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Abstract

In this paper we study the *Galgebras associated to continuous fields over locally compact

metrizable zero-dimensional spaces whose fibers are Kirchb&mgébras satisfying the UCT.

We show that these algebras are inductive limits of finite direct sums of Kirchberg algebras

and they are classified up to isomorphism by topological invariants.
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1. Introduction

A purely infinite separable simple nucleai*-@lgebra is called a Kirchberg algebra.
Kirchberg[11] and Phillips [18] proved that two Kirchberg algebrasandB are stably
isomorphic if and only if they ar&KK-equivalent. Consequently, if in additiolh and
B satisfy the universal coefficient theorem (UCT) of [22], théem® K~ B ® K if and
only if K,(A)=K,(B).
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Kirchberg [12] generalized theKK-theory isomorphism result to nonsimple*-C
algebras. He showed that A and B are nuclear separable*@lgebras with primitive
ideal spectrum homeomorphic to sofigspaceX, then A ® O @ K=B ® O ® K
if and only if A is K Kx-equivalent toB, where KKy is a suitable generalization
of the Kasparov theory which preserves the primitive ideal spectrd ahd B (or
rather the lattice homomorphisms from the open subset® tf the lattice of closed
ideals of A and B). Unlike the case of simple *Galgebras, as observed in [14], one
does not have a general algebraic criterion for recognizing when tivalgebras are
K K x-equivalent, as we lack a generalization of the UCT k&K x . Finding such a cri-
terion seems to be a difficult problem even when the spacensists of finitely many
points and is non-Hausdorff. The case whérconsists of two points was solved by
Rgrdam [20].

One of the goals of the present paper is to propose an answer to the above question
for the separable nuclear*@lgebrasA whose primitive ideal spectrum Prin) is
zero-dimensional and Hausdorff, under the assumption that all simple quotiets of
satisfy the UCT. We introduce a homotopy invariant (lay consisting of a preordered
semigroup

P(A® O2) & K(A),

together with the action of the Bockstein operationskbfi). Here P(A ® O2) denotes

the Murray—von Neumann semigroup of equivalence classes of projectior® (Pp/C

and K (A) is the totalK-theory group ofA, see Sectiort. It turns out that ifA and

B are separable nuclear@lgebras with zero-dimensional Hausdorff primitive spectra
and with all simple quotients satisfying the UCT, thar® O.,c K= B ® O ® K if

and only if InvA) =~Inv(B). Since we do not use Kirchbergk K x-theory, we deduce

that for such algebras\ is K Kx-equivalent toB if and only if Inv(A) ~Inv(B). The
examples constructed in [4] show that the action of the Bockstein operations is an
essential part of the invariant. Iw) is an adaptation to purely infinite*@lgebras of

an invariant introduced in [7,6]. A positive morphism (@) — Inv(B) must preserve

the filtration of the totalK-theory groupK (—) induced by ideals. Since all the ideals

of the C-algebras classified in this paper give rise to quasidiagonal extensions, the
corresponding boundary maps vanish, and hence there is no need to include them in
the classifying invariant as it was necessary to do in [20].

A related goal of this paper is to describe the structure and the classification of
the Cf-algebras associated to continuous fields over locally compact metrizable zero-
dimensional spaces whose fibers are Kirchberg algebras satisfying the UCT. We show
that these algebras are inductive limits of finite direct sums of Kirchberg algebras
satisfying the UCT and that they are classified up to isomorphism by the topological
invariant Iny,(—) := (Inv(-), P,(-), 1), see Sections 4 and 5. It is worth to note that
their structure is obtained by proving first the classification result for a larger class of
C*-algebras, using the same invariant. Since, lis/continuous and homotopy invariant,
we deduce immediately that in this (larger) class éfalyebras, the isomorphism and
the shape equivalence are equivalent properties, see Section 5.
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Let us describe how the paper is organized. Secfios devoted to preliminaries.
Using the results of [11,18] we show in Section 3 that thealebra associated to
a continuous field of Kirchberg algebras satisfying the UCT over a metrizable zero-
dimensional locally compact space admits local approximations by finite direct sums
of Kirchberg algebras satisfying the UCT and having finitely gener&tetieory. In
Section 4 we introduce the invariants Inv and Jrand describe their basic properties.
In Section 5 we prove that the*@lgebrasA which admit local approximations as
described above are classified up to stable isomorphism idJrand in fact they can
be written as inductive limits of finite direct sums of Kirchberg algebras satisfying the
UCT. In particular, these structure and classification results apply to thegébras as-
sociated to continuous fields of Kirchberg algebras satisfying the UCT over a metrizable
zero-dimensional locally compact space.

2. Preliminaries

Definition 2.1. A sequencgA,) of C*-subalgebras of a‘CalgebraA is called exhaus-
tive if for any finite subsetF c A, anym > 0, and anys > 0 one hasF c, A, for
somen > m. The inclusion mapsi, < A are denoted by, (respectively), : B, < B
if (B,) is an exhausting sequence fB}.

Let A be a separable *Galgebra and letA,) be an exhaustive sequence farLet
{x1,x2,...,x,,...} C A be a dense subset & After passing to a subsequence of
(A,) we may arrange that

{x1,x2, ..., xk} Cyk Ak, YkeN. Q)

In the sequel we will always work with exhaustive sequences satisfing (

Lemma 2.2. Let A be a separabl€*-algebra with an exhaustive sequengcg,) con-
sisting of unital nuclear C*-algebras. Then after passing to a subsequencéAgh
satisfying (1) there is a sequence of completely positive contractippsA — A,
which is asymptotically multiplicative and such them,_ « ||z, 1, (a) —a| = O for all
a € A, whereq, : A, — A are the inclusion maps.

Proof. Let F := {x1,x2, ..., X,,...} With F = A, and letF; := {x1, x2, ..., xx}(k €

N). After passing to a subsequence we may assume(that satisfies (1). LeG; be
a finite subset ofd; (k € N) such that

Fi S1k Gk, ke N. 2

For eachn, let ¢, be the unit of4,. Using thatF = A and @) it is easy to check
that (e,) is a (ot necessarily increasingapproximate unit ofA. Since each4, is
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nuclear and unital, it follows that we can find an approximate factorization gf iy
unital completely positive maps, on the finite gt within 1/n:

I

My (C)

lgnfu(y) =yl <1/n, ye€G,, neN. (3

Now, using Arveson’s extension theorem for unital completely positive maps (see e.g.
[21, Theorem 6.1.5]), we extendl, to a unital completely positive map (denoted in
the same way)f, :e,Ae, — My (C) for everyn € N. Defineh,: A — e,Ae, by

hn(a) = epae, and u, : A — A, by p, = g, fuh,. Hence we have a diagram:

(3,,,A(3,l—f> Miyn)(C)

Fix now an arbitraryx € A ande > 0. SinceF = A, it follows that there is a positive
integerk such that||x — x¢|| < €. Sincex; € F, C F, for everyn >k, it follows by
(2) that there is an element, € G, C A, such that|x; — y,|| < 1/n. Hence

lx —yull <e+1/n, VYn>k. 4)
Since as noticed earlier lim,  |lenxe, — x| = 0, there isky1 >k such that
lenxe, — x| <&, Vn>ki. (5)
Now, using 8)—(5) we can write for every > k1,

i, () = xI < I, (x) — yull + & +1/n = lIgn fuhn(x) — yull + €+ 1/n
= llgnfu(enxen) — yull + €+ 1/n
<llgnfu(x) = yull +26 +1/n
< llgn fu(¥n) — ynll +3e +2/n < 3¢ + 3/n.

Hence lim,_, « ||z, 14, (x)—x|| = 0. Note also that each, : A — A, is a completely pos-
itive contraction as a composition of completely positive contractions. Finally, the fact
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that (u,) is asymptotically multiplicative follows easily sinag are x-monomorphisms
and lim,— o [z, pt,(a) —al| =0 for alla e A. [

Definition 2.3. Let A = ((A(x))xex, ) be a continuous field of Calgebras over a
metrizable locally compact space Here I' consists of vector fielda on X, (i.e.

a € [l,ex A(x), a(x) € A(x)) satisfying a number of natural axioms, including the
continuity of the mapx — J|la(x)||, and the condition thal" is closed under local
uniform approximation8, 10.1.2]. If X is compact, thed" is a C'-algebra, called the
C*-algebra associated td. If X is just locally compact, the ‘Calgebra associated to
A consists of those vector fields € I' with the property that the map — |a(x)]||

is vanishing at infinity. Given a family of Galgebras(A(x)).cx there are in general
many choices forl" which makes((A(x)),cx, ') a continuous field of Galgebras
with nonisomorphic associated*@lgebras.

Let Y € X be a closed subspace and I&t be the restriction of” to Y. One verifies
that Aly := ((A(x))xey, ['y) is a continuous field of Galgebras ony [8, 10.1.12].
We shall denote byA(Y) the C'-algebra associated td|y. Observe thatA(X) is the
C*-algebra associated td.

Remark 2.4. Let A = ((A(x))xex, ) be a continuous field of Calgebras over a
metrizable zero-dimensional locally compact spxcdf Y C X is closed, then

1Y) ={f € AX): fly =0}

is a closed, two-sided ideal of(X). Using [8, Proposition 10.1.12] one shows that
AX)/I(Y)=A(Y). Let (F,);2, be a decreasing sequence of compact subset$ of
forming a basis of neighborhoods of a poirg € X. Then A(xg) = lim(A(Fy), ®,),

where each®, : A(F,) — A(Fu4+1) is the restriction map(®,(f) = flr,.. f €
A(Fy,)). Indeed, thel (F,)’s form an increasing sequence of closed, two-sided ideals
of A(X) andJ I(F,) = I(xp), since() F,, = {xo}. Therefore

neN neN

Axo) = A(X)/1 (x0) = IM(AX) /1 (Fn), ¢,) = M (A(F,), y),

where ¢, : A(X)/I(F,) — A(X)/I(F,+1) is induced by the inclusion/ (F,) <
I (Fut1).

Remark 2.5. Let A = ((A(x))xex, ) be a continuous field of separable-&lgebras

with a countable approximate unit of projections over a metrizable zero-dimensional
locally compact space X. Lal) be a closed subset of. Then A(U) has a countable
approximate unit of projections. This follows frofd6]. If all the A(x)’s have real
rank zero, therA(U) has real rank zero by [17, Theorem 2.1].
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3. Continuous fields of Kirchberg algebras

In this section we establish an approximation property féralgebras associated
to continuous fields of Kirchberg *Galgebras over zero-dimensional spaces, see
Theorem3.6.

Definition 3.1. A separable nuclear simple purely infinit&é-@lgebra is called a Kirch-
berg algebra.

We refer the reader tf21] for a background discussion of Kirchberg algebras.

Remark 3.2. Any Kirchberg algebra is either unital or of the fordy ® L where Ag
is a unital Kirchberg algebra ands,] = 0 in Ko(Ag). In particular, all Kirchberg
algebras admit an approximate unit consisting of projections.

We introduce here notation for certain classes dfal@yebras. This notation is used
to shorten the statements of certain intermediate results.

Definition 3.3. £ consists of unital Kirchberg algebras.
Euct consists of unital Kirchberg algebras satisfying the UCT.
&g consists of unital Kirchberg algebr@swith K, (A) finitely generated.
gfg—uct = gfg N Euct
B consists of finite direct sums of unital Kirchberg algebras. One defines similarly
Buct, Btg and Big—uct- A (nuclear) separable’calgebra is in the class if it admits
an exhaustive sequencd,) with eachA, in B. One defines similarlyCyct, Lig
and Lig—_yct.

Lemma 3.4. Let A = ((A(x))xex, ) be a continuous field of Kirchberg algebras
over a metrizable zero-dimensional locally compact space X. Let A bé&tragebra
associated tod. ThenA~A ® Ox.

Proof. If we set B := A ® K, then B is separable, stable, nuclear, and Riinx~
Prim(A) ~ X is Hausdorff and zero-dimensional. Every nonzero simple quotier® of

is of the form A(xp) ® K, for somexg € X. But A(xp) being a Kirchberg algebra is
purely infinite and since the property of being purely infinite is invariant under stable
isomorphism[13, Theorem 4.23] it follows tha#l (xg) ® K is also purely infinite. Now,

by [1, Theorem 1.5] we deduce thBtis strongly purely infinite. Using again the fact
that A andB are stably isomorphic, [14, Proposition 5.11(iii)] implies tiais strongly
purely infinite. Hence the GalgebraA is separable nuclear, has an approximate unit
of projections (see Remark 2.5) and is strongly purely infinite. Then, by [14, Theorem
8.6] we have thal A ® Oy. [

Lemma 3.5. Let A = ((A(x))rxex, ') be a continuous field of unital Kirchberg alge-
bras satisfying the UCT over a metrizable zero-dimensional locally compact space. Let
A be theC*-algebra associated tod. Let 7 C A be a finite set and let > 0. Then
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for everyx € X, there is a clopen neighborhood U of and there is a unital Kirchberg
algebra B satisfying the UGTwith K. (B) finitely generated and a-homomorphism
v:B — A(U) such thatdist(a|y, y(B)) < ¢ for all a € F. The distance is calculated
in the C*-algebra A(U). Another way of writing this isF|y C. v(B).

Proof. Let us begin by writingA(x) as inductive limit of a sequence of unital Kirch-
berg algebras with finitely generatd¢theory satisfying the UCT, and with unital,
injective connecting~-homomorphisms. This is possible by the classification theorem
of Kirchberg and Phillips (see e.§21, Proposition 8.4.13]). Therefore, there is a unital
Kirchberg subalgebr& with unital inclusion map: : B C A(x) such thatK,.(B) is
finitely generatedB satisfies the UCT andF|, C. «(B). Write F = {a1,az, ..., a,}

and lethbq, by, ..., b, € B such that

llai(x) =2l <&, 1<i<r (6)

Let (Uy),en be a decreasing sequence (Lg.+1 € U,, n € N), forming a basis system
of compact and open neighborhoodsxofin particular(),.n U, = {x}. Therefore, by
Remark 2.4, A(x) = IiL)n(A(U,,),(I)n), where eachx-homomorphism®,, : A(U,) —
A(U,41) is the restriction map. Sinc&.(B) is finitely generated and B satisfies the
UCT [22] implies that K K(B, —) is continuous and hence there existand o €
KK (B, A(Uy,)) such that[n,]o = [2] € KK(B, A(x)), wheremn, : A(U,) - A(x) is
the restriction map. Now, by Lemma 3.4,U,) = A(U,) ® O. Using this, the fact
that A(U,) has an approximate unit of projectiong,),cn (see Remarks 2.5 and 3.2),
and the fact that for everg € N, every projection inM; ® O is (Murray—von
Neumann) equivalent to a projection @, = (e11® 1) (M ® Oxo)(e11® 1), it follows
that every projection ilM; @ A(U,) = M; @ A(Up,) O = Ii_n)1 M@ pmAUR) pm @ Oco

is equivalent to a projection irLlirpmA(Un)pm ® Voo =A(Uy) ® Ooo = A(Uy,). Taking
into account this observation and Kirchberg’s theorem [21, Theorem 8.3.3], it follows
that there is ax-homomorphisms: B — A(U,) with [¢] =a € KK (B, A(U,)). From
this we obtain thatt,o: B — A(x) is a unital x-homomorphism which has the same
KK-theory class as the unitathomomorphism:: B — A(x). By the uniqueness part
of Kirchberg's theorempy, o is approximately unitarily equivalent with In particular,
there is a unitaryig € A(x) such that

luo(maa(bi))uo™ — bl < e, 1<i<r. )
From 6) and (7) we obtain
luo(mno(bi))uo™ — ai(x)|| < 26, 1<i<r. (8)

The above inequality holds id(x). After increasingn if necessary, we may assume
that ug lifts to a unitaryu € A(U,), thus m, (1) = u(x) = ug. Using the continuity
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property of the norm for continuous fields of*@lgebras, we obtain from (3) after
increasingn if necessary

lu(y) o)) u()* —a;i(W)|l <2, yeU,, 1<i<r. 9

If we definey:B — A(U,) by y(b) = ua(b)u* for everyb € B and if we leta;|y,
denote the image of; in A(U,), then @) becomes

lv®i) — aily, Il < 2, 1<i<r (10)

(since U, is compact). Finally, note thatlQ) implies thatF|y, C2: v(B). O

Theorem 3.6. Let A = ((A(x))rex, ) be a continuous field of Kirchberg algebras
satisfying the UCT over a metrizable zero-dimensional locally compact space X. Let A
be theC*-algebra associated tod. Then A admits an exhaustive sequence consisting
of finite direct sums of unital Kirchberg algebras satisfying the UCT and having finitely
generated K-theory groups.

Proof. By Remarks2.5 and 3.2 it follows tha# has an approximate unit of projections
(en)neN- Since A = U, cnenAe, = lim e, Aey,, it clearly suffices to prove the statement
—

for eache,Ae,, and thus we may assume—and we shall—thaind all the A(x)’s
are unital. Fix an arbitrary finite subs&t = {a1, a2, ..., a,} of A and an arbitrary

e > 0. For each Xi<m, definek; :={x € X : ||a;(x)|| =¢}. Then clearly eaclK; is

a compact subset of and so isK = U ; K;. Using Lemma 3.5 and the compactness
of K we find clopen subsets of denoted byUy, Us, ..., U, unital Kirchberg algebras
Bi, By, ..., By satisfying the UCT withK,(B;) finitely generatedx-homomorphisms
Yj: Bj = A(Uj), andb;; € Bj, 1<i<m, 1<j<k such that

m
KCU:= U U; (11)
i=1

and
lailu, —v;Bipl<e, 1<i<m, 1<j<k. (12)

Let V1, Vo, ..., Vx be mutually disjoint clopen subsets bf, Uz, ..., Uy such that

k k
Uvi=U u.

j=1 j=1
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From (12) we easily get that
lailv, —rjv;ipll<e, 1<i<m, 1<j<k,

wherer;:A(Uj) — A(V;) is the restrictions-homomorphism. Therefore, we may
assume that/1, Us,...,U; are mutually disjoint, and in particular

AX)=AX\U)B AU @ --- @ A(Up).

Let C; = v;(Bj) € A(Uj) andC = C1+ -+ Cx = @’;zl C;. Since B; is simple,
we have eithelC; =~ B; or C; = 0 henceC € Big_yct. Observe that since thg;’s are
cIopen,XUj is a continuous function oX for every 1< j <k. Define

k
bi=Y qu,v;(bi) €C, 1<i<m.

j=1

Now, note that 12) implies that

l(a; —b)lull<e, 1<i<m. (13)

Now, if x € X \ U thenb;(x) =0, andx € X \ K and hence, using the definition of
K, we getlla; (x)|| < e (1<i<m). This shows that forx € X \ U, we have

llai(x) = bi()|| = llai(x)|| <&, 1<i<m (14)
In conclusion, {3) and (14) taken together show that
lai —bill<e, 1<i<m,

where eachb; € C. Since we already argued th&t € Big_uct, this concludes the
proof. [J

Corollary 3.7. Let A = ((A(x))xex, ) be a continuous field of simple separable
nuclear C*-algebras satisfying the UCT over a metrizable zero-dimensional locally
compact space X. Let A be tli&-algebra associated tod. Then A satisfies the UCT.

Proof. Since O is KK-equivalent toC, we may replaceA by A ® O. By [15,
Corollary 2.8] A ® O« satisfies the assumptions of Theorem 3.6. By [3], any nuclear
separable Galgebra which admits an exhausting sequence*e$ibalgebras satisfying
the UCT will also satisfy the UCT. O
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Remark 3.8. Let X be a metrizable, zero-dimensional, locally compact space and let
A= ((A(x))xex, ') be a continuous field of separablé-@lgebras such that each fiber
A(x) admits an exhaustive sequeneg, (x)), of simple semiprojective Calgebras. Let

A be the C-algebra associated td. ThenA is the inductive limit of a sequend&i,),,
where each4, is a finite direct sum of Galgebras of the formi,,(x) (m andx may
vary). The proof of this statement is similar with the proof of Theorgi® but it is
much simpler.

4. The invariant and basic properties

We will use K-theory with coefficients. For each >2 let W,, be the Moore space
obtained by attaching a two-cell to the circle by a degremap. Fix a base point in
each of the spacew,,. Let C(W) denote the CGalgebra obtained by adding a unit to
D,_o> Co(Wy, \ %). Similarly, let C(Wy,) denote the unitalization (@n"fzz Co(Wy, \ %),
whereM is an integer>2. Define

C=C(M®CHW) and Cy = C(T)® C(Wy).

Note that we have natural embeddingsl) ® C(W,,) C Cyy C C (m < M).
The total K-theory group of a GalgebraA is given by

K(A) = K«(A) © €D Ki(A; Z/m)=Ko(A® C).

m=2

This group is acted on by the set of coefficient and Bockstein operations denoted by
A. It is useful to consider the following direct summand KfA):

M
K(A)y = Ko(A) & @D Ku(A;Z/m)=Ko(A® Ci).

m=2

Remark 4.1. Assume thatA is a separable ‘Calgebra satisfying the UCT. ¥ anni-
hilates the torsion part oK.(A), i.e. M TorsK,(A) = 0, then the map

Homa (K (A), K(B)) — HOMA(K(A)u, K(B)m)

induced by the restriction ma (A) — K(A)y is bijective for anyg-unital C*-
algebraB [7, Corollary 2.11]. If moreoverkK,(A) is a finitely generated group, then
K(A) is finitely generated as A-module [6, Proposition 4.13]. More precisely there
arexi,...,x, € K(A)y, such that for anyc € K(A), there existky, ...,k € Z and
A, ..., € A such that

x =kid1(x1) + -+ -+ ke Ar (xp).
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If Ais a C'-algebra, we denote b (A) the Murray—von Neumann abelian semigroup
consisting of equivalence classes of projectionsAi® K.

We introduce two homotopy invariants, k) which will be used for stable €
algebrasA and Iny,(A) in the general case. To this purpose we consider the pair
(J(A), J(A)T) consisting of a semigroug(A) together with a distinguished subsemi-
group J(A)T C J(A) (called the positive subsemigroup d@fA)). This is defined as
follows. Consider the map

Po: P(A®C) - P(A® O7)

induced by the unitak-homomorphismC — O3, f — w(f)1lp, (Wherew is a fixed
character of the commutative*@lgebraC). Since the spectrum o is path connected,
it follows that p, is independent on the choice of the charaecteiWe define

J(A):=P(A® O ® K(A)
and defineJ(A)™ to be the image of the map
p: P(A®C) — P(ARO2) @ K(A) = J(A),

plpl = polpl ® [plk(a)-

J(A) is a semigroup with unit0, 0) and is also aA\-module (Bockstein and coefficient
operations), wherd acts only on the second componéntA). The pair(J(A), J(A)™T)
together with the action oA on J(A) is denoted by IngA).

In abstract terms, the invariant consists ofZ#2-graded abelian semigroup =
JO@J® whereJD is in fact a graded group acted by together with a distinguished
subsemigroup/t ¢ J©@ @ JD. For a G-algebraA we haveJ(4)© = P(A ® O)
and J(A)D = K(A).

Note that ax-homomorphismp : A — B induces a morphism of the invariant

Inv(e) : Inv(A) — Inv(B)

in the sense that Irfy) is a morphism of graded semigroups whichAslinear and
preserves the positive subsemigroups. We express these properties by saying(¢hat Inv
is positive andA-linear. More precisely:

Definition 4.2. A mapa:Inv(A) — Inv(B) is said to be positive and-linear if it has
two components

29 P(A® Oy - P(B® Oy)
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with o@ a unit preserving morphism of semigroupg® (0) = 0) and
oM K (A) - K(B),

wherea® is graded morphism of\-modules and(J(A)T) € J(B)".

Itis clear that In¥A) does not distinguish between &-@lgebraA and its stabilization
A ® K. Following [19], we consider the seP,(A) consisting of unitary equivalence
classes of projections i\, where the unitaries are from the unitalizatiegnif A is
nonunital. As in [19],P,(A) is equipped with its family of all finite orthogonal sets.
A finer invariant is obtained by enlarging la) to

Inv, (A) = (Inv(A), P,(A), 1),

wheret: P,(A) — Inv(A) is given by the composition of the maps(A) — P(ARQC),
[Pl = [p®1c], andp: P(A® C) — Inv(A).

A morphismo: Inv, (A) — Inv,(B) consists, in addition to the componeat from
Definition 4.2, of a mapx, : P,(A) — P,(B) which maps orthogonal sets to orthogonal
sets and makes the following diagram commutative:

P.(A) 25 PuB)
T \L ‘l' T
Inv(A) — Inv(B)
(20, 4D

Lemma 4.3. If A is a Kirchberg algebrathen

(@) P(A® O2) = P(O2) = {0, o0},

(b) J(A) = {0, oo} ® K(A),

(€) J(A)T ={(0,0)} U{(c0,x) : x € K(A)},

(d) the mapp: P(A® C) — J(A) is injective. Moreoverp is injective even when
A is a finite direct sum of Kirchberg algebras and even whea L.

Proof. (a) A is either unital orA>~ Ag ® K, where Ag is a unital Kirchberg algebra
(see Remark3.2). SinceP(B) = P(B ® K) for every C-algebraB, if follows that
we may assume thah is a unital Kirchberg algebra. But then, sinéeis simple,
separable, unital and nuclear, a remarkable result of Kirchberg ([21, Theorem 7.1.2])
implies thatA ® O, ~0,. Therefore P(A ® O2) = P(O2). Since any two nonzero
projections inO2 ® K are equivalent, it follows thaP(0,) = {0, co}. In conclusion,
P(A® Oz) = P(O2) = {0, oo}.

(b) This follows immediately from (a).

(c) Observe that iB is a simple C-algebra anc is a compact, connected space, then
every nonzero projectiop in B® C(X) is full. To show that/(A)* := p(P(A®C)) C
{(0,0)} U {(c0, x) : x € K(A)}, note that if pp[p] = O for somep € P(A ® C), then
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p = 0. To prove the opposite inclusion, observe first #@a0) = p([0]) € J(A)™. Now

fix an arbitraryx € K(A). SinceA ® O, = A, it follows that (AR C) ® Oxc =AR® C
and henceA ® C is purely infinite (use13, Proposition 4.5]). Lep be an arbitrary
nonzero projection ofA. Then, by [13, Theorem 4.16] it follows thgt ® 1¢ is a
properly infinite projection inA ® C. Moreover, since A is simple, it follows that
p®1lcis full in A® C. Then, by a result of Cuntz [2] (see also [1, Lemma 4.15]
it follows that there is a full (and properly infinite) projectianin A ® C such that
[elka) = x € K(A) = Ko(A® C). Observe also that sinaeis full in A® C, we have
pole] = oo. In conclusion, we havele] = pgle] ® [elk(a) = (00, X).

(d) First we consider the case whAris a Kirchberg algebra. Leb, g be projections
in A® C ® K such thatp[p] = plg]. Since(AQCRIK)R® Ox=A® C ® K (because
A®Ox=A) and sinceA ® C ® K has an approximate unit of projections, it follows
(as in the proof of Lemma 3.5) thatand q are equivalent with projections IA ® C.
Hence, we may assume thatq € A® C. Sincepg[p]l = pglg] it follows thatp andq
are simultaneously zero or nonzero. It suffices to consider the case when they are both
nonzero. In the proof of (c), we showed that® C is purely infinite. Then, by [13,
Theorem 4.16] it follows thap and q (being nonzero) are properly infinite projections
in A® C. Since, as observed above, they are also full, results of Cuntz [2] (see also
[1, Lemma 4.15]) allow us to conclude frofplk ) = [plkoasc) = [qlkoasc) =
[glk(a) thatp and g are equivalent il ® C, i.e. [p] = [¢] in P(A® C). Hencep is
injective.

In the caseA = @®!_;A; where eachA; is a Kirchberg algebra, the fact that the
map p: P(A® C) — J(A) is injective follows from the fact thap is injective if A is
simple (the above case) and the observation thahd P are additive with respect to
direct sums:

p=@&"_1p;: P(A®C) =@!_1P(A; ® C) — J(A) = ®]_1J(A)).

Let B be a C-algebra with an exhausting sequena,) of C*-subalgebras. Using
functional calculus, one shows that any partial isometryBiocan be approximated by
partial isometries inB,’s. Applying this observation t!d ® C and using the previous
cases we obtain that is also injective forA € £. O

Lemma 4.4.1f A=A1®---® A, with A; Kirchberg algebrasthen

@J (AT = {(r1, x1), -+, s xm)) = 1i € P(A; ® O2), x; € K(A),ri = 0= x;
=0}.

In particular this shows that/ (A)* is A-invariant.

(b) If A satisfies the UCT and,(A) is finitely generatedthen Inv(A) has the
following semi-projectivity like property. LeB = B1 & --- & B, with B; Kirchberg
algebras. Letx: J(A) — J(B) be a A-linear morphism of graded semigroups. Then
there are finitely many elements, ..., t} in J(A)T with the property that itx(t;) €
J(B)t for all 1<j<r, thena(J (A1) c J(B)T.
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Proof. The first part follows from Lemmd.3. To argue for the second part, it suffices
to assume that botlh and B are Kirchberg algebras an8l satisfies the UCT. Since
K. (A) is finitely generated, it follows thak (A) is finitely generated as A-module [6,
Proposition 4.13]. Lefxy, ..., x,} be a list of generators. Then := (oo, x;) € J(A)T
will satisfy the required property. Indeed, ife J(A)*,t # (0,0), thent = (oo, x)
for somex € K(A) andx =}, Z;x; for someZ; € A. Thus

t = (00, x) = (OO’Z ijxj) = Z /lj(oo,xj) = Zijtj
J J J
and

o) =Y Ajodty) € J(B)*

J

since a(t;) € J(B)* (by hypothesis) andiju(t;) € J(B)*, because/(B)* is A-
invariant. Sincex((0, 0)) = (0, 0) € J(B)™, the proof is complete. (]

Lemma 4.5. Let B be a separable *Calgebra with exhaustive sequencs,,). For
any zi,...,zx € J(B)T, there exist m andys,...,yx € J(B,)" such that map
J(3,,): J(By) — J(B) satisfiesJ (3,,)(yi) = zi.

Proof. This follows by functional calculus like in the proof of continuity &fy. O

Lemma 4.6. If A is a separable &algebra with an exhausting sequencg,) and all
A, have finitely generated K-theory and satisfy the U@ien there is a subsequence
(Arn)) of (A,) and A-linear morphismsy, : K (A,u)) — K(Arn+1) such that such
that for each n the diagram

K(Ar(n))4> K(Arnt1))

K(r(n
N

K(4)

is commutative and the induced miim (K (A,»)), v») — K (A) is an isomorphism of
A-modules.

Proof. If Ais a C'-algebra withK,(A) finitely generated and satisfies the UCT, then

K (A) is finitely generated as A-module, actually generated by the group generators of
K (A)y for someM, see Remarld.1. On the other hand, only finitely many elements
of A act onK(A)y. Hence K(A)y is a finitely presented\-module. That is, one

has the group relations among generators and a finite number of relations involving
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finitely many Bockstein operations. These observations apply,tp,. Therefore one
proves this lemma similarly to the proof of Lemmda5. At each stage one produces
a diagram as in the statement which commutes when restricted t& tAe:,)) m ),
where M (n) TorsK,.(A,u)) = 0. Finally one applies Remark 4.1

Lemma 4.7. Let A be a G-algebra which admits an exhaustive sequendg) such
that eachA, is a finite direct sum of Kirchberg algebras satisfying the UCT and with
finitely generated K-theory. Then after passing to a subsequen¢#, df(if necessary
there is an inductive system

e (J(An)v J(An)+) ﬁ) (J(Al‘l-‘rl)a J(An+1)+) e

such that for each nv, is positive andA-linear, the diagram

Un

iJ(lnH)
J(A)

J(tn)

is commutative and the induced mém ((J(A,), J(A)T), v,) — (J(A), J(A)T) is

a positive A-linear isomorphism. One can replacg/(—), J(—)T) by the alternate
notation Inv(—) everywhere in the statement of this lemmiace the action oA was
considered.

Proof. This follows by putting together Lemma&4—4.6. The property given in part
(b) of Lemma 4.4 is crucial since it allows to insure positivity Aflinear maps by
obtaining it only for finitely many elements.lJ

Lemma 4.8. Let A be aC*-algebra which admits an exhaustive sequefig) such
that each A, is a finite direct sum of Kirchberg algebras satisfying the UCT and
with finitely generated K-theory. Let B be @*-algebra which admits an exhaustive
sequence(B,) such that eachB, is a finite direct sum of Kirchberg algebras. If
o:Inv(A) — Inv(B) is a positive A-linear map for any n there existm = m(n) and

a positive A-linear map o, : Inv(A,)) — Inv(B,,) such that the diagram

Inv(A4,) vlen) Inv(A)

InV(Bm)I—> Inv(B)

nv(gm)

is commutative.
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Proof. This is just a repetition of the proof of Lemm&7. The crucial property of
Inv(—) is that it is “finitely presented” when applied to finite direct sums of Kirchberg
algebras with finitely generated-theory. O

Remark 4.9. If A is a unital Kirchberg algebra, then
Py (A) ={[0l, [1].} U Ko(A),

by [2,19]. It is then clear that by using similar arguments one shows that(+)v
satisfies statements analog to Lemmas 4.7 and 4.8.

5. Classification results

We begin by recalling some terminology and definitions from [5] which will be
important in what follows.

Definition 5.1 ([5]). Let A be a C-algebra. AK-triple (P, G, d) consists of a finite
subsetP of projections,

P C U ProjA ® C(T) ® C(W,,) ® K),

m>=1

where theW,,’s are the Moore spaces of order, and a finite subsef C A, and

0 > 0 chosen such that whenever is a completely positive contraction which is
o-multiplicative on g, thene = (¢ ® id)(p) is almost a projection in the sense that
le? —e|l < 1/4 and in particular

1 ¢ sp((p®id)(p))

for eachp € P, where id is the identity ofC(T) ® C(W,,) ® K for suitablem.

Definition 5.2 ([5, Definition 3.9). Let (P, G, o) be a K-triple, and assume thap:

A — B is a completely positive contraction which ésmultiplicative onG. We define
¢4(p) = [xo(e @ id)(p)] where y4:[0,1] \ {1/2} — [0,1] is 0 on[0,1/2) and 1
on (1/2,1]. It is clear that if (P, G, d) is a K(A)-triple one also has a natural map
¢;:P — P(B®C) wheneverp: A — B is a completely positive contraction which
is o-multiplicative ong. Hence, one can define in this way : P — Inv(B) whenever
(P,G,0) is aK(A) -triple andp: A — B is a completely positive contraction which
is 6-multiplicative ong. Similarly one defines a map, : P — P,(B).

We need the following result.
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Theorem 5.3. Assume that A is a unital Kirchberg algebra which satisfies the UCT.
For any finite setF C A ande > 0, there is aK (A)-triple (P, G, ¢) with the following
property. For any unital Kirchberg algebra B and any, 6)-multiplicative completely
positive contractionsp, yy: A — B with ¢,(p) = y,(p) € K(B) for all p € P, there

is an unitaryu € B such that||lug(a)u® — Y(a)|| < ¢ for all a € F.

Proof. This is Theorem 6.20 db]. In addition we may work with a set of projections
PCAQ®C ratherthanrP C AQCQ K. O

Corollary 5.4. Assume that A is a finite direct sum of Kirchberg algebras that satisfy
the UCT. For any finite setF ¢ A and ¢ > O, there is a K(A)-triple (P, G, 9)
with the following property. For any finite direct sum of stable Kirchberg algebras
B and any (G, 6)-multiplicative completely positive contractions y: A — B with
¢4(p) = Yy (p) € Inv(B) for all p € P, there is a unitaryu € B (the unitalization of

B) such that||lug(a)u® — Y(a)| < ¢ for all a € F.

Proof. First observe that we may assume tlatis simple (otherwise we compose
with the projection onto each direct summand). Now, since every Kirchberg algebra
has an approximate unit of projections, we may assume that eafleA,- where
each A; has a unit denoted by;. We chooseP such thate; € P, 1<i <k. After a
small perturbation we may assume tma;t(ei))f.‘:l and (lp(ei))f.‘:l are finite sequences
consisting each of mutually orthogonal projections. Singe;) and y(e;) have the
same class inP(B ® O7) they are simultaneously zero or nonzero. Since they have
the same class iK' (B), in particular they have the same class kig(B). But B is
purely infinite and simple. By results of Cunf2], it follows that ¢(e;) is equivalent

to Y(e;), 1<i<k. Hence, after conjugating with a suitable partial isometry € B,

we may assume thap(e;) = Y(e;), 1<i<k. SinceB is stable, this partial isometry
extends to a unitary € B. Next, we apply Theorem 5.3 for the restriction of the two
given maps toA; — ¢(e;) Bo(e;), 1<i<k. Thus we obtain a unitarw € eBe, where
e=@(e1)+- -+ ple), with lwe(@)w* — Y (a)| < ¢ for all a € F. Finally we choose
u=1l—-e+welU(B). O

The following is our “uniqueness” result

Proposition 5.5. Assume thatd € L. For any finite set7 ¢ A ande¢ > 0, there
is a K(A)-triple (P, 3G, ) with the following property. For any stabl® < £ and
any (G, 6)-multiplicative completely positive contractions : A — B with ¢,(p) =
Y (p) € Inv(B) for all p € P, there is a unitaryu € B such that|up(a)u*—(a)| < ¢
for all a € F. If B is not assumed to be stablthe conclusion remains valid if we
assume thatp,(p) € P,(B) for all p € PN A.

Proof. Let (A,) be an exhaustive sequence #®mwith A, € Byc. It suffices to prove
the statement for the restrictions @fandy to A,. Thus we reduced the proof to the
case whem € Bygt.
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Using Lemma2.2 we find an exhausting sequen¢g,) for B with B, € B and

a sequence of completely positive contractions B — B, which is asymptotically
multiplicative and such that

lim |g,7,(b) —b|| =0, VbeB. (15)
n— 00

Define for everyn € N, ¢,, ¥, : A — B, by ¢, = m,0, ¥, := n,y. Then (5)
implies that forva € A, we have

lim ”]nq)n(a) - (P(a)” =0.
n— oo

A similar property is satisfied by,. Replacinge with ¢, and similarly,yy with ,,,
for large n, we reduce the proof of the proposition to Corolldryt. [

Lemma 5.6. Let A € Big_uct and let B be an finite direct sum of Kirchberg alge-
bras. Then any positive and-linear morphismo:Inv(A) — Inv(B) lifts to a *-
homomorphismp: A — B.

Proof. We may suppose thaB is a Kirchberg algebra. WriteA = @f.‘zl A; with
A; € Eg_uct. Then, clearly

Inv(A) = él INV(A;)

and correspondinglyy; is the restriction ofx to Inv(4;). All we have to do is to lift
eacho; to ax-homomorphismp, : A; — B. Then, sinceB is purely infinite and simple,
using [2] we may assume, after conjugating eagh with a suitable partial isometry
in B, that ¢;(14,)¢;(14,) = 0 wheneveri # j. Finally, we shall definep: A — B as
the direct sum of thep;’s. Now, as explained earlier

J(ADT ={(0,0)} U{co ® K(A)} C P(A; ® O2) ® K(A))
and
J(B)T ={(0,0)} U{co® K(B)} C P(B® O2) ® K(B).

The mapo; has componentsz(o) : P(A; ® O2) - P(B® O2) and ocl?l) : K(A) —

K(B), ’
O
! 0 ocgl) '
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Therefore the condition; (J(A;)™) € J(B)' shows thatxfl) =0 Wheneverozfo)(oo) =

0. If ocﬁo)(oo) = 0, then ocgo) = 0 and we setp; = 0,1<i<n. If ocfo)(oo) = 00, we
apply the UMCT of[7] to lift ocl@ to an elementf; of KK(A;, B). Since K, (A;)

is finitely generatedA; satisfies theJCT and B has a countable approximate unit of
projections, by using the continuity of K(A;, —) we may assume tha is unital.
Now, using [21, Theorem 8.3.3], we lift; to a full x-homomorphismy; : A; — B®K.
But, notice that every projection in a matrix algebra oBeis equivalent to a projection
in B C B®K (since B® Ox=B and B has an approximate unit of projections).
Hence, there is a partial isometty € B ® K such thatv}v; = ¢!(14,) andv;v’ <1p.
Define ¢; : A; — B by ¢, := v;¢,v*. Then, clearly,[f;] lifts to ¢, and hencexﬁl)
lifts to ¢;. It is clear thatp; : A; — B is injective (p; is nonzero and4; is unital)
and hencep; also lifts «¥. O

i

The following is our “existence” result:

Proposition 5.7. Assume thatd € Lyq. For any K(A)-triple (P, G,9d), any B € L
and any positiveA-linear mapsa: Inv(A) — Inv(B), there is a(g, §)-multiplicative
completely positive contractiop: A — B such thate,(p) = a([p]) for all p € P.

Proof. Note thatfyct € Ltg—uct (S€€ e.9[21, Proposition 8.4.13]) hencgyct = Ltg—uct-
Let (A,) be an exhaustive sequence frsuch thatA, € Big_yct for eachn. Passing
to a subsequence, we may assume thgt) satisfies (1). By Lemma 2.2, there is
a sequence of completely positive contractigns A — A, which is asymptotically
multiplicative and such that

lim | 2,u,(a) —a||=0, VacA. (16)
n— o0

Applying Lemma4.8, we obtain a commutative diagram:

Inv(en)

Inv(A,)) — Inv(A)

Inv(B,,)— Inv(B)

Inv(gm)

where oy, : Inv(A,) — Inv(B,,) is positive andA-linear, for somem = m(n). Next
we lift o, to a *-homomorphismgo;!m:An — B, using Lemmab.6. Finally, we
set @, = JmPumbn:A — B. Using (16), one verifies that ifi is large enough,
¢ = ¢, , Will satisfy the conclusion of the theorem[]

Theorem 5.8. Let A, B be stableC*-algebras which admit exhaustive sequences con-
sisting of finite direct sums of Kirchberg algebras satisfying the UCT. Then A is iso-
morphic to B if and only ifinv(A) ~Inv(B) as A-modules. Moreoverf A € L and
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B € L, then the canonical map
Hom(A, B) — Homy (Inv(A), Inv(B))

is surjective. Twok-homomorphisms from A to B induce the same map fromA) to
Inv(B) if and only if they are approximately unitarily equivalent.

Proof. We will only prove the first part, as the second part is similar. Fix a posi-
tive A-linear isomorphisnmu: Inv(A) — Inv(B). We may apply the “existence” result
Proposition5.7 to get completely positive contractions: A — B andy;:B — A
which are increasingly multiplicative on larger and larger sets, and induaed o1,
respectively, on larger and larger subsets of(#gvand In\B). Arranging this appro-
priately, we may conclude by our “uniqueness” result Proposition 5.5 that there are
unitariesu,, and v, making

Ad(u Ad(u
A (u1) A (u2) A
Y1 P2
®1 ¥2
B ) B Ad(vz2) B

Ad(vy

an approximate intertwining in the sense of Ellif@]. Hence

Az Ilim(A, Ad(u,)) = lim(B, Ad(v,)) = B. (]

Theorem 5.9. Let A B be stable & algebras associated to continuous fields of Kirch-
berg algebras satisfying the UCT over zero-dimensional metrizable locally compact
spaces. Then A is isomorphic to B if and onlyin¥(A) = Inv(B).

Proof. This follows from Theorems$.6 and 5.8. O

Corollary 5.10. Let A B be a separable nuclear*calgebras with zero-dimensional
Hausdorff primitive spectra. Assume that all simple quotients of A and B satisfy the
UCT. The following assertions are equivalent

@) AR 0x ®K=2B® Ox ® K,

(b) Inv(A) ~Inv(B);

(c) A is K Kx-equivalent to B

Proof. Equivalence (a)k> (c) is due to Kirchberg and holds in much more generality
[12]. The novelty here is (a (b) for which we give a direct proof and hence obtain
an algebraic criterion for when (c) happens to hold. Det:= Prim(A). By Fell's
theorem [10],A is isomorphic to a the TGalgebra associated to a continuous field
of C*-algebrasA = ((A(x))xex, ') with eachA(x) simple. ThenA ® O, ® K is a
C*-algebra satisfying the assumptions of Theorem 5.9 B® O, ® £ has a similar
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property, sed15, Corollary 2.8]. After this preliminary discussion note that &) (b)
follows from Theorem 5.9. O

Corollary 5.11. Let A be a stable"*-algebra which admits an exhaustive sequence con-
sisting of finite direct sums of Kirchberg algebras satisfying the UCT. Thenlim A,,

where eachA,, is a finite direct sum of Kirchberg algebras satisfying the UCT and
having finitely generated K-theory. In particular this applies to the stabilization of the
C*-algebra associated to a continuous field of Kirchberg algebras satisfying the UCT
over a metrizable zero-dimensional locally compact space.

Proof. Since A € Lyct = Lig—uct, it follows that there is an exhausting sequeridg)
for A, with A, € Brg—uct. By Lemmad4.7, after passing to a subsequence(4f) if
necessary, we can arrange that(ly= lim(Inv(A,), v,), for some positiveA-linear

mapsv, :Inv(A,) — Inv(A,+1) (n € N). Now, using Lemma 5.6, we lift each, to
a x-homomorphism®,, : A, — A, 1. Define B’ := lim(4,, ®,) and B := B’ ® K.

Since B =1lim A, @ M,, and A, ® M, € By (since A, € Byg) for eachn, it follows
obviously thatB € Lyc. HenceA, B are stableC*-algebras iny¢ and

Inv(B) = Inv(B’ ® K)=Inv(B') =~ Iii)n(lnv(An), Inv(®,))

=lim(Inv(A,), v,) =Inv(A).

Then Theorem 5.8 implies that =~ B = lim(4,, ®,), which ends the proof, since
eaChAn € Bfg_uct. I:l

Corollary 5.12. Let A, B be stable C*-algebras which admit exhaustive sequences
consisting of finite direct sums of Kirchberg algebras satisfying the UCT. ,Timen
following assertions are equivalent

(&) A and B arex-isomorphi¢

(b) A and B are shape equivalent

(c) A and B are homotopy equivalent.

Proof. Since implications(a) = (b), (@ = (¢) and (c) = (b) are trivially true,
to prove the corollary it is enough to prove thét) = (a) is true. In(—) is a
homotopy invariant continuous functor. Thereforédiind B are shape equivalent, then
we clearly have IngA)=~Inv(B), which by Theorem5.8 implies thatA and B are
x-isomorphic. [J

Remark 5.13. Theorems5.8 and 5.9 remain true for nonstablé-@lgebras, provided

that one replaces Iitv) by Inv,(—) in their statements. The proof is essentially the
same, except for small changes as in [19]. Consequently, the stability assumptions can
be dropped from Corollaries 5.11 and 5.12. For Corollary 5.11, which is probably the
more interesting statement of the two, one can also verify our claim, at least in the
unital case, as follows. Assume thate Ly is unital. Then, by the stable case, we
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can write A ® K as the closure of an increasing sequeridg) of C*-algebras in
Big—uct. Letting p = 14 ® e11, we may assume thdfp — ¢|| < 1 for some projection
g € A1. Let v € A ® K be a partial isometry withv*v = p and vv* = ¢g. Thus
Adw): p(AR K)p — q(A® K)gq is an isomorphism. Then

A=p(ARK)p=q(ARK)q =U,qAnq

and qA,q € Big—uct.
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