded by ε̂. �

5. Free Products

The main result of this section is the following theorem.

Theorem 5.1. Let A and B be countable discrete groups and let C be a common
subgroup. If both A and B are uniformly embeddable, then the amalgamated free
product A ∗C B is uniformly embeddable.

Our strategy for proving the theorem is to construct a locally finite metric space
X that is uniformly embeddable, and on which Γ acts freely by isometries. The
construction of X is based on the notion of a tree of metric spaces, which we now
recall.

A tree T consists of two sets, a set V of vertices and a set E of edges, together
with two endpoint maps E → V associating to each edge its endpoints. Every
two vertices are connected by a unique geodesic edge path, that is, a path without
backtracking.

A tree of spaces X (with base the tree T ) consists of a family of metric spaces
{Xv, Xe } indexed by the vertices v ∈ V and edges e ∈ E of T together with maps
σe,v : Xe → Xv whenever v is an endpoint of e. The σe,v are the structural maps
of X . We will assume, although this is not strictly necessary, that the metrics on
the vertex and edge spaces are integer-valued.

The total space X of the tree of spaces X is the metric space defined as follows.
The underlying set of X is the disjoint union of the vertex spaces Xv; the metric
on X is the metric envelope d of the partial metric d̂ (see the appendix) defined by

d̂(x, y) =

{
d(x, y), if ∃ v ∈ V such that x, y ∈ Xv,
1, if∃ e ∈ E and z ∈ Xe such that x = σe,v(z), y = σe,w(z),

for all (x, y) in the domain

D = {(x, y) : x, y ∈ Xv, v ∈ V } ∪ {(σe,v(z), σe,w(z)) : v 6= w, z ∈ Xe, e ∈ E }.
Observe that D is ample (see the appendix); this follows from our assumption that
the underlying tree is connected, and that d̂ is defined for all pairs (x, y) where x
and y are in the same vertex space.

We call (x, y) an adjacency if there exist an edge e, with endpoints v and w, and
an element z ∈ Xe, such that σe,v(z) = x and σe,w(z) = y. Using this terminology,
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the partial metric can be described as being the given metric on each vertex space
and 1 on adjacencies.

Example 5.2. Consider the case in which the vertex spaces are metric graphs (or
rather the set of vertices of a graph, equipped with the graph metric) and the edge
spaces are singletons. The total space X is itself a metric graph. Indeed, it is
the disjoint union of the graphs, together with additional edges coming from the
underlying tree. Precisely, the edges of X are, first, the edges in the individual Xv,
and second, the edges e of the underlying tree; the endpoints of such an edge e are
the images of the maps Xe → Xv to the endpoints v of e in T .

Remark. The generality of the definition above is mandated by the fact that when
considering amalgamated free products, we will encounter vertex spaces that are
not metric graphs.

Theorem 5.3. Let X be a tree of metric spaces in which the structural maps are
isometries. If the vertex spaces Xv are uniformly embeddable in a Hilbert space
(with common distortion bound), then the total space X is uniformly embeddable
in a Hilbert space.

Remark. Quite explicitly, the hypothesis is that there exist maps ρ± as in (1) such
that for every vertex v ∈ V there exists Fv : Xv → H satisfying

ρ−(dXv (x, x′)) ≤ ‖Fv(x) − Fv(x′)‖ ≤ ρ+(dXv (x, x′)), for all x, x′ ∈ Xv.

In other words, the same distortion bounds may be used for every vertex space.

Remark. If there exist only finitely many distinct isometry types of vertex spaces
(as will be the case for the amalgamated free product), this simply means that
every vertex space is uniformly embeddable.

Remark. When we prove the theorem we will use the fact that the existence of a
common distortion bound on the uniform embeddings of the vertex spaces implies
that the estimates in the fundamental criterion for embeddability are uniform. This
follows from the proof of Proposition 2.1, specifically from the estimate (2).

Assuming Theorem 5.3, we prepare for the proof Theorem 5.1 by associating a
tree of metric spaces XΓ to the amalgamated free product Γ = A ∗C B. The tree
T is the Bass-Serre tree of Γ [17], [4]. Precisely, the vertex and edge sets of T are
given by

V = Γ/A ∪ Γ/B,
E = Γ/C,

respectively; the endpoint maps are the quotient maps Γ/C → Γ/A and Γ/C →
Γ/B. In other words, the endpoints of an edge (a C-coset) are the vertices (one
A-coset and one B-coset) that contain it.

We associate a metric space to each vertex and edge of T as follows. Equip Γ
with an integer-valued proper length function and associated metric. Let v ∈ V
be a vertex and assume that v ∈ Γ/A. In particular, v is an A-coset in Γ; denote
by Xv this coset itself, metrized as a subspace of Γ. Proceed similarly for vertices
v ∈ Γ/B. Let e ∈ E be an edge. In particular, e is a C-coset in Γ; denote by Xe

this coset itself, again metrized as a subspace of Γ.
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The structural maps are defined as follows. Let the vertex v be an endpoint of
the edge e. Inclusion of cosets (subsets of Γ) provides the structural map σe,v :
Xe → Xv.

Remark. The metric space Xv is not (isometric to) the graph metric space of the
Cayley graph of A or B, or even of the restriction of the Cayley graph of Γ to the
subset A or B. Similar remarks apply to the edge space Xe. Indeed, it is important
that we metrize Xv and Xe as subspaces of Γ, and not via their identification with
A or B and C using the given metrics on these groups.

Let XΓ be the total space of XΓ. The group Γ acts on XΓ by left multiplication.
Precisely, for x ∈ Xv and a ∈ Γ we define a ·x ∈ Xa·v, using ordinary multiplication
in Γ, by virtue of the fact that x ∈ v ⊂ Γ. This action preserves adjacencies and,
since in addition the metric on Γ is left-invariant, it preserves the partial metric.
According to Proposition 7.2 of the appendix, Γ acts by isometries on the total
space XΓ.

Proposition 5.4. Let A and B be countable discrete groups and let C be a common
subgroup. Let Γ = A ∗C B be the amalgamated free product. Let XΓ be the tree of
metric spaces associated to Γ and let XΓ be its total space. We have:

(i) The structural maps of XΓ are isometries.
(ii) Every vertex space of XΓ is isometric to one of A or B (which are
metrized with the subspace metric via the inclusions A,B ⊂ Γ).

(iii) The action of Γ by isometries on XΓ is free.
(iv) XΓ is locally finite.

Proof. All of the assertions but (iv) follow from the previous discussion. The con-
dition (iv), while apparent, will be derived formally in Proposition 5.6. �
Proof of Theorem 5.1. According to the previous proposition, the tree of metric
spaces XΓ associated to the amalgamated free product Γ = A ∗C B satisfies the
hypothesis of Theorem 5.3, according to which the total space XΓ is uniformly em-
beddable. Again according to the previous proposition, Γ acts freely by isometries
on XΓ. Hence, by Corollary 2.5, Γ is uniformly embeddable. �

We have reduced our main theorem concerning amalgamated free products, The-
orem 5.1, to a theorem concerning trees of metric spaces, Theorem 5.3. We now turn
attention to the proof of that theorem. We suitably adapt the method employed
by Tu in his study of Property A for discrete metric spaces [19].

For a tree of metric spaces X the inclusions Xv → X of vertex spaces into the
total space are, as a general rule, not isometric; the presence of “shortcuts” in
neighboring Xw may cause the distance in X between two vertices x, y ∈ Xv to
be considerably smaller than the distance between them in Xv itself. Nevertheless,
for our XΓ these inclusions are isometries, a fact that may be traced back to the
manner in which the vertex and edge spaces of XΓ are metrized as subspaces of
Γ, which circumvents any distortion that may have otherwise been introduced by
the amalgamating subgroup. The following proposition has no analog in Tu’s work
[19]; nevertheless, we require it in order to complete our arguments.

Proposition 5.5. Let X = {Xv, Xe } be a tree of metric spaces in which the
structural maps Xe → Xv are isometries. Let X be the total space of X . Then

(i) the inclusions Xv → X are isometries, and
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(ii) if (x, y) is an adjacency, then d(x, y) = 1.

Further, for all x ∈ Xv, y ∈ Xw,

(12) d(x, y) = dT (v, w) + inf{ d(x0, x1) + d(x2, x3) + · · ·+ d(xp−1, xp) },

where dT is the distance on the tree T and the infimum is taken over all sequences
x0, . . . , xp, where p = 2dT (v, w) + 1, and

(i) x = x0, y = xp,
(ii) (x2k−1, x2k) is an adjacency for k = 1, . . . , dT (v, w),
(iii) x2k, x2k+1 ∈ Xvk , for k = 0, . . . , dT (v, w), and

v = v0, . . . , vdT (v,w) = w are the vertices along the unique geodesic path in T from
v to w.

Proof. Let v, w ∈ V and let x ∈ Xv and y ∈ Xw. A reduced path from x to y is a
sequence of elements x = x0, x1, . . . , x2n, x2n+1 of X for which there exist vertices
v0, . . . , vn ∈ V such that

(i) vj 6= vj+1, for j = 1, . . . , n, and
(ii) x2k, x2k+1 ∈ Xvk , for k = 0, 1, . . . , n.

Observe that by appropriately inserting and deleting x’s we may alter a path,
without increasing its length, so as to obtain a reduced path (use the triangle
inequality for the metrics on the individual Xv). Consequently, when computing
distances in X it suffices to consider reduced paths.

Let x = x0, . . . , x2n+1 = y be a reduced path from x to y. According to the
definitions of a reduced path and of the domain D of the partial metric we obtain
sequences of

(i) vertices v = v0, . . . , vn = w in V ,
(ii) edges e1, . . . , en in E, and
(iii) elements z1, . . . , zn of the edge spaces Xe1 , . . . , Xen ,

satisfying
(i) x2k, x2k+1 ∈ Xvk , for k = 0, . . . , n,
(ii) the endpoints of ek are vk−1 and vk, for k = 1, . . . , n, and
(iii) σek ,vk−1(zk) = x2k−1 and σek ,vk(zk) = x2k, for k = 1, . . . , n.

(The sequences are uniquely determined by these conditions.) The given reduced
path x = x0, . . . , xp = y in X lies over the edge path e1, . . . , en in T .

We show that in the definition of d it suffices to consider reduced paths lying over
the unique geodesic edge path in T from v to w; the assertions of the proposition
follow easily from this fact. Let x = x0, . . . , x2n+1 = y lie over the non-geodesic
path e1, . . . , en in T . We show that by successive elimination of certain xi we obtain
a shorter path lying over the geodesic path in T . Indeed, there exists i ∈ 1, . . . , n−1
such that ei and ei+1 have the same endpoints, that is, such that vi−1 = vi+1. We
have

x2i−2

x2i−1

}
∈ Xvi−1 ,

x2i

x2i+1

}
∈ Xvi ,

x2i+2

x2i+3

}
∈ Xvi+1 = Xvi−1 .

We eliminate x2i−1, x2i, x2i+1, x2i+2 from the given path and claim that the result-
ing path

(i) is shorter than x0, . . . , x2n+1, and
(ii) lies over an edge path with fewer backtracks than e1, . . . , en.
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Of these, (ii) is obvious; the new path lies over the edge path e1, . . . , ei−1, ei+2, . . . ,
en obtained by eliminating ei and ei+1. Further, (i) follows from the fact that the
structural maps are isometries. In particular, we have

d(x2i−1, x2i+2) = d(zi, zi+1) = d(x2i, x2i+1),

from which follows
d(x2i−2, x2i+3) ≤ d(x2i−2, x2i−1) + d(x2i−1, x2i+2) + d(x2i+2, x2i+3)

= d(x2i−2, x2i−1) + d(x2i, x2i+1) + d(x2i+2, x2i+3).

�

Proposition 5.6. Let X be the total space of a tree of metric spaces X in which
the structural maps are isometries. Assume that each vertex space Xv is locally
finite and there is a uniform bound for the number of adjacencies of each point in
X. Then X is locally finite.

Proof. In view of formula (12), a finite radius ball in X can intersect only finitely
many vertex spaces. �

6. Proof of Theorem 5.3

The main result of this section is Proposition 6.8, which implies Theorem 5.3
and at the same time reproves the exactness of free products with amalgam of exact
groups.

We may enlarge the tree of metric spaces (if necessary) so that the underlying tree
T will contain an infinite geodesic ω starting at some basepoint. For every v ∈ V
let α(v) ∈ V be such that the edge [v, α(v)] points towards ω. For each v ∈ V let
Yv = σe,v(Xe) ⊂ Xv and fv = σe,α(v) ◦ σ−1

e,v : Yv → Xα(v) where e = [v, α(v)]. It
follows immediately from Proposition 5.5 that each fv is isometric.

Using the same proposition, and the notation just introduced, we rewrite the
distance formula (12) as follows. Let x0 ∈ Xv and x′0 ∈ Xv′ . There exists a unique
pair of nonnegative integers k, ` such that αk(v) = α`(v′) and dT (v, v′) = k + `,
where again dT denotes the distance in the tree T . By symmetry we may assume
that k ≥ `. If k ≥ 1 and ` ≥ 1, then
(13)

d(x0, x
′
0) = k+`+inf



d(x0, y0) +

k−2∑
i=0

d(fαi(v)(yi), yi+1)

+ d(fαk−1(v)(yk−1), fα`−1(v′)(y
′
`−1))

+

`−2∑
j=0

d(fαj(v′)(y
′
j), y

′
j+1) + d(y′0, x

′
0)


,

subject to the constraints that yi ∈ Yαi(v) and y′j ∈ Yαj(v′). If k ≥ 1 and ` = 0,
then
(14)

d(x0, x
′
0) = k + inf

{
d(x0, y0) +

k−2∑
i=0

d(fαi(v)(yi), yi+1) + d(fαk−1(v)(yk−1), x′0))

}
,

subject to similar constraints.

Remark. Formulas (13) and (14) are the same as Tu’s formulas [19, Section 9].
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An n-chain is a sequence x = (x0, x1, . . . , xn−1) with xk ∈ Xαk(v) such that for
each 0 ≤ k ≤ n− 2 there exists x̄k ∈ Yαk(v) satisfying d(xk, x̄k) < d(xk, Yαk(v)) + 1
and fαk(v)(x̄k) = xk+1. If x0 ∈ Xv, the n-chain starts in Xv. Note that for any
n ≥ 1, v ∈ V and x0 ∈ Xv there exists an n-chain whose initial element is x0.

Lemma 6.1. Let x0 ∈ Xv and x′0 ∈ Xv′ with d(x0, x
′
0) < R, and let k and ` be

as in (13) and (14). Then there exist chains (x0, x1, . . . , xk), (x′0, x
′
1, . . . , x

′
`) such

that

max

{(
sup

0≤i≤k−1
d(xi, xi+1)

)
,

(
sup

0≤j≤`−1
d(x′j , x

′
j+1)

)
, d(xk, x′`)

}
< 2RR.

Remark. In the proof of the lemma, and at a number of subsequent points, we
require the fact that if x ∈ Xv and y ∈ Yv, then

d(x, fv(y)) = d(x, y) + 1.

This follows from Theorem 5.5. Indeed, since (y, fv(y)) is an adjacency, d(x, fv(y))
≤ d(x, y) + 1. For the reverse inequality, let ε > 0 and obtain x′ ∈ Yv such that
d(x, fv(y)) + ε ≥ 1 + d(x, x′) + d(fv(x′), fv(y)). Since fv is an isometry, we get
d(x, x′) + d(fv(x′), fv(y)) ≥ d(x, y), and we are done.

Proof. If v = v′ there is nothing to prove; so we may assume that v 6= v′. By
symmetry we may also assume that k ≥ `; hence k ≥ 1 since v 6= v′.
Case ` = 0: We need to prove that there exists a chain (x0, x1, . . . , xk) such that

max
{(

sup
0≤i≤k−1

d(xi, xi+1)
)
, d(xk, x′0)

}
< 2 kR ≤ 2RR.

Since d(x0, x
′
0) < R, by (14) there is y0 ∈ Yv such that k + d(x0, y0) < R. The

sequence x1, ..., xk is constructed inductively. Let x̄0 ∈ Yv be such that d(x0, x̄0) ≤
d(x0, y0) and d(x0, x̄0) < d(x0, Yv) + 1, and define x1 = fv(x̄0). Then

d(x0, x1) = d(x0, x̄0) + 1 ≤ d(x0, y0) + 1 < R.

Thus d(x0, x1) < R and d(x1, x
′
0) ≤ d(x0, x

′
0) + d(x0, x1) < 2R. Repeating the

same argument for the pair of points x1, x
′
0 (if k ≥ 2), we find x2 ∈ Xα2(v) with

(x0, x1, x2) being a chain, d(x1, x2) < 2R and d(x2, x
′
0) < 22R. Continuing in the

same way, we obtain a chain (x0, x1, . . . , xk) such that d(xi−1, xi) < 2i−1R and
d(xi, x′0) < 2iR, 1 ≤ i ≤ k. Since k ≤ R, this completes the proof for ` = 0.
Case ` ≥ 1: Let y0, ..., yk−1 with yi ∈ Yαi(v) and y′0, ..., y

′
`−1 with y′j ∈ Yαj(v′) be

sequences such that the expression whose infimum is taken in (13) is less than
R−k− `. Let z = fαk−1(v)(yk−1) and z′ = fα`−1(v′)(y′`−1). Then we have d(x0, z)+
d(z, z′) + d(x′0, z

′) < R, so that both d(x0, z) and d(x′0, z) are less than R. The
proof is completed by applying the first part of the proof to the pairs x0, z and
x′0, z and noting that

d(xk, x′`) ≤ d(xk, z) + d(x′`, z) < 2kR+ 2`R ≤ 2k+`R ≤ 2RR. �
Given an n-chain x = (x0, x1, . . . , xn−1) starting in Xv, define, for 0 ≤ k ≤

n − 1, δk = d(xk, Yαk(v)) and θk = δ0 ∨ · · · ∨ δk, where we introduce the notation
a ∨ b = max{a, b}. For future notational convenience define θ−1 = 0. Note that if
x′ = (x′0, x

′
1, . . . , x

′
n−1) is another n-chain starting in Xv, then

d(xk−1, xk) ≤ δk−1 + 2,(15)

|δk − δ′k| = |d(xk, Yαk(v))− d(x′k, Yαk(v))| ≤ d(xk, x′k), 0 ≤ k ≤ n− 1.(16)
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Lemma 6.2. Let x = (x0, x1, . . . , xn−1) and x′ = (x′0, x
′
1, . . . , x

′
n−1) be n-chains

starting in Xv. Then

(17) |d(xk, x′k)− d(x0, x
′
0)| ≤ 2k(θk−1 ∨ θ′k−1) + 2k, 0 ≤ k ≤ n− 1.

Proof. Since the statement is obvious in the case k = 0, we assume k ≥ 1. Let x̄k
and x̄′k be as in the definition of n-chains. Observe that

d(x̄k, x̄′k) ≤ d(x̄k, xk) + d(x̄′k, x
′
k) + d(xk, x′k) ≤ d(xk, x′k) + 2(θk ∨ θ′k) + 2,

d(x̄k, x̄′k) ≥ d(xk, x′k)− d(x̄k, xk)− d(x̄′k, x
′
k) ≥ d(xk, x′k)− 2(θk ∨ θ′k)− 2.

Since fαk(v) is an isometry we have d(xk+1, x
′
k+1) = d(x̄k, x̄′k), and the lemma

follows from these inequalities by induction. �
Given an n-chain x = (x0, x1, . . . , xn−1) and N > 0, we define, for 0 ≤ k ≤ n−1,

ak =
(

1− ln(1 + θk)
N

)
+

,(18)

ck =
√
a0 · · ·ak−1 (1 + (n− k − 1)(1− ak)),(19)

where a+ = max{a, 0}. Note that c0 =
√

1 + (n− 1)(1− a0). One checks immedi-
ately that a0 ≥ a1 ≥ · · · ≥ an−1,

c20 + · · ·+ c2n−1 = n, 0 ≤ cn−1 ≤ 1,(20)

δk ≥ eN − 1 =⇒ θk ≥ eN − 1 =⇒ ak = 0 =⇒ ck+1 = · · · = cn−1 = 0.(21)

The coefficients ck were introduced by Tu [19] (actually we work with the square
root of Tu’s coefficients). Since the maps fv are isometries, it is possible in our case
to define ak explicitly as in (18). Both ak and ck should be regarded as functions
ax
k and cxk of n-chains x = (x0, x1, . . . , xn−1). We will often write a′k and c′k instead

of ax′

k and cx
′

k .

Lemma 6.3. Let x = (x0, x1, . . . , xn−1) and x′ = (x′0, x
′
1, . . . , x

′
n−1) be n-chains

starting in Xv. If ω = max0≤i≤n−1 |ai − a′i|, then

(i) |c2k − c′ 2k | ≤
(
n+1

2

)2
ω,

(ii) |ck − c′k| ≤ n+1√
2

√
ω, and

(iii)
∑n−1

k=0
1
n |ck − c′k|2 ≤

(n+1)2

2 ω.

Proof. This is an exercise. For (i) ⇒ (ii) use the inequality |
√
a−
√
b| ≤

√
2|a− b|.

�
The following continuity property of the coefficients ak is a minor variation of a

formula in Tu’s paper [19, formula 9.2].

Lemma 6.4. Let x = (x0, x1, . . . , xn−1) and x′ = (x′0, x
′
1, . . . , x

′
n−1) be n-chains

starting in Xv, and assume d(x0, x
′
0) ≤ n. Then

(22) max
0≤k≤n−1

|ak − a′k| ≤
7n2

N
.

Proof. Denote λ = ln 7n. We are going to show that

|a0 − a′0| ≤
n

N
,

|ak − a′k| ≤ |ak−1 − a′k−1|+
λ

N
.(23)
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From these we immediately obtain |ak − a′k| ≤
n(1 + λ)

N
≤ 7n2

N
, concluding the

proof. Of these inequalities, the first is straightforward. Indeed, using (16) and
the property that the map t 7→ (1− 1

N ln(1 + t))+ is 1
N -Lipschitz, we have

|a0 − a′0| ≤
1
N
|δ0 − δ′0| ≤

1
N
d(x0, x

′
0) ≤ n

N
.

To prove the second inequality, denote f(t) = 4nt + 6n. According to (16) and
Lemma 6.2, we have

(24) |δk − δ′k| ≤ d(xk, x′k) ≤ 1
2f(θk−1 ∨ θ′k−1).

Denote ψ(t) = ln(1 + t), so that for all t ≥ 0 we have

(25) ψ(t) ≤ ψ(f(t)) ≤ ψ(t) + λ.

Case θk ∨ θ′k ≤ f(θk−1 ∨ θ′k−1) : By symmetry we may assume that θk−1 ≥ θ′k−1.
Thus θ′k−1 ≤ θ′k ≤ f(θk−1) and θ′k−1 ≤ θk−1 ≤ θk ≤ f(θk−1). Using (25), we obtain

ψ(θ′k−1) ≤ ψ(θ′k)≤ ψ(f(θk−1)) ≤ ψ(θk−1) + λ,

ψ(θ′k−1) ≤ ψ(θk)≤ ψ(f(θk−1)) ≤ ψ(θk−1) + λ.

Now, (23) follows immediately from these inequalities, together with the property
that for real numbers a ≤ s, t ≤ b+ λ we have

|(1− s/N)+ − (1 − t/N)+| ≤ |(1− b/N)+ − (1− a/N)+|+ λ/N.

Case θk ∨ θ′k ≥ f(θk−1 ∨ θ′k−1) : By symmetry we may assume that θk ≥ θ′k. Then
θk ≥ f(θk−1) ≥ θk−1, and hence θk = δk. Therefore, using (24),

θk ≤ |θk − θ′k|+ θ′k ≤ |δk − δ′k|+ θ′k ≤ 1
2f(θk−1 ∨ θ′k−1) + θ′k ≤ 1

2θk + θ′k.

Hence θ′k ≤ θk ≤ 2θ′k. We obtain

ψ(θ′k) ≤ ψ(θk) ≤ ψ(θ′k) + ln 2.

From this inequality and the property that the map t 7→ (1− t/N)+ is 1
N -Lipschitz,

we obtain |ak − a′k| ≤ ln 2
N ≤

λ
N , which implies (23). �

Definition. Given R > 0 and ε > 0 choose and fix n ∈ N such that(
lnn+ 9

4n

) 1
2

<
ε

3(R+ 1)
, n > 2RR,(26)

and N ∈ N such that

6n(n+ 1)√
N

<
ε

3(R+ 1)
.(27)

Having done so, apply the fundamental criterion for uniform embeddability, Propo-
sition 2.1, to choose and fix a family (ξx)x∈X of unit vectors in a Hilbert space
HX =

⊕
v∈V Hv with ξx ∈ Hv if x ∈ Xv and such that

sup{‖ξy − ξy′‖ : d(y, y′) ≤ 3neN , y, y′ ∈ Xv, v ∈ V } <
ε

3(R+ 1)
,(28)

lim
S→∞

sup{|〈ξy, ξy′〉| : d(y, y′) ≥ S, y, y′ ∈ Xv, v ∈ V } = 0.(29)
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(See the remarks after Theorem 5.3 for comments on why this is possible.) Finally,
for every n-chain x = (x0, x1, . . . , xn−1) in X define the unit vector ηx ∈ HX by

(30) ηx =
1√
n

n−1∑
k=0

ck ξxk ,

where, of course, the ck’s are defined according to (19) and depend on the chain x.

Lemma 6.5. Let x = (x0, x1, . . . , xn−1) and x′ = (x′0, x
′
1, . . . , x

′
n−1) be n-chains

starting in Xv. If d(x0, x
′
0) ≤ n, then ‖ηx − ηx′‖ ≤ 2ε

3(R+1) .

Proof. Let I = {k : ck 6= 0, c′k 6= 0} and J = {k : ck = 0, c′k 6= 0}. If 1 ≤ k ∈ I, then
ak−1 =

(
1− 1

N ln(1 + θk−1)
)

+
6= 0; hence θk−1 ≤ eN − 1. Similarly, θ′k−1 ≤ eN − 1.

Hence from (17) we have

(31) d(xk, x′k) ≤ 2n(eN − 1) + 2n+ d(x0, x
′
0) ≤ 3neN .

Consider

‖ηx − ηx′‖ =

∥∥∥∥∥ 1√
n

n−1∑
k=0

ck ξxk −
1√
n

n−1∑
k=0

c′k ξx′k

∥∥∥∥∥
≤



∥∥∥∥∥ 1√
n

n−1∑
k=0

(ck − c′k) ξxk

∥∥∥∥∥+

∥∥∥∥∥ 1√
n

∑
k∈J

(c′k − ck) (ξxk − ξx′k)

∥∥∥∥∥
+

∥∥∥∥∥ 1√
n

∑
k∈I

c′k (ξxk − ξx′k)

∥∥∥∥∥ .
Observe that the ξxk ’s and ξx′k ’s are in orthogonal components of HX . We bound
the third term on the right using (20), (31) and (28) as follows:

1√
n

(∑
k∈I

(c′k)2 ‖ξxk − ξx′k‖
2

)1/2

≤ 1√
n

(
n−1∑
k=0

(c′k)2

)1/2

·
(

sup
k∈I
‖ξxk − ξx′k‖

)
≤ sup

∆
‖ξy − ξy′‖ ≤

ε

3(R+ 1)
,

where ∆ = {(y, y′) : d(y, y′) ≤ 3neN , y, y′ ∈ Xv, v ∈ V }. We bound the sum of
the first two terms on the right, by

3

(
n−1∑
k=0

1
n
|ck − c′k|2

) 1
2

≤ 3(n+ 1)√
2

max
0≤i≤n−1

|ai − a′i|
1
2

≤ 3(n+ 1)√
2

(
7n2

N

) 1
2

≤ ε

3(R+ 1)
,

where the inequalities are from Lemma 6.3, (22) and (27), respectively. Combining
these observations, we obtain the result. �

Lemma 6.6. Let x = (x1, x2, . . . , xn) and x′ = (x0, x
′
1, . . . , x

′
n−1) be n-chains

with x0 ∈ Xv and x1 ∈ Xα(v). If (x0, x1) is a 2-chain and d(x0, x1) ≤ n, then
‖ηx − ηx′‖ ≤ ε

R+1 .
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Proof. Let x̄0 = f−1
v (x1) and set x̄ = (x̄0, x1, . . . , xn−1). According to the definition

(30) of ηx we have

ηx = η(x1,x2,...,xn) =
1√
n

(
n−1∑
k=1

dkξxk + dnξxn

)
,

ηx̄ = η(x̄0,x1,...,xn−1) =
1√
n

(
d̄0ξx̄0 +

n−1∑
k=1

d̄kξxk

)
,

where

dk = ck−1(x1, . . . , xk) =
√
ā1 · · · āk−1(1 + (n− k)(1 − āk)),

d̄k = ck(x̄0, x1, . . . , xk) =
√
ā0ā1 · · · āk−1(1 + (n− k − 1)(1− āk)),

with ā0 = 1, d̄0 = 1 and āk = ak(x̄0, x1, . . . , xk) = min{(1− ln(1+δi)
N )+ : 1 ≤ i ≤ k}.

For 1 ≤ k ≤ n− 1 we have either 1− āk = 0, hence dk − d̄k = 0, or

dk − d̄k =
√
ā1 · · · āk−1(1 − āk)√

1 + (n− k)(1− āk) +
√

1 + (n− k − 1)(1− āk)

≤ (1− āk)
2
√

(n− k)(1− āk)
≤ 1

2
√
n− k

.

Applying the above expressions for ηx and ηx̄ with this inequality, we estimate

‖ηx̄ − ηx‖ =
1√
n

∥∥∥∥∥d̄0ξx̄0 +
n−1∑
k=1

(d̄k − dk)ξxk − dnξxn

∥∥∥∥∥
≤
(

2
n

+
1
n

n−1∑
k=1

(dk − d̄k)2

) 1
2

≤
(

2
n

+
1

4n

(
1

n− 1
+

1
n− 2

+ · · ·+ 1
)) 1

2

≤
(

lnn+ 9
4n

) 1
2

≤ ε

3(R+ 1)
,

where the final inequality comes from the choice (26) of n. Apply Lemma 6.5 to
the chains x′ and x̄, noting that d(x0, x̄0) = d(x0, x1)−1 ≤ n, and use the previous
inequality to conclude that

‖ηx′ − ηx‖ ≤ ‖ηx′ − ηx̄‖+ ‖ηx̄ − ηx‖ ≤ 2ε
3(R+ 1)

+
ε

3(R+ 1)
=

ε

R+ 1
. �

Lemma 6.7. Let x = (x0, x1, . . . , xn−1) and x′ = (x′0, x
′
1, . . . , x

′
n−1) be n-chains in

X. Then

|〈ηx, ηx′〉| ≤ sup {|〈ξy, ξy′〉| : y, y′ ∈ Xv, v ∈ V, d(y, y′) ≥ d(x0, x
′
0)− 6neN}.

Proof. Let k and ` be as in (13). Considering symmetry, we assume that k ≥ `.
Also, if k ≥ n, then 〈ηx, ηx′〉 = 0; so we assume that k < n. With these assumptions

(32) 〈ηx, ηx′〉 =
1
n

n−k−1∑
i=0

ck+ic
′
`+i〈ξxk+i , ξx′`+i〉.
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Making use of (21), we conclude that if θk−1 ∨ θ′`−1 ≥ eN − 1, then all the products
ck+ic

′
`+i in (32) are zero, and we are done. Thus we assume that θk−1 ∨ θ′`−1 ≤

eN − 1. Let m be the largest number 0 ≤ m ≤ n − k − 1 with the property that
θk+m−1 ∨ θ′`+m−1 ≤ eN − 1. By (17),

d(xk+i, x
′
`+i) ≥ d(xk, x′`)− 2neN

for all 0 ≤ i ≤ m. On the other hand, using (15),

d(xk, x′`) ≥ d(x0, x
′
0)−

k−1∑
i=0

d(xi, xi+1)−
`−1∑
j=0

d(x′j , x
′
j+1)

≥ d(x0, x
′
0)−

k−1∑
i=0

(δi + 2)−
`−1∑
j=0

(δ′j + 2)

≥ d(x0, x
′
0)− (k + `)(2(θk−1 ∨ θ′`−1) + 2)

≥ d(x0, x
′
0)− 4neN .

Combining these two inequalities, we obtain

d(xk+i, x
′
`+i) ≥ d(x0, x

′
0)− 6neN , for all 0 ≤ i ≤ m.

Finally, arguing again on the basis of (21) as above, we conclude that the terms
in (32) for i > m are zero. Thus, applying (20) and the previous inequality, we see
that

|〈ηx, ηx′〉| ≤
(

1
n

m∑
i=0

ck+ic
′
`+i

)
· sup

Ω
|〈ξy , ξy′〉| ≤ sup

Ω
|〈ξy , ξy′〉|,

where Ω = {(y, y′) : y, y′ ∈ Xv, v ∈ V, d(y, y′) ≥ d(x0, x
′
0)− 6neN}. �

Proposition 6.8. Given R > 0 and ε > 0, let n, N , and (ξx)x∈X be constructed as
in the definition. For each x0 ∈ X, choose and fix an n-chain x = (x0, x1, . . . , xn−1)
and consider the corresponding vector ηx = η(x0,x1,...,xn−1). Then

sup{‖ηx − ηx′‖ : d(x0, x
′
0) < R} ≤ ε,(33)

|〈ηx, ηx′〉| ≤ sup {|〈ξy, ξy′〉| : d(y, y′) ≥ d(x0, x
′
0)− 6neN , y, y′ ∈ Xv, v ∈ V }.(34)

Proof. The support condition (34) was proven in Lemma 6.7. For the convergence
condition (33) we show that for any x0, x

′
0 ∈ X with d(x0, x

′
0) < R and any two n-

chains x and x′ starting at x0 and x′0, respectively, we have ‖ηx−ηx′‖ ≤ ε. Let k and
` be as in (13) and (14). Let x(i) and x′(j) be n-chains whose initial elements are
the points xi, x′j given by Lemma 6.1, 0 ≤ i ≤ k, 0 ≤ j ≤ `. Applying Lemmas 6.5
and 6.6 repeatedly (note that since n > 2RR this is possible by Lemma 6.1), with
the convention that all empty sums are zero, we have

‖ηx − ηx′‖ ≤
k−1∑
i=0

‖ηx(i) − ηx(i+1)‖+ ‖ηx(k) − ηx′(`)‖+
`−1∑
j=0

‖ηx′(j) − ηx′(j+1)‖

≤ (k + `+ 1)ε
R+ 1

≤ ε.

�
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Conclusion of the proof of Theorem 5.3. Given R > 0 and ε > 0, let x0

7−→ η(x0,x1,...,xn−1) be a map constructed as in Proposition 6.8. It satisfies the
convergence and support conditions of Proposition 2.1, as shown by (33) and by
(34) in conjunction with (29). �

Let us note that Proposition 6.8 also reproves the following fact.

Theorem 6.9 ([8], [19]). Let A and B be countable discrete groups and let C be a
common subgroup. If both A and B are exact, then the amalgamated free product
A ∗C B is exact.

Proof. Given R > 0 and ε > 0, let x0 7−→ η(x0,x1,...,xn−1) be a map constructed
as in Proposition 6.8. If the family (ξx)x∈X satisfies the support condition (ii) of
Proposition 2.6 uniformly with respect to v ∈ V , then it follows from (34) that
〈ηx, ηx′〉 = 0 whenever d(x0, x

′
0) ≥ S + 6neN . In particular, the map x0 7−→

η(x0,x1,...,xn−1) satisfies the convergence and support conditions of Proposition 2.6,
and A ∗C B is exact by Corollary 2.8. �

7. Appendix

We collect several elementary results on the construction of metrics required for
our treatment of amalgamated free products. Let X be a set. A partial metric on
X is an integer-valued function d̂ : D → R+ defined on a domain D ⊂ X ×X and
satisfying, for all x, y ∈ X ,

(i) d̂(x, y) = d̂(y, x), and
(ii) d̂(x, y) = 0 if and only if x = y.

In these statements it is assumed that all relevant pairs belong to the domain D of
d̂ and that the domain D is symmetric and contains the diagonal.

We now associate a metric to a partial metric. The construction is analogous
to that of path metrics; intuitively the distance between two points is the length
of the shortest path between them. A path from x to y ∈ X is a sequence x =
x0, x1, . . . , xn = y such that for every 1 ≤ j ≤ n we have (xi−1, xi) ∈ D. The length
of a path is

∑n
i=1 d̂(xi−1, xi). The domain D is ample if for every x, y ∈ D there

exists a path from x to y.

Proposition 7.1. Let d̂ be a partial metric on X, defined on an ample domain D.
Define, for all x, y ∈ X,

d(x, y) = inf{ length of paths from x to y }.
Then d is an integer-valued metric on X. �

The metric d defined in the proposition is the metric envelope of d̂.

Example. If X is the vertex set of a connected graph and d̂ is the constant 1 on the
domain of all pairs (x, y) that represent edges, then d is the path metric; d(x, y) is
the smallest number of edges on a path from x to y.

Remark. If (x, y) ∈ D, then d(x, y) = d̂(x, y) if and only if the length of every path
from x to y is greater than or equal to d̂(x, y). If D = X × X and d̂ is a metric,
then d = d̂.

Proposition 7.2. Let d̂ be a partial metric on X and let ϕ : X → X be a bijection
with the property that

(i) (x, y) ∈ D if and only if (ϕ(x), ϕ(y)) ∈ D, and
(ii) d̂(ϕ(x), ϕ(y)) = d̂(x, y) for all (x, y) ∈ D.
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Then ϕ is an isometry for the metric envelope.

Proof. It suffices to show that

d(ϕ(x), ϕ(y)) ≤ d(x, y), for all x, y ∈ X .

Let ε > 0 be given. Let (x0. . . . , xn) be a path in X from x to y such that∑n
j=1 d̂(xj−1, xj) < d(x, y) + ε. Then (ϕ(x0), . . . , ϕ(xn)) is a path from ϕ(x) to

ϕ(y), and we have

d(ϕ(x), ϕ(y)) ≤
n∑
i=1

d̂(ϕ(xi−1), ϕ(xi)) =
n∑
j=1

d̂(xj−1, xj) < d(x, y) + ε.

Since ε > 0 was arbitrary, we are done. �
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