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Abstract

Let A, B be unital C*-algebras and assume that A is separable and quasidiagonal
relative to B. Let ϕ,ψ : A → B be unital ∗-homomorphisms. If A is nuclear and
satisfies the UCT, we prove that ϕ is approximately stably unitarily equivalent to
ψ if and only if ϕ∗ = ψ∗ : K∗(A,Z/n) → K∗(B,Z/n) for all n ≥ 0. We give a
new proof of a result of [DE2] which states that if A is separable and quasidiagonal
relative to B and if ϕ,ψ : A → B have the same KK-class, then ϕ is approximately
stably unitarily equivalent to ψ. For nuclear separable C*-algebras A, we give a KK-
theoretical description of the closure of zero in Ext(A,B).

1 Introduction

Two representations γ, γ′ : A → M(K ⊗ B) are called properly approximately unitarily
equivalent, written γ ' γ′, if there is a sequence of unitaries (un) ∈ CI +K ⊗B such that

• limn→∞ ‖unγ(a)u∗n − γ′(a)‖ = 0, for all a ∈ A

• unγ(a)u∗n − γ′(a) ∈ K ⊗B, for all n, and a ∈ A.

The continuous version of the above equivalence is defined as follows [DE2]. Two represen-
tations γ, γ′ : A→M(K⊗B) are called properly asymptotically unitarily equivalent, written
γ u γ′, if there is a norm-continuous path of unitaries u : [0,∞)→ CI +K ⊗B such that
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• limt→∞ ‖utγ(a)u∗t − γ′(a)‖ = 0, for all a ∈ A

• utγ(a)u∗t − γ′(a) ∈ K ⊗B, for all t ∈ [0,∞), and a ∈ A.

As in [DE2], the use of the word ‘proper’ reflects that the unitaries implementing the above
equivalence relations are compact perturbations of the identity.

Let A, B be unital C*-algebras and assume that A is separable. For two unital ∗-
homomorphisms ϕ, ψ : A→ B consider the following conditions.

(1) [ϕ] = [ψ] in KK(A,B).

(2) ϕ⊕ γ u ψ ⊕ γ for some unital representation γ : A→M(K ⊗B).

(3) [ϕ] = [ψ] in Rørdam’s group KL(A,B) = KK(A,B)/Pext(K∗(A), K∗+1(B)), ([Rø]).

(4) ϕ⊕ γ ' ψ ⊕ γ for some unital representation γ : A→M(K ⊗B).

(5) ϕ is approximately stably unitarily equivalent to ψ (see Definition 3.7).

By a result of Eilers and the author [DE2] we have (1) ⇔ (2). Note that (2) ⇒ (4)
is obvious. Suppose that A is quasidiagonal relative to B. This notion was introduced by
Salinas [Sa], see Definition 3.5. Then it is not hard to see that (4) ⇔ (5), see Lemma 3.8.

Condition (3) is stated under the assumption that A satisfies the universal coefficient
theorem (abbreviated UCT) of [RS]. In view of the universal multi-coefficient theorem
(UMCT) of [DL], (3) is equivalent to

(3’) ϕ∗ = ψ∗ : K∗(A,Z/n)→ K∗(B,Z/n) for all n ≥ 0.

In this paper we prove that if A is separable nuclear quasidiagonal relative to B and satisfies
the UCT, then (3) ⇔ (4), hence (3)⇔ (5), see Theorem 5.1. The latter equivalence was
conjectured informally by Lin [L], and it was known to be true if A is abelian [D1], or if
A can be approximated by nuclear C*-subalgebras satisfying the UCT and having finitely
generated K-theory and B is simple [L], or if A is simple and B satisfies certain conditions
in unstable K-theory and has bounded exponential rank [L], [DE1].

The proof of (3)⇔ (4) is based on a new proof that we give for the implication (1) ⇒ (5)
of [DE2], stated here as Theorem 3.11. Unlike previous approaches, the proof does not use
the theorem of Kadison and Ringrose on derivable automorphisms of C*-algebras.

The same result is used to give a KK-theoretical description of the closure of zero in
Ext(A,B), see Theorem 4.3. This yields new proofs of several results of Schochet [Sch1]-
[Sch3], see Corollaries 4.5–4.7. Corollary 4.7 is used in the proof of Theorem 5.1.

The results on approximate stable unitary equivalence of ∗-homomorphisms have impor-
tant applications in Elliott’s classification program. There are interesting situations when
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the maps γn from Definition 3.7 can be chosen to be ∗-homomorphisms. For instance if A
is nuclear and residually finite dimensional then γn can be taken to be finite dimensional
representations of A into matrices over C1B. Another example considered by Lin [L] and
generalized in [DE1] is when A is nuclear and there is a full unital embedding ι : A ↪→ B. In
that case one can take γn = n · ι = ι⊕ · · · ⊕ ι (n-times).

2 Some preliminaries in KK-theory

Throughout this paper, A is a separable C*-algebra and B is a σ-unital C*-algebra. We work
with Hilbert B-modules E countably generated over B such as E = HB = H ⊗ B where
H is a separable infinite dimensional Hilbert space. We use the notation from [Kas1]. Let
M(K⊗B) denote the multiplier C*-algebra of K⊗B and let Q(K⊗B) denote the generalized
Calkin algebra M(K⊗B)/K⊗B. The quotient map M(K⊗B)→ Q(K⊗B) is denoted by
π. Very often we will identify M(K ⊗ B) with L(HB). Recall that the group Ext−1(A,B)
is generated by ∗-homomorphisms from A to Q(K ⊗ B) which admit completely positive
liftings A→ M(K ⊗ B). Such a map is called a semisplit extension. The group KK1(A,B)
consists of equivalence classes of pairs (τ, P ) where τ : A → M(K ⊗ B) is a representation
and P ∈ M(K ⊗ B) is a selfadjoint projection such that [τ(a), P ] ∈ K ⊗ B for all a ∈ A.
Kasparov [Kas2] proved that there is an isomorphism κ : KK1(A,B) → Ext−1(A,B) which
maps the class of (τ, P ) to the class of the extension π ◦ Pτ(−)P .

Let x ∈ KK1(C(S1),C) be the element defined by the Toeplitz extension

0 −→ K −→ T −→ C(S1) −→ 0.

Recall from [Bla, 17.8.5] that there is a natural homomorphism

τA : KK∗(C(S1),C) −→ KK∗(C(S1)⊗ A,A).

Using the Kasparov product

KK1(C(S1)⊗ A,A)×KK(A,B) −→ KK1(C(S1)⊗ A,B)

we define a group homomorphism

τA(x)⊗− : KK(A,B) −→ KK1(C(S1)⊗ A,B).

This homomorphism is injective, and in fact its composition with the restriction map

KK1(C(S1)⊗ A,B)→ KK1(SA,B)
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is an isomorphism. It coincides with the homomorphism

τA(x0)⊗− : KK(A,B) −→ KK1(SA,B),

where x0 ∈ KK1(SC,C) is the element defined by the reduced Toeplitz extension

0 −→ K −→ T0 −→ SC −→ 0.

Up to a sign, its inverse is given by τA(y0) ⊗ − : KK1(SA,B) −→ KK(A,B), where y0 ∈
KK1(C, SC) is the class of the extension

0 −→ SC −→ CC −→ C −→ 0.

(Recall that x0 ⊗ y0 = −1 and y0 ⊗ x0 = −1 by Bott periodicity, [Bla, 19.2].)
Given two unital ∗-homomorphisms ϕ, ψ : A → B, we want an explicit computation of

τA(x) ⊗ ([ϕ] − [ψ]) ∈ KK1(C(S1) ⊗ A,B) or rather of its image in Ext−1(C(S1) ⊗ A,B)
under Kasparov’s isomorphism κ : KK1(C(S1) ⊗ A,B) → Ext−1(C(S1) ⊗ A,B). In order
to formulate the result we need some notation. Let Z+ = {k ∈ Z : k ≥ 0}, Z− = {k ∈ Z :
k < 0}, and let p± : `2(Z)→ `2(Z±) be the canonical projections. Let S : `2(Z)→ `2(Z) be
the bilateral shift, Sei = ei+1, where (ei) is the canonical orthonormal basis of `2(Z). Define
Φ,Ψ : A→M(K(`2(Z+))⊗B) by

Φ = ϕ⊕ ϕ⊕ ψ ⊕ ϕ⊕ ψ ⊕ · · · = ϕ⊕ (ϕ⊕ ψ)∞,

Ψ = ψ ⊕ ϕ⊕ ψ ⊕ ϕ⊕ ψ ⊕ · · · = ψ ⊕ (ϕ⊕ ψ)∞.

Let w : `2(Z+) ⊗ B → `2(Z+) ⊗ B be a unitary operator defined by w(e0 ⊗ b) = e1 ⊗ b,
w(e2k−1 ⊗ b) = e2k+1 ⊗ b and w(e2k ⊗ b) = e2k−2 ⊗ b for k ≥ 1 and b ∈ B, where (ei) is the
canonical orthonormal basis of `2(Z+). Note that Φ(a) = wΨ(a)w∗ for all a ∈ A. Therefore
[Φ(a), w] ∈ K ⊗B for all a ∈ A since Φ(a)−Ψ(a) ∈ K ⊗B.

If x ∈ M(K ⊗ B), then π(x) ∈ Q(K ⊗ B) will be denoted by ẋ. If σ : A→ M(K ⊗ B) is
a map, then π ◦ σ will be denoted by σ̇.

Proposition 2.1 Let A, B be unital C*-algebras with A separable and let ϕ, ψ : A→ B be
two unital ∗-homomorphisms. Then with notation as above,

κ(τA(x)⊗ [ϕ]− τA(x)⊗ [ψ]) = [σ],

where σ : C(S1)⊗ A→ Q(K ⊗B) is defined by σ(f ⊗ a) = f(ẇ)Φ̇(a).
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Proof. The element τA(x) ∈ KK1(C(S1) ⊗ A,A) is given by the class of the pair (τ, P+),
where τ : C(S1) ⊗ A → M(K(`2(Z)) ⊗ A) = L(`2(Z) ⊗ A), τ(f ⊗ a) = f(S) ⊗ a, S being
the bilateral shift, and P+ = p+ ⊗ idA. It is then clear that −τA(x) is given by the class of
(τ, P−) with P− = p− ⊗ idA.

Since ϕ is a ∗-homomorphism, we have τA(x) ⊗ [ϕ] = ϕ∗(τA(x)) by [Bla][18.7.2(a)], so
that τA(x) ⊗ [ϕ] is represented by the class of the pair (τϕ, P+), where τϕ : C(S1) ⊗ A →
M(K(`2(Z)⊗B), τϕ(f ⊗ a) = f(S)⊗ ϕ(a) and P+ = p+ ⊗ idB : `2(Z⊗B)→ `2(Z+ ⊗B).

Similarly, −τA(x)⊗ [ψ] = [τ, P−]⊗ [ψ] is represented by (τψ, P−), where τψ : C(S1)⊗A→
M(K(`2(Z))⊗ B), τψ(f ⊗ a) = f(S)⊗ ψ(a) and P− = p− ⊗ idB : `2(Z⊗ B)→ `2(Z− ⊗ B).
Thus

τA(x)⊗ ([ϕ]− [ψ]) = [τϕ, P+] + [τψ, P−] = [τψ ⊕ τϕ, P− ⊕ P+].

The image of the latter element in Ext−1(C(S1) ⊗ A,B) under κ is equal to [ω̇], where
ω : C(S1) ⊗ A → L(`2(Z−) ⊗ B) ⊕ L(`2(Z+) ⊗ B) ⊂ L(`2(Z) ⊗ B) is a completely positive
map defined by ω = P−τψP− + P+τϕP+. Therefore

ω(f ⊗ a) = p− ⊗ idB (f(S)⊗ ψ(a)) p− ⊗ idB + p+ ⊗ idB (f(S)⊗ ϕ(a)) p+ ⊗ idB

= p−f(S)p− ⊗ ψ(a) + p+f(S)p+ ⊗ ϕ(a).

Since [f(S), p±] ∈ K, we have

ω(f ⊗ a)− f(S)⊗ idB (p− ⊗ ψ(a) + p+ ⊗ ϕ(a)) ∈ K(`2(Z))⊗B, ∀f ∈ C(S1), a ∈ A.

Therefore, if Φ1 = p− ⊗ ψ + p+ ⊗ ϕ = · · · ⊕ ψ ⊕ ψ ⊕ ϕ ⊕ ϕ ⊕ · · · , and σ1 : C(S1) ⊗ A →
Q(K(`2(Z)⊗B) is defined by σ1(f ⊗ a) = f(π(S⊗ idB))Φ̇1(a), then σ̇1 = ω̇. Let ξ : Z→ Z+

be a bijection defined by ξ(0) = 0, ξ(1) = 1, ξ(k) = 2k + 1, if k ≥ 1 and ξ(k) = −k if k < 0.
Under the corresponding identification of `2(Z) with `2(Z+), Φ1, S ⊗ idB correspond to Φ,
w, respectively, so that σ1 corresponds to σ.

�

3 Approximate unitary equivalence

In this section we show that the conditions (1), (4) and (5) from the introduction are related
as follows: (1) ⇒ (4) ⇔ (5).

Definition 3.1 Two representations γ : A → L(E), γ′ : A → L(E ′) are called approxi-
mately unitarily equivalent, written γ ∼ γ′, if there exists a sequence of unitaries (un) in
L(E ′, E) such that
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(i) limn→∞ ‖γ(a)− unγ′(a)u∗n‖ = 0, a ∈ A,

(ii) γ(a)− unγ′(a)u∗n ∈ K(E), for all n, a ∈ A.

Definition 3.2 A representation γ : A→ L(HB) = M(K⊗B) is called absorbing if γ⊕σ ∼
γ for any representation σ : A→ L(E). If A is unital, then a representation γ : A→M(K⊗
B) is called unitally absorbing if γ ⊕ σ ∼ γ for any unital representation σ : A→ L(E).

Note that any absorbing representation is injective. Any two absorbing representations are
approximately unitarily equivalent.

Examples 3.3 (a) A scalar representation γ : A −→ M(K ⊗ B) is a representation which
factors as

A
γ′−→ L(H)

−⊗1−→ L(H)⊗ 1 ↪→M(K ⊗B).

Suppose that A or B are nuclear, γ′ is faithful and γ′(A) ∩ K = {0}. If γ′ is unital, then γ
is unitally absorbing. If γ′(A)H has infinite codimension in H, then γ is absorbing, [Kas2].

(b) Lin [L] showed that if A is nuclear and separable and if ι : A → B is a unital
embedding, then the map dι : A −→ M(K ⊗ B) defined by dι(a) = 1 ⊗ ι(a) is unitally
absorbing, whenever either A or B is simple. A unital ∗-homomorphism ι : A ↪→ B is called
a full embedding if the linear span of Bι(a)B is dense in B for all nonzero a ∈ A. It was
shown in [DE1] that dι is unitally absorbing whenever ι is a full embedding.

(c) Thomsen [Tho2] proved the existence of absorbing extensions γ : A→M(K ⊗B) for
arbitrary separable C*-algebras A and B.

A C*-algebra B is called stably unital if B ⊗K has a countable approximate unit consisting
of projections. A subset E ⊂ M(K ⊗ B) is called quasidiagonal if there is a countable
approximate unit (pn) of K ⊗B consisting of projections such that

(1) lim
n→∞

‖pna− apn|| = 0, a ∈ E.

A representation γ : A → M(K ⊗ B) is called quasidiagonal if the set γ(A) ⊂ M(K ⊗ B) is
quasidiagonal.

Remark 3.4 (a) If γ, γ′ : A→M(K⊗B) are representations with γ ∼ γ′ and γ is quasidi-
agonal, then γ′ is quasidiagonal.

(b) If A is unital and if γ : A→M(K⊗B) is a unital, unitally absorbing representation,
then γ ⊕ 0M(K⊗B) is an absorbing representation [DE1, Lemma 2.17].

(c) Suppose that E ⊂ M(K ⊗ B) is a quasidiagonal set and that p ∈ E is a projection
such that px = xp = x for all x ∈ E. Then there is an approximate unit of projections (pn)

6



of K ⊗ B such that [pn, x] → 0 for all x ∈ E and [pn, p] = 0 for all n. Indeed, since E
is a quasidiagonal set, there is an approximate unit of projections (qn) of K ⊗ B such that
[qn, x]→ 0 for all x ∈ E. In particular [qn, p]→ 0. Using functional calculus one can perturb
each qn to a projection pn ∈ K ⊗ B, such that ‖pn − qn‖ → 0, and [pn, p ] = 0. (see[DE1,
Lemma 5.1 (iii)]).

Definition 3.5 [Sa] Let A be a separable C*-algebra and let B be a stably unital C*-algebra.
We say that A is quasidiagonal relative to B if there exists an absorbing quasidiagonal rep-
resentation γ : A→M(K ⊗B).

By Remark 3.4 (a) we have that if a separable C*-algebra A is quasidiagonal relative to
B, then any absorbing representation γ : A → M(K ⊗ B) is quasidiagonal. It also follows
from Remark 3.4 that a separable unital C*-algebra is quasidiagonal relative to a stably
unital C*-algebra B if and only if any (or some) unital unitally absorbing representation
is quasidiagonal. Note that a C*-algebra A is quasidiagonal if and only if is quasidiagonal
relative to C.

Lemma 3.6 Let C be a unital nuclear C*-subalgebra of a UHF algebra. Let A be a unital
separable C*-algebra and let B be a stably unital C*-algebra. If A is quasidiagonal relative
to B, then C ⊗ A is quasidiagonal relative to B.

Proof. By assumption, there is a unital embedding  : C ↪→ D where D is a unital UHF
algebra D = ∪Di with Di

∼= Mr(i)(C). Let π : D → L(H) and σ : A→M(K ⊗B) be unital
unitally absorbing representations. It is clear that π⊗σ : D⊗A→ L(H)⊗L(HB) ⊂M(K⊗B)
is quasidiagonal since both π and σ are so. Therefore π⊗σ is a quasidiagonal representation
of C ⊗A. It remains to prove that π⊗ σ is unitally absorbing. First we observe that π⊗ σ
is unitally absorbing since its restriction to each of the Di⊗A ∼= Mr(i)(C)⊗A is easily seen
to be unitally absorbing, using the assumption that σ is unitally absorbing. If π : A→ L(E)
is a representation and ϕ : A→ K(F ) is a completely positive map, we write ϕ ≺ π if there
is a bounded sequence vi ∈ K(F,E) such that

• limi→∞ ‖ϕ(a)− v∗i π(a)vi‖ = 0 for all a ∈ A

• limi→∞ ‖v∗i ξ‖ = 0 for all ξ ∈ E.

Here E,F are countable B-modules. As a corollary of [DE1, Theorem 2.13] a unital repre-
sentation γ : A → M(K ⊗ B) is unitally absorbing if and only if ϕ ≺ γ for any completely
positive contraction ϕ : A → K(F ). Therefore in order to prove that π ⊗ σ is unitally
absorbing it will suffice to show that ϕ ≺ π ⊗ σ for any completely positive contraction
ϕ : C ⊗ A→ K(F ).
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Since C is nuclear, we find two sequences of completely positive contractions

αn : C →Mk(n)(C), βn : Mk(n)(C)→ C

such that ‖βnαn(c)− c‖ → 0 for all c ∈ C. By Arveson’s extension theorem, we can extend
αn to a completely positive contraction α′n : D → Mk(n)(C) such that α′n ◦  = αn. If
En = βn ◦ α′n : D → C, then En is a completely positive contraction with ‖En(c)− c‖ → 0
for all c ∈ C. Since π ⊗ σ is unitally absorbing, we have ϕ ◦ (En ⊗ idA) ≺ π ⊗ σ, hence

ϕn = ϕ ◦ (En ⊗ idA) ◦ (⊗ idA) = ϕ ◦ (En⊗ idA) ≺ π⊗ σ.

Since ‖ϕn(x)− ϕ(x)‖ → 0 for all x ∈ C ⊗ A, it follows that ϕ ≺ π⊗ σ.
�

Definition 3.7 Let A, B be unital C*-algebras and assume that A is quasidiagonal relative
to B. Two unital ∗-homomorphisms ϕ, ψ : A→ B are called approximately stably unitarily
equivalent if for any unital unitally absorbing representation γ : A → M(K ⊗ B), and any
approximate unit of projections (pn) of K ⊗ B with ‖[γ(a), pn]‖ → 0, a ∈ A, if γn(a) =
pnγ(a)pn, then there exist an increasing sequence of integers (k(n)) and a sequence of partial
isometries (vn) in K ⊗B such that v∗nvn = vnv

∗
n = 1B ⊕ pk(n) and

(2) lim
n→∞

‖vn(ϕ(a)⊕ γk(n)(a))v∗n − ψ(a)⊕ γk(n)(a)|| = 0, a ∈ A.

Lemma 3.8 Let ϕ, ψ : A→ B be two unital ∗-homomorphisms. Suppose that A is separable
and quasidiagonal relative to B. Then the following conditions are equivalent.

(i) ϕ⊕ η ' ψ ⊕ η for some unital representation η : A→M(K ⊗B).

(ii) ϕ⊕ γ ' ψ ⊕ γ for some unital unitally absorbing representation γ : A→M(K ⊗B).

(iii) ϕ⊕ γ ' ψ ⊕ γ for any unital unitally absorbing representation γ : A→M(K ⊗B).

(iv) ϕ is approximately stably unitarily equivalent to ψ.

(v) ϕ and ψ satisfy the conditions of Definition 3.7 for some γ and some (pn).

Proof. The implications (iii) ⇒ (ii) ⇒ (i) and (iv) ⇒ (v) are obvious. By [DE2, Lemma
3.4] if γ ∼ γ′ then ϕ⊕ γ ' ψ⊕ γ if and only if ϕ⊕ γ′ ' ψ⊕ γ′. This proves that (ii)⇒ (iii).
To prove (i) ⇒ (ii), note that (i) ⇒ ϕ ⊕ η ⊕ γ ' ψ ⊕ η ⊕ γ. This readily implies (ii) since
η ⊕ γ ∼ γ as γ is absorbing.
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(iii)⇒ (iv) Let γ : A→M(K⊗B) and (pn) be as in Definition 3.7. By assumption there
is a sequence of unitaries (un) in CI +K ⊗B such that

(3) un(ϕ(a)⊕ γ(a))u∗n − ψ(a)⊕ γ(a)→ 0, a ∈ A

as n → ∞. We also have ‖pnγ(a) − γ(a)pn‖ → 0, a ∈ A. After passing to a subsequence
(pk(n)) we may arrange that ‖[en, un]‖ → 0 as n→∞, where en = 1B ⊕ pk(n). By functional
calculus we find a sequence of unitaries vn ∈ en(K ⊗ B)en such that ‖enunen − vn‖ → 0 as
n→∞. Compressing by en in (3) we obtain that

‖vn(ϕ(a)⊕ γk(n)(a))v∗n − ψ(a)⊕ γk(n)(a)‖ → 0

as n→∞ for all a ∈ A. This proves (iv).
(v) ⇒ (ii) Fix γ : A → M(K ⊗ B), (pn), (k(n)) and (vn) as in Definition 3.7. We want

to prove that ϕ ⊕ γ ' ψ ⊕ γ. Let un = 0B ⊕ (1 − pk(n)) + vn ∈ CI + K ⊗ B and define
γ′k(n)(a) = (1− pk(n))γ(a)(1− pk(n)). We have

(4) ‖γ(a)− γk(n)(a)− γ′k(n)(a)‖ → 0, as n→∞, a ∈ A,

since [γ(a), pn] → 0. It is now clear that (3) follows from (4) and (2). This proves that
ϕ⊕ γ ' ψ ⊕ γ.

�
We regard Q(K ⊗B)⊕Q(K ⊗B) as a unital subalgebra of Q(K ⊗B) is the usual way.

Lemma 3.9 Let A be a unital separable C*-algebra and let B be a stably unital C*-algebra.
Suppose that A is quasidiagonal relative to B and let σ be a unital semisplit extension such
that [σ] = 0 in Ext−1(A,B). Then for any unital unitally absorbing representation γ : A→
M(K ⊗B) the set

Eσ⊕γ̇ = {X ∈M(K ⊗B) : Ẋ ∈ (σ ⊕ γ̇)(A)}

is quasidiagonal.

Proof. Since γ is unitally absorbing, γ ⊕ 0M(K⊗B) is absorbing by Remark 3.4 (b). Since
[σ] = 0 in Ext−1(A,B), σ⊕ γ̇⊕0 is of the form u̇(γ̇⊕0⊕0)u̇∗ for some unitary u ∈M(K⊗B).
Therefore it lifts to an absorbing representation δ : A→M(K⊗B). Since A is quasidiagonal
relative to B, δ(A)+K⊗B is a quasidiagonal set. Finally we observe that Eσ⊕γ̇⊕0M(K⊗B) ⊂
δ(A) + K ⊗ B, so that Eσ⊕γ̇ is quasidiagonal by Remark 3.4(c), as it contains an element
acting as a unit.

�
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Lemma 3.10 Let A, B be unital C*-algebras with A separable. Let ϕ, ψ : A → B be two
unital ∗-homomorphisms. Suppose that there exist a unital unitally absorbing representation
η : A→M(K ⊗B) and a unitary u ∈M(K ⊗B) such that

(i) ϕ⊕ η = u(ψ ⊕ η)u∗

(ii) the set (ϕ⊕ η)(A) ∪ {u} is quasidiagonal in M(K ⊗B).

Then ϕ is approximately stably equivalent to ψ.

Proof. From (ii) there exists an approximate unit of projections (en) of K ⊗ B such that
for all a ∈ A

(5) [en, (ϕ⊕ η)(a)]→ 0, [en, u]→ 0 as n→∞.

From (i) and (5) [en, (ψ ⊕ η)(a)] → 0 as n → ∞. We may also arrange that, in addition to
the above, en ≥ e11 ⊗ 1B ∈ K ⊗ B, so that en = e11 ⊗ 1B + qn where (qn) is a sequence of
projections satisfying [qn, η(a)] → 0 for all a ∈ A as n → ∞. Compressing by en in (i), we
obtain that for all a ∈ A

(6) ‖ϕ(a)⊕ qnη(a)qn − enuen(ψ(a)⊕ qnη(a)qn)enu
∗en‖ → 0, as n→∞.

Since [en, u] → 0, for large n, un = enuen|enuen|−1/2 is a unitary in en(K ⊗ B)en with
‖un − enuen‖ → 0. We then obtain from (6) that

‖ϕ(a)⊕ qnη(a)qn − un(ψ(a)⊕ qnη(a)qn)u∗n‖ → 0, as n→∞.

We conclude the proof by applying (v) ⇒ (iv) of Lemma 3.8.

Theorem 3.11 ([DE2]) Let A, B be unital C*-algebras. Assume that A is separable, and
quasidiagonal relative to B. Let ϕ, ψ : A→ B be two unital ∗-homomorphisms with [ϕ] = [ψ]
in KK(A,B). Then ϕ is approximately stably equivalent to ψ. Equivalently, ϕ⊕ γ ' ψ ⊕ γ,
for any unital unitally absorbing representation γ : A→M(K ⊗B).

Proof. We are going to find a representation η : A→M(K⊗B) and a unitary u ∈M(K⊗B)
such that ϕ, ψ, η and u satisfy the assumptions of Lemma 3.10. Recall that the canonical
map M(K⊗B)→ Q(K⊗B) is denoted by π and that we sometimes write ȧ for π(a). We are
using the notation from Proposition 2.1. Since τA(x)⊗− : KK(A,B)→ KK1(C(S1)⊗A,B)
is a homomorphism and [ϕ] − [ψ] = 0, it follows from Proposition 2.1 that [σ] = 0 in
Ext−1(C(S1)⊗A,B). By assumption, A is quasidiagonal relative to B. Since C(S1) embeds
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unitally in a UHF algebra, it follows from Lemma 3.6 that C(S1)⊗ A is also quasidiagonal
relative to B. Therefore there exists a unital, unitally absorbing quasidiagonal representation
∆ : C(S1)⊗A→M(K⊗B). By adding a suitable representation to ∆, if necessary, we may
arrange that if δ is the restriction of ∆ to 1 ⊗ A, δ(a) = ∆(1 ⊗ a), then δ is also unitally
absorbing. Let v = ∆(z ⊗ 1), where z is the canonical unitary generator of C(S1). Recall
that

Φ = ϕ⊕ (ϕ⊕ ψ)∞ Ψ = ψ ⊕ (ϕ⊕ ψ)∞, Φ = wΨw∗.

Therefore if we set η = (ϕ⊕ ψ)∞ ⊕ δ, and u = w ⊕ v, then

ϕ⊕ η = Φ⊕ δ, ψ ⊕ η = Ψ⊕ δ, and ϕ⊕ η = u(ψ ⊕ η)u∗

since Φ = wΨw∗ and δ commutes with v. Thus condition (i) of Lemma 3.10 satisfied. Note
that η is unital unitally absorbing since its direct summand δ is so. It remains to verify
condition (ii) of the same lemma. With our notation, that amounts to checking that the set

E = (Φ⊕ δ)(A) ∪ {u}

is quasidiagonal. Note that E ⊂ Eσ⊕∆̇ since π(Φ ⊕ δ) = σ|1⊗A ⊕ δ̇ and u̇ = ẇ ⊕ v̇ =

(σ ⊕ ∆̇)(z ⊗ 1). Now Eσ⊕∆̇ is quasidiagonal by Lemma 3.9, since [σ] = 0 in Ext−1(A,B).
Therefore its subset E is quasidiagonal as well.

�

Corollary 3.12 ([DE1]) Let A, B be unital C*-algebras and let ι : A→ B be a full unital
embedding (Example 3.3(b)). Suppose that A is nuclear and separable. Let ϕ, ψ : A −→ B
be two unital ∗-homomorphisms such that [ϕ] = [ψ] in KK(A,B). Then for any finite subset
F ⊆ A and any ε > 0, there exist n and a unitary u ∈Mn+1(B) such that

‖(u(ϕ(a)⊕ n · ι(a))u∗ − ψ(a)⊕ n · ι(a)‖ < ε.

for all a ∈ F .

Proof. This follows from Theorem 3.11 applied for γ = dι.
�

4 The closure of zero in Ext(A,B)

In this section we give a purely KK-theoretical description of the closure of zero in Ext(A,B)
under the assumption that A is separable and nuclear and B is σ-unital.

The following proposition is well known to the specialists. A proof is included for the
sake of completeness.
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Proposition 4.1 If A is a separable C*-algebra then KKi(A,M(K ⊗ B)) = 0, i = 0, 1, for
any C*-algebra B.

Proof. This is similar to the proof of [D2, Proposition 2.2]. To simplify the notation,
let M = M(K ⊗ B) = L(HB). Since KK1(A,M) ∼= KK(SA,M) is suffices to consider
only the case i = 0. Since M is unital, KK(A,M) ∼= [qA,K(E) ⊗ M ], by [Cun], where
E is an infinite dimensional Hilbert space. The addition on the latter group is given by
[ϕ] + [ψ] = [θϕ,ψ], θϕ,ψ(a) = w1ϕ(a)w∗1 +w2ψ(a)w∗2, where wi ∈M(K(E)⊗M) are isometries
with w1w

∗
1 +w2w

∗
2 = 1. This definition does not depend on the particular choice of the pair wi

(see [JT, 1.3]). Let s1, s2 : HB → HB be isometries with s1s
∗
1 +s2s

∗
2 = 1 and set wi = 1E⊗si :

E ⊗HB → E ⊗HB. Let s : HB ⊕HB → HB be defined by s(x1 ⊕ x2) = s1x1 + s2x2.Then
1E⊗s : E⊗HB⊕E⊗HB → E⊗HB is a unitary such that θϕ,ψ(a) = 1E⊗s(ϕ(a)⊕ψ(a))1E⊗s∗.

Define α : M(K ⊗ B) → M(K ⊗ K ⊗ B) by α(x) = 1H ⊗ x and let v = v0 ⊗ idB :
H ⊗H ⊗B → H ⊗B for some unitary v0 : H ⊗H → H.

If ϕ : qA→ K(E)⊗M is a ∗-homomorphism, define η : qA→ K(E)⊗M by

(7) η(a) = 1E ⊗ v(idK(E) ⊗ α) ◦ ϕ(a))1E ⊗ v∗, a ∈ A.

We are going to show that [ϕ] + [η] = [η], or equivalently [θϕ,η] = [η], in [qA,K(E) ⊗M ].
That will show that [ϕ] = 0 for all ϕ so that [qA,K(E)⊗M ] = 0. Since the unitary group of
M(K(E)⊗M) is path connected in the strict topology [JT], it suffices to find a unitary w in
M(K(E)⊗M) such that wθϕ,ηw

∗ = η. Let (ei), i = 0, 1, ... be an orthonormal basis of H and
define a unitary u0 : H⊕H⊗H → H⊗H by u0(h⊕0) = e0⊗h, u0(ei⊗h) = ei+1⊗h, h ∈ H.
Set u = u0⊗ idB : H⊗B⊕H⊗H⊗B → H⊗H⊗B and note that 1H⊗x = u(x⊕1H⊗x)u∗

for all x ∈M , hence α = u(idM ⊕ α)u∗. Therefore

(8) (idK(E) ⊗ α) ◦ ϕ(a) = 1E ⊗ u(ϕ(a)⊕ (idK(E) ⊗ α) ◦ ϕ(a))1E ⊗ u∗, a ∈ A.

Finally, using (7) and (8), one checks that

w = 1E ⊗ (vu(1HB
⊕ v∗)s∗) ∈ 1E ⊗M ⊂M(K(E)⊗M)

is a unitary satisfying wθϕ,ηw
∗ = η. Note that the unitary vu(1HB

⊕v∗)s∗ belongs to M(K⊗B)
since it is given by a composite of B-linear unitaries

HB
s∗−→ HB ⊕HB

1⊕v∗−→ HB ⊕ (H ⊗H)B
u−→ (H ⊗B)B

v−→ HB,

where (H ⊗H)B = H ⊗H ⊗B.
�
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For the remaining of this section we assume that A is a separable nuclear C*-algebra and
B is σ-unital. In this case all extensions σ : A→ Q(K⊗B) are semisplit by the Choi-Effros
theorem, and Ext−1(A,B) = Ext(A,B). Any ∗-homomorphism ϕ : A → Q(K ⊗ B) gives
both and element [ϕ]Ext of Ext(A,B) and element [ϕ]KK of KK(A,Q(K ⊗B)).

Proposition 4.2 Let A be a separable nuclear C*-algebra and let B be a σ-unital C*-algebra.
Then the map χ : Ext(A,B) → KK(A,Q(K ⊗ B)), defined by χ[ϕ]Ext = [ϕ]KK, is a natural
isomorphism of groups.

Proof. From the six-term exact sequence for KK(A,−) associated with the extension

(9) 0→ K⊗B →M(K ⊗B)→ Q(K ⊗B)→ 0

and from Proposition 4.1 we get an exact sequence
(10)

0 = KK(A,M(K⊗B))→ KK(A,Q(K⊗B))
∂→ KK1(A,K⊗B)→ KK1(A,M(K⊗B)) = 0.

Thus ∂ is an isomorphism. By a theorem of Kasparov [Kas2], there is a natural isomorphism

κ : KK1(A,B) −→ Ext(A,B) = Ext(A,B)−1.

Therefore ∂−1 ◦ κ−1 : Ext(A,B)→ KK(A,Q(K ⊗ B)) is an isomorphism. We need to show
that ∂−1 ◦ κ−1 = χ. The image of [ϕ]Ext under κ−1 is denoted by δϕ. Let

(11) 0 −→ K⊗B −→ Eϕ −→ A −→ 0

be the pullback of the extension (9) by ϕ : A → Q(K ⊗ B). Then we have a commutative
diagram

0 −−−→ K⊗B −−−→ M(K ⊗B)
π−−−→ Q(K ⊗B) −−−→ 0∥∥∥ x xϕ

0 −−−→ K⊗B −−−→ Eϕ −−−→ A −−−→ 0

By the naturality of the boundary map ∂ we obtain a commutative diagram:

KK(A,Q(K ⊗B))
∂−−−→ KK1(A,K ⊗B)

ϕ∗

x ∥∥∥
KK(A,A)

∂−−−→ KK1(A,K ⊗B)
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Therefore
∂ϕ∗[idA]KK = ∂[idA]KK.

Now ϕ∗[idA]KK = ∂[ϕ]KK and by [Bla, Theorem 19.5.7]

∂[idA]KK = [idA]⊗ δϕ = δϕ = κ−1[ϕ]Ext.

Therefore ∂[ϕ]KK = κ−1[ϕ]Ext, hence χ = ∂−1 ◦ κ−1. This completes the proof as we have
seen that both ∂ and κ are natural isomorphisms.

�
Following [BDF] and [Br], Salinas [Sa] introduced a natural topology on Ext(A,B). This

is just the quotient topology of the point-norm topology on the space of extensions A →
Q(K⊗B). An extension τ is called absorbing if for any trivial extension σ, τ ⊕σ is unitarily
equivalent to τ via a unitary liftable to M(K ⊗ B). If γ : A → M(K ⊗ B) is a scalar
absorbing representation (see Example 3.3(a)), then θ = γ̇ is an absorbing extension. Also
τ ⊕ θ is absorbing for any extension τ . If τ : A → Q(K ⊗ B) is an absorbing extension,
and if θ : A → Q(K ⊗ B) is a trivial absorbing extension, then [τ ] belongs to the closure
of zero in Ext−1(A,B), denoted by Z(A,B), if and only if there is a sequence of unitaries
un ∈ Q(K ⊗ B) such that ‖τ(a) − unθ(a)u∗n‖ → 0 for all a ∈ A, as n → ∞. Since both τ
and θ are absorbing, one can arrange that the unitaries un lift to unitaries in M(K ⊗ B).
This is easily seen if we keep in mind that τ , θ are unitarily equivalent with τ ⊕ 0, θ ⊕ 0,
respectively, via liftable unitaries.

To simplify notation, Q(K ⊗ B) will be denoted by Q. Let d : Q →
∏∞

n=1 Q be defined
by d(x) = (x, x, x, . . . ). Let

ν :
∞∏
n=1

Q→
∞∏
n=1

Q/
∞∑
n=1

Q

denote the quotient map and let

Ω : KK(A,Q)→ KK(A,
∏

Q/
∑

Q)

be the map induced by ν◦d, that is Ω = (ν◦d)∗. Fix θ = γ̇ : A→ Q where γ : A→M(K⊗B)
is an absorbing scalar representation as in Example 3.3(a).

Theorem 4.3 Let A,B be C*-algebras with A nuclear and separable. Then Ker Ω consists
of the classes [ϕ]KK of those ∗-homomorphisms ϕ : A → Q(K ⊗ B) for which there exists a
sequence of unitaries (un) in M2(Q(K ⊗B)) such that for all a ∈ A

(12) lim
n→∞

‖un(ϕ⊕ θ)(a)u∗n − (θ ⊕ θ)(a)‖ = 0.
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Equivalently, if ϕ : A → Q(K ⊗ B) is an absorbing extension, then [ϕ] ∈ Ker Ω if and only
if there is a sequence of unitaries vn ∈ M(K ⊗ B) such that limn→∞ ‖ϕ(a) − v̇nθ(a)v̇∗n‖ = 0
for all a ∈ A.

Proof. If ϕ : A→ Q is a ∗-homomorphism and θ is as above, we let

Φ = ν ◦ d ◦ ϕ, Θ = ν ◦ d ◦ θ.

Suppose that ϕ and θ satisfy the condition (12) and let us show that Ω[ϕ]KK = 0. The
sequence (un) gives a unitary u ∈ M2(

∏
Q/
∑

Q) such that u(Φ ⊕ Θ)u∗ = Θ ⊕ Θ. This
clearly implies that [Φ] = [Θ] in KK(A,

∏
Q/
∑

Q). On the other hand

[Θ]KK = Ω[θ]KK = Ωχ[θ]Ext = 0,

since [θ]Ext = 0 as θ lifts to a representation γ.
Conversely, assume that Ω[ϕ]KK = 0. Let us observe that since θ is absorbing, for any

integer m ≥ 1, m · θ = θ ⊕ · · · ⊕ θ (m − times) is unitarily equivalent to θ. Therefore the
condition (12) is equivalent to the following:

For any finite subset F of A and any ε > 0, there exist m ≥ 1 and a unitary u ∈ Mm+1(Q)
such that

(13) ‖u(ϕ⊕m · θ)(a)u∗ − (θ ⊕m · θ)(a)‖ < ε, a ∈ F .

Consequently, it suffices to prove that ϕ and θ satisfy (13) rather than (12). Since Ω[ϕ] = 0
by assumption, and Ω[θ] = 0 as we saw above, we have Ω[ϕ]KK = Ω[θ]KK, hence [Φ] = [Θ] in
KK(A,

∏
Q/
∑

Q).

Let Ã denote the C*-algebra obtained by adding a unit to A. This is done even if A was
unital in the first place. By replacing ϕ by ϕ⊕θ if necessary, we may arrange that 1Q 6∈ ϕ(A).

Let ϕ̃, θ̃ : Ã→ Q be the unital extensions of ϕ and θ and set Φ̃ = ν ◦ d ◦ ϕ̃ and Θ̃ = ν ◦ d ◦ θ̃.
We have that [Φ̃] = [Θ̃] in KK(Ã,

∏
Q/
∑

Q) since [Φ] = [Θ] in KK(A,
∏

Q/
∑

Q), and

Φ̃, Θ̃ are unitizations of Φ,Θ.
Note that Θ̃ : A→

∏
Q/
∑

Q is a full embedding since it factors as a product of unital
maps

A
eγ′−→ L(H) ↪→M(K ⊗B)→ Q(K ⊗B) −→

∏
Q/
∑

Q

and γ̃ is a full embedding since γ̃′(A)∩K(H) = {0}. By Corollary 3.12, for any finite subset
F of A and any ε > 0, there exist m ≥ 1 and a unitary U ∈ Mm+1(

∏
Q/
∑

Q) such that

(14) ‖U(Φ̃⊕m · Θ̃)(a)U∗ − (Θ̃⊕m · Θ̃)(a)‖ < ε, a ∈ F .
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Let V = (vi) ∈
∏

Q be a unitary lifting of U . Then it follows from (14) that there is some
large i such that

(15) ‖vi(ϕ̃⊕m · θ̃)(a)v∗i − (θ̃ ⊕m · θ̃)(a)‖ < ε, a ∈ F .

This shows that ϕ and θ satisfy (13) and completes the proof.
�

Remark 4.4 The map Ω can be integrated in a six-term exact sequence

KK(A,Q)
Ω−−−→ KK(A,

∏
Q/
∑

Q)
1−σ−−−→ KK(A,

∏
Q/
∑

Q)x y
KK1(A,

∏
Q/
∑

Q)
1−σ←−−− KK1(A,

∏
Q/
∑

Q)
Ω←−−− KK1(A,Q)

which is similar to an exact sequence in E-theory found by Thomsen [Tho1].

Note that Theorem 4.3 says that χ(Z(A,B)) = KerΩ. Let α ∈ KK(A,A′) be a KK-
equivalence. If Q = Q(K ⊗B) as before, α induces a commutative diagram:

Ext(A,B)
κ−1

−−−→ KK1(A,B)
∂−1

−−−→ KK(A,Q)
Ω−−−→ KK(A,

∏
Q/
∑

Q)

α⊗−
y α⊗−

y α⊗−
y α⊗−

y
Ext(A′, B)

κ−1

−−−→ KK1(A′, B)
∂−1

−−−→ KK(A′,Q)
Ω′−−−→ KK(A′,

∏
Q/
∑

Q)

This gives right away the following corollary.

Corollary 4.5 ([Sch1]) Let A, A′ be separable nuclear C*-algebras and let B be a σ-unital
C*-algebra. If α ∈ KK(A,A′) is a KK-equivalence, then the isomorphism α⊗− : Ext(A,B)→
Ext(A′, B) maps Z(A,B) onto Z(A′, B).

Corollary 4.6 ([Sch2]) Let A be a separable nuclear C*-algebra satisfying the UCT and let
B be a σ-unital C*-algebra. Then Z(A,B) is naturally isomorphic to Pext(K∗(A), K∗(B)).

Proof. If A satisfies the UCT, then A is KK-equivalent to a commutative C*-algebra.
Therefore A satisfies the UMCT of [DL], so that there is an exact sequence
(16)
0→ Pext(K∗(A), K∗+1(Q(K⊗B))→ KK(A,Q(K⊗B))→ HomΛ(K(A),K(Q(K⊗B)))→ 0,
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where K(A) = ⊕nK∗(A; Z/n) is the total K-theory group, and Λ is a certain set of op-
erations on K(−). We regard both Z(A,B) ∼= χ(Z(A,B)) and Pext(K∗(A), K∗(B)) ∼=
Pext(K∗(A), K∗+1(Q(K ⊗ B))) as subgroups of KK(A,Q(K ⊗ B)). First we want to verify
the inclusion

Z(A,B) ⊂ Pext(K∗(A), K∗+1(Q(K ⊗B)) ).

If θ is a trivial absorbing extension, then [θ] = 0 so that the map θ : K(A)→ K(Q(K ⊗ B))
vanishes. If [σ] ∈ Z(A,B) is the class of an absorbing extension σ, then by the very definition
of the topology on Ext(A,B), σ is approximately unitarily equivalent to θ, hence σ = θ = 0.
Therefore [σ] = [σ]− [θ] ∈ Pext(K∗(A), K∗+1(Q(K⊗B)) ) by the UMCT (16). To prove the
opposite inclusion

Pext(K∗(A), K∗+1(Q(K ⊗B)) ) ⊂ Z(A,B),

we note that since both subsets are invariant under KK-equivalence in the first variable,
it suffices to prove the statement for any C*-algebra KK-equivalent to A. Thus, using
[RS, Proposition 7.3], we may assume that A = ∪∞i=1Ai where Ai are nuclear C*-algebras
satisfying the UCT and such that K∗(Ai) is finitely generated for each i. In particular
Pext(K∗(Ai), K∗+1(Q(K ⊗ B)) ) = 0 for all i. Let σ, θ : A → Q(K ⊗ B) be two ab-
sorbing extensions with θ trivial and [σ] ∈ Pext(K∗(A), K∗+1(Q(K ⊗ B)). Then [σ|Ai

] ∈
Pext(K∗(Ai), K∗+1(Q(K ⊗ B))) vanishes, so that [σ|Ai

] = [θ|Ai
] ∈ KK(Ai, Q(K ⊗ B)) by

(16). Since both σ|Ai
and θ|Ai

are absorbing, they are unitarily equivalent. Therefore σ is
approximately unitarily equivalent to θ, hence [σ] ∈ Z(A,B).

�

Corollary 4.7 ([Sch3]) Let A be a separable nuclear C*-algebra satisfying the UCT, and
let B be a stably-unital C*-algebra. Suppose that A is quasidiagonal relative to B. Let
σ : A→ Q(K ⊗ B) be an absorbing extension. Then Eσ = {y ∈ M(K ⊗ B) : ẏ ∈ σ(A)} is a
quasidiagonal set if and only if [σ] ∈ Pext(K∗(A), K∗(B)).

Proof. This follows from Corollary 4.6 and from [Sa, Theorem 4.4] which states that if A
is quasidiagonal relative to B and σ : A→ Q(K ⊗ B) is an absorbing extension, then Eσ is
a quasidiagonal set if and only if [σ] ∈ Z(A,B). It should be noted that the proof from [Sa]
also applies to the case when A is nonunital. �

5 Approximate unitary equivalence revisited

In this section we prove the equivalences (3)⇔ (4) ⇔ (5) from the introduction.
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Theorem 5.1 Let A, B be unital C*-algebras with A nuclear and separable. Suppose that
A is quasidiagonal relative to B and let ϕ, ψ : A→ B be two unital ∗-homomorphisms. The
following assertions are equivalent.

(i) [ϕ]− [ψ] ∈ Pext(K∗(A), K∗+1(B)) in KK(A,B).

(ii) ϕ⊕ γ ' ψ ⊕ γ for some (any) unital unitally absorbing quasidiagonal representation
γ : A→M(K ⊗B).

(iii) ϕ is approximately stably unitarily equivalent to ψ.

Proof. We have that (ii) ⇔ (iii) by Lemma 3.8.
(iii) ⇒ (i) It follows easily from (iii) that ϕ∗ = ψ∗ : K∗(A,Z/n) → K∗(B,Z/n) for all

n ≥ 0, so that (i) follows from the UMCT (16).
(i) ⇒ (iii) Let T be the group morphism defined as the composition

KK(A,B)
τA(x)⊗−−→ KK1(C(S1)⊗ A,B)

∂−1

−→ KK(C(S1)⊗ A,Q(K ⊗B)),

with τA(x) as in Proposition 2.1 and ∂−1 as in Theorem 4.3. The morphism T is clearly
compatible with the UMCT (16), in the sense that it induces a commutative diagram

KK(A,B) −−−→ HomΛ(K(A),K(Q(K ⊗B)))

T

y T

y
KK(C(S1)⊗ A,B) −−−→ HomΛ(K(C(S1)⊗ A),K(Q(K ⊗B)))

Here T (h) = ∂−1
∗ ◦ h ◦ τ , where τ : K(C(S1) ⊗ A) → K+1(A) is induced by τA(x) ∈

KK1(C(S1)⊗A,A) and ∂−1
∗ is the inverse of the isomorphism ∂∗ : K(Q(K⊗B))→ K+1(B).

That shows that T maps Pext(K∗(A), K∗+1(B)) to Pext(K∗(C(S1) ⊗ A), K∗+1(Q(K ⊗ B)).
Note that

T = ∂−1 ◦ (τA(x)⊗−) = χ ◦ κ ◦ (τA(x)⊗−).

Therefore by Propositions 4.2 and 2.1,

[σ]KK = χ[σ]Ext = T ([ϕ]− [ψ]) ∈ Pext(K∗(C(S1)⊗ A), K∗+1(Q(K ⊗B))).

Here we use the same notation as in the proof of Theorem 3.11. Since C(S1) ⊗ A is qua-
sidiagonal relative to B and it satisfies the UCT, we have by Corollary 4.7 that Eσ⊕∆̇ is a
quasidiagonal set whenever ∆ : C(S1) ⊗ A → M(K ⊗ B) is an absorbing extension. The
rest of the proof is identical with the last part of the proof of Theorem 3.11. Indeed, if
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η = (ϕ⊕ψ)∞⊕ δ, then the set (ϕ⊕η)(A)∪{u} = (Φ⊕ δ)(A)∪{u} ⊂ Eσ⊕∆̇ is quasidiagonal
and ϕ ⊕ η = u(ψ ⊕ η)u∗. Therefore ϕ is approximately stably equivalent to ψ by Lemma
3.10.

�
There is a number of interesting corollaries of Theorem 5.1 where the approximate mul-

tiplicative morphisms γn implementing (iii) can be chosen to be ∗-homomorphisms. For
instance this is the case when A is nuclear residually finite dimensional (γn will be finite
dimensional representations) or when there is a full embedding ι : A ↪→ B (γn = k(n) · ι as
in Corollary 3.12).
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