Homotopy after Tensoring with Uniformly Hyperfinite C*-Algebras

MARIUS DADARLAT

Department of Mathematics, Purdue University, West Lafayette, IN47907, U.S.A.

(Received: September 1992)

Abstract. The paper is devoted to the homotopy classification of C^* -algebras of continuous functions on a finite CW-complex with values in a UHF-algebra. The relevant invariants are based on (connective) K-theory.

Key words. (connective) K-theory, homotopy, C*-algebras.

0. Introduction

In this paper we give results on the homotopy classification of C^* -algebras of continuous functions with values in uniformly hyperfinite C^* -algebras (UHF-algebras). These results exhibit a phenomenon specific to the homotopy theory of noncommutative C^* -algebras: the homotopy type of certain tensor product C^* -algebras $A \otimes B$ may preserve very little from the homotopy types of A and B. There is no analog of this phenomenon in commutative topology. Indeed, one can recover the homotopy type of X and Y from the homotopy type of the product space $X \times Y$.

Many applications of C^* -algebras in geometry and topology involve C^* -algebras that are 'matricially stable' in a certain sense. While certain C^* -algebras are matricially stable by their nature, some others are stabilized in order to get more flexible objects. We show that this process can radically change the homotopy type of a C^* -algebra. Suppose that X is a nice compact space, say a finite CW-complex, and let U be a UHF-algebra. Our main results are Theorems 1 and 2 below. It turns out that the homotopy type of the C^* -algebra $C(X, U) \cong U \otimes C(X)$ is determined by the *interaction* between the *combinatorial* properties of X and the *arithmetic* properties of the dimension group of U.

To illustrate an extreme case suppose that the reduced K-groups of X are torsion groups and that U is the universal UHF-algebra with $K_0(U) \cong \mathbb{Q}$. By the Künneth formula the C*-algebras $U \otimes C(X)$ and U have isomorphic K-groups. This algebraic property is no accident but the reflection of a geometric fact. We prove that there is no homotopy invariant that can differentiate between $U \otimes C(X)$ and U. Actually, we show that the two C*-algebras are homotopy equivalent. More elaborate results are provided by Theorems 1 and 2 below. It turns out that for any finite CW-complex X the homotopy type of $U \otimes C(X)$ is determined by the Betti numbers of X. We are more precise for spaces X of dimension at most two or simply connected spaces of dimension at most three in which case the K-theory is shown to be a complete homotopy invariant of the tensor product of C(X) by UHFalgebras. These results indicate that the homotopy type of a 'matricially stable' C^* -algebra has a K-theoretic flavor.

THEOREM 1. Let X, Y be finite connected CW-complexes having isomorphic rational cohomology groups, i.e. $H^{q}(X, \mathbb{Q}) \cong H^{q}(Y, \mathbb{Q})$ for all $q \ge 0$. Let U be the UHF-algebra with $K_{0}(U) \cong \mathbb{Q}$. Then $U \otimes C(X)$ is homotopy equivalent to $U \otimes C(Y)$.

Theorem 1 shows that the isomorphism of the two rational cohomology groups, which is an algebraic property, can be given a geometrical meaning provided one introduces 'noncommutative spaces'.

If the nonzero dimensional cells of X and Y are concentrated in two consecutive dimensions, Theorem 1 can be refined as follows:

THEOREM 2. Let X, Y, be finite (n - 2)-connected CW-complexes of dimension at most $n, n \ge 2$. Let V_1, V_2 be UHF-algebras such that $V_1 \otimes M_m \cong V_1$ for some integer $m \ge 2$. Then $V_1 \otimes C(X)$ is homotopy equivalent to $V_2 \otimes C(Y)$ if and only if $K_*(V_1 \otimes C(X))$ is isomorphic to $K_*(V_2 \otimes C(Y))$ as $\mathbb{Z}/2$ -graded ordered groups.

The main tools we use are the connective KK-groups and the stabilization theorem of [5], and the universal coefficient theorem of [16]. For other applications of connective K-theory to operator algebras see [15, 5, 13, 4, 6]. The techniques developed in [5] are based on a result of G. Segal [17].

By Theorem 1, for any finite connected CW-complex X, there is a wedge of spheres Y, such that $U \otimes C(X)$ is homotopy equivalent to $U \otimes C(Y)$. It is an open problem to decide which finite wedges of spheres give homotopy equivalent C^* -algebras after tensoring with U. In particular, I was not able to prove whether or not $U \otimes C(S^1)$ is homotopy equivalent to $U \otimes C(S^3)$. This kind of questions seems to depend on the continuity of certain filtrations on K-theory considered in [13].

Ideas from homotopy theory have led to powerful tools of investigation in the theory of C^* -algebras. Recall that the KK-theory of Kasparov [12] and the E-theory of Connes and Higson [3] are homotopy-invariant by definition. A result of Voiculescu, asserting that a C^* -algebra which is homotopically dominated by a quasidiagonal C^* -algebra is quasidiagonal shows that homotopy is essentially involved in non-commutative phenomena. For more discussion on the role of homotopy in the study of C^* -algebras, see [15, 8].

1. Preliminaries

Given unital C*-algebras A, B let Hom(A, B) be the space of all unit-preserving *-homomorphisms from A to B endowed with the topology of pointwise norm-

HOMOTOPY AFTER TENSORING

convergence. If either A or B is nonunital we let $\operatorname{Hom}(A, B)$ denote all the *-homomorphisms from A to B. Two homomorphisms $\varphi, \psi \in \operatorname{Hom}(A, B)$ are called homotopic if they belong to the same path component of $\operatorname{Hom}(A, B)$. The corresponding homotopy classes are denoted by [A, B]. A is homotopy equivalent to B if there are $\varphi \in \operatorname{Hom}(A, B), \psi \in \operatorname{Hom}(B, A)$ such that $\varphi \circ \psi$ and $\psi \circ \varphi$ are homotopic to the identity maps. For a given compact space X with base point we let $C_0(X \setminus pt)$ denote the complex continuous functions on X vanishing at the base point. Let M_m stand for the C*-algebra of $m \times m$ complex matrices with unit 1_m and let id_m denote its identity map.

A UHF-algebra, U can be described as the C*-completion of an infinite tensor product algebra of the form

$$M_{p_1} \otimes M_{p_2} \otimes \cdots \otimes M_{p_k} \otimes \cdots,$$

where $p_1, p_2, ..., p_k, ...$ are prime numbers. Let P_U denote the set of all primes occurring in the above description of U and for $p \in P_U$ let $f_U(p) \in \{1, 2, ..., \infty\}$ denote the number of occurrences of p in the sequence $p_1, p_2, ..., p_k, ...$ A result of Glimm, [10], asserts that two UHF-algebras U, V are isomorphic if and only if $P_U = P_V$ and $f_U = f_V$. Alternatively, the classification of UHF-algebras can be given in terms of K-theory, see [9, 7]: U is isomorphic to V if and only if $K_0(U)$ is isomorphic to $K_0(V)$ by an isomorphism that takes $[1_U]$ to $[1_V]$. $K_0(U)$ can be identified with a dense subgroup of the rational numbers and, conversely, any dense subgroup of the rational numbers is isomorphic to the K-theory group of some UHF-algebra. Let $m \ge 2$. The following assertions are equivalent:

- (a) $U \otimes M_m$ is isomorphic to U,
- (b) $mK_0(U) = K_0(U)$,
- (c) *m* is a product of primes $p \in P_U$ with $f_U(p) = \infty$.

The following proposition gives a sufficient condition for two C^* -algebras to become homotopy equivalent after tensoring with a UHF-algebra. It relies on the fact that any two unital endomorphisms of a UHF-algebra are homotopic, see [2, 11].

PROPOSITION 1. Let U be a UHF-algebra such that $U \otimes M_m \cong U$ for some integer m. Let A, B be C*-algebras and assume that there are $\varphi \in \text{Hom}(A, M_m \otimes B)$, $\psi \in \text{Hom}(B, M_m \otimes A)$ such that $(\text{id}_m \otimes \psi) \circ \varphi$ is homotopic to the amplification map $u \in \text{Hom}(A, M_m \otimes M_m \otimes A), u(a) = 1_m \otimes 1_m \otimes a$ and $(\text{id}_m \otimes \varphi) \circ \psi$ is homotopic to the amplification map $v \in \text{Hom}(B, M_m \otimes M_m \otimes B), v(b) = 1_m \otimes 1_m \otimes b$.

Then $U \otimes A$ is homotopy equivalent to $U \otimes B$.

Proof. Let λ_m be an isomorphism of $U \otimes M_m$ onto U and consider the following homomorphisms:

 $\tilde{\varphi} = (\lambda_m \otimes \mathrm{id}_B) \circ (\mathrm{id}_U \otimes \varphi) \in \mathrm{Hom}(U \otimes A, U \otimes B),$ $\tilde{\psi} = (\lambda_m \otimes \mathrm{id}_A) \circ (\mathrm{id}_U \otimes \psi) \in \mathrm{Hom}(U \otimes B, U \otimes A).$

Due to the symmetry of our data, it suffices to prove that $\tilde{\psi} \circ \tilde{\varphi}$ is homotopic to $\mathrm{id}_U \otimes \mathrm{id}_A$.

Let λ_{m^2} denote the isomorphism $\lambda_m \circ (\lambda_m \otimes id_m)$ of $U \otimes M_m \otimes M_m$ onto U, let θ stand for $(id_m \otimes \psi) \circ \phi$, and define

$$\widetilde{\theta} = (\lambda_{m^2} \otimes \mathrm{id}_A) \circ (\mathrm{id}_U \otimes \theta) \in \mathrm{Hom}(U \otimes A, U \otimes A)$$

By checking on simple tensor products one sees that

$$\lambda_m \otimes \psi = (\mathrm{id}_U \otimes \psi) \circ (\lambda_m \otimes \mathrm{id}_B) = (\lambda_m \otimes \mathrm{id}_m \otimes \mathrm{id}_A) \circ (\mathrm{id}_U \otimes \mathrm{id}_m \otimes \psi).$$

This easily implies that $\tilde{\theta} = \tilde{\psi} \circ \tilde{\varphi}$. Since, by hypothesis, θ is homotopic to u, all we need to prove is that \tilde{u} is homotopic to $\mathrm{id}_U \otimes \mathrm{id}_A$, where

$$\tilde{u} = (\lambda_{m^2} \otimes \mathrm{id}_A) \circ (\mathrm{id}_U \otimes u).$$

Let $\sigma \in \text{Hom}(U, U \otimes M_m \otimes M_m)$ be given by $\sigma(x) = x \otimes 1_m \otimes 1_m$. One has $\tilde{u} = (\lambda_{m^2} \circ \sigma) \otimes \text{id}_A$. This concludes the proof, since $\lambda_{m^2} \circ \sigma$ is an unital endomorphism of U and therefore is homotopic to id_U (see [2, 11]).

2. Some Facts about Connective KK-Theory

In this section we recall some results from [5] which will be used in the proofs of Theorems 1 and 2.

Let X, Y be finite connected CW-complexes. The direct sum with a fixed evaluation map $C(X) \rightarrow \mathbb{C}$ induces a map

$$[C(X), M_n \otimes C(Y)] \rightarrow [C(X), M_{n+1} \otimes C(Y)].$$

Taking direct limit over n, we define

$$kk(Y,X) = \lim_{n} [C(X), M_n \otimes C(Y)].$$

kk(Y, X) is a group with addition induced by the direct sum of the homomorphisms. The usual suspension functor induces an isomorphism

 $kk(Y, X) \cong kk(SY, SX)$

which is used to extend kk(Y, X) to nonconnected spaces and to define the higherorder groups $\{kk_a(Y, X)\}_{a \in \mathbb{Z}}$

$$kk_q(Y, X) = \lim kk(S^{q+r}Y, S^rX).$$

Then $kk_q(S^0, X) = k_q(X)$ is (reduced) connective K-homology and $kk_q(Y, S^0) = k^{-q}(Y)$ is (reduced) connective K-theory. The groups $kk_q(Y, X)$ have good excision properties in both variables. One can regard kk_* as the natural connective bivariant theory associated with the Kasparov groups $KK_*(C_0(X \mid pt), C_0(Y \mid pt))$. The composition and the tensor product of homomorphisms induce a rich multiplicative structure on $kk_*(Y, X)$. For instance if $\alpha = [\varphi] \in kk(Y, X)$ is the class

136

of $\varphi \in \text{Hom}(C(X), M_n \otimes C(Y))$ and $\beta = [\psi] \in kk(Z, Y)$ is the class of $\psi \in \text{Hom}(C(Y), M_m \otimes C(Z))$, then

$$\alpha\beta = [(\mathrm{id}_n \otimes \psi) \circ \varphi] \in kk(Z, X).$$

The unit of the ring kk(X, X) is given by the class of the identity map of C(X) and will be denoted by $[id_X]$. The multiplication by the Bott element

$$t \in [C(S^{1}), M_{2} \otimes C(S^{3})] = K^{1}(S^{3})$$

gives rise to a $\mathbb{Z}[t]$ -module structure on $k^*(X)$. The Bott operation is easily described if one considers rational coefficients. Indeed, $k^q(X) \otimes \mathbb{Q}$ can be identified with $\bigoplus_{i\geq 0} \tilde{H}^{q+2j}(X,\mathbb{Q})$ such that

 $t: k^{q+2}(X) \otimes \mathbb{Q} \to k^q(X) \otimes \mathbb{Q}$

corresponds to the canonical inclusion

 $\bigoplus_{j\geq 1} \tilde{H}^{q+2j}(X,\mathbb{Q}) \hookrightarrow \bigoplus_{j\geq 0} \tilde{H}^{q+2j}(X,\mathbb{Q}).$

The composition of homomorphisms gives a natural map

 $\gamma: kk(Y, X) \to \operatorname{Hom}_{\mathbb{Z}[t]}(k^*(X), k^*(Y)).$

Passing to rational coefficients one has the following proposition.

PROPOSITION 2. Let X, Y be finite CW-complexes. The map

 $\gamma_{\mathbb{Q}}: kk(Y, X) \otimes \mathbb{Q} \to \operatorname{Hom}_{\mathbb{Q}[t]}(k^{*}(X) \otimes \mathbb{Q}, k^{*}(Y) \otimes \mathbb{Q})$

is an isomorphism.

Proof. This is implicitly contained in [5, Section 3.5]. A more direct proof follows if γ_{Q} is regarded as a natural transformation of homology theories

 $\gamma_{\mathbb{Q}}: kk_{*}(Y, X) \otimes \mathbb{Q} \to \operatorname{Hom}_{\mathbb{Q}[t]}^{*}(k^{*}(X) \otimes \mathbb{Q}, k^{*}(Y) \otimes \mathbb{Q})$

that induces an isomorphism on coefficients, i.e. for $X = S^0$.

It turns out that one can identify

 $kk(Y,X)\otimes \mathbb{Q}$

with the set of all parity-preserving morphisms

 $(\sigma_0, \sigma_1) \colon \tilde{H}^{\operatorname{even}}(X, \mathbb{Q}) \oplus \tilde{H}^{\operatorname{odd}}(X, \mathbb{Q}) \to \tilde{H}^{\operatorname{even}}(Y, \mathbb{Q}) \oplus \tilde{H}^{\operatorname{odd}}(Y, \mathbb{Q})$

that are upper triangular, i.e.

$$\sigma_i(\bigoplus_{j\geq 0} \tilde{H}^{q+2j}(X,\mathbb{Q})) \subset \bigoplus_{j\geq 0} \tilde{H}^{q+2j}(Y,\mathbb{Q})$$

for all $q \ge 0$, i = 0, 1.

In contrast with this, recall that

$$KK(C_0(X \setminus \mathrm{pt}), C_0(Y \setminus \mathrm{pt})) \otimes \mathbb{Q}$$

$$\cong \operatorname{Hom}(K_*(C_0(X \setminus \mathrm{pt})) \otimes \mathbb{Q}, K_*(C_0(Y \setminus \mathrm{pt})) \otimes \mathbb{Q})$$

and therefore $KK(C_0(X \setminus pt), C_0(Y \setminus pt)) \otimes \mathbb{Q}$ can be identified with the set of *all* parity-preserving morphisms

 $(\tau_0,\tau_1): \tilde{H}^{\operatorname{even}}(X,\mathbb{Q}) \oplus \tilde{H}^{\operatorname{odd}}(X,\mathbb{Q}) \to \tilde{H}^{\operatorname{even}}(Y,\mathbb{Q}) \oplus \tilde{H}^{\operatorname{odd}}(Y,\mathbb{Q}).$

Let \mathscr{K} denote the compact operators on an infinite-dimensional separable Hilbert space. Then kk(Y, X) can be described alternatively as $[C_0(X \setminus \text{pt}) \otimes \mathscr{K}, C_0(Y \setminus \text{pt}) \otimes \mathscr{K}]$. It follows that there is a natural transformation

 $\chi: kk(Y, X) \rightarrow KK(C_0(X \setminus pt), C_0(Y \setminus pt))$

which is compatible with the above identifications. Thus, modulo torsion, we have a good image of how far $KK(C_0(X \setminus \text{pt}), C_0(Y \setminus \text{pt}))$ can stay from the homotopy classes of actual homomorphisms from $C_0(X \setminus \text{pt}) \otimes \mathscr{K}$ to $C_0(Y \setminus \text{pt}) \otimes \mathscr{K}$.

The following result of [5] will be used in the proof of Theorem 2.

PROPOSITION 3. Assume that X, Y are finite (n - 2)-connected CW-complexes of dimension at most n, $n \ge 2$. Then the canonical map

 $\chi: kk(Y, X) \rightarrow KK(C_0(X \setminus pt), C_0(Y \setminus pt))$

is an isomorphism.

We also need the following result of [5] which extends certain stability properties of vector bundles to *-homomorphisms.

THEOREM 3. Let X, Y be finite connected CW-complexes. Then

 $kk(Y, X) \cong [C(X), M_m \otimes C(Y)]$

for any $m > 3 \dim(Y)/2$.

3. The Proof of Theorem 1

PROPOSITION 4. Let U be a UHF-algebra such that $U \otimes M_m$ is isomorphic to U for some integer $m \ge 2$. Let X, Y be finite connected CW-complexes and assume that there are

 $\alpha \in kk(Y, X), \qquad \beta \in kk(X, Y)$

such that

 $\alpha\beta = r[\mathrm{id}_X], \qquad \beta\alpha = r[\mathrm{id}_Y]$

for some integer r dividing some power of m. Then $U \otimes C(X)$ is homotopy equivalent to $U \otimes C(Y)$.

Proof. By replacing m by m^s and α by $t\alpha$ for suitable s, t, we may assume that $\alpha\beta = m^2[\operatorname{id}_X], \beta\alpha = m^2[\operatorname{id}_Y]$ and $m > 3 \dim(Y)/2$. Using Theorem 3, we find $\varphi \in \operatorname{Hom}(C(X), M_m \otimes C(Y))$ and $\psi \in \operatorname{Hom}(C(Y), M_m \otimes C(X))$ such that $[\varphi] = \alpha$ and $[\psi] = \beta$. Let u, v be the homomorphisms defined in the statement of Proposition 1

with A = C(X) and B = C(Y). By the very definition of addition in the *kk*-groups, we have $[u] = m^2[\operatorname{id}_X]$ and $[v] = m^2[\operatorname{id}_Y]$. Therefore, we get

$$[(\mathrm{id}_m \otimes \psi) \circ \varphi] = [\varphi][\psi] = m^2[\mathrm{id}_X] = [u],$$

$$[(\mathrm{id}_m \otimes \varphi) \circ \psi] = [\psi][\varphi] = m^2[\mathrm{id}_X] = [v].$$

Using once more Theorem 3, we find that $(id_m \otimes \psi) \circ \varphi$ is homotopic to u and $(id_m \otimes \varphi) \circ \psi$ is homotopic to v. Having these homotopies, the statement follows from Proposition 1.

PROPOSITION 5. Let X, Y be finite connected CW-complexes and assume that $H^q(X, \mathbb{Q})$ is isomorphic to $H^q(Y, \mathbb{Q})$ for all $q \ge 0$. Then there are $\alpha \in kk(Y, X)$ and $\beta \in kk(X, Y)$ such that $\alpha\beta = m^2[\operatorname{id}_X]$ and $\beta\alpha = m^2[\operatorname{id}_Y]$ for some nonzero integer m.

Proof. By the discussion following Proposition 2, there is an isomorphism $i_0 \in \text{Hom}_{\mathbb{Q}[t]}(k^*(X) \otimes \mathbb{Q}, k^*(Y) \otimes \mathbb{Q})$. Let j_0 be its inverse map. Using Proposition 2, we find

 $\alpha_0 \in kk(Y, X) \otimes \mathbb{Q}$ and $\beta \in kk(X, Y) \otimes \mathbb{Q}$

such that

 $\gamma_{\mathbb{Q}}(\alpha_0) = i_0 \text{ and } \gamma_{\mathbb{Q}}(\beta_0) = j_0.$

The natural map $\eta: kk \to kk \otimes \mathbb{Q}$ given by $\eta(x) = x \otimes 1$ is not onto in general. However, there is some nonzero integer s such that $s\alpha_0$ and $s\beta_0$ lift to elements $\alpha_1 \in kk(Y, X)$ and $\beta_1 \in kk(X, Y)$, respectively. It follows that $\alpha_1\beta_1 - s^2[\mathrm{id}_X]$ and $\beta_1\alpha_1 - s^2[\mathrm{id}_Y]$ belong to the kernel of η and therefore they are torsion elements. This means that there is some nonzero integer r such that $r(\alpha_1\beta_1 - s^2[\mathrm{id}_X]) = 0$ and $r(\beta_1\alpha_1 - s^2[\mathrm{id}_Y]) = 0$. Finally, we put $\alpha = r\alpha_1$, $\beta = r\beta_1$ and m = rs.

The end of the proof of Theorem 1.

Given X, Y let α , β , m be as provided by Proposition 5. Replacing, if necessary, m by 2m and α by 4α , we may assume that $m \ge 2$. No other control on m is necessary for if U is the universal UHF-algebra, then $U \otimes M_m$ is isomorphic to U and we can apply Proposition 4 to conclude that $U \otimes C(X)$ is homotopy equivalent to $U \otimes C(Y)$.

4. The Proof of Theorem 2

PROPOSITION 6. Let V be a UHF-algebra such that $V \otimes M_m$ is isomorphic to V for some integer $m \ge 2$. Let X, Y be finite (n-2)-connected CW-complexes of dimension at most n, $n \ge 2$. Suppose that there are $\alpha \in KK(C_0(X \setminus pt), C_0(Y \setminus pt))$ and $\beta \in KK(C_0(Y \setminus pt), C_0(X \setminus pt))$ such that $\alpha\beta = r[id_X]$ and $\beta\alpha = r[id_Y]$ for some r dividing a power of m. Then $V \otimes C(X)$ is homotopy equivalent to $V \otimes C(Y)$.

Proof. By Proposition 3, the map

 $\chi: kk(Y, X) \rightarrow KK(C_0(X \setminus pt), C_0(Y \setminus pt))$

is an isomorphism. Since χ preserves the multiplicative structure, the result follows by Proposition 4.

LEMMA. Let H, H' be finitely generated Abelian groups and let G be a nonzero subgroup of \mathbb{Q} such that $G \otimes H$ is isomorphic to $G \otimes H'$. Then there are groups S, T, T' and a nonzero integer r such that

$$\begin{split} H &\cong S \oplus T, \qquad H' \cong S \oplus T', \\ rT &= 0, \qquad rT' = 0, \qquad rG = G. \end{split}$$

Proof. By an easy reduction, we may assume that both H and H' are finite. The case $G \cong \mathbb{Z}$ is trivial. If G is not isomorphic to \mathbb{Z} write G as an inductive limit, $G = \lim(G_i, \varphi_i)$, where each G_i is isomorphic to \mathbb{Z} and $\varphi_i: G_i \to G_{i+1}$ is the multiplication with some prime $p_i \ge 2$. Let P denote the set consisting of all p_i that occur infinitely many times in the sequence $p_1, p_2, ...$ and notice that $pG \cong G$ for any p in P. Let d be the order of H and decompose d = st such that t is a product of (possibly distinct) primes in P, and no member of P divides s. Consider the similar decomposition d' = s't' for H', where d' is the order of H'. Since s is relatively prime to t one has an internal direct sum decomposition $H = S \oplus T$, where S (respectively, T) consists of all elements of H of order dividing s (respectively, t). Similarly one has $H' = S' \oplus T'$. Since

tT = 0, t'T' = 0 and $tG \cong G$, $t'G \cong G$,

we get $T \otimes G \cong 0$ and $T' \otimes G \cong 0$, therefore

 $H \otimes G \cong S \otimes G$ and $H' \otimes G \cong S' \otimes G$.

We conclude the proof by showing that $S \otimes G \cong S$. Indeed since $S \otimes G_i \cong S$, $S \otimes G$ is isomorphic to the inductive limit $\lim(S, \varphi_i)$, where the connecting maps $\varphi_i: S \to S$ are given by $\varphi_i(x) = p_i x$. Since no prime in P divides s, there is some j such that p_i does not divide s whenever $i \ge j$. It follows that φ_i is an isomorphism for $i \ge j$ and, therefore, $S \otimes G \cong \lim(S, \varphi) \cong S$. Similarly, one gets $S' \otimes G \cong S'$. Since $H \otimes G$ is isomorphic to $H' \otimes G$ by hypothesis, we get $S \cong S'$. Finally take r = tt'.

An Abelian group having all elements of order r will be called below a group of exponent r.

The end of the proof of Theorem 2.

Let X, Y, V_1, V_2, m be as in the statement of Theorem 2.

Assume that $K_*(V_1 \otimes C(X))$ is isomorphic to $K_*(V_2 \otimes C(Y))$ as ordered (scaled) groups. A positivity argument like that of Proposition 5.1.6 in [5], shows that $K_0(V_1)$ is isomorphic to $K_0(V_2)$ as ordered scaled groups. This implies that V_1 is isomorphic to V_2 , [9]. Thus we may assume that both V_1 and V_2 are equal to some UHF-algebra V. By the Künneth formula

$$K_0(V) \otimes K_0(C(X)) \cong K_0(V) \otimes K_0(C(Y)),$$

$$K_0(V) \otimes K_1(C(X)) \cong K_0(V) \otimes K_1(C(Y)).$$

HOMOTOPY AFTER TENSORING

Suppose that n is even. The proof for n odd is entirely similar—just interchange K_0 with K_1 . Since X is (n - 2)-connected of dimension at most n, it follows that X is homotopy equivalent to a CW-complex with all cells in dimension n - 1 and n. Since n is even this implies that $K_1(C(X))$ is a free group and of course the same holds true for $K_1(C(Y))$. By applying the above Lemma with

$$G = K_0(V),$$
 $H = K_*(C(X)),$ $H' = K_*(C(Y))$

we get

$$\begin{split} K_0(C(X)) &\cong S \oplus T, \qquad K_0(C(Y)) \cong S \oplus T', \\ K_1(C(X)) &\cong K_1(C(Y)), \end{split}$$

where T, T' are groups of exponent r and $rK_0(V) = K_0(V)$. Note that this implies $V \otimes M_r \cong V$. Let Z, W be (n-2)-connected CW-complexes of dimension at most n such that

$$K_0(C(Z)) \cong S, \qquad K_1(C(Z)) \cong K_1(C(X)),$$

$$K_0(C(W)) \cong \mathbb{Z} \oplus T, \qquad K_1(C(W)) = 0.$$

Such spaces are easily constructed by attaching *n*-cells to an wedge of (n-1)-spheres. Since Z plays a symmetric role with respect to X and Y, the proof will be complete once we show that $V \otimes C(X)$ is homotopy equivalent to $V \otimes C(Z)$. This is accomplished in two steps.

The 1st step: $V \otimes C(X)$ is homotopy equivalent to $V \otimes C(Z \vee W)$. This follows from Proposition 6 since $C_0(X \setminus pt)$ and $C_0(Z \vee W \setminus pt)$ have the same K-theory groups and, therefore, they are KK-equivalent by [16].

The 2^{nd} step: $V \otimes C(Z \vee W)$ is homotopy equivalent to $V \otimes C(Z)$. We have seen that $V \otimes M_{mr} \cong V$. Taking advantage of Proposition 6, it is enough to find

$$\alpha \in KK(C_0(Z \lor W \setminus pt), C_0(Z \setminus pt)),$$

$$\beta \in KK(C_0(Z \setminus pt), C_0(Z \lor W \setminus pt)),$$

such that

 $\alpha\beta = r^2 m^2 [\operatorname{id}_{Z \vee W}]$ and $\beta\alpha = r^2 m^2 [\operatorname{id}_Z].$

To this purpose consider the following groups

$$\begin{aligned} G_{00} &= KK(C_0(Z \setminus \text{pt}), C_0(Z \setminus \text{pt})), \qquad G_{01} &= KK(C_0(Z \setminus \text{pt}), C_0(W \setminus \text{pt})), \\ G_{10} &= KK(C_0(W \setminus \text{pt}), C_0(Z \setminus \text{pt})), \qquad G_{11} &= KK(C_0(W \setminus \text{pt}), C_0(W \setminus \text{pt})). \end{aligned}$$

Note that G_{01} , G_{10} and G_{11} are groups of exponent r since $K_*(C_0(W \setminus pt)) \cong T$ is a group of exponent r. This is easily seen by using the universal coefficient theorem of [16] which determines the Kasparov groups in terms of K-theory. Since

$$C_0(Z \vee W \setminus pt) \cong C_0(Z \setminus pt) \oplus C_0(W \setminus pt),$$

we have the following decompositions

$$\begin{split} & KK(C_0(Z \lor W \setminus \mathrm{pt}), C_0(Z \setminus \mathrm{pt})) \cong G_{00} \oplus G_{10}, \\ & KK(C_0(Z \setminus \mathrm{pt}), C_0(Z \lor W \setminus \mathrm{pt})) \cong G_{00} \oplus G_{01}, \\ & KK(C_0(Z \lor W \setminus \mathrm{pt}), C_0(Z \lor W \setminus \mathrm{pt})) \cong G_{00} \oplus G_{01} \oplus G_{10} \oplus G_{11}. \end{split}$$

Define

$$\alpha_0 = [\operatorname{id}_Z] \in KK(C_0(Z \lor W \setminus \operatorname{pt}), C_0(Z \setminus \operatorname{pt})),$$

$$\beta_0 = [\operatorname{id}_Z] \in KK(C_0(Z \setminus \operatorname{pt}), C_0(Z \lor W \setminus \operatorname{pt})).$$

We have

$$\begin{aligned} \alpha_0 \beta_0 &= [\mathrm{id}_Z] \in G_{00} \subset KK(C_0(Z \lor W \setminus \mathrm{pt}), C_0(Z \lor W \setminus \mathrm{pt})), \\ \beta_0 \alpha_0 &= [\mathrm{id}_Z] \in KK(C_0(Z \setminus \mathrm{pt}), C_0(Z \setminus \mathrm{pt})). \end{aligned}$$

Therefore

 $\alpha_0\beta_0-[\mathrm{id}_{Z\vee W}]\in G_{10}\oplus G_{01}\oplus G_{11}.$

Finally, let $\alpha = mr\alpha_0$, $\beta = mr\beta_0$. It is clear that

$$\begin{aligned} \alpha\beta - m^2 r^2 [\operatorname{id}_{Z \vee W}] &= m^2 r^2 (\alpha_0 \beta_0 - [\operatorname{id}_{Z \vee W}]) = 0, \\ \beta\alpha - m^2 r^2 [\operatorname{id}_Z] &= 0, \end{aligned}$$

since we have seen that G_{10} , G_{01} , and G_{11} are groups of exponent r.

Acknowledgements

The results presented in this paper are part of the author's PhD thesis at UCLA. The author is grateful to Professor E. G. Effros for his enlightening supervision.

References

- 1. Blackadar, B.: K-Theory for Operator Algebras, Springer, New York (1986).
- 2. Blackadar, B.: A simple unital projectionless C*-algebra, J. Operator Theory 5 (1981), 63-71.
- Connes, A. and Higson, H.: Deformations, morphisms asymptotiques et K-théorie bivariants, C.R. Acad. Sci. Paris, Sér. I Math. 311 (1990), 101-106.
- 4. Dadarlat, M.: Some examples in the homotopy theory of stable C*-algebras, preprint, 1990.
- 5. Dadarlat, M. and Nemethi, A.: Shape theory and connective K-theory, J. Operator Theory 23 (1990), 207-291.
- Dadarlat, M. and Loring, T.: The K-theory of abelian subalgebras of AF-algebras, J. Reine Angew. Math. 432 (1992), 39-55.
- Effros, E. G.: Dimensions and C*-algebras, CMBS Regional Conf. Series in Math. No. 46, Amer. Math. Soc., Providence (1981).
- 8. Effros, E. G. and Kaminker, J.: Homotopy continuity and shape theory for C*-algebras, in Geometric Methods in Operator Algebras, U.S. Japan seminar at Kyoto 1983, Pitman, New York, 1985.
- Elliott, G. A.: On the classification of inductive limits of sequences of semi-simple finite dimensional algebras, J. Algebra 38 (1976), 29-44.
- 10. Glimm, J.: On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340.

142

HOMOTOPY AFTER TENSORING

- 11. Herman, R. H. and Rosenberg, J.: Norm-close group actions on C*-algebras, J. Operator Theory 6 (1981), 25-35.
- Kasparov, G. G.: The operator K-functor and extensions of C*-algebras, Izv. Akad. Nauk. SSSR, Ser. Math. 44 (1980), 571–636.
- Loring, T. and Exel, R.: Extending cellular homology to C*-algebras, Trans. Amer. Math. Soc. 329 (1992), 141–160.
- 14. Nistor, V.: On the homotopy groups of the automorphism group of AF-algebras, J. Operator Theory 19 (1988), 319–340.
- 15. Rosenberg, J.: The Role of K-theory in Non-commutative Algebraic Topology, Contemporary Math. vol. 10, Amer. Math. Soc., Providence (1982).
- Rosenberg, J. and Schochet, C.: The Künneth theorem and the universal coefficient theorem for Kasparov's generalized functor, *Duke Math. J.* 55 (1987), 431-474.
- 17. Segal, G.: K-homology theory and algebraic K-theory, in Lecture Notes in Math. No. 575, Springer-Verlag, New York (1977), pp. 113–127.
- Voiculescu, D.: A note on quasidiagonal C*-algebras and homotopy, Duke Math. J. 62 (1991), 267-271.
- 19. Thomsen, K.: Homotopy classes of *-homomorphisms between stable C*-algebras and their multiplier algebras, *Duke Math. J.* 61 (1990), 67–104.