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1 Introduction

Let X be a locally compact space. By a deformation of X we mean a continuous field

{At | t ∈ [0, 1]} of C∗-algebras with A0
∼= C0(X), and

{At | t ∈ (0, 1]} ∼= B × (0, 1],

for a fixed C∗-algebra B. Replacing C0(X) by another C∗-algebra A, we generalize this to a

deformation of one C∗-algebra to another. This is a basic interpretation of deformation—it

reflects only the topology of X and omits more general fields of algebras—but is an important

one. This importance is seen in the relation to E-theory and the examples [3, 8, 11, 12] that

have arisen.

Deformations are, in fact, very common. About the only requirement for a C∗-algebra

to arise as a deformed CW-complex is that it have the correct K-theory. This fact follows

from our calculations in “unsuspended” E-theory [5]. We will explicitly describe one of

the deformations predicted by these calculations: a deformation of a three-dimensional CW

complex into a dimension-drop interval. We hope this example will further clarify the role

of the dimension-drop interval as a building block in Elliott’s inductive limits [6].
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Recall, from [3], that an asymptotic morphism (ϕt) : A → B between C∗-algebras is a

collection of maps ϕt : A→ B for t ∈ [1,∞) such that for a, b ∈ A and α ∈ C, as t→∞,

‖ϕt(ab)− ϕt(a)ϕt(b)‖ → 0,

‖ϕt(a∗)− ϕt(a)∗‖ → 0,

‖ϕt(αa+ b)− αϕt(a)− ϕt(b)‖ → 0

and t 7→ ϕt(a) is continuous. We say that (ϕt) is injective if also lim sup ‖ϕt(a)‖ > 0 for all

a.

Injective asymptotic morphisms correspond exactly to deformations. Thus, we will work

in the context of asymptotic morphisms. See [3] for an explanation of this correspondence

and the definitions of equivalence and homotopy for asymptotic morphisms.

The following result often gives the easiest way to show a given asymptotic morphism

is injective. First, we recall how an asymptotic morphism (ϕt) : A → B induces maps on

K-theory. Given a projection p in A, the class of ϕ∗([p]) in K0(B) is represented by any

projection that is close to ϕt(p) for some sufficiently large value of t. For projections, and

unitaries, in Mk(A) a similar construction is used.

Proposition 1 Suppose X ∪{pt} is a compact manifold. If an asymptotic morphism (ϕt) :

C0(X)→ B induces an injective map on K-theory then (ϕt) is injective.

Remark 2 This type of result holds more generally. In particular, it holds for the CW

complex discussed in section 3.

Example 3 Our first exampe is an asymptotic morphism (αt) : C0(R
2)→ K which induces

an isomorphism on K-theory. This well-known in several contexts.

We regard C0(R
2) as the universal C∗-algebra generated by selfadjoint element h and nor-

mal elementN subject to the relation h = h2+N∗N. so that the generator ofK0(C0(R
2)) ∼= Z

is just 
 h N∗

N 1− h


−


 1 0

0 0


 .

An asymptotic morphism from A to B is given, up to equivalence, by a ∗-homomorphism

from A to B∞, where B∞ is the C∗-algebra described in [3]. Therefore, if A is universal
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for a set of relations one need only define the paths in B that are to be the images of the

generators. In this case, we need only define αt(h) and αt(N).

Let S denote the unilateral shift and, for t ∈ [1,∞), let Dt denote the diagonal operator

whose diagonal corresponds to the sequence

1/t, 2/t, . . . , [t]/t, 1, 1, . . .

Set αt(h) = 1 −Dt and αt(N) =
√
Dt −D2

tS. Since the required relations hold asymptoti-

cally, this determines αt. The fact that this induces an isomorphism on K0 follows from the

calculation, in [2] or [7], of the spectrum of
1−Dt

√
Dt −D2

tS
∗

√
Dt −D2

tS Dt

 .
See [9] for more details and a modification of this example that produces deformations of

RP2 and the Klein bottle.

2 Unsuspended E-theory

Let A and B be C∗-algebras. For convenience, we shall assume that A and B are separable

and nuclear. We will use the notation

[A,B] = homotopy classes of ∗-homomorphisms,

[[A,B]] = homotopy classes of asymptotic morphisms.

We will use the following isomorphisms, from [3],

KK(A,B) ∼= E(A,B)

∼= [[SA⊗K, SB ⊗K]]

∼= [[S2A⊗K, S2B ⊗K]].

We now arrive at our main result. By X∪{pt} we mean the one-point compactification of

a locally compact space X. Combined with Proposition 1 this result guarantees the existence

of many deformations.
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Proposition 4 If X ∪ {pt} is a connected, finite CW complex then the suspension map

[[C0(X), B ⊗K]]→ KK(C0(X), B)

is an isomorphism.

The proof of this will be given in [5]. The inverse map may be described as follows. Let

β : C0(R
1)→ C0(R

3)⊗K

be a ∗-homomorphism inducing an isomorphism on K-theory. By [4, Corollary 3.1.8] there

exists a map

βX : C0(X)→ S2C0(X)⊗K

whose suspension is homotopic to β⊗ idC0(X). Composition, on appropriate sides, by βX and

the asymptotic morphism

1⊗ α : S2B ⊗K → B ⊗K

(see Example 3) defines the inverse mapping

[[S2C0(X)⊗K, S2B ⊗K]]→ [[C0(X), B ⊗K]].

Using the universal coefficient theorem we obtain a corollary.

Corollary 5 If X∪{pt} is a finite CW complex and η : K∗(X)→ K∗(B) is an isomorphism

then there exists a deformation of X to B ⊗K which induces η.

3 Matricial torsion

Consider the three-dimensional CW complex obtained by attaching, with degree two, the

boundary of a three-cell B3 to a two-sphere S2. Remove the base-point (which sits in the

copy of S2) and call the result X. That is,

X ∪ {pt} = B3 ∪ζ S2

where ζ : ∂B3 → S2 has degree 2. Thus K0(C0(X)) = 0 and K1(C0(X)) ∼= Z/2.
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Let B denote the non-unital dimension-drop interval, that is,

B = {f ∈ C0((0, 1],M2) | f(1) is scalar }.

One may compute K0(B) = 0 and K1(B) ∼= Z/2.

We know, by Corollary 5, that there is an asymptotic morphism

(ψt) : C0(X)→ B ⊗K

inducing an isomorphism on K-theory. This is an example of topological torsion being

“quantized” into matricial torsion. Our goal is to find ψ explicitly.

We first must be more explicit about the attaching map and the associated ∗-homomor-

phism θ : C0(R
2)→ C0(R

2). Using the generators and relations of Example 3, we determine

θ by setting

θ(h) = f(h),

θ(N) = g1(h)N + g2(h)N∗

where f, g1 and g2 are functions of the form

which satisfy g1g2 = 0 and f(t) = f(t)2 + (g1(t)
2 + g2(t)

2) (t− t2) .
We will also need ι : K → K ⊗M2 given by ι(T ) = T ⊗ I. With the additional notation

of δ1 indicating evaluation at 1, we have two pull-back diagrams:

C0(X)

C0(0, 1]⊗ C0(R
2) C0(R

2)

δ1 θ

C0(R
2)

B ⊗K

C0(0, 1]⊗K ⊗M2 K
δ1 ι

K ⊗M2
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Lemma 6 There exists an asymptotic morphism (ϕt) : C0(R
2) → M2(K) such that, for

all t,

image(ϕt ◦ θ) ⊆


 T

T


∣∣∣∣∣∣∣ T ∈ K


which induces an isomorphism on K-theory.

We defer the proof until after we see how the lemma is used.

Consider the following commutative diagram (commuting exactly for each t):

C0(0, 1]⊗ C0(R
2)

id⊗ ϕt C0(0, 1]⊗M2(K)

δ1 δ1

C0(R
2)

ϕt M2(K)

θ ι

C0(R
2)

ηt K

Here ηt is the unique solution to ι◦ηt = ϕt ◦θ. Since ϕ induces an isomorphism on K-theory,

η must as well.

Since these maps are not ∗-homomorphisms we cannot immediately invoke the pull-back

property. However, simply restricting idC0(0,1] ⊗ ϕt produces ψt : C0(X) → B ⊗ K. Now

considering the K-theory of the commuting diagram

C0(0, 1)⊗ C0(R
2)

id⊗ ϕt C0(0, 1)⊗M2(K)

C0(X)
ψt B ⊗K

it is easy to see that ψ induces an isomorphism on K-theory.

Proof (Lemma 6) In order to specify (ϕt) : C0(R
2) → M2(K), it suffices to specify where

the generators h and N are sent. At t = n ∈ N, we shall have ϕn(h) = Hn and ϕn(N) = Nn

where Hn and Nn are the following elements of M2(M2n) (we regard M2n as a corner of K
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and so M2(M2n) ⊆M2(K) ):

Hn =



α1

α2

α2n

1− α1

1− α2

1− α2n



,

Nn =



0

β1 0

β2n−1 0

0 β1

0

β2n−1

β2n 0


where, for j = 1, . . . , 2n, αj = j/2n+1 and βj =

√
αj − α2

j .

We are interested, more generally, in matrices A,B ∈ M2(Mk) such that the following

relations hold:

‖[A,B]‖, ‖[B,B∗]‖, ‖[A,B∗]‖ ≤ ε

‖A− A∗‖ ≤ ε

‖A2 +B∗B − A‖ ≤ ε (1)

f(A) ∈ Mk ⊗ I

g1(A)B + g2(A)B∗ ∈ Mk ⊗ I

It may be checked that Hn and Nn satisfy (1), for some εn ≥ 0, with εn → 0 as n→∞.
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We will need some auxiliary matrices in M2(M2n) :

H̃n =



1/2

1/2

1/2

1/2

1/2

1/2



, Ñn =



0 1/2

1/2 0

1/2 0

0 1/2

0

1/2

1/2 0


A path of unitaries, multiplied by 1/2, in the lower-right-hand corner will create a path

satisfying (1) from H̃n, Ñn to

1/2

1/2

1/2

1/2

1/2

1/2



,



0 1/2

1/2 0

1/2 0

0 1/2

1/2 0

1/2 0



.

Now, deforming the pair of scalars (1/2, 1/2) to (0, 0) appropriately continues this path to

the pair of matrices 0, 0. By this argument, we have reduced the construction of (ϕt) to being

able to connect Hn ⊕ H̃n, Nn ⊕ Ñn to Hn+1, Nn+1 via pairs satisfying (1).

Let

An =



α1

α2

α2n

 , Bn =



0

β1 0

β2n−1 0

 , Cn =



0

0

β2n
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so that

Hn =

 An

1− An

 , Nn =

 Bn 0

Cn B∗n

 .
Let

Ãn =



1/2

1/2

1/2

 , B̃n =



0 1/2

1/2 0

1/2 0


so that

H̃n =

 Ãn

1− Ãn

 , Ñn =

 B̃n

B̃∗n

 .
By Berg’s technique, [1, 10], there exists a unitary W ∈ M2n+1 such that, for some

constant C, independent of n,∥∥∥∥∥∥∥∥W
 An

Ãn

W ∗ −

 An

Ãn


∥∥∥∥∥∥∥∥ ≤ C2−n/2,

∥∥∥∥∥∥∥∥W
 Bn

B̃n

W ∗ −Bn+1

∥∥∥∥∥∥∥∥ ≤ C2−n/2

and (by keeping W trivial except for vectors in a “segment” avoiding the “last” basis vector

in each copy of C2n )

W

 0

Cn

W ∗ =

 0

Cn

 .
Let Ŵ = W ⊗ I2. It follows from above that

Ŵ



An

Ãn

1− An
1− Ãn


Ŵ ∗ ≈



An

Ãn

1− An
1− Ãn
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and

Ŵ



Bn

B̃n

Cn B∗n

0 B̃∗n


Ŵ ∗ ≈

 Bn+1

Cn+1 B∗n+1

 .

Notice that the two matrices on the left satisfy (1) By taking a path of unitaries from W

to I, we get paths satisfying (1) from Hn ⊕ H̃n, Nn ⊕ Ñn to this pair. Linear interpolation

from this pair to the pair on the right-hand side gives a path satisfying (1), perhaps after

increasing εn. Finally, it is a simple matter to slide the scalars which are on the diagonal of

An

Ãn

1− An
1− Ãn


to connect the right-hand pair to Hn+1, Nn+1. We may conclude that (ϕt) exists with the

properties specified in the lemma and ϕn(h) = Hn and ϕn(N) = Nn. 2
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