
FIBERWISE KK-EQUIVALENCE OF CONTINUOUS FIELDS OF
C*-ALGEBRAS

MARIUS DADARLAT

Abstract. Let A and B be separable nuclear continuous C(X)-algebras over a fi-

nite dimensional compact metrizable space X. It is shown that an element σ of the

parametrized Kasparov group KKX(A,B) is invertible if and only all its fiberwise com-

ponents σx ∈ KK(A(x), B(x)) are invertible. This criterion does not extend to infinite

dimensional spaces since there exist nontrivial unital separable continuous fields over the

Hilbert cube with all fibers isomorphic to the Cuntz algebra O2. Several applications to

continuous fields of Kirchberg algebras are given. It is also shown that if each fiber of a

separable nuclear continuous C(X)-algebra A over a finite dimensional locally compact

space X satisfies the UCT, then A satisfies the UCT.

1. Introduction

Continuous C*-bundles arise naturally: any separable C*-algebra A with Hausdorff
primitive space X is isomorphic to the C*-algebra of continuous sections of a C*-bundle
over X with fibers the primitive quotients of A [14], [5]. A continuous C*-bundle (also
called continuous field [14] or continuous C(X)-algebra [18]) needs not be locally triv-
ial at any point. In his work on the Novikov conjecture [18], Kasparov has introduced
parametrized KK-theory groups RKK(X;A,B) for C(X)-algebras A and B. These
groups, for which we prefer the more compact notation KKX(A,B), admit a natural
product structure KKX(A,B)×KKX(B,C)→ KKX(A,C). The invertible elements in
KKX(A,B) are denoted by KKX(A,B)−1. If KKX(A,B)−1 6= ∅ we say that A is KKX -
equivalent to B. The work of Kirchberg on the classification of purely infinite C*-algebras
raises the question of determining when two C(X)-algebras are KKX -equivalent. Indeed,
by [19], if A and B are two separable nuclear C*-algebras with Hausdorff spectrum X,
then A⊗O∞⊗K ∼= B⊗O∞⊗K if and only if A is KKX -equivalent to B. A closely related
problem is to characterize the invertible elements of KKX(A,B). We give a criterion for
KKX -invertibility for spaces X of finite covering dimension.
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Theorem 1.1. Let A and B be separable nuclear continuous C(X)-algebras over a finite
dimensional compact metrizable space X. If σ ∈ KKX(A,B), then σ ∈ KKX(A,B)−1 if
and only if σx ∈ KK(A(x), B(x))−1 for all x ∈ X.

Consequently, if the fibers of A and B satisfy the Universal Coefficient Theorem for the
Kasparov groups (abbreviated UCT, [26]) and if there is a C(X)-linear morphism from
A to B, or just an element of KKX(A,B), such that all the induced maps K∗(A(x)) →
K∗(B(x)) are bijective, then K∗(A) ∼= K∗(B). This opens the way for the use of homo-
logical methods for the computation of the K-theory groups of continuous fields. Let us
note that Mayer-Vietoris type arguments are not directly applicable due to lack of local
triviality. The assumption on the finite dimensionality of X is essential:

Examples 1.2. There is a family (EP )P which has the power of the continuum and which
consists of mutually nonisomorphic unital separable continuous C(Z)-algebras over the
Hilbert cube Z with all fibers isomorphic to the Cuntz algebra O2.

The K0-groups of EP are nonzero even though Z is contractible and KK(O2,O2) = 0,
see Section 3. The family (EP )P is easily constructed starting from an example of a
continuous C(Y )-algebra over Y =

∏∞
n=1 S

2 with fibers isomorphic to the CAR algebra
but which does not absorb the CAR algebra, exhibited in [16].

By specializing Theorem 1.1 to the case when A is a trivial C(X)-algebra, we obtain,
based on results of Kirchberg [19], an explicit necessary and sufficient (Fell type) K-theory
condition for triviality of continuous fields of arbitrary Kirchberg algebras: Corollary 2.8.
In particular we no longer require KK-semiprojectivity of the fibers as in our earlier
approach [8] which was not relying on [19].

Let us say that a unital C*-algebra D has the automatic triviality property if any
separable unital continuous C(X)-algebra over a finite dimensional compact metrizable
space X all of whose fibers are isomorphic to D is isomorphic to C(X)⊗D. We proved in
[8] that the Cuntz algebras O2 and O∞ are the only Kirchberg algebras with the automatic
triviality property among those Kirchberg algebras satisfying the UCT and having finitely
generated K-theory. By combining Corollary 2.8 with our homotopy calculations from [9]
and the recent absorption result of Hirshberg, Rørdam and Winter [16], we are now able
to drop the finite generation condition.

Theorem 1.3. A unital Kirchberg algebra D satisfying the UCT has the automatic triv-
iality property if and only D is isomorphic to either O2, O∞, or O∞ ⊗ U where U is a
unital uniformly hyperfinite algebra of infinite type.

The condition that X is finite dimensional cannot be dropped as shown by Example 1.2.
Let us recall that a Kirchberg algebra is a purely infinite simple nuclear separable C*-
algebra [25] and that a separable C*-algebra A satisfies the UCT if and only if A is
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KK-equivalent to a commutative C*-algebra [26]. The class of C*-algebras satisfying the
UCT is surprisingly large; it contains the C*-algebras of locally compact second countable
amenable groupoids [30].

The list given by Theorem 1.3 coincides with the list of all strongly selfabsorbing Kirch-
berg algebras satisfying the UCT exhibited in [29]. In a forthcoming joint paper with
Winter [13], we show that any K1-injective separable strongly selfabsorbing C*-algebra
has the automatic triviality property.

In the last part of the paper we prove a new permanence property for the class of nuclear
C*-algebras which satisfy the UCT:

Theorem 1.4. A separable nuclear continuous C(X)-algebra over a finite dimensional
locally compact space satisfies the UCT if all its fibers satisfy the UCT.

The author is grateful to É. Blanchard for useful discussions and comments. He is
also indebted to S. Echterhoff for a conversation on triviality criteria for continuous fields
which highlighted the role of continuous fields with KK-contractible fibers. This inspired
the author to prove Theorem 1.1.

2. C(X)-algebras and KKX-equivalence

Kirchberg has shown that any nuclear separable C*-algebra is equivalent in KK-theory
to a Kirchberg algebra [25, Prop. 8.4.5]. We extend his result in the context of continuous
C(X)-algebras andKKX -theory (see Theorem 2.5). The space X is assumed to be compact
and metrizable throughout this section.

Lemma 2.1 ([3, Prop. 3.2]). If A is a continuous C(X)-algebra, then there is a split short
exact sequence of continuous C(X)-algebras

(1) 0 // A // A+ // C(X)
α

oo // 0

where A+ is unital, α is C(X)-linear and α(1) = 1.

Consider the category of separable C(X)-algebras where the morphisms from A to B
are the elements of KKX(A,B) with composition given by the Kasparov product. The
isomorphisms in this category are the KKX -invertible elements denoted by KKX(A,B)−1.

Two C(X)-algebras are KKX -equivalent if they are isomorphic objects in this category. In
the sequel we shall use twice the following elementary observation (valid in any category).
If composition with γ ∈ KKX(A,B) induces a bijection γ∗ : KKX(B,C)→ KKX(A,C)
(or γ∗ : KKX(C,A)→ KKX(C,B)) for C = A and C = B, then γ ∈ KKX(A,B)−1.

Lemma 2.2. Let A be a separable nuclear continuous C(X)-algebra. Then there exist
a separable nuclear unital continuous C(X)-algebra A[ and C(X)-linear monomorphisms
α : C(X)⊗O2 → A[ and  : A→ A[ such that α is unital and KKX() ∈ KKX(A,A[)−1.
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Proof. Let p ∈ O∞ be a non-zero projection with [p] = 0 in K0(O∞). Then there is a
unital ∗-homomorphismO2 → pO∞p which induces a C(X)-linear unital ∗-monomorphism
µ : C(X) ⊗ O2 → C(X) ⊗ pO∞p. We tensor the exact sequence (1) by pO∞p and then
take the pullback by µ. This gives a split exact sequence of C(X)-algebras:

0 // A⊗ pO∞p // A+ ⊗ pO∞p // C(X)⊗ pO∞p
α

oo // 0

0 // A⊗ pO∞p
j // A[

OO

// C(X)⊗O2

µ

OO

α
oo // 0

The map A[ → A+ ⊗ pO∞p is a unital C(X)-linear ∗-monomorphism, so that A[ is a
continuous C(X)-algebra. It is nuclear being an extension of nuclear C*-algebras. By [1,
Thm. 5.4] for any separable nuclear continuous C(X)-algebra B there is an exact sequence
of groups

0→ KKX(B,A⊗ pO∞p)
j∗ // KKX(B,A[) // KKX(B,C(X)⊗O2)→ 0.

KKX(B,C(X) ⊗ O2) = 0 since the class of the identity map of C(X) ⊗ O2 vanishes in
KKX . Therefore j∗ is bijective and so KKX() ∈ KKX(A ⊗ pO∞p,A[)−1. We conclude
the proof by observing that map A→ A⊗ pO∞p, a 7→ a⊗ e, induces a KKX -equivalence,
if e is a subprojection of p equivalent to 1O∞ . �

Let (Ai, ϕi) be an inductive system of separable nuclear unital continuous C(X)-algebras
with unital (fiberwise) injective connecting maps. Let A = lim−→ (Ai, ϕi) be the inductive
limit C*-algebra and let ϕi,∞ : Ai → A be the induced inclusion map.

Lemma 2.3. A is a unital nuclear continuous C(X)-algebra and there is a sequence
(ηi : A → An(i))i of unital completely positive C(X)-linear maps such that (ϕn(i),∞ ◦ ηi)i
converges to idA in the point norm topology.

Proof. The map C(X)→ Z(A) is induced by the maps C(X)→ Z(Ai), so that A clearly
becomes a C(X)-algebra. The continuity of the map x 7→ ‖a(x)‖ for a ∈ A is verified
by approximating a ∈ A by some ai ∈ Ai and using the fiberwise injectivity of ϕi,∞.
Since A is a nuclear C*-algebra, it follows by [1, Thm. 7.2] that A is C(X)-nuclear. This
means that there are sequences of unital C(X)-linear completely positive maps αi : A→
C(X)⊗Mk(i) and βi : C(X)⊗Mk(i) → A such that βi ◦ αi converges to idA in the point-
norm topology. After perturbing the restriction of βi to 1C(X) ⊗Mk(i) to a unital and
completely positive map β′i : 1C(X) ⊗Mk(i) → An(i) and extending β′i to a C(X)-linear
map β′′i : C(X) ⊗Mk(i) → An(i), we may assume that βi factorizes as βi = ϕn(i),∞ ◦ β′′i .
Then ηi = β′′i ◦ αi satisfies the conclusion of the lemma. �
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Proposition 2.4. Let (Ai, ϕi) be an inductive system of separable nuclear unital contin-
uous C(X)-algebras with unital injective connecting maps. If ϕi ∈ KKX(Ai, Ai+1)−1 for
all i, and Φ : A1 → lim−→(Ai, ϕi) = A is the induced map, then Φ ∈ KKX(A1, A)−1.

Proof. We use Milnor’s lim←−
1-exact sequence in KKX -theory applied to the inductive system

(Ai, ϕi). The proof of σ-additivity of KK(A,B) in the first variable given in [18, Thm. 2.9]
applies with essentially no changes to show the corresponding property for KKX(A,B).
Lemma 2.3 verifies the assumptions of [24, Lemma 2.7]. Thus the system (Ai, ϕi) is
admissible in the sense of [24, Def. 2.5] and hence by [24, Lemma 2.4 and Prop. 2.6] we
have an exact sequence:

0→ lim←−
1 KK1

X(Ai, B) // KKX(A,B) // lim←− KKX(Ai, B)→ 0

(One can also give a direct proof of this exact sequence which is essentially identical to the
proof of the corresponding sequence in KK-theory. One argues as in [26] using the exact
sequences from [1]. The maps from Lemma 2.3 are needed to verify that the mapping
telescope extension of A is semisplit in the category of C(X)-algebras.)

Since lim←−
1
(
Gi, λi

)
= 0 and G1

∼= lim←−
(
Gi, λi) for any sequence of abelian groups (Gi)∞i=1

and group isomorphisms λi : Gi → Gi+1, the lim←−
1-exact sequence shows that for any

separable continuous C(X)-algebra B, the map KKX(A,B) → KKX(A1, B) induced by
Φ is bijective. Therefore KKX(Φ) ∈ KKX(A1, A)−1. �

We need the following C(X)-equivariant construction which parallels a construction of
Kirchberg as presented in [25]. A similar deformation technique has appeared in [10].

Theorem 2.5. Let A be a separable nuclear continuous C(X)-algebra. Then there ex-
ist a separable nuclear continuous unital C(X)-algebra A] whose fibers are Kirchberg
C*-algebras and a C(X)-linear ∗-monomorphism Φ : A → A] such that Φ is a KKX-
equivalence. For any x ∈ X the map Φx : A(x)→ A](x) is a KK-equivalence.

Proof. By Proposition 2.2 we may assume that A is unital and that there is a unital
C(X)-linear ∗-monomorphism α : C(X) ⊗ O2 → A. By [4, Thm. 2.5] there is a unital
C(X)-linear ∗-monomorphism β : A→ C(X)⊗O2. Let s1, s2 be the images in A of the
canonical generators v1, v2 of O2 ⊂ C(X)⊗O2 under the map α. Set θ = α◦β : A→ A and
define ϕ : A→ A by ϕ(a) = s1 a s

∗
1 + s2 θ(a) s∗2. The unital ∗-homomorphism ϕx : A(x)→

A(x) induced by ϕ satisfies ϕxπx = πxϕ and ϕx(b) = s1(x) b s1(x)∗ + s2(x) θx(b) s2(x)∗.
Moreover θx factors through O2 since θx = αx◦βx. Let A] be the continuous C(X)-algebra
obtained as the limit of the inductive system

A
ϕ // A

ϕ // A
ϕ // · · ·
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and let Φ : A→ A] be the induced map. The commutative diagram

A

πx

��

ϕ // A

πx

��

ϕ // A

πx

��

ϕ // · · · // A]

πx

��
A(x)

ϕx // A(x)
ϕx // A(x)

ϕx // · · · // A](x)

shows that the fiber A](x) of A is isomorphic to lim−→(A(x), ϕx). By the proof of [25,
Prop. 8.4.5] A](x) is a unital Kirchberg algebra. It remains to prove that the map Φ : A→
A] induces a KKX -equivalence. By Proposition 2.4 it suffices to verify that KKX(ϕ) =
KKX(idA). This follows from the equation ϕ(a) = s1 a s

∗
1 + s2 θ(a) s∗2, since θ factors

through C(X)⊗O2 and hence KKX(θ) = 0. �

Theorem 2.6. Let X be a compact metrizable finite dimensional space. Let A be a
separable nuclear continuous C(X)-algebra. If all the fibers of A are KK-contractible,
then A is KKX-contractible.

Proof. By Theorem 2.5, A is KKX -equivalent to a separable nuclear unital continu-
ous C(X)-algebra A] whose fibers are KK-contractible Kirchberg algebras. Therefore
A](x) ∼= O2 for all x [25]. By [8, Thm. 1.1] A] is isomorphic to C(X) ⊗ O2 and hence is
KKX -contractible. Alternately one can argue that A] ∼= A] ⊗ O2 by [16] and hence that
KKX(A], A]) = 0. �

Proof of Theorem 1.1

Proof. By Theorem 2.5 we may assume that both A and B are stable continuous C(X)-
algebras which absorb O∞ tensorially and whose fibers are Kirchberg algebras. By [19,
Hauptsatz 4.2], for any given σ ∈ KKX(A,B), there is a C(X)-linear ∗-homomorphism
ϕ : A→ B such that KKX(ϕ) = σ. The mapping cone of ϕ,

Cϕ = {(a, f) ∈ A⊕ C0[0, 1)⊗B : f(0) = ϕ(a)}

is a separable nuclear continuous C(X)-algebra with fibers Cϕ(x) ∼= Cϕx , x ∈ X. Since
each ϕx is a KK-equivalence, it follows from the Puppe sequence in KK-theory [2] that
Cϕx is KK-contractible for each x ∈ X. Then Cϕ is KKX -contractible by Theorem 2.6.
Using the Puppe exact sequence for separable nuclear continuous C(X)-algebras (see [1])

KKX(C,Cϕ) // KKX(C,A)
ϕ∗ // KKX(C,B) // KK1

X(C,Cϕ)

we see that ϕ∗ : KKX(C,A)→ KKX(C,B) is bijective for all separable nuclear continuous
C(X)-algebras C and hence σ is a KKX -equivalence. Note that if we assume in the
statement that σ = KKX(ϕ) for some morphism ϕ of C(X)-algebras, then the result
from [19] is not required for the proof. �
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A remarkable isomorphism result for separable nuclear strongly purely infinite stable
C*-algebras was announced (with an outline of the proof) by Kirchberg in [19]: two such
C*-algebras A and B with the same primitive spectrum X are isomorphic if and only if
they are KKX -equivalent. In conjunction with Theorem 1.1 we derive the following.

Theorem 2.7. Let X be a compact metrizable finite dimensional space. Let A and B

be separable continuous C(X)-algebras all of whose fibers are Kirchberg algebras. Suppose
that there is σ ∈ KKX(A,B) such that σx ∈ KK(A(x), B(x))−1 for all x ∈ X. Then
there is an isomorphism of C(X)-algebras ϕ : A ⊗ K → B ⊗ K such that KKX(ϕ) = σ.
Moreover if A and B are unital and if K0(σ)[1A] = [1B], then A ∼= B.

Proof. Since X is finite dimensional, A ⊗ K ⊗ O∞ ∼= A ⊗ K and B ⊗ K ⊗ O∞ ∼= B ⊗ K
by [6, Cor. 5.11]. In the unital case, one also has A ⊗ O∞ ∼= A and B ⊗ O∞ ∼= B by [6,
Cor. 5.11], [20, Thm. 4.23] and [21, Thm. 8.6] as explained for example in [12, Lemma 3.4]
or by [16]. By Theorem 1.1 σ is a KKX -equivalence. This enables us to apply Kirchberg’s
result [19, Folgerung 4.3] to obtain an isomorphism of C(X)-algebras ϕ : A⊗K → B ⊗K
such that KKX(ϕ) = σ. In the unital case, since both ϕ(1A ⊗ e11) and 1B ⊗ e11 are full
and properly infinite projections in B ⊗ K, the condition ϕ∗[1A] = [1B] will allows us to
arrange that ϕ(1A⊗e11) = 1B⊗e11 after conjugating ϕ by a suitable unitary in M(B⊗K)
(see [7]) and hence conclude that A ∼= B. �

Corollary 2.8. Let X be a compact metrizable finite dimensional space. Let B be a
separable continuous unital C(X)-algebra all of whose fibers are Kirchberg algebras and
let D be a unital Kirchberg algebra. Suppose that there is σ ∈ KK(D,B) such that
σx ∈ KK(D,B(x))−1 for all x ∈ X and K0(σ)[1D] = [1B]. Then B ∼= C(X)⊗D.

Proof. This follows from the previous theorem since KKX(C(X) ⊗ D,B) ∼= KK(D,B).
To explain this isomorphism of groups, let us recall from [18, 2.19] that if A and B are
separable C(X)-algebras, then KKX(A,B) is defined in the same way as KK(A,B) except
that one replaces the set E(A,B) of Kasparov A-B-bimodules (Φ : A → L(E), T ) by its
subset EX(A,B) consisting of those elements satisfying an additional assumption: for any
f ∈ C(X), a ∈ A, b ∈ B and ξ ∈ E one has the equality

(2) Φ(fa)ξb = Φ(a)ξ(fb).

Setting A = C(X)⊗D, it is then easily verified that there is a bijection

η : EX(C(X)⊗D,B)→ E(D,B),

which maps (Φ : C(X)⊗D → L(E), T ) to (ϕ : D → L(E), T ), where ϕ(d) = Φ(1⊗ d) for
all d ∈ D. The map η is injective since by condition (2) Φ(f ⊗ d)ξ = ϕ(d)ξ(f1B). Let us
check now that η is surjective. Let (ϕ : D → L(E), T ) ∈ E(D,B) be given. If θ : C(X)→
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L(E) is the central ∗-homomorphism θ(f)ξ = ξ(f1B), define Φ : C(X) ⊗ D → L(E) by
Φ(f ⊗d) = θ(f)ϕ(d). Then Φ satisfies (2) and the operators [Φ(f ⊗d), T ] = θ(f)[ϕ(d), T ],
Φ(f ⊗ d)(T − T ∗) = θ(f)ϕ(d)(T − T ∗), Φ(f ⊗ d)(T 2 − 1) = θ(f)ϕ(d)(T 2 − 1) are in K(E)
since [ϕ(d), T ], ϕ(d)(T − T ∗) and ϕ(d)(T 2 − 1) are in K(E). Therefore (Φ : C(X)⊗D →
L(E), T ) ∈ EX(C(X)⊗D,B) and its image under η is equal to (ϕ : D → L(E), T ). �

3. Nontrivial O2-bundles

Let Z denote the Hilbert cube. Let K be the Cantor set. If G is a discrete group let
C(K,G) denote the continuous functions from K to G. For any two countable, abelian,
torsion groups G0 and G1, we exhibit a unital separable continuous C(Z)-algebra E with
all fibers isomorphic to O2 such that Ki(E) = C(K,Gi), i = 0, 1.

A crucial ingredient of the construction is an example from [16] which we now recall
(with a minor variation). Let e be the unit of C(S2) and let f ∈ M2(C(S2)) be the Bott
projection. For each n ≥ 1 we let en = e and fn = (e⊕ ...⊕ e)⊕ f (n− 1 copies of e) be
realized as orthogonal projections in Mn+2(C(S2)). Set

Bn = (en + fn)Mn+2(C(S2))(en + fn), A =
∞⊗
n=1

Bn.

Let U be the universal UHF algebra with K0(U) = Q. Let Y =
∏∞
n=1 S

2. Arguing as
in [16] one shows that A is a continuous C(Y )-algebra with all fibers isomorphic to U .
Since each Bn is Morita equivalent to C(S2), K0(Bn) is freely generated as a Z-module
by the classes of [en] and [fn]. It is clear that K1(A) = 0. Using the Künneth formula one
shows that K0(A) is isomorphic to the limit of the inductive system of groups

Z2 → Z4 → · · · → Z2n → Z2n+1 → · · ·

where the n-th connecting morphism maps x ∈ Z2n
to (x, x) ∈ Z2n ⊕ Z2n ∼= Z2n+1

.

Consequently K0(A) is isomorphic to C(K,Z). Let D be a unital Kirchberg C*-algebra
such that Ki(D) = Gi, i = 0, 1 and D satisfies the UCT. Then F = A ⊗ D is a unital
separable continuous C(Y )-algebra whose fibers are isomorphic to A(x)⊗D ∼= U ⊗D. By
the Künneth formula Ki(U ⊗D) ∼= Q⊗Gi = 0 since both G0 and G1 are torsion groups.
It follows that all the fibers F (x) of F are isomorphic to O2 by the Kirchberg-Phillips
classification theorem [25]. On the other hand Ki(F ) = K0(A)⊗Ki(D) = C(K,Z)⊗Gi ∼=
C(K,Gi), i = 0, 1.

By Blanchard’s embedding theorem [4], there is a unital C(Y )-linear monomorphism
η : F → C(Y )⊗O2. Let us regard Y as a compact subset of the Hilbert cube Z. Define

E = {f ∈ C(Z,O2) : f |Y ∈ η(F )}.
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Then E is a separable unital continuous C(Z)-algebra with all fibers isomorphic to O2.
Using the exact sequence:

0 // C0(Z \ Y,O2) // E // F // 0

we see that Ki(E) ∼= Ki(F ) ∼= C(K,Gi), i = 0, 1. In particular E is not isomorphic to
C(Z) ⊗ O2 if G0 6= 0 or G1 6= 0, for example if D = On, 2 < n < ∞. For a nonempty
set P of prime numbers, let Z(P ) be the subgroup of T consisting of all elements whose
orders have all prime factors in P . One verifies that C(K,Z(P )) is not isomorphic to
C(K,Z(P ′)) if P 6= P ′. Indeed if p ∈ P \ P ′, then C(K,Z(P ′)) does not have elements of
order p, unlike C(K,Z(P )). Consequently, the family (EP )P obtained by choosing D with
K0(D) = Z(P ) consists of mutually non-isomorphic C(Z)-algebras and has the power of
the continuum.

4. Automatic triviality

For a C*-algebra D, let Aut(D)0 denote the path-component of the identity in the
automorphism group of D endowed with the point-norm topology.

Proposition 4.1. Let D be a unital Kirchberg algebra satisfying the UCT. Suppose that
[X,Aut(D)0] reduces to singleton for any path connected compact metrizable space X.
Then D is isomorphic to either O2, O∞, or O∞ ⊗ U where U is a unital UHF algebra of
infinite type.

Proof. We show that D has the same pointed K-theory groups as one of the listed C*-
algebras. Let Cν denote the mapping cone C*-algebra of the unital inclusion ν : C→ D.
By [9, Thm. 5.9] there is a bijection [X,Aut(D)0]→ KK(Cν , SC0(X \ x0)⊗D) for some
(any) point x0 ∈ X. Since the K-theory groups of C(X,x0) can be arbitrary countable
abelian groups it follows that KK(Cν , A⊗D) = 0 for all separable C*-algebras A satisfying
the UCT. Using the Puppe sequence in KK-theory [2] we see that the restriction map
ν∗ : KK(D,A⊗D)→ KK(C, A⊗D) is bijective for all separable C*-algebras A satisfying
the UCT. By the UCT (applied for A and its suspension), this implies that (i) K1(D) = 0,
(ii) Ext(K0(D),K0(A ⊗ D)) = 0 and (iii) the map ν∗ : Hom(K0(D),K0(A ⊗ D)) →
Hom(K0(C),K0(A⊗D)) is bijective for all separable C*-algebras A satisfying the UCT.

First we are going to show that G = K0(D) is torsion free. We shall use the observation
that if M,N are abelian groups and M ′ is a subgroup of M and N ′ is a quotient of N , then
Ext(M ′, N ′) is a quotient of Ext(M,N) [15]. Fix a prime p and set G[p] = {x ∈ G : px =
0}. Using (ii) for A = Op+1, we obtain that Ext(G,G[p]) = 0 since G[p] = Tor(G,Z/p) is a
quotient of K0(Op+1⊗D) and hence Ext(G,G[p]) is a quotient of Ext(K0(D),K0(Op+1⊗
D)) = 0. Assuming that G[p] 6= 0 we find a subgroup of G isomorphic to Z/p and hence
Ext(Z/p,G[p]) vanishes since it is a quotient of Ext(G,G[p]) = 0. On the other hand
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Ext(Z/p,G[p]) is isomorphic to G[p]/pG[p] = G[p] and hence G[p] = 0. This contradiction
shows that G is torsion free.

Let e denote the class of [1D] ∈ K0(D) = G. If e = 0, then G = 0 by applying (iii) for
A = C. For the rest of the proof we may assume that e 6= 0 and hence that Z ∼= Ze ⊂ G.

Let A be a commutative C*-algebra such that K0(A) = G/Z [27]. Since G is torsion
is free, by the Künneth formula K0(A ⊗ D) ∼= K0(D) ⊗ K0(A) ∼= G ⊗ G/Z. The exact
sequence 0→ Z→ G→ G/Z→ 0 induces an exact sequence

0 → Hom(G/Z,K0(A ⊗ D)) → Hom(G,K0(A ⊗ D)) → Hom(Z,K0(A ⊗ D)). ¿From
(iii) we obtain that Hom(G/Z,K0(A ⊗ D)) = 0 and hence Hom(G/Z, G ⊗ G/Z) = 0.
Therefore for each y ∈ G, the morphism G/Z → G ⊗ G/Z, x 7→ y ⊗ x is the zero map
and hence G ⊗ G/Z = 0. In particular G/Z must be a torsion group since G contains a
copy of Z. We also have that Tor(G/Z, G) = 0 since G is torsion free. The exact sequence
0 → Z → G → G/Z → 0 induces an exact sequence Tor(G/Z, G) → Z ⊗ G → G ⊗ G →
G/Z⊗G. Therefore the map θ : G → G⊗G, θ(x) = x⊗ e is an isomorphism of groups.
We also know that G is torsion free, Ze ⊂ G and that G/Ze is a torsion group. Under
these conditions it was proved in [29] that G is isomorphic to either Z or to a subgroup
H of Q with the property that 1/n2 ∈ H whenever 1/n ∈ H for some nonzero integer n;
in both cases e corresponds to 1. Indeed, for every x ∈ G, x 6= 0, there is a unique pair of
relatively prime integers m and n with n > 0 such that nx = me. One verifies immediately
that γ : G → Q, γ(x) = m/n, if x 6= 0 and γ(0) = 0 is an injective morphism of groups.
Moreover, if x ∈ G satisfies γ(x) = 1/n, then y = θ−1(x⊗ x) satisfies γ(y) = 1/n2. �

Proof of Theorem 1.3

Proof. Let D be isomorphic to either O2, O∞, or O∞ ⊗ U where U is a unital UHF
algebra of infinite type. Let X be a finite dimensional compact metrizable space and let
A be a unital separable continuous C(X)-algebra with all fibers isomorphic to D. Let
ϕ : D → A⊗D be defined by ϕ(d) = 1A⊗ d for all d ∈ D and let ϕ̃ : C(X)⊗D → A⊗D
be the C(X)-linear extension of ϕ. By the UCT, every unital ∗-endomorphism of D is a
KK-equivalence. Therefore each ϕx : D → A(x)⊗D ∼= D is a KK-equivalence. It follows
that KKX(ϕ̃) satisfies the assumptions of Theorem 2.7 and hence A⊗D is isomorphic to
C(X)⊗D. We conclude the first half of the proof by invoking a recent result of Hirshberg,
Rørdam and Winter [16, Thm. 4.3] which shows that if D is strongly selfabsorbing, then
A⊗D ∼= A.

Conversely, suppose that D is a unital Kirchberg algebra which has the automatic
triviality property and satisfies the UCT. Let Y be a finite dimensional compact metric
space and let SY be its unreduced suspension. The locally trivial C(SY )-algebras with
fibers D and structure group Aut(D)0 are classified by the homotopy classes [Y,Aut(D)0]
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(see [17]) and hence [Y,Aut(D)0] must reduce to a singleton since D has the automatic
triviality property. We conclude the proof by applying Proposition 4.1. �

5. C(X)-algebras and the Universal Coefficient Theorem

Let us recall the notion of category of a C(X)-algebra with respect to a class C of C*-
algebras [8]. A C(Z)-algebra E satisfies catC(E) = 0 if there is a finite partition of Z into
closed subsets Z1, . . . , Zr (r ≥ 1) and there exist C*-algebras D1, . . . , Dr in C such that
E ∼=

⊕r
i=1C(Zi)⊗Di. We write catC(A) ≤ n if there are closed subsets Y and Z of X with

X = Y ∪Z and there exist a C(Y )-algebra B with catC(B) ≤ n−1 and a C(Z)-algebra E
with catC(E) = 0 and a ∗-monomorphism of C(Y ∩Z)-algebras γ : E(Y ∩Z)→ B(Y ∩Z)
such that A is isomorphic to

B ⊕π,γπ E = {(b, e) ∈ B ⊕ E : πYY ∩Z(b) = γπZY ∩Z(e)}.

One has an exact sequence

(3) 0 // {b ∈ B : πY ∩Z(b) = 0} // B ⊕π,γπ E
πZ // E // 0.

By definition catC(A) = n if n is the smallest number with the property that catC(A) ≤ n.
If no such n exists, then catC(A) =∞.

Lemma 5.1. Let A be a C(X)-algebra such that catC(A) = n < ∞ where C is the class
of all Kirchberg algebras satisfying the UCT. Then A satisfies the UCT.

Proof. We shall prove by induction on n that if catC(A) ≤ n, then A and all its closed
two-sided ideals satisfy the UCT. If n = 0, then A ∼= ⊕iC(Zi)⊗Di and all its closed two-
sided ideals satisfy the UCT since each Di is simple and satisfies the UCT. By a result
of [26], if two out of three separable nuclear C*-algebras in a short exact sequence satisfy
the UCT, then all three of them satisfy the UCT. For the inductive step we use the exact
sequence (3), with E elementary and catC(B) ≤ n− 1. �

Theorem 5.2 ([11]). Let A be a nuclear separable C*-algebra. Assume that for any finite
set F ⊂ A and any ε > 0 there is a C*-subalgebra B of A satisfying the UCT and such
that F ⊂ε B. Then A satisfies the UCT.

Proof. For the convenience of the reader we sketch an alternative proof in the case when
B is nuclear. It is just this case that is needed in the sequel. By assumption, A admits
an exhaustive sequence (An) consisting of nuclear separable C*-subalgebras which satisfy
the UCT. This means that for any finite subset F of A and any ε > 0 there is n such that
F is ε-contained in An.

We may assume that A is unital and its unit is contained in each An. Let us replace
the pair An ⊆ A by An ⊗ pO∞p ⊆ A ⊗ pO∞p with p as in Lemma 2.2. If we use
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the map θ : A ⊗ pO∞p ↪→ O2 ⊂ 1A ⊗ pO∞p and s1, s2 ∈ 1A ⊗ pO∞p to construct
ϕ : A⊗pO∞p→ A⊗pO∞p as in the proof of Theorem 2.5, then ϕ(B⊗pO∞p) ⊂ B⊗pO∞p
for any subalgebra B of A. Therefore we can make the construction A 7→ A] functorial with
respect to subalgebras. This shows that A] admits an exhaustive sequence (A]n) consisting
of nuclear separable C*-subalgebras which satisfy the UCT since each A]n is KK-equivalent
to An. We can write each A]n as an inductive limit of a sequence of Kirchberg algebras
satisfying the UCT and having finitely generated K-theory groups [25]. Those algebras
are weakly semiprojective ([22],[28]; see also [8, Thm. 3.11] for a short proof). Thus A]

admits an exhaustive sequence (Bn) consisting of weakly semiprojective C*-algebras which
satisfy the UCT. By a standard perturbation argument ([23]) we see that A] is isomorphic
to the inductive limit of a subsequence (Bin) of (Bn) and hence A] satisfies the UCT [26].
Therefore A satisfies the UCT since it is KK-equivalent to A] . �

Proof of Theorem 1.4

Proof. Let A be as in the statement and consider the open set Y = {x ∈ X : A(x) 6= 0}.
By replacing X by Y and viewing A ∼= C0(Y )A as a C(Y )-algebra we may assume that
all the fibers of A are nonzero. Let X+ be the one-point compactification of X. Then
C(X+) is separable by [8, Lemma 2.2]. By [3, Prop. 3.2], there is a unital C(X+)-
algebra A+ which contains A as an ideal and such that A+/A ∼= C(X+). Thus we have
reduced the proof to the case when X is compact and metrizable and A is unital. By
Theorem 2.5 we may assume that the fibers of A are Kirchberg C*-algebras satisfying the
UCT. By [8, Thm. 4.6], A admits an exhaustive sequence (Ak) such that each Ak verifies
the assumptions of Lemma 5.1 and hence Ak satisfies the UCT. We conclude the proof by
applying Theorem 5.2. Let us note that the above proof only requires a weaker version of
Theorem 2.5 which states that Φ : A → A] and each Φx are KK-equivalences. Its proof
requires only the usual lim←−

1-sequence for KK-theory. �

References
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