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Abstract. The paper is devoted to the homotopy classification of C*-algebras of continuous functions on 
a finite CW-complex with values in a UHF-algebra. The relevant invariants are based on (connective) 
K-theory. 
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O. Introduction 

In this paper we give results on the homotopy classification of C*-atgebras of 
continuous functions with values in uniformly hyperfinite C*-algebras (UHF- 
algebras). These results exhibit a phenomenon specific to the homotopy theory of 
noncommutative C*-algebras: the homotopy type of certain tensor product C*- 
algebras A ® B may preserve very little from the homotopy types of A and B. There 
is no analog of this phenomenon in commutative topology. Indeed, one can recover 
the homotopy type of X and Y fi'om the homotopy type of the product space X x Y. 

Many applications of C*-algebras in geometry and topology involve C*-algebras 
that are 'matricially stable' in a certain sense. While certain C*-algebras are 
matricially stable by their nature, some others are stabilized in order to get more 
flexible objects. We show that this process can radically change the homotopy type 
of a C*-atgebra. Suppose that X is a nice compact space, say a finite CW-comptex, 
and let U be a UHF-algebra. Our main results are Theorems 1 and 2 below. It turns 
out that the homotopy type of the C*-algebra C(X, U) ~ U ® C(X) is determined 
by the interaction between the combinatorial properties of X and the arithmetic 
properties of the dimension group of U. 

To illustrate an extreme case suppose that the reduced K-groups of X are torsion 
groups and that U is the universal UHF-algebra with Ko(U) ~ Q. By the Kfinneth 
formula the C*-algebras U ® C(X) and U have isomorphic K-groups. This algebraic 
property is no accident but the reflection of a geometric fact. We prove that there is 
no homotopy invariant that can differentiate between U ® C(X) and U. Actually, 
we show that the two C*-algebras are homotopy equivalent. More elaborate results 
are provided by Theorems 1 and 2 below. It turns out that for any finite 
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CW-complex X the homotopy type of U ® C(X) is determined by the Betti numbers 
of X. We are more precise for spaces X of dimension at most two or simply 
connected spaces of dimension at most three in which case the K-theory is shown 
to be a complete homotopy invariant of the tensor product of C(X) by UHF- 
algebras. These results indicate that the homotopy type of a 'matricially stable' 
C*-algebra has a K-theoretic flavor. 

THEOREM 1. Let X, Y be finite connected CW-complexes having isomorphic 
rational cohomology groups, i.e. Hq(X, Q)~Hq(Y, Q) for all q >~ O. Let U be the 
UHF-algebra with Ko(U) ~ Q. Then U ® C(X) is homotopy equivalent to U ® C(Y). 

Theorem 1 shows that the isomorphism of the two rational cohomology groups, 
which is an algebraic property, can be given a geometrical meaning provided one 
introduces 'noncommutative spaces'. 

If the nonzero dimensional cells of X and Y are concentrated in two consecutive 
dimensions, Theorem 1 can be refined as follows: 

THEOREM 2. Let X, Y, be finite (n - 2)-connected CW-complexes of dimension at 
most n, n >i 2. Let V~, V2 be UHF-algebras such that V1 ® M,~ ~ V1 for some integer 
m >t 2. Then V1 ®C(X)  is homotopy equivalent to V2®C(Y) if and only if 
K,(V1 ® C(X)) is isomorphic to K,(V2 ® C(Y)) as 2/2-graded ordered groups. 

The main tools we use are the connective KK-groups and the stabilization 
theorem of [5], and the universal coefficient theorem of [16]. For other applications 
of connective K-theory to operator algebras see [15, 5, 13, 4, 6]. The techniques 
developed in [5] are based on a result of G. Segal [17]. 

By Theorem t, for any finite connected CW-complex X, there is a wedge of spheres 
Y, such that U ® C(X) is homotopy equivalent to U ® C(Y). It is an open problem to 
decide which finite wedges of spheres give homotopy equivalent C*-algebras after 
tensoring with U. In particular, I was not able to prove whether or not U ® C(S 1) is 
homotopy equivalent to U @ C(Sa). This kind of questions seems to depend on the 
continuity of certain filtrations on K-theory considered in [13]. 

Ideas from hornotopy theory have led to powerful tools of investigation in the 
theory of C*-algebras. Recall that the KK-theory of Kasparov [12] and the E-theory 
of Connes and Higson [3] are homotopy-invariant by definition. A result of 
Voiculescu, asserting that a C*-algebra which is homotopicaUy dominated by a 
quasidiagonal C*-algebra is quasidiagonal shows that homotopy is essentially 
involved in non-commutative phenomena. For more discussion on the role of 
homotopy in the study of C*-algebras, see [15, 8]. 

1. Preliminaries 

Given unital C*-algebras A, B let Horn(A, B) be the space of all unit-preserving 
• -homomorphisms from A to B endowed with the topology of pointwise norm- 
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convergence. If either A or B is nonunital we let Horn(A, B) denote all the 
*-homomorphisms from A to B. Two homomorphisms q~, ~ e Horn(A, B) are called 
homotopic if they belong to the same path component of Horn(A, B). The corre- 
sponding homotopy classes are denoted by [A, B]. A is homotopy equivalent to B if 
there are (o e Horn(A, B), ~, E Horn(B, A) such that q~ o 4' and ~ o q) are hornotopic to 
the identity maps. For a given compact space X with base point we let Co(X\pt) 
denote the complex continuous functions on X vanishing at the base point. Let Mm 
stand for the C*-algebra of m x m complex matrices with unit lm and let id,, denote 
its identity map. 

A UHF-algebra, U can be described as the C*-completion of an infinite tensor 
product algebra of the form 

Mp, ® Mp~ ®-. .  ® M ~  ®.--, 

where Pa,Pz,. . . ,Pk .... are prime numbers. Let Pv denote the set of all primes 
occurring in the above description of U and for p ~ Pv let fv(P) e {1, 2 .... co} denote 
the number of occurrences of p in the sequence Pl, P2 . . . .  , Pk . . . . .  A result of Glimm, 
[I0],  asserts that two UHF-algebras U, V are isomorphic if and only if Pv = Pv and 
f v  = f v .  Alternatively, the classification of UHF-algebras can be given in terms of 
K-theory, see [9, 7]: U is isomorphic to V if and only if Ko(U) is isomorphic to 
Ko(V) by an isomorphism that takes [ lv ]  to [ lv] .  Ko(U) can be identified with a 
dense subgroup of the rational numbers and, conversely, any dense subgroup of the 
rational numbers is isomorphic to the K-theory group of some UHF-algebra. Let 
m ~> 2. The following assertions are equivalent: 

(a) U ® M,, is isomorphic to U, 
(b) mKo(U) = Ko(U), 
(c) m is a product of primes p e Pu with fv(P) = co. 

The following proposition gives a sufficient condition for two C*-algebras to 
become homotopy equivalent after tensoring with a UHF-algebra. It relies on the 
fact that any two unital endomorphisms of a UHF-algebra are homotopic, see 

[2, 1 t3. 

PROPOSITION 1. Let U be a UHF-alqebra such that U @ M "  ~ U .for some 
integer m. Let A, B be C*-algebras and assume that there are cp ~ Horn(A, Mm ® B), 

~ Horn(B, Mm ® A) such that (id" ® ~) o (o is homotopic to the ampl!fieation map 
u E Horn(A, M,~ ® M,, ® A), u(a) = 1" ® 1" ® a and (id~ ® (p) o ~ is homotopic to the 

amplification map v ~ Horn(B, M "  ® M,, ® B), v(b) = 1" ® Im ® b. 
Then U ® A is homotopy equivalent to U ® B. 
Proof. Let 2,, be an isomorphism of U ® M "  onto U and consider the following 

homomorphisms: 

(~ = (2" ® idB) o (idv ® q)) E Hom(U ® A, U ® B), 

= (2,n @ idA)o(idv ® O) E Hom(U ® B, U ® A). 
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Due to the symmetry of our data, it suffices to prove that t~o ~ is homotopic to 
idv ® idA. 

Let )~,,~ denote the isomorphism 2,, o (2m ® id,~) of U @ M,, ® Mm onto U, let 0 
stand for (idm ® ¢) o q~, and define 

0" = ()..~ ® ida) o (id v ® 0) ~ Hom(U ® A, U ® A) 

By checking on simple tensor products one sees that 

2,, ® 0 = (idt; ® ¢) o (2~ ® idB) = ()o,, ® id,, ® idA) o (idv ® idm ® ~'). 

This easily implies that ~ = ~ o ~5. Since, by hypothesis, 0 is homotopic to u, all we 
need to prove is that ~ is homotopic to idv ® idA, where 

0 = ()~m2 @ ida)o(idv ® u). 

Let a ~ H o m ( U , U ® M ~ ® M , . )  be given by a ( x ) = x ® l ~ ® l m .  One has 
fi = (2,.~ o a) ® idA. This concludes the proof, since 2,.~ o a is an unital endomorphism 
of U and therefore is homotopic to idv (see [2, 11]). 

2. Some Facts about Connective KK-Theory 

In this section we recall some results from [5] which wilt be used in the proofs of 
Theorems 1 and 2. 

Let X, Y be finite connected CW-complexes. The direct sum with a fixed 
evaluation map C(X) ~ C induces a map 

[C(X), M, ® C(Y)] ~ [C(X), M,+I  ® C(Y)]. 

Taking direct limit over n, we define 

kk(Y, X) = lim [C(X), M, ® C(Y)]. 

kk(¥, X) is a group with addition induced by the direct sum of the homomorphisms. 
The usual suspension functor induces an isomorphism 

kk(Y, X) ~- kk(SY, SX) 

which is used to extend kk(Y, X) to nonconnected spaces and to define the higher- 
order groups {kkq(Y, X)}q~z 

kkq(Y, X) = lira kk(Sq+rY, SrX). 
r 

Then kkq(S°,X)= kq(X) is (reduced) connective K-homology and kkq(Y,S °) = 
k-q(Y) is (reduced) connective K-theory. The groups kkq(Y, X) have good excision 
properties in both variables. One can regard kk, as the natural connective bi- 
variant theory associated with the Kasparov groups KK,(Co(X\pt), Co(Y\pt)). The 
composition and the tensor product of homomorphisms induce a rich multi- 
plicative structure on kk,(Y,X). For instance if c~ = [cp] ~ kk(Y,X) is the class 
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of ~0EHom(C(X) ,M,®C(Y))  and f l = [ ¢ ] e k k ( Z , Y )  is the class of 0 
Hom(C(Y), mm ® C(Z)), then 

aft = [(id, ® ¢)o (0] ~ kk(Z, X). 

The unit of the ring kk(X, X) is given by the class of the identity map of C(X) and 
will be denoted by [idx]. The multiplication by the Bott element 

t ~ [c(s l ) ,  M2 ® C(S3)] = K'(S 3) 

gives rise to a 7/[t]-module structure on k*(X). The Bott operation is easily 
described if one considers rational coefficients. Indeed, kq(X) ® Q can be identified 
with ®j~o I7Iq+zJ(X, Q) such that 

t: kq+ 2(X) ® q --, kq(X) ® Q 

corresponds to the canonical inclusion 

®j~ Fl~+2J(x, q) ~ ®;~o FI~+2;(X, q). 

The composition of homomorphisms gives a natural map 

7: kk(Y, X) --+ HomzEn(k*(X), k*(Y)). 

Passing to rational coefficients one has the following proposition. 

PROPOSITION 2. Let X, Y be finite CW-complexes. The map 

?e: kk(Y, X) ® Q --+ HomqEt](k*(X) ® Q, k*(Y) ® Q) 

is an isomorphism. 
Proof. This is implicitly contained in [5, Section 3.5]. A more direct proof follows 

if 7~ is regarded as a natural transformation of homology theories 

7~: kk,(Y, X) ® Q ~ Hom~](k*(X) ® Q, k*(Y) ® Q) 

that induces an isomorphism on coefficients, i.e. for X = S °. 

It turns out that one can identify 

kk(Y, X) @ q 

with the set of all parity-preserving morphisms 

(~;o,~1):/~ .. . .  (x, q) @ B°dd(X, Q) --,/~ ... .  (y, q) @ ~qodd(y, q) 

that are upper triangular, i.e. 

(yi( (~j>~o Hq+ 2d(X, Q)) c (~j>>.o Hq+ 2]( Y, Q) 

for all q ~> 0, i = 0, 1. 
In contrast with this, recall that 

KK(Co(X\pt), Co(Y\pt)) ® Q 

Hom(K,(Co(X\pt)) ® Q, K,(Co(Y\pt)) ® Q) 
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and therefore KK(Co(X\pt),  Co(Y\pt))® Q can be identified with the set of all 
parity-preserving morphisms 

(%, "cl):/7 cw"(X, Q) O / t  °aa(x, Q) ~ / ~  evc.(y, Q) G/~ oda(y, Q). 

Let • denote the compact operators on an infinite-dimensional separable 
Hilbert space. Then kk(Y,X)  can be described alternatively as [C0(X\pt)® 
.~f, Co(Y\pt) ® X ] .  It follows that there is a natural transformation 

Z: kk( Y, X)  ~ KK(Co(X \pt), Co(Y\pt)) 

which is compatible with the above identifications. Thus, modulo torsion, we have a 
good image of how far KK(Co(X\pt),  Co(Y\pt)) can stay from the homotopy classes 
of actual homomorphisms from Co(X\pt) ® gK to Co(Y\pt) ® JU. 

The following result of [5] will be used in the proof of Theorem 2. 

PROPOSITION 3. Assume that X, Y are finite (n - 2)-connected CW-compIexes of 
dimension at most n, n ~ 2. Then the canonical map 

X: kk(Y, X)  ~ KK(Co(X\pt),  Co(Y\pt)) 

is an isomorphism. 

We also need the following result of [5] which extends certain stability properties 
of vector bundles to *-homomorphisms. 

THEOREM 3. Let X, Y be finite connected CW-complexes. Then 

kk(Y, X)  ~ [C(X), M,, ® C(Y)] 

for any m > 3 dim(Y)/2. 

3. The Proof of Theorem 1 

PROPOSITION 4. Let U be a UHF-algebra such that U ® M,, is isomorphic to U 
for some integer m >1. 2. Let X, Y be finite connected CW-complexes and assume that 
there are 

e kk(Y, X), f e kk(X, Y) 

such that 

eft -- r[idx], fie =- r[idr] 

for some integer r dividing some power of m. Then U ® C(X) is homotopy equivalent to 
U ® C(Y). 

Proof. By replacing m by m s and a by t~ for suitable s, t, we may assume that 
afl=m2[idx], f ia=mZ[idr]  and m >  3dim(Y)/2. Using Theorem 3, we find 
q~ 6 Hom(C(X), Mm ® C(Y)) and ~b ~ Hom(C(Y), M~, ® C(X)) such that [cp] = ~ and 
[~b] = ft. Let u, v be the homomorphisms defined in the statement of Proposition 1 
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with A = C(X) and B = C(Y). By the very definition of addition in the kk-groups, we 

have [u] = mZ[idx] and Iv] = m2[idy]. Therefore, we get 

[(id,, ® ~)o q~] = [(p][~] 
[(idm ® (p)o #i] = [~][(p] 

Using once more Theorem 3, 
(id,,, ® O) ° 0 is homotopic to v. 
Proposition 1. 

= m2fidx] = [u],  

= m2[idx] = Iv]. 

we find that (id,, ® 0)o ~o is homotopic to u and 
Having these homotopies, the statement fotlows from 

P R O P O S I T I O N  5. Let X, Y be .finite connected CW-complexes and assume that 
Hq(X, Q) is isomorphic to Hq(Y, Q) for all q >~ O. Then there are ~ e kk(Y, X)  and 
fi e kk(X, Y) such that aft = m2[idx] and fla = m2[idr] for some nonzero integer m. 

Proof. By the discussion following Proposition 2, there is an isomorphism 
i® e Hom~[~(k*(X) ® Q, k*(Y) ® Q). Let j® be its inverse map. Using Proposition 2, 

we find 

~ o e k k ( Y , X ) ® Q  and f i e k k ( X , Y ) ® Q  

such that 

y~(ao)=io  and ?Q(flo)=Jo, 

The natural map ~: kk ~ k k  ® Q given by ~/(x)= x ® t is not onto in general. 

However, there is some nonzero integer s such that s~0 and Sfio lift to elements 
~1 e kk(Y,X)  and /71 ekk(X,  Y), respectively. It follows that ~ 1 f l l -  s2[idx] and 
f l ~ l  - s2[idr]  belong to the kernel of r/ and therefore they are torsion elements. 

This means that there is some nonzero integer r such that r(e~ fll - s 2 [idx]) = 0 and 
r( f l jq  - sZ[idr]) = 0. Finally, we put ~ = r~l, fi = rfii and m = rs. 

The end of the proof of Theorem i. 

Given X, Y let a, fl, m be as provided by Proposition 5. Replacing, if necessary, m by 
2m and e by 4~, we may assume that m >~ 2. No other control on m is necessary for if 
U is the universal UHF-algebra, then U ® M,, is isomorphic to U and we can apply 
Proposition 4 to conclude that U ® C(X) is homotopy equivalent to U @ C(Y). 

4. The Proof of Theorem 2 

P R O P O S I T I O N  6. Let V be a UHF-alyebra such that V ® M,, is isomorphic to V for 
some integer m >t 2. Let X, Y be finite (n - 2)-connected CW-complexes of dimension 
at most n, n>~2. Suppose that there are ~eKK(Co(X\pt) ,  Co(Y\pt)) and 
fie KK(Co(Y\pt), Co(X\pt))  such that eft = r[ idx]  and fia = r [ idr ]  for some r 
dividing a power of m. Then V ® C(X) is homotopy equivalent to V ® C(Y). 

Proof. By Proposition 3, the map 

)~: kk(Y, X) --, KK(Co(X\pt), Co(Y\pt)) 
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is an isomorphism. Since Z preserves the multiplicative structure, the result follows 
by Proposition 4. 

LEMMA. Let H, H' be finitely generated Abelian groups and let G be a nonzero 

subgroup of Q such that G ® H is isomorphic to G ® H'. Then there are groups 
S, T, T'  and a nonzero integer r such that 

H ~ S O T ,  H ' ~ S O T ' ,  

rT  = O, rT'  = O, rG = G. 

Proof. By an easy reduction, we may assume that both H and H'  are finite. The case 
G ~ 2 is trivial. If G is not isomorphic to Z write G as an inductive limit, 

G = lim(Gi, (p~), where each G~ is isomorphic to Z and (p~: Gi ~ Gi+ ~ is the multiplica- 
tion with some prime p~ ~> 2, Let P denote the set consisting of all p~ that occur infinitely 
many times in the sequence Pl, P2,-.. and notice that pG ~- G for any p in P. Let d be the 
order of H and decompose d = st such that t is a product of (possibly distinct) primes in 
P, and no member of P divides s. Consider the similar decomposition d' = s't' for H', 
where d' is the order of H'. Since s is relatively prime to t one has an internal direct sum 
decomposition H = S ® T, where S (respectively, T) consists of all elements of H of 
order dividing s (respectively, t). Similarly one has H '  = S' ® T'. Since 

tT  = O, FT'  = O and tG ~ G, t'G ~ G, 

we get T ® G ~ 0 and T '  ® G ~ 0, therefore 

H ® G ~ - S ® G  and H ' O G ~ S ' O G .  

We conclude the proof by showing that S ® G ~ S. Indeed since S ® Gi ~ S, S ® G 
is isomorphic to the inductive limit lim(S, (p~), where the connecting maps qh: S ~ S 
are given by ~0~(x) = pix. Since no prime in P divides s, there is some j such that pl 
does not divide s whenever i ~> j. It follows that ~0~ is an isomorphism for i/> j and, 
therefore, S ® G ~ lira(S, q~) ~ S. Similarly, one gets S' ® G ~ S'. Since H ® G is 
isomorphic to H' ® G by hypothesis, we get S ~ S'. Finally take r = tF. 

An Abelian group having all elements of order r will be called below a group of 
exponent r. 

The end of  the proof of Theorem 2. 

Let X, Y, V1, V2, m be as in the statement of Theorem 2. 
Assume that K , ( V  1 ® C(X)) is isomorphic to K,(V~_ ® C(Y)) as ordered (scaled) 
groups. A positivity argument like that of Proposition 5.1.6 in [5], shows that 
Ko(V1) is isomorphic to Ko(Vz) as ordered scaled groups. This implies that VI is 
isomorphic to V2, [-9]. Thus we may assume that both V~ and 1/2 are equal to some 
UHF-algebra V. By the Kfinneth formula 

Ko(V) ® Ko(C(X)) ~ Ko(V) ® Ko(C(Y)), 

Ko(V) ® K~(C(X)) ~ Ko(V) ® KI(C(Y)). 
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Suppose that n is even. The proof for n odd is entirely similar--just interchange Ko 
with Ks. Since X is (n - 2)-connected of dimension at most n, it follows that X is 
homotopy equivalent to a CW-complex with all cells in dimension n - t and n. Since 
n is even this implies that KffC(X)) is a free group and of course the same holds true 
for KffC(Y)). By applying the above Lemma with 

c = Ko(V), / t  = K , ( C ( X ) ) ,  H '  = K,(C(Y)) 

we get 

Ko(C(X)) ~ S G T, Ko(C(Y)) ~ S • T', 

KI(C(X) )  ~ KI(C(Y)), 

where T, T'  are groups of exponent r and rKo(V) = Ko(V). Note that this implies 
V ® M~ _--- V. Let Z, W be (n -- 2)-connected CW-compIexes of dimension at most n 
such that 

Ko(C(Z)) ~- S, KI(C(Z)) ~ KdC(X)),  

Ko(C(W)) ~- Z @ T, KI(C(W)) = O. 

Such spaces are easily constructed by attaching n-cells to an wedge of (n - 1)-spheres. 
Since Z plays a symmetric role with respect to X and Y, the proof will be complete 
once we show that V @ C(X) is homotopy equivalent to V @ C(Z). This is accom- 
plished in two steps. 

The 1 s, step: V ® C(X) is homotopy equivalent to V @ C(Z V W). This follows 
from Proposition 6 since Co(X\pt) and Co(Z V W\pt)  have the same K-theory 
groups and, therefore, they are KK-equivalent by [16]. 

The 2 "~ step: V ® C(Z V W) is homotopy equivalent to V ® C(Z). We have seen 
that V @ M,,r -~ V. Taking advantage of Proposition 6, it is enough to find 

a ~ KK(Co(Z V W\pt),  Co(Z\pt)), 

fl E KK(Co(Z\pt), Co(Z V W\pt)) ,  

such that 

aft = rZm2[idzvw] and flo~ = r2m2[idz]. 

To this purpose consider the following groups 

Goo = KK(Co(Z\pt),  Co(Z\pt)), Got = KK(Co(Z\pt), Co(W\pt)), 

G~o = KK(Co(W\pt),  Co(Z\pt)), G~t = KK(Co(W\pt), Co(W\pt)). 

Note that Go1, Glo and Gtt are groups of exponent r since K,(Co(W\pt))  ~ T 
is a group of exponent r. This is easily seen by using the universal coefficient 
theorem of [16] which determines the Kasparov groups in terms of K-theory. 
Since 

Co(Z V W\pt)  ~ Co(Z\pt) @ Co(W\pt), 
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we have the following decompositions 

KK(Co(Z V W\pt) ,  Co(Z\pt)) ~ Goo O Glo, 

K g ( C o ( Z \ p t ) ,  Co(Z V W\pt))  ~ Goo • Go~, 

KK(Co(Z V W\pt),  Co(Z V W\pt))  _~ Goo O Go1 • Glo O G11. 

Define 

eo = [idz] ~ KK(Co(Z V W\pt) ,  Co(Z\pt)), 

flo = [idz] ~ KK(Co(Z\pt ) ,  Co(Z V W\pt)). 

We have 

~oflo = [idz] ~ Goo c KK(Co(Z V W\pt),  Co(Z V W\pt)),  

/?o~o = [-idz] e KK(Co(Z\p t ) ,  Co(Z\pt)). 

Therefore 

~ofio - [idzvw] E Glo 0 6ol 0 Gll .  

Finally, let c~ = mr~o, fi = mrflo. It is clear that 

:eft -- m2r2[idzvw] = mZrZ(%fio - [idzvw]) = O, 

fi~ - mZrZ[idz] = O, 

since we have seen that Glo, Go1, and GI~ are groups of exponent r. 
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