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Abstract

Let A, B be unital C*-algebras and assume that A is separable and quasidiagonal
relative to B. Let ¢,9 : A — B be unital x-homomorphisms. If A is nuclear and
satisfies the UCT, we prove that ¢ is approximately stably unitarily equivalent to
¥ if and only if ¢, = ¢ : Ky (A,Z/n) — K.(B,Z/n) for all n > 0. We give a
new proof of a result of [DEy] which states that if A is separable and quasidiagonal
relative to B and if ¢, : A — B have the same KK-class, then ¢ is approximately
stably unitarily equivalent to 1. For nuclear separable C*-algebras A, we give a KK-
theoretical description of the closure of zero in Ext(A, B).

1 Introduction

Two representations 7,7 : A — M(K ® B) are called properly approximately unitarily
equivalent, written v ~ ~/, if there is a sequence of unitaries (u,) € CI + K ® B such that

o lim, . [|[u,y(a)ul —+'(a)|| =0, foralla € A
o u,y(a)ul —+'(a) € K® B, for all n, and a € A.

The continuous version of the above equivalence is defined as follows [DEs]. Two represen-
tations 7,7 : A — M(K ® B) are called properly asymptotically unitarily equivalent, written
v &/, if there is a norm-continuous path of unitaries u : [0,00) — CI + K ® B such that
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o lim; . [|ury(a)uf —+'(a)|| =0, for alla € A
o uy(a)u; —+'(a) € K® B, for all t € [0,00), and a € A.

As in [DEs], the use of the word ‘proper’ reflects that the unitaries implementing the above
equivalence relations are compact perturbations of the identity.

Let A, B be unital C*-algebras and assume that A is separable. For two unital *-
homomorphisms ¢, : A — B consider the following conditions.

1) [¢] = [¢] in KK(4, B).

(

(2)

(3) [¢] = [¢] in Rordam’s group KL(A, B) = KK(A, B)/Pext(K.(A), K.11(B)), ([Ro]).
(4)

()

By a result of Eilers and the author [DE,|] we have (1) < (2). Note that (2) = (4)
is obvious. Suppose that A is quasidiagonal relative to B. This notion was introduced by
Salinas [Sal, see Definition 3.5. Then it is not hard to see that (4) < (5), see Lemma 3.8.

Condition (3) is stated under the assumption that A satisfies the universal coefficient

theorem (abbreviated UCT) of [RS]. In view of the universal multi-coefficient theorem
(UMCT) of [DL], (3) is equivalent to

(3") v =y Ki(A,Z/n) — K.(B,Z/n) for all n > 0.

In this paper we prove that if A is separable nuclear quasidiagonal relative to B and satisfies
the UCT, then (3) < (4), hence (3)< (5), see Theorem 5.1. The latter equivalence was
conjectured informally by Lin [L]|, and it was known to be true if A is abelian [Dy], or if
A can be approximated by nuclear C*-subalgebras satisfying the UCT and having finitely
generated K-theory and B is simple [L], or if A is simple and B satisfies certain conditions
in unstable K-theory and has bounded exponential rank [L], [DE;].

The proof of (3) < (4) is based on a new proof that we give for the implication (1) = (5)
of [DEy], stated here as Theorem 3.11. Unlike previous approaches, the proof does not use
the theorem of Kadison and Ringrose on derivable automorphisms of C*-algebras.

The same result is used to give a KK-theoretical description of the closure of zero in
Ext(A, B), see Theorem 4.3. This yields new proofs of several results of Schochet [Sch;]-
[Schs], see Corollaries 4.5-4.7. Corollary 4.7 is used in the proof of Theorem 5.1.

The results on approximate stable unitary equivalence of *-homomorphisms have impor-
tant applications in Elliott’s classification program. There are interesting situations when
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the maps , from Definition 3.7 can be chosen to be *-homomorphisms. For instance if A
is nuclear and residually finite dimensional then 7, can be taken to be finite dimensional
representations of A into matrices over Clg. Another example considered by Lin [L] and
generalized in [DE;] is when A is nuclear and there is a full unital embedding ¢ : A — B. In
that case one can take v, =n-t=1® --- ® ¢ (n-times).

2 Some preliminaries in KK-theory

Throughout this paper, A is a separable C*-algebra and B is a o-unital C*-algebra. We work
with Hilbert B-modules E countably generated over B such as F = Hg = H ® B where
H is a separable infinite dimensional Hilbert space. We use the notation from [Kas;]. Let
M(K® B) denote the multiplier C*-algebra of L® B and let Q(K ® B) denote the generalized
Calkin algebra M(K ® B)/K ® B. The quotient map M(K ® B) — Q(K ® B) is denoted by
7. Very often we will identify M(K ® B) with L(Hp). Recall that the group Ext™' (A, B)
is generated by #-homomorphisms from A to Q(K ® B) which admit completely positive
liftings A — M(K ® B). Such a map is called a semisplit extension. The group KK'(A, B)
consists of equivalence classes of pairs (7, P) where 7 : A — M(K ® B) is a representation
and P € M(K ® B) is a selfadjoint projection such that [7(a),P] € K ® B for all a € A.
Kasparov [Kasy] proved that there is an isomorphism « : KK'(4, B) — Ext™'(A, B) which
maps the class of (7, P) to the class of the extension m o P7(—)P.
Let x € KK'(C(S'),C) be the element defined by the Toeplitz extension

0—K-—T—C(S") —0.
Recall from [Bla, 17.8.5] that there is a natural homomorphism
74 : KK*(O(S1),C) — KK*(C(S") ® A, A).
Using the Kasparov product
KKY(C(S') @ A, A) x KK(A, B) — KK*(C(S') ® A, B)
we define a group homomorphism
Ta(z) ® — : KK(A, B) — KK'(CO(S') ® A, B).

This homomorphism is injective, and in fact its composition with the restriction map

KK'(C(S') ® A, B) — KK'(SA, B)
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is an isomorphism. It coincides with the homomorphism
Ta(z0) ® — : KK(A, B) — KK'(SA, B),
where 2y € KK'(SC, C) is the element defined by the reduced Toeplitz extension
00— K —1Ty— SC —0.

Up to a sign, its inverse is given by 74(yo) ® — : KK'(SA, B) — KK(A, B), where y, €
KK'(C, SC) is the class of the extension

0—SC—CC—C—0.

(Recall that o ® yo = —1 and yo ® xg = —1 by Bott periodicity, [Bla, 19.2].)

Given two unital x-homomorphisms ¢, : A — B, we want an explicit computation of
Ta(z) ® ([p] — [¥]) € KK'(C(S') ® A, B) or rather of its image in Ext~'(C(S') ® A, B)
under Kasparov’s isomorphism » : KK'(C(S') ® A, B) — Ext~*(C(S') ® A, B). In order
to formulate the result we need some notation. Let Zy, ={k € Z:k >0}, Z_ ={k € Z:
k < 0}, and let py : (*(Z) — ¢*(Z+) be the canonical projections. Let S : (*(Z) — (*(Z) be
the bilateral shift, Se; = e;, 1, where (e;) is the canonical orthonormal basis of ¢*(Z). Define
O,V : A— M(K(*Zy)) ® B) by

P=pP @Y OPPYD- =9 ® (0D Y)o,

V=9 QP DePUvd =0 P (0P Y)oo.

Let w : (*(Zy) ® B — (*(Z,) ® B be a unitary operator defined by w(eg ® b) = e; ® b,
w(egp—1 ®b) = €911 @b and w(egy ® b) = egp_2 @ b for k > 1 and b € B, where (e;) is the
canonical orthonormal basis of (?(Z, ). Note that ®(a) = w¥(a)w* for all a € A. Therefore
[®(a),w] € K® B for all a € A since ®(a) — ¥V(a) € L® B.

If x € M(K ® B), then 7(z) € Q(K ® B) will be denoted by &. If 0 : A - M(K ® B) is
a map, then 7 o ¢ will be denoted by &.

Proposition 2.1 Let A, B be unital C*-algebras with A separable and let v, : A — B be
two unital x-homomorphisms. Then with notation as above,

K(Ta() @[] = 7a(z) @ [P]) = [0],

where o : C(SY) @ A — Q(K ® B) is defined by o(f ® a) = f(uw)®d(a).



Proof. The element 74(z) € KK'(C(S') ® A, A) is given by the class of the pair (1, P, ),
where 7 : C(SY) ® A — M(K((*(Z)) ® A) = L(*(Z) @ A), 7(f ® a) = f(S) ® a, S being
the bilateral shift, and Py = p; ® ids. It is then clear that —74(z) is given by the class of
(1, P-) with P_ =p_ ®1ida.

Since ¢ is a *-homomorphism, we have 74(x) ® [¢] = @.(Ta(x)) by [Bla][18.7.2(a)], so
that 74(z) ® [¢] is represented by the class of the pair (7,, P}), where 7, : C(S') @ A —
M(KC(P(Z) @ B), 7,(f @) = £(S) @ ¢(a) and Py = p, ®idp : A(Z.& B) — A(Z, @ B).

Similarly, —74(z) ® [¢)] = [r, P_]®[¢)] is represented by (7, P_), where 7, : C(S) @ A —
M(K(13(Z)) @ B), 7o(f ® a) = f(S) @ ¢(a) and P_ = p_ ®@idp : (*(Z ® B) — (*(Z_ @ B).
Thus

Ta(2) @ ([¢] = [V]) = [1p, Pe] + [1y, P-] = [1y @ 7, P- © P4].
The image of the latter element in Ext~'(C(S') ® A, B) under & is equal to [w], where
w:CSY)®A— L(*(Z-)® B)® L({*(Z+) ® B) C L({*(Z) ® B) is a completely positive
map defined by w = P_7,P_ + P, 7,P,. Therefore

w(f®a)=p-@idg (f(S) @ Y(a)) p- @ idp + p; @ idp (F(S) @ p(a)) p+ @ idg

=p-f(9)p- ®¢(a) + i f(S)p ® ¢(a).
Since [f(95),p+] € K, we have

w(f ®a)— f(S)®idp (p— @ ¥(a) +py @ pla)) € K(*(Z))®@ B, YfeC(S"),ac A

Therefore, if &, = p_ QY +p, Q= BVOYV DD e® -, and gy : C(S') ® A —
Q(K(£*(Z) ® B) is defined by o1 (f ® a) = f(n(S ®idg))®;(a), then oy = . Let & : Z — Z,
be a bijection defined by £(0) =0, (1) =1, (k) =2k +1,if k > 1 and £(k) = =k if £ < 0.
Under the corresponding identification of ¢?(Z) with ¢*(Z), ®;, S ® idp correspond to @,
w, respectively, so that o, corresponds to o.

[

3 Approximate unitary equivalence

In this section we show that the conditions (1), (4) and (5) from the introduction are related
as follows: (1) = (4) < (5).

Definition 3.1 Two representations v : A — L(E), v : A — L(E') are called approxi-

mately unitarily equivalent, written v ~ «/', if there exists a sequence of unitaries (u,) in
L(E', E) such that



(1) limp, oo [[7(a) — uny'(@)up]| = 0, a € A,
(i1) v(a) —u,y (@)l € K(E), for alln, a € A.

Definition 3.2 A representationy: A — L(Hg) = M(K® B) is called absorbing if y@®o ~
v for any representation o : A — L(E). If A is unital, then a representation v : A — M(K®
B) is called unitally absorbing if v @ o ~ v for any unital representation o : A — L(E).

Note that any absorbing representation is injective. Any two absorbing representations are
approximately unitarily equivalent.

Examples 3.3 (a) A scalar representation v : A — M(K ® B) is a representation which
factors as

AL LH) "2 L(H) 1< MK ® B).

Suppose that A or B are nuclear, ' is faithful and ~'(A) N IKC = {0}. If v is unital, then ~y
is unitally absorbing. If v'(A)H has infinite codimension in H, then 7 is absorbing, [Kasy].

(b) Lin [L] showed that if A is nuclear and separable and if © : A — B is a unital
embedding, then the map d, : A — M(K ® B) defined by d,(a) = 1 ® v(a) is unitally
absorbing, whenever either A or B is simple. A unital x-homomorphism : A — B is called
a full embedding if the linear span of Bi(a)B is dense in B for all nonzero a € A. It was
shown in [DE;] that d, is unitally absorbing whenever v is a full embedding.

(c) Thomsen [Thoy] proved the existence of absorbing extensions v : A — M(K ® B) for
arbitrary separable C*-algebras A and B.

A C*-algebra B is called stably unital if B ® K has a countable approximate unit consisting
of projections. A subset £ C M(K ® B) is called quasidiagonal if there is a countable
approximate unit (p,) of K ® B consisting of projections such that

(1) lim |pha —ap,|| =0, a€kE.

A representation v : A — M(K ® B) is called quasidiagonal if the set v(A) C M(K ® B) is
quasidiagonal.

Remark 3.4 (a) If v, : A — M(K ® B) are representations with v ~ ~' and 7y is quasidi-
agonal, then ' is quasidiagonal.

(b) If A is unital and if v : A — M(K ® B) is a unital, unitally absorbing representation,
then v ® Omcen) @5 an absorbing representation [DE;, Lemma 2.17].

(c) Suppose that E C M(K ® B) is a quasidiagonal set and that p € E is a projection
such that px = xp = x for all x € E. Then there is an approximate unit of projections (py)
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of K ® B such that [p,,x] — 0 for all x € E and [p,,p] = 0 for all n. Indeed, since E
is a quasidiagonal set, there is an approximate unit of projections (¢,) of K ® B such that
[qn, ] — 0 for allx € E. In particular [q,,p] — 0. Using functional calculus one can perturb
each g, to a projection p, € K ® B, such that ||p, — qn|| — 0, and [p,,p] = 0. (see/DE;,
Lemma 5.1 (iii)]).

Definition 3.5 [Sa] Let A be a separable C*-algebra and let B be a stably unital C*-algebra.
We say that A is quasidiagonal relative to B if there exists an absorbing quasidiagonal rep-
resentation v : A — M(K ® B).

By Remark 3.4 (a) we have that if a separable C*-algebra A is quasidiagonal relative to
B, then any absorbing representation v : A — M(K ® B) is quasidiagonal. It also follows
from Remark 3.4 that a separable unital C*-algebra is quasidiagonal relative to a stably
unital C*-algebra B if and only if any (or some) unital unitally absorbing representation
is quasidiagonal. Note that a C*-algebra A is quasidiagonal if and only if is quasidiagonal
relative to C.

Lemma 3.6 Let C be a unital nuclear C*-subalgebra of a UHF algebra. Let A be a unital
separable C*-algebra and let B be a stably unital C*-algebra. If A is quasidiagonal relative
to B, then C' ® A is quasidiagonal relative to B.

Proof. By assumption, there is a unital embedding j : C' < D where D is a unital UHF
algebra D = UD; with D; & M,(;(C). Let 7 : D — L(H) and 0 : A — M(K ® B) be unital
unitally absorbing representations. It is clear that 7®c : D®A — L(H)®L(Hp) C M(K®B)
is quasidiagonal since both 7 and ¢ are so. Therefore m)® ¢ is a quasidiagonal representation
of C' ® A. It remains to prove that ) ® o is unitally absorbing. First we observe that 7 ® o
is unitally absorbing since its restriction to each of the D; ® A = M,;)(C) ® A is easily seen
to be unitally absorbing, using the assumption that o is unitally absorbing. If 7 : A — L(F)
is a representation and ¢ : A — K(F) is a completely positive map, we write ¢ < 7 if there
is a bounded sequence v; € K(F, E) such that

o lim; . [|¢(a) — vim(a)v;|| =0 for all a € A
o lim; . |[v;é]| =0 for all £ € E.

Here E, F' are countable B-modules. As a corollary of [DE;, Theorem 2.13] a unital repre-
sentation v : A — M(K ® B) is unitally absorbing if and only if ¢ < ~ for any completely
positive contraction ¢ : A — K(F). Therefore in order to prove that 77 ® o is unitally
absorbing it will suffice to show that ¢ < m) ® o for any completely positive contraction

p:CRA— K(F).



Since C' is nuclear, we find two sequences of completely positive contractions
Qo C— Mk(n)(c)v ﬁn : Mk(n)(c) —C

such that ||, (c) — ¢|| — 0 for all ¢ € C. By Arveson’s extension theorem, we can extend
an to a completely positive contraction a;, : D — My,)(C) such that o, 0 ) = . If
E,=pnodl,: D — C, then E, is a completely positive contraction with || F,j(c) —¢|| — 0
for all ¢ € C. Since ™ ® o is unitally absorbing, we have g o (E, ® id4) < 7 ® o, hence

@nzgpo(En@)ldA)o(j@ldA):QOO(EnJ(X)IdA)'<7T]®0-

Since [|¢n(z) — @(z)]| — 0 for all z € C ® A, it follows that ¢ < 7)) ® 0.
|

Definition 3.7 Let A, B be unital C*-algebras and assume that A is quasidiagonal relative
to B. Two unital x-homomorphisms ¢, : A — B are called approximately stably unitarily
equivalent if for any unital unitally absorbing representation v : A — M(K ® B), and any
approzimate unit of projections (p,) of K ® B with ||[y(a),pn]]| — 0, a € A, if y,(a) =
pnY(@)pp, then there exist an increasing sequence of integers (k(n)) and a sequence of partial
isometries (vy,) in K ® B such that v}v, = v,v) = 1g @ prm) and

(2) Tim [on(p(@) ® ) ()0, = (@) © ey (@)]] =0, a € A.

Lemma 3.8 Let o, : A — B be two unital x-homomorphisms. Suppose that A is separable
and quasidiagonal relative to B. Then the following conditions are equivalent.

(i) o & n =~ @n for some unital representation n: A — M(K ® B).
(i) o &y~ @y for some unital unitally absorbing representation v : A — M(K ® B).
(11i) o &y~ & for any unital unitally absorbing representation v : A — M(K ® B).
(v) @ is approximately stably unitarily equivalent to 1.
(v) ¢ and @ satisfy the conditions of Definition 3.7 for some v and some (p,).
Proof. The implications (iii) = (ii) = (i) and (iv) = (v) are obvious. By [DE,, Lemma
3.4] if v ~ +/ then ¢ &~y ~ ¥ @~ if and only if p &~ ~ 1) @®~'. This proves that (ii) = (iii).

To prove (i) = (ii), note that (i) = ¢ ®n @~y ~ ¢ &n @& . This readily implies (ii) since
N &y~ as 1y is absorbing.



(iii) = (iv) Let v : A — M(K ® B) and (p,,) be as in Definition 3.7. By assumption there
is a sequence of unitaries (u,) in C/ + K ® B such that

(3) un(p(a) ®v(a))uy, —¥(a) ®r(a) =0, acA

as n — oo. We also have ||p,y(a) —v(a)p,|| — 0, a € A. After passing to a subsequence
(Pr(n)) we may arrange that [|[e,, u,]|| — 0 as n — oo, where e, = 1p ® pi(n). By functional
calculus we find a sequence of unitaries v, € e, (K ® B)e, such that |le,une, — v,]| — 0 as
n — 0o. Compressing by e, in (3) we obtain that

[on(p(@) © Vi) (@))vy, — ¥(a) ® Y (a)]| — 0

as n — oo for all a € A. This proves (iv).

(v) = (i) Fixy: A - M(K ® B), (pn), (k(n)) and (v,) as in Definition 3.7. We want
to prove that ¢ ® v ~ ¢ @ . Let u,, = 0 ® (1 — pi(n)) + v € CI + K ® B and define
Vi (@) = (1 = Prn)) (@) (1 = pr(ny). We have

/

(4) [v(a) = k@) (@) = Vi (@)|] — 0,a8 n — 00, a € A4,

since [y(a),p,] — 0. It is now clear that (3) follows from (4) and (2). This proves that
YDy =Y BA.

|

We regard Q(K ® B) ® Q(K ® B) as a unital subalgebra of Q(K ® B) is the usual way.

Lemma 3.9 Let A be a unital separable C*-algebra and let B be a stably unital C*-algebra.
Suppose that A is quasidiagonal relative to B and let o be a unital semisplit extension such
that [0] = 0 in Ext™*(A, B). Then for any unital unitally absorbing representation v : A —
M(K @ B) the set _

Erey ={X eM(K®B): X € (c @4)(A)}

18 quasidiagonal.

Proof. Since v is unitally absorbing, v @ Omces) is absorbing by Remark 3.4 (b). Since
[0] = 0in Ext ' (A, B), 0 ®5®0 is of the form u(¥® 0@ 0)u* for some unitary v € M(K® B).
Therefore it lifts to an absorbing representation 6 : A — M(K® B). Since A is quasidiagonal
relative to B, 0(A)+ K ® B is a quasidiagonal set. Finally we observe that E,¢: ® Omxcen) C
d(A) + K ® B, so that E,qs is quasidiagonal by Remark 3.4(c), as it contains an element
acting as a unit.

[ |



Lemma 3.10 Let A, B be unital C*-algebras with A separable. Let p,7p : A — B be two
unital x-homomorphisms. Suppose that there exist a unital unitally absorbing representation
n:A—MK®B) and a unitary uw € M(K ® B) such that

(i) ¢ ®n=u(d @ n)u’
(i1) the set (o ®n)(A) U{u} is quasidiagonal in M(K ® B).

Then o s approximately stably equivalent to 1.

Proof. From (ii) there exists an approximate unit of projections (e,) of K ® B such that
foralla € A

(5) len, (p®n)(a)] =0, [en,u] =0 asn— oo.

From (i) and (5) [en, (v @ n)(a)] — 0 as n — oco. We may also arrange that, in addition to
the above, e, > e;; ® 15 € K ® B, so that e, = e;; ® 1 + ¢, where (g,) is a sequence of
projections satisfying [¢,,n(a)] — 0 for all a € A as n — oo. Compressing by e, in (i), we
obtain that for all a € A

(6) l(a) & gun(a)gn — enuen(V(a) ® gun(a)gn)enu’enl] — 0, asn — oo.

Since [en,u] — 0, for large n, u, = eyue,|e ue,| ™2 is a unitary in e, (K ® B)e, with
|un — epuey,|| — 0. We then obtain from (6) that

le(a) ® gun(a)gn — un((a) ® gun(a)gn)upll — 0, asn — oo,
We conclude the proof by applying (v) = (iv) of Lemma 3.8.

Theorem 3.11 ([DEy]) Let A, B be unital C*-algebras. Assume that A is separable, and
quasidiagonal relative to B. Let ¢,v¢ : A — B be two unital x-homomorphisms with o] = [1)]
in KK(A, B). Then ¢ is approzimately stably equivalent to 1. Equivalently, ¢ &y ~ 1 &,
for any unital unitally absorbing representation v : A — M(K ® B).

Proof. We are going to find a representation n : A — M(KX® B) and a unitary u € M(K® B)
such that ¢, 1, n and wu satisty the assumptions of Lemma 3.10. Recall that the canonical
map M(K® B) — Q(K® B) is denoted by 7 and that we sometimes write a for 7(a). We are
using the notation from Proposition 2.1. Since 74(z) ® — : KK(A, B) — KK'(C(S")® A, B)
is a homomorphism and [p] — [¢] = 0, it follows from Proposition 2.1 that [o¢] = 0 in
Ext™'(C(S')® A, B). By assumption, A is quasidiagonal relative to B. Since C(S') embeds
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unitally in a UHF algebra, it follows from Lemma 3.6 that C(S') ® A is also quasidiagonal
relative to B. Therefore there exists a unital, unitally absorbing quasidiagonal representation
A:C(SY® A — M(K® B). By adding a suitable representation to A, if necessary, we may
arrange that if 0 is the restriction of A to 1 ® A, d(a) = A(1 ® a), then § is also unitally
absorbing. Let v = A(z ® 1), where z is the canonical unitary generator of C'(S'). Recall
that

P=9@ (PP V=08 (P V), P=wTuw’
Therefore if we set 1 = (p B )0 ® d, and u = w & v, then
pon=0®6, YvoOn=Vdd and pDdn=u(®nu’

since ® = wWw* and ¢ commutes with v. Thus condition (i) of Lemma 3.10 satisfied. Note
that n is unital unitally absorbing since its direct summand ¢ is so. It remains to verify
condition (ii) of the same lemma. With our notation, that amounts to checking that the set

E=(@®6)(A) U {u}

is quasidiagonal. Note that £ C E_,x since m(® @ ) = oliga ®dand 4 = wPHv =
(0 ® A)(z® 1). Now E__ is quasidiagonal by Lemma 3.9, since [o] = 0 in Ext™'(4, B).
Therefore its subset E is quasidiagonal as well.

[

Corollary 3.12 ([DE,]) Let A, B be unital C*-algebras and let v : A — B be a full unital
embedding (Example 3.3(b)). Suppose that A is nuclear and separable. Let ¢, : A — B
be two unital x-homomorphisms such that [p] = [¢] in KK(A, B). Then for any finite subset
F C A and any € > 0, there exist n and a unitary uw € M, 1(B) such that

[(u(p(a) @ n-ua))u” —(a) ®n-a)]| <e.
for all a € F.

Proof. This follows from Theorem 3.11 applied for v = d,.

4 The closure of zero in Ext(A, B)

In this section we give a purely KK-theoretical description of the closure of zero in Ext(A, B)
under the assumption that A is separable and nuclear and B is o-unital.

The following proposition is well known to the specialists. A proof is included for the
sake of completeness.

11



Proposition 4.1 If A is a separable C*-algebra then KK'(A,M(K ® B)) =0, i = 0,1, for
any C*-algebra B.

Proof. This is similar to the proof of [Dy, Proposition 2.2]. To simplify the notation,
let M = M(K ® B) = L(Hp). Since KK'(A, M) = KK(SA, M) is suffices to consider
only the case i = 0. Since M is unital, KK(A, M) = [¢A,K(E) @ M], by [Cun], where
FE' is an infinite dimensional Hilbert space. The addition on the latter group is given by
(] + [¢] = [Op.p], Opp(a) = wip(a)wi +warp(a)ws, where w; € M(K(E)® M) are isometries
with wyw] +wewj = 1. This definition does not depend on the particular choice of the pair w;
(see [JT, 1.3]). Let s1, 89 : Hg — Hp be isometries with s;s]+s285 = 1 and set w; = 1p®s; :
E® Hp — E® Hp. Let s: Hp ® Hg — Hp be defined by s(z1 @ x2) = s121 + S2x2.Then
1p®s: EQHp®FE®Hp — E®Hp is a unitary such that 0, ,(a) = 1p®@s(p(a)®Y(a))lp@s*.

Define a : M(K® B) - M(K® K ® B) by a(z) = 1y ®  and let v = vy ® idp :
H® H® B — H® B for some unitary vg: H @ H — H.

If p:qA — K(F)® M is a x-homomorphism, define n : ¢A — K(E) ® M by

(7) n(a) = 1g ® v(ider) @ @) 0 p(a))lp @v*, a€ A

We are going to show that [p] + [] = [n], or equivalently [0,,] = [1], in [¢A, K(E) ® M].
That will show that [p] = 0 for all ¢ so that [¢A, C(E)® M] = 0. Since the unitary group of
M(IC(F) ® M) is path connected in the strict topology [JT], it suffices to find a unitary w in
M(K(E)® M) such that w, ,w* =n. Let (e;), i = 0, 1, ... be an orthonormal basis of H and
define a unitary ug : HOH®H — H® H by ug(h®0) = eg®@h, up(e; ®h) = e;41@h, h € H.
Set u = uy®idpg: HRBOGHR®H®B — H® H® B and note that 1y ®z = u(z® 1y ®@x)u*
for all x € M, hence a = u(idy; @ a)u*. Therefore

(8) (idkp) ® a) o p(a) = 1 ® u(p(a) @ (idgp) ® a) o p(a)lp @u*, a€ A
Finally, using (7) and (8), one checks that
w=1p® (vu(ly, ®v*)s") € lp@ M C M(K(E) @ M)

is a unitary satisfying wé,, ,w* = n. Note that the unitary vu(1y,®v*)s* belongs to M(K®B)
since it is given by a composite of B-linear unitaries
Hpg LHB@HB@;HBEB<H®H>B — (H® B)g — Hp,

where (H® H)p = H® H® B.
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For the remaining of this section we assume that A is a separable nuclear C*-algebra and
B is o-unital. In this case all extensions 0 : A — Q(K ® B) are semisplit by the Choi-Effros
theorem, and Fxt '(A, B) = Ext(A, B). Any xhomomorphism ¢ : A — Q(K ® B) gives
both and element [p]gx of Ext(A, B) and element [¢]kx of KK(A, Q(K ® B)).

Proposition 4.2 Let A be a separable nuclear C*-algebra and let B be a o-unital C*-algebra.
Then the map x : Ext(A, B) — KK(A,Q(K ® B)), defined by x[¢lext = [¢]kk, s a natural
isomorphism of groups.

Proof. From the six-term exact sequence for KK(A, —) associated with the extension
9) 0-K®B->MK®B)—QK®B)—0

and from Proposition 4.1 we get an exact sequence
(10)
0 = KK(A4,M(K ® B)) — KK(A, Q(K ® B)) % KK'(4,K ® B) — KK'(4,M(K ® B)) = 0.

Thus 0 is an isomorphism. By a theorem of Kasparov [Kass|, there is a natural isomorphism
k: KK'(A, B) — Ext(4, B) = Ext(A4, B) ™.

Therefore 07! o k1 : Ext(A, B) — KK(A4, Q(K ® B)) is an isomorphism. We need to show
that 07! o k1 = x. The image of [¢]gy under k! is denoted by 6. Let

(11) 0 —K®B—FE,—A—0

be the pullback of the extension (9) by ¢ : A — Q(K ® B). Then we have a commutative
diagram
0 — K®B — M(K®B) —— QK®B) —— 0

H T [

0 — K®B —— E, _ A —— 0

By the naturality of the boundary map 0 we obtain a commutative diagram:

KK(A4,Q(K ® B)) —2— KK'(A,K ® B)

%ﬂ ‘

KK(4,4) —2— KK'(A,K® B)

13



Therefore
Op.lidalkk = Olidalkk.
Now ¢, [idalkk = 9]¢|kk and by [Bla, Theorem 19.5.7]

Olidalxck = [ida] ® 6, = 0, = K" [l

Therefore d[p|kx = £ *[¢]rx, hence x = 071 o k1.

seen that both 0 and k are natural isomorphisms.

This completes the proof as we have

[
Following [BDF] and [Br], Salinas [Sa] introduced a natural topology on Ext(A, B). This
is just the quotient topology of the point-norm topology on the space of extensions A —
Q(K ® B). An extension 7 is called absorbing if for any trivial extension o, 7 @ o is unitarily
equivalent to 7 via a unitary liftable to M(K ® B). If v : A — M(K ® B) is a scalar
absorbing representation (see Example 3.3(a)), then 6 = 7 is an absorbing extension. Also
T @ 0 is absorbing for any extension 7. If 7 : A — Q(K ® B) is an absorbing extension,
and if 6 : A — Q(K ® B) is a trivial absorbing extension, then [r] belongs to the closure
of zero in Ext™' (A, B), denoted by Z(A, B), if and only if there is a sequence of unitaries
u, € Q(K ® B) such that ||7(a) — u,f(a)u)|| — 0 for all @ € A, as n — oo. Since both 7
and @ are absorbing, one can arrange that the unitaries w, lift to unitaries in M(K ® B).
This is easily seen if we keep in mind that 7,  are unitarily equivalent with 7 & 0, 8 & 0,
respectively, via liftable unitaries.
To simplify notation, Q(K ® B) will be denoted by Q. Let d : Q — [[)~, Q be defined

by d(xz) = (z,z,z,...). Let
vi[[Q—=]]Q/>.Q
n=1 n=1 n=1

denote the quotient map and let

Q:KK(4,Q) — KK(4 [[Q/> Q)

be the map induced by vod, that is Q = (vod),. Fix0 =4 : A — Q wherey: A - M(K®B)
is an absorbing scalar representation as in Example 3.3(a).

Theorem 4.3 Let A, B be C*-algebras with A nuclear and separable. Then Ker Q consists
of the classes [plkk of those x-homomorphisms ¢ : A — Q(K ® B) for which there ezists a
sequence of unitaries (u,) in May(Q(K ® B)) such that for alla € A

(12) Tim [, (p & 0)(a)us;, — (6.8 6)(a)| = 0.
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Equivalently, if p : A — Q(K ® B) is an absorbing extension, then [p] € Ker Q if and only

if there is a sequence of unitaries v, € M(K ® B) such that lim,_. ||¢(a) — 0,0(a)0}|| = 0
for all a € A.
Proof. If ¢ : A — Q is a x-homomorphism and 6 is as above, we let

bd=vodoy, O=vodod.
Suppose that ¢ and 6 satisfy the condition (12) and let us show that Q[ lJkxk = 0. The
sequence (u,) gives a unitary u € My([[Q/ > Q) such that u(® ®© ©)u* = © & ©. This

clearly implies that [@] = [©] in KK(A,[[Q/>_ Q). On the other hand
[Olkx = Q[flkk = Qx[0]px = 0,

since [f|gxt = 0 as 6 lifts to a representation 7.

Conversely, assume that Q[p|kx = 0. Let us observe that since 6 is absorbing, for any
integer m > 1, m-0 =0& ---® 0 (m — times) is unitarily equivalent to §. Therefore the
condition (12) is equivalent to the following:

For any finite subset F of A and any € > 0, there exist m > 1 and a unitary u € M,,,1(Q)
such that

(13) lu(p @ m-0)(a)u” — (0D m-0)(a)] <€, acF.

Consequently, it suffices to prove that ¢ and 6 satisfy (13) rather than (12). Since Q[p] =0
by assumption, and Q[f] = 0 as we saw above, we have Q[p|kk = Q[f]kk, hence [®] = [0] in

KK(4,1]Q/ > Q).
Let A denote the C*-algebra obtained by adding a unit to A. This is done even if A was
unital in the first place. By replacing ¢ by ¢ @46 if necessary, we may arrange that 1q & ¢(A )

Let @,9 A— Q be the unital extensions of ¢ and 6 and set o = vodoy and © =vodob.
We have that [®] = [0] in KK(A,[]Q/ Y. Q) since [®] = [0] in KK(A,]]Q/ Y. Q), and
CTD, O are unitizations of @, ©.

Note that © : A — [[Q/>_ Q is a full embedding since it factors as a product of unital
maps

AL L) —M(keB) - QKeB) —[[a/Y.Q

and 7 is a full embedding since v/(4) N K(H) = {0}. By Corollary 3.12, for any finite subset
F of A and any € > 0, there exist m > 1 and a unitary U € M,,.1 ([ Q/ >_ Q) such that

(14) U@ ®m-0)(a)U*— (©dm-0)a)| <e, acF.
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Let V = (v;) € []Q be a unitary lifting of U. Then it follows from (14) that there is some
large ¢ such that

(15) o (@@ m-0)(a)v; — (0@ m-0)(a)|| <e, acF.

This shows that ¢ and 6 satisfy (13) and completes the proof.

Remark 4.4 The map €2 can be integrated in a siz-term exact sequence

Q 1-0

KK(4,Q)  —— KK(4,][Q/XQ) = KK(4,]]Q/¥Q)
KK(AJIQ/ X Q) —Z KKY(AIIQ/XQ) «——  KK'(A4,Q)

which is similar to an exact sequence in E-theory found by Thomsen [Thoi/.

Note that Theorem 4.3 says that x(Z(A, B)) = KerQ. Let a € KK(A, A) be a KK-
equivalence. If Q = Q(K ® B) as before, o induces a commutative diagram:

Ext(A, B) —— KK'(4,B) 2= KK(4,Q) —— KK(4,][Q/¥ Q)

| oo - wo- |

Ext(A, B) —— KK'(A,B) -2 KK(4,Q) —X KK(4,]]Q/S Q)
This gives right away the following corollary.

Corollary 4.5 ([Schy]) Let A, A" be separable nuclear C*-algebras and let B be a o-unital
C*-algebra. Ifa € KK(A, A') is a KK-equivalence, then the isomorphism a®— : Ext(A, B) —
Ext(A’, B) maps Z(A, B) onto Z(A’, B).

Corollary 4.6 ([Schy]) Let A be a separable nuclear C*-algebra satisfying the UCT and let
B be a o-unital C*-algebra. Then Z(A, B) is naturally isomorphic to Pext(K,(A), K.(B)).

Proof. If A satisfies the UCT, then A is KK-equivalent to a commutative C*-algebra.
Therefore A satisfies the UMCT of [DL], so that there is an exact sequence

(16)

0 — Pext(K,(A), Kit1(Q(K®B)) — KK(A, Q(K®B)) — Homy (K(A), K(QIK®B))) — 0,
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where K(A) = @,K.(A;Z/n) is the total K-theory group, and A is a certain set of op-
erations on K(—). We regard both Z(A,B) = x(Z(A, B)) and Pext(K,(A), K.(B)) =
Pext(K.(A), Ki11(Q(K ® B))) as subgroups of KK(A, Q(K ® B)). First we want to verify
the inclusion

Z(A, B) C Pext(K.(A), K,1(Q(K ® B))).

If 6 is a trivial absorbing extension, then [f] = 0 so that the map 6§ : K(A) — K(Q(K ® B))
vanishes. If [o0] € Z(A, B) is the class of an absorbing extension o, then by the very definition
of the topology on Ext(A, B), o is approximately unitarily equivalent to @, hence ¢ = 6 = 0.
Therefore [o] = [o] — [0] € Pext(K.(A), K.11(Q(K ® B))) by the UMCT (16). To prove the
opposite inclusion

Pext(K.(A), K.y1 QK ® B))) € Z(A, B),

we note that since both subsets are invariant under KK-equivalence in the first variable,
it suffices to prove the statement for any C*-algebra KK-equivalent to A. Thus, using
[RS, Proposition 7.3], we may assume that A = U°; A; where A; are nuclear C*-algebras
satisfying the UCT and such that K,(A;) is finitely generated for each i. In particular
Pext(K.(4;), K,1(QIK ® B))) = 0 for all i. Let 0,0 : A — Q(K ® B) be two ab-
sorbing extensions with @ trivial and [o] € Pext(K,(A), Kit1(Q(K ® B)). Then [o]a,] €
Pext(K.(4;), Kiy1(Q(K ® B))) vanishes, so that [o|a,] = [0]a,] € KK(A4;,Q(K ® B)) by
(16). Since both o4, and 6|4, are absorbing, they are unitarily equivalent. Therefore o is
approximately unitarily equivalent to 6, hence [o] € Z(A, B).

Corollary 4.7 ([Schs]) Let A be a separable nuclear C*-algebra satisfying the UCT, and
let B be a stably-unital C*-algebra. Suppose that A is quasidiagonal relative to B. Let
0:A— QK ® B) be an absorbing extension. Then E, ={y e M(K® B) : gy € 0(A)} is a
quasidiagonal set if and only if [o] € Pext(K,.(A), K.(B)).

Proof. This follows from Corollary 4.6 and from [Sa, Theorem 4.4] which states that if A
is quasidiagonal relative to B and 0 : A — Q(K ® B) is an absorbing extension, then E, is
a quasidiagonal set if and only if [o] € Z(A, B). It should be noted that the proof from [Sa]
also applies to the case when A is nonunital. [ |

5 Approximate unitary equivalence revisited

In this section we prove the equivalences (3)< (4) < (5) from the introduction.
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Theorem 5.1 Let A, B be unital C*-algebras with A nuclear and separable. Suppose that
A is quasidiagonal relative to B and let p,v : A — B be two unital x-homomorphisms. The
following assertions are equivalent.

(i) [¢] — [] € Pext(K.(A), K, 1(B)) in KK(A, B).

(i) p By =1y for some (any) unital unitally absorbing quasidiagonal representation
v: A—-MK® B).

(11i) @ is approzimately stably unitarily equivalent to 1.

Proof. We have that (ii) < (iii) by Lemma 3.8.

(iii) = (i) It follows easily from (iii) that ¢, = ¥, : K.(A,Z/n) — K.(B,Z/n) for all
n > 0, so that (i) follows from the UMCT (16).

(i) = (iii) Let T" be the group morphism defined as the composition

KK(A, B) 297 KKY(C(SY) @ A, B) 2 KK(C(SY) @ A, QK © B)),

with 74(x) as in Proposition 2.1 and d~! as in Theorem 4.3. The morphism T is clearly
compatible with the UMCT (16), in the sense that it induces a commutative diagram

KK(A, B) — Homy (K(A), K(Q(K ® B)))

7| ]
K(C(SY)® A, B) —— Homy (K(C(S') ® A),K(Q(K @ B)))
Here T'(h) = 9;' o h o7, where 7 : K(C(S') ® A) — K ,(4) is induced by TA(x) €
KK'(C(S')® A, A) and 0, is the inverse of the isomorphism 9. : K(Q(K ® B)) — K (B).
That shows that T maps Pext(K,(A), K.11(B)) to Pext(K,.(C(S") @ A), K,11(Q ( ® B)).
Note that
T=0"o(ralx) ® =) = xo ko (ra(x) ® —).

Therefore by Propositions 4.2 and 2.1,

[olkk = Xlo]exe = T[] — [¥]) € Pext(K.(C(S") @ A), Kos1(Q(K @ B))).

Here we use the same notation as in the proof of Theorem 3.11. Since C(S') ® A is qua-
sidiagonal relative to B and it satisfies the UCT, we have by Corollary 4.7 that E_ 4 is a
quasidiagonal set whenever A : C'(S') ® A — M(K ® B) is an absorbing extension. The
rest of the proof is identical with the last part of the proof of Theorem 3.11. Indeed, if
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n=(p®1V)s®0, then the set (p&n)(A)U{u} = (PP )(A)U{u} C E .4 is quasidiagonal
and ¢ & n = u(y & n)u*. Therefore ¢ is approximately stably equivalent to ¢ by Lemma
3.10.
|
There is a number of interesting corollaries of Theorem 5.1 where the approximate mul-
tiplicative morphisms +, implementing (iii) can be chosen to be *-homomorphisms. For
instance this is the case when A is nuclear residually finite dimensional (7, will be finite
dimensional representations) or when there is a full embedding ¢ : A — B (v, = k(n) - ¢ as
in Corollary 3.12).
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