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1 Introduction

Let X be a locally compact space. By a deformation of X we mean a continuous field

{A; |t €0,1]} of C*-algebras with Ay = Cy(X), and
{At | te (Oa 1]} =B X (Oa 1]7

for a fixed C*-algebra B. Replacing Cy(X) by another C*-algebra A, we generalize this to a
deformation of one C*-algebra to another. This is a basic interpretation of deformation—it
reflects only the topology of X and omits more general fields of algebras—but is an important
one. This importance is seen in the relation to E-theory and the examples [3, 8, 11, 12] that
have arisen.

Deformations are, in fact, very common. About the only requirement for a C*-algebra
to arise as a deformed CW-complex is that it have the correct K-theory. This fact follows
from our calculations in “unsuspended” E-theory [5]. We will explicitly describe one of
the deformations predicted by these calculations: a deformation of a three-dimensional CW
complex into a dimension-drop interval. We hope this example will further clarify the role

of the dimension-drop interval as a building block in Elliott’s inductive limits [6].
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Recall, from [3], that an asymptotic morphism (¢;) : A — B between C*-algebras is a
collection of maps ¢; : A — B for t € [1,00) such that for a,b € A and o € C, as t — o0,

[pe(ab) — pi(a)pe ()| — 0,
[pe(a*) = wi(a)]] — O,
[pe(ca +b) — api(a) — (D) — O

and t — ¢(a) is continuous. We say that (¢;) is injective if also limsup ||¢¢(a)|| > 0 for all
a.

Injective asymptotic morphisms correspond exactly to deformations. Thus, we will work
in the context of asymptotic morphisms. See [3] for an explanation of this correspondence
and the definitions of equivalence and homotopy for asymptotic morphisms.

The following result often gives the easiest way to show a given asymptotic morphism
is injective. First, we recall how an asymptotic morphism (¢;) : A — B induces maps on
K-theory. Given a projection p in A, the class of ¢.([p]) in Ko(B) is represented by any
projection that is close to ¢;(p) for some sufficiently large value of ¢. For projections, and

unitaries, in M} (A) a similar construction is used.

Proposition 1 Suppose X U{pt} is a compact manifold. If an asymptotic morphism () :

Co(X) — B induces an injective map on K-theory then () is injective.

Remark 2 This type of result holds more generally. In particular, it holds for the CW

complex discussed in section 3.

Example 3 Our first exampe is an asymptotic morphism (a;) : Cop(R?) — K which induces
an isomorphism on K-theory. This well-known in several contexts.

We regard Cy(R?) as the universal C*-algebra generated by selfadjoint element h and nor-
mal element N subject to the relation h = h?+N*N. so that the generator of Ko(Co(R?)) = Z
is just

h  N* 10
N 1-h 00
An asymptotic morphism from A to B is given, up to equivalence, by a *-homomorphism

from A to B.,, where By is the C*-algebra described in [3]. Therefore, if A is universal
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for a set of relations one need only define the paths in B that are to be the images of the
generators. In this case, we need only define ay(h) and ay (V).
Let S denote the unilateral shift and, for ¢ € [1,00), let D; denote the diagonal operator

whose diagonal corresponds to the sequence
1/t 2/t,...[t]/t,1,1,...

Set ay(h) =1 — D; and ou(N) = /D, — D2S. Since the required relations hold asymptoti-
cally, this determines ;. The fact that this induces an isomorphism on K follows from the

calculation, in [2] or [7], of the spectrum of

1-D, +/D,— D2S*
/D, — DS D,

See [9] for more details and a modification of this example that produces deformations of

RP? and the Klein bottle.

2 Unsuspended FE-theory

Let A and B be C*-algebras. For convenience, we shall assume that A and B are separable

and nuclear. We will use the notation

[A, B] = homotopy classes of x-homomorphisms,

[[A, B]] = homotopy classes of asymptotic morphisms.

We will use the following isomorphisms, from [3],

I

KK(A,B) E(A, B)
~ [[SA®K,SB®K]]

[S2A® K, S2B @ KJ].
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We now arrive at our main result. By XU{pt} we mean the one-point compactification of
a locally compact space X. Combined with Proposition 1 this result guarantees the existence

of many deformations.



Proposition 4 If X U {pt} is a connected, finite CW complex then the suspension map
[[Co(X), B® K]] = KK(Co(X), B)
is an isomorphism.

The proof of this will be given in [5]. The inverse map may be described as follows. Let
ﬂ : C()(Rl) — C()(Rg) ® K

be a x-homomorphism inducing an isomorphism on K-theory. By [4, Corollary 3.1.8] there

exists a map

BX : Co(X) — SQC()(X) QK

whose suspension is homotopic to 8 ®id¢,(x). Composition, on appropriate sides, by Sx and
the asymptotic morphism

l@a:S?BK —>B®K

see Example 3) defines the inverse mappin
( p pping
[S*Co(X)® K, S*B @ K]] = [[Co(X), B® K]].
Using the universal coefficient theorem we obtain a corollary.

Corollary 5 If X U{pt} is a finite CW complex and n : K*(X) — K,.(B) is an isomorphism
then there exists a deformation of X to B ® K which induces .

3 Matricial torsion

Consider the three-dimensional CW complex obtained by attaching, with degree two, the
boundary of a three-cell B® to a two-sphere S?. Remove the base-point (which sits in the

copy of S?) and call the result X. That is,
X U{pt} = B*U; S?

where ¢ : B® — S? has degree 2. Thus Ky(Co(X)) =0 and K,(Co(X)) = Z/2.



Let B denote the non-unital dimension-drop interval, that is,
B ={f € Cy((0,1], Mz) | f(1) is scalar }.

One may compute Ky(B) =0 and K,(B) = Z/2.
We know, by Corollary 5, that there is an asymptotic morphism

() : Co(X) = BaK

inducing an isomorphism on K-theory. This is an example of topological torsion being
“quantized” into matricial torsion. Our goal is to find ¥ explicitly.

We first must be more explicit about the attaching map and the associated *-homomor-
phism 6 : Co(R?) — Cy(R?). Using the generators and relations of Example 3, we determine
6 by setting

O(h) = f(h),
O(N) = gi(h)N + ga(h)N*

where f, g, and ¢, are functions of the form

which satisfy g1go = 0 and f(¢) = f(£)? + (g1(¢)* + g2(t)?) (t — ).
We will also need ¢ : K — K ® M, given by «(T') = T ® I. With the additional notation

of 4, indicating evaluation at 1, we have two pull-back diagrams:

Co(X) B®K

Co(0,1] ® Cy(R?) Co(R?) Co(0,1] @ K @ M, K
51 0 51 2
CO(R2> IC ® MQ



Lemma 6 There exists an asymptotic morphism (¢;) : Co(R?) — My(K) such that, for

all t,

T
image(¢p; 0 0) C TekK

which induces an isomorphism on K-theory.

We defer the proof until after we see how the lemma is used.

Consider the following commutative diagram (commuting exactly for each t):

i
Co(0,1] @ CoR2) PP 6y0,1] @ My(K)
51 51
Co(R?) . Ma(K)
0 L
2 Nt
Co(R?) K

Here 7, is the unique solution to ton, = ¢, 06. Since ¢ induces an isomorphism on K-theory,
n must as well.

Since these maps are not *x-homomorphisms we cannot immediately invoke the pull-back
property. However, simply restricting ide,(0,1) ® ¢¢ produces v : Co(X) — B ® K. Now

considering the K-theory of the commuting diagram

id®<,0t

Co(0,1) ® Co(R?) Co(0,1) @ My(K)

Co(X) v B K
it is easy to see that v induces an isomorphism on K-theory.
Proof (Lemma 6) In order to specify (¢;) : Co(R?) — My(K), it suffices to specify where

the generators h and N are sent. At t = n € N, we shall have ¢, (h) = H, and ¢,(N) = N,

where H, and N,, are the following elements of My(Mayn) (we regard Myn as a corner of K



and so My(Man) C My(K) ):

- o -
Q9
O{Qn
Hn = >
1-— aq
1-— (6]
1-— Qon
- 0 -
B 0
Pon_1 0
N, =
0 b
0
Pan—1
(. 62” O -

where, for j =1,...,2", a; = j/2"* and 3, = \/a; — oF.
We are interested, more generally, in matrices A, B € My(M}) such that the following

relations hold:

ITA, BIIl, [[B, B7IIl I[A, BTl < e
[A=A" < €
|A24+ B*"B—A| < e (1)
flA) € My®I

It may be checked that H, and N, satisfy (1), for some €, > 0, with ¢, — 0 as n — oc.



We will need some auxiliary matrices in My(Man) :

A path of unitaries, multiplied by 1/2, in the lower-right-hand corner will create a path

1/2
1/2

1/2

1/2
1/2

satisfying (1) from H,, N, to

1/2
1/2

1/2

1/2

Now, deforming the pair of scalars (1/2,1/2) to (0,0) appropriately continues this path to

the pair of matrices 0, 0. By this argument, we have reduced the construction of (¢;) to being

1/2
1/2

1/2

1/2
1/2 0

1/2 0

0
1/2 0

1/2

1/2 0

0 1/2

1/2

1/2 0

0
1/2 0

1/2

1/2 0 |

able to connect H, ® H,, N, & N,, to H, 11, N,11 via pairs satisfying (1).

Let

xq

&%)

O[Qn

A

Pan 10 |

Bon |




so that

A, oo
Hn: 7Nn:
. o
Let ) ) ) )
1/2 0 1/2
- 1/2 - 1/2 0
An: / 7Bn: /
I 1/2_ I 1/2 0 |
so that
) A, ) B,
Hn: . aNn: -
A e

By Berg’s technique, [1, 10], there exists a unitary W € Mayn+1 such that, for some

constant C', independent of n,

— | W* = B,|| < C27?
| &,

and (by keeping W trivial except for vectors in a “segment” avoiding the “last” basis vector

in each copy of C%" )

Let W =W ® I5. It follows from above that

An

1—-A,

1—-A,

W*

Q

N

1-A,
1-A,




and

A Bn A Bn+1 ‘

w W* =

Cn B; CnJrl ‘ B:H—l
0 B*

n

Notice that the two matrices on the left satisfy (1) By taking a path of unitaries from W
to I, we get paths satisfying (1) from H, ® H,, N,, ® N, to this pair. Linear interpolation
from this pair to the pair on the right-hand side gives a path satisfying (1), perhaps after

increasing €,. Finally, it is a simple matter to slide the scalars which are on the diagonal of

Ap
A,

1- A,
1— A,

to connect the right-hand pair to H, 1, N,y1. We may conclude that (¢;) exists with the
properties specified in the lemma and ¢, (h) = H, and ¢,(N) = N,,. O
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